解析几何小题训练
解析几何复习题-数学试题
解析几何复习题-数学试题(一)选择题1、从点P(m, 3)向圆(x + 2)2 + (y +2)2 = 1引切线, 则一条切线长的最小值为A.B.5 C.D.2、若曲线x2-y2 = a2与(x-1)2 + y2 = 1恰有三个不同的公共点, 则a的值为A.-1 B.0 C.1 D.不存在3、曲线有一条准线的方程是x = 9, 则a的值为A.B.C.D.4、参数方程所表示的曲线是A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分, 且过点D.抛物线的一部分, 且过点5、过点(2, 3)作直线l, 使l与双曲线恰有一个公共点, 这样的直线l共有A.一条B.二条C.三条D.四条6、定义离心率为的椭圆为“优美椭圆”, 设(a > b > 0)为“优美椭圆”, F、A分别是它的左焦点和右顶点, B是它的短轴的一个端点, 则ÐABF为A.60° B.75° C.90° D.120°7、在圆x2 + y2 = 5x内, 过点有n条弦的长度成等差数列, 最小弦长为数列的首项a, 最大弦长为an, 若公差, 则n的取值集合为A.B.C.D.8、直线与圆x2 + y2 = 1在第一象限内有两个不同的交点, 则m的取值范围是A.1 < m < 2 B.C.D.9、极坐标方程表示的曲线是A.椭圆B.抛物线C.圆D.双曲线10、设a, b, c是ABC中ÐA, ÐB, ÐC所对边的边长, 则直线sinA·x + ay + c = 0与bx-sinB·y + sinC = 0的位置关系是A.平行B.重合C.垂直D.相交但不垂直(二)填空题11、有下列命题:(1)到两个定点的距离的和等于常数的点的轨迹是椭圆;(2)到两个定点的距离的和等于差的绝对值为常数的点的轨迹为双曲线;(3)到定直线和定点F(-c, 0)的距离之比为(c > a > 0)的点的轨迹为双曲线;(4)到定点。
解析几何练习题及答案
解析几何一、选择题1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是()A.3B.-3C.33D.-33解析:斜率k =-1-33--3=-33,故选D.答案:D2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是()A.1B.-1C.-2或-1D.-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =a +2a,则a +2a=a +2,得a =1或a =-2.故选D.答案:D3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为()A.4B.21313C.51326D.71020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d =|1--6|62+22=71020.故选D.4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是()A.x +2y -1=0B.2x +y -1=0C.2x +y -5=0D.x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值围是()A.π6,D.π3,π2解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l B.答案:B6.(2014一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为()A.x -2y +4=0B.2x +y -7=0C.x -2y +3=0D.x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=12,∴方程为y -3=12(x -2),即x -2y +4=0.答案:A7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为x a +yb =1,b =6,+1b=1,=3=3=4=2.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB =4-m m +2=-2,解得m =-8.答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即2a -1+a 3-1-a <0,化简得a -1a +2<0,∴-2<a <1.答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.+3=0,+3=0,=-3,=-3,所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sin α-1=0和l 2:2x sin α+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α.要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.法二由l 1∥l 22α-1=0,α≠0,∴sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k 21+2=0,这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一=k 1x +1,=k 2x -1解得交点P而2x 2+y 2=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二交点P 的坐标(x ,y-1=k 1x ,+1=k 2x ,故知x ≠0.1=y -1x,2=y +1x.代入k 1k 2+2=0,得y -1x ·y +1x+2=0,整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为()A.x 2+(y -2)2=1B.x 2+(y +2)2=1C.(x -1)2+(y -3)2=1D.x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则12+t -22=1,得t =2,所以圆的方程为x 2+(y -2)2=1,故选A.答案:A2.(2014模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为()A.x 2+y 2=32B.x 2+y 2=16C.(x -1)2+y 2=16D.x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2x -22+y 2=x -82+y 2,化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则()A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d =3-22+0-02=1<2,点P (3,0)恒在圆,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考卷)将圆x 2+y 2-2x -4y +1=0平分的直线是()A.x +y -1=0B.x +y +3=0C.x -y +1=0D.x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C5.(2013年高考卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是()A.x +y -2=0B.x +y +1=0C.x +y -1=0D.x +y +2=0解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b |12+12=1,故b =± 2.因为直线与圆相切于第一象限,故结合图形分析知b =-2,则直线方程为x +y -2=0.故选A.答案:A6.(2012年高考卷)直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于()A.25B.23C.3D.1解析:因为圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+32=1,半径r =2,所以弦长|AB |=222-12=2 3.故选B.答案:B 二、填空题7.(2013年高考卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d =|2×3-4+3|4+1=5,∴弦长为2×25-5=220=4 5.答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d =|1-1+4|12+-12=22,又圆半径r = 2.所以圆C 上各点到直线l 的距离的最小值为d -r = 2.答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C 的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴|4m -9m |5=1,∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=2mm 2+1,∴x =mm 2+1.当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =y -1x,代入x =m m 2+1,得+1=y -1x,化简得x 2=14.经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2=14.12.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,|=|4+2a |a 2+1,|2+|DA |2=22,|=12|AB |=2,解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇第3节一、选择题1.设P 是椭圆x225+y216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于()A.4B.5C.8D.10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D2.(2014二模)P 为椭圆x24+y23=1上一点,F 1,F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→等于()A.3B.3C.23D.2解析:由椭圆方程知a =2,b =3,c =1,1|+|PF 2|=4,1|2+|PF 2|2-4=2|PF 1||PF 2|cos 60°∴|PF 1||PF 2|=4.∴PF 1→·PF 2→=|PF 1→||PF 2→|cos 60°=4×12=2.答案:D3.(2012年高考卷)椭圆x 2a 2+y2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为()A.14B.55C.12D.5-2解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e =c a =55.故应选B.答案:B4.(2013年高考卷)已知椭圆C :x 2a 2+y2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos∠ABF =45,则C 的离心率为()A.35B.57C.45D.67解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos∠ABF =100+64-2×10×8×45=36,则|AF |=6,∠AFB =90°,半焦距c =|FO |=12|AB |=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e =c a =57.故选B.答案:B5.已知椭圆E :x2m +y24=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx+1被椭圆E 截得的弦长不可能相等的是()A.kx +y +k =0B.kx -y -1=0C.kx +y -k =0D.kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A、B、C,故选D.答案:D6.(2014省实验中学第二次诊断)已知椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使asin∠PF 1F 2=csin∠PF 2F 1,则该椭圆的离心率的取值围为()A.(0,2-1)D.(2-1,1)解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得|PF 2|sin∠PF 1F 2=|PF 1|sin∠PF 2F 1,所以由a sin∠PF 1F 2=csin∠PF 2F 1可得a|PF 2|=c |PF 1|,即|PF 1||PF 2|=c a =e ,所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=2a e +1.由于a -c <|PF 2|<a +c ,所以有a -c <2ae +1<a +c ,即1-e <2e +1<1+e ,1-e 1+e<2,1+e2,解得2-1<e .又0<e <1,∴2-1<e <1.故选D.答案:D 二、填空题7.设F 1、F 2分别是椭圆x225+y216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆x 2a 2+y2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1.∴e =ca=2- 3.答案:2-39.(2014模拟)过点(3,-5),且与椭圆y225+x29=1有相同焦点的椭圆的标准方程为________________.解析:由题意可设椭圆方程为y225-m+x29-m=1(m <9),代入点(3,-5),得525-m +39-m=1,解得m =5或m =21(舍去),∴椭圆的标准方程为y220+x24=1.答案:y220+x24=110.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.解析:1|+|PF 2|=2a ,1|2+|PF 2|2=4c 2,∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=12|PF 1||PF 2|=b 2=9,∴b =3.答案:3三、解答题11.(2012年高考卷)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 12-b 2=1,=1,2=2,2=1.故椭圆C 1的方程为x22+y 2=1.(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2=kx +b ,2=4x ,消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1kx +b ,y 2=1,消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②=1,k 2=b 2-1,解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =2时,k =22,b =-2时,k =-22.即直线l 的方程为y =22x +2或y =-22x - 2.12.(2014海淀三模)已知椭圆C :x2a 2+y2b 2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :x 2a 2+y2b2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.所以a =3,b =1,椭圆C 的方程为x23+y 2=1.(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=23,|PO |=3,所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,y 2=1,kx ,化简得(3k 2+1)x 2=3,所以|x 1|=33k 2+1,则|AO |=1+k233k 2+1=3k 2+33k 2+1.设AB 的垂直平分线为y =-1kx ,它与直线l :x +y -3=0的交点记为P (x 0,y 0),=-x +3,=-1k x ,0=3k k -1,0=-3k -1.则|PO |=9k 2+9k -12,因为△PAB 为等边三角形,所以应有|PO |=3|AO |,代入得9k 2+9k -12=33k 2+33k 2+1,解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇第4节一、选择题1.设P 是双曲线x216-y220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|等于()A.1B.17C.1或17D.以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x2sin 2θ=1的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等解析:双曲线C 1的半焦距c 1=sin 2θ+cos 2θ=1,双曲线C 2的半焦距c 2=cos 2θ+sin 2θ=1,故选D.答案:D3.(2012年高考卷)已知双曲线C :x 2a 2-y2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为()A.x220-y25=1B.x25-y220=1C.x280-y220=1D.x220-y280=1解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =bax 得a =2b .a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为x220-y25=1.故选A.答案:A4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于()A.14B.35C.34D.45解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =22,|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=42,由余弦定理可知cos∠F 1PF 2=422+222-422×42×22=34.故选C.答案:C5.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为()A.x242-y232=1B.x2132-y252=1C.x232-y242=1D.x2132-y2122=1解析:在椭圆C 1中,因为e =513,2a =26,即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为x242-y232=1.故选A.答案:A6.(2014八中模拟)若双曲线x29-y216=1渐近线上的一个动点P 总在平面区域(x -m )2+y 2≥16,则实数m 的取值围是()A.[-3,3]B.(-∞,-3]∪[3,+∞)C.[-5,5]D.(-∞,-5]∪[5,+∞)解析:因为双曲线x 29-y 216=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )2+y 2≥16,即直线与圆相离或相切,所以d =|4m |5≥4,解得m ≥5或m ≤-5,故实数m 的取值围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考卷)已知F 为双曲线C :x29-y216=1的左焦点,P ,Q 为C 上的点.若PQ的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e =ca=2,两式联立得a =1,c =2,∴b 2=c 2-a 2=4-1=3,∴方程为x 2-y23=1.答案:x 2-y23=19.(2014市第三次质检)已知点P 是双曲线x2a 2-y2b2=1(a >0,b >0)和圆x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=3m ,该双曲线的离心率等于|F 1F 2|||PF 1|-|PF 2||=2m3m -m =3+1.答案:3+110.(2013年高考卷)设F 1,F 2是双曲线C :x2a 2-y2b 2=1(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt△F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=3c ,根据双曲线的定义:|PF 1|-|PF 2|=2a ,(3-1)c =2a ,e =ca =23-1=3+1.答案:3+1三、解答题11.已知双曲线x 2-y22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?解:法一设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .=kx+1-k,2-y22=1,得(2-k2)x2-2k(1-k)x-(1-k)2-2=0(2-k2≠0).①∴x=x1+x22=k1-k2-k2.由题意,得k1-k2-k2=1,解得k=2.当k=2时,方程①成为2x2-4x+3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l与双曲线交于A,B两点,且点P(1,1)是线段AB的中点.法二设A(x1,y1),B(x2,y2),若直线l的斜率不存在,即x1=x2不符合题意,所以由题得x21-y212=1,x22-y222=1,两式相减得(x1+x2)(x1-x2)-y1+y2y1-y22=0,即2-y1-y2x1-x2=0,即直线l斜率k=2,得直线l方程y-1=2(x-1),即y=2x-1,=2x-1,2-y22=1得2x2-4x+3=0,Δ=16-24=-8<0,即直线y=2x-1与双曲线无交点,即所求直线不合题意,所以过点P(1,1)的直线l不存在.12.(2014质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos∠F 1PF 2的值.解:(1)由已知c =13,设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,-m =4,·13a=3·13m,解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x249+y236=1,双曲线方程为x29-y24=1.(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=213,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-21322×10×4=45.第八篇第5节一、选择题1.(2014模拟)抛物线y =2x 2的焦点坐标为()B.(1,0)解析:抛物线y =2x 2,即其标准方程为x 2=12y C.答案:C2.抛物线的焦点为椭圆x24+y29=1的下焦点,顶点在椭圆中心,则抛物线方程为()A.x 2=-45y B.y 2=-45x C.x 2=-413yD.y 2=-413x解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2=5,∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .故选A.答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是()A.相离B.相交C.相切D.不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |,故圆与抛物线准线相切.故选C.答案:C4.(2014高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为()A.53B.83C.103D.10解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,1+1=3x 2+1,1x 2=y 214·y 224=y 1y 2216=1,解得x 1=3,x 2=13,故线段AB 的中点到该抛物线的准线x =-1的距离等于x 1+x 22+1=83.故选B.答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为()A.34B.1C.54D.74解析:∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值围是()A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =3x +b ,=3x +b ,2=2py消去y ,得x 2=2p (3x +b ),即x 2-23px -2pb =0,∴x 1+x 2=23p =3,∴p =32,则抛物线的方程为x 2=3y .答案:x 2=3y8.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为3,∴直线方程为y =3(x -1).联立方程y =3x -1,y 2=4x ,解得x 1=13,y 1=-233,或x 2=3,y 2=23,由已知得A 的坐标为(3,23),∴S △OAF =12|OF |·|y A |=12×1×23= 3.答案:310.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A 72,4,则|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-12,焦点F 坐标为12,0.求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+12,所以|PA |+|PM |≥5-12=92.答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-12,数m 的值.解:法一如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,=-x +n ,=2x 2,得2x 2+x -n =0,∴x 1+x 2=-12,x 1x 2=-n2由x 1x 2=-12,得n =1.又x 0=x 1+x 22=-14,y 0=-x 0+n =14+1=54,即点M -14,由点M 在直线l 上,得54=-14+m ,∴m =32.法二∵A 、B 两点在抛物线y =2x 2上.1=2x 21,2=2x 22,∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB =y 1-y 2x 1-x 2=4x 0.又AB ⊥l ,∴k AB =-1,从而x 0=-14.又点M 在l 上,∴y 0=x 0+m =m -14,即-14,m∴AB 的方程是y 即y =-x +m -12,代入y =2x 2,得2x 2+x x 1x 2=-m -122=-12,∴m =3212.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)直线AB 的方程是y y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =9,所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),即C (4λ+1,42λ-22),所以[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.。
初中理科数学解析几何练习题
初中理科数学解析几何练习题
解析几何是数学中的一个重要分支,它将代数和几何相结合,用代数的方法研究几何问题。
初中阶段的学生通过研究解析几何可以培养抽象思维能力和几何直观性,同时提升数学解题能力。
以下是一些初中理科数学解析几何的练题,供学生们进行训练和巩固知识。
题目一:点的坐标
1. 已知平面直角坐标系中的点A的坐标为(2, 3),点B的坐标为(-1, 4),求线段AB的中点坐标。
题目二:距离公式
2. 已知平面上点A的坐标为(3, 2),点B的坐标为(-5, -1),求线段AB的长度。
题目三:直线方程
3. 已知直线L过点A(4, 1)和点B(-2, 3),求直线L的方程。
题目四:线段垂直平分
4. 已知平面上线段AB的中点坐标为(1, 2),直线L的方程为2x - 3y = 7,判断线段AB是否被直线L垂直平分。
题目五:两线段相交
5. 已知平面上线段AB的端点坐标为A(1, -2)和B(4, 3),线段CD的端点坐标为C(1, 2)和D(3, 0),判断线段AB和线段CD是否相交。
题目六:求斜率
6. 已知平面上直线L的方程为2x + 3y = 6,求直线L的斜率。
以上是初中理科数学解析几何的练习题,希望能够帮助学生们更好地理解和掌握解析几何的知识。
通过不断地练习和思考,相信你们可以在解析几何方面取得更好的成绩!加油!。
解析几何习题及答案
解析几何习题一、选择题(本大题共12个小题在每小题给出的四个选项中,只有一项是符合题目要求的)1. 平面上有两个定点A 、B 及动点P ,命题甲:“|P A |-|PB |是定值”,命题乙“点P 的轨迹是以A 、B 为焦点的双曲线”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 如果双曲线经过点(6,3),且它的两条渐近线方程是y =±13x ,那么双曲线方程是( ) A.x 236-y 29=1 B.x 281-y 29=1 C.x 29-y 2=1 D.x 218-y 23=1 3. 点(a ,b )关于直线x +y +1=0的对称点是( )A .(-a -1,-b -1)B .(-b -1,-a -1)C .(-a ,-b )D .(-b ,-a )4. 直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1 5. 椭圆x 29+y 24+k =1的离心率为45,则k 的值为( ) A .-21 B .21 C .-1925或21 D.1925或21 6. 已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .127. 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 ( )A.x 25-y 24=1B.x 24-y 25=1C.x 23-y 26=1D.x 26-y 23=1 8. 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ). A. 2 B. 3 C.3+12 D.5+129. 若不论k 为何值,直线y =k (x -2)+b 与曲线x 2-y 2=1总有公共点,则b 的取值范围是( ) A .(-3,3) B .[-3,3] C .(-2,2) D .[-2,2]10. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( ) A.172 B .3 C. 5 D.9211. 已知F (c,0)是椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点,F 与椭圆上点的距离的最大值为m ,最小值为n ,则椭圆上与点F 的距离为m +n 2的点是( ) A .(c ,±b 2a ) B .(c ,±b a) C .(0,±b ) D .不存在12. A (x 1,y 1),B ⎝⎛⎭⎫22,53,C (x 2,y 2)为椭圆x 29+y 225=1上三点,若F (0,4)与三点A 、B 、C 的距离为等差数列,则y 1+y 2的值为( )A.43B.103C.163D.223二、填空题(本大题共4小题,将正确的答案填在题中横线上)13. 设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|等于________.14. 平行线l 1:3x -2y -5=0与l 2:6x -4y +3=0之间的距离为________.15. 在Rt △ABC 中,AB =AC =1,如果一个椭圆通过A ,B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率为________.16. 点P 是双曲线x 24-y 2=1上的一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是________.三、解答题(本大题共5个小题,解答应写出文字说明、证明过程或演算步骤)17. 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如右图所示,求△ABO 的面积的最小值及此时直线l 的方程.18. 已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围.(2)求被椭圆截得的最长弦所在的直线方程.19. 已知直线y =-12x +2和椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A 、B 两点,M 为线段AB 的中点,若|AB |=25,直线OM 的斜率为12,求椭圆的方程.20. 在面积为1的△PMN 中,tan ∠PMN =12,tan ∠MNP =-2,建立适当的坐标系,求以M ,N 为焦点且过点P 的双曲线方程.。
解析几何测试题
解析几何测试题(椭圆、双曲线、抛物线)姓名一. 选择题:(本大题共12小题,每小题5分,共60分)1. 抛物线x y 42=的焦点坐标是( ) A .(1,0) B .(0,1) C .(0,2) D .(2,0)2. 若椭圆长轴长为8,且焦点为F 1(-2,0),F 2(2,0),则这个椭圆的离心率等于( )A.22B. 13C. 12D.413. 已知方程01222=+-+m y m x 表示双曲线,则m 的取值范围是( )A .m<-2B .m>-1C .-2<m<-1D .m<-2或m>-14. 以双曲线1322=-x y 的一个焦点为圆心,离心率为半径的圆的方程是A .4)2(22=+-y xB .2)2(22=-+y xC .2)2(22=+-y xD .4)2(22=-+y x5. 如果点M (x,y )在运动过程中,总满足关系式10)3()3(2222=-++++y x y x 则点M 的轨迹方程为( )A.191622=+yx B. 191622=+x y C. 1162522=+y x D. 1162522=+x y6.已知双曲线C :x 2a -y 2b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( ) A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 7. 抛物线)0(242>=a ax y 上有一点M ,它的横坐标为3,它到焦点的距离是5,则抛物线的方程为 ( )A.x y 82=B. x y 122=C. x y 162=D. x y 202= 8.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则 cos ∠F 1PF 2= ( ) A.14 B.35 C.34 D.459. 等轴双曲线C 的中心在原点,焦点在x 轴上,双曲线c 与抛物线x y 162=的准线交于B A 、两点,AB =34,则双曲线C 的实轴长为 ( )A. 2B. 22C. 4D. 810.已知定点A (3,4),点P 为抛物线y 2=4x 上一动点,点P 到直线x=-1的距离为d ,则|PA|+d 的最小值为( ) A ..2 C . . 11. 设椭圆)0(12222>>=+b a b y a x 的离心率21=e ,右焦点F (c ,0),方程02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在 ( ) A .圆222=+y x 内 B. 圆222=+y x 上 C .圆222=+y x 外 D. 以上三种情况都有可能12.过双曲线22221(0,0)y x a b a b -=>>的左焦点F ,作圆222a y x =+的切线交双曲线右支于点P ,切点为T ,PF 的中点M 在第一象限,则以下正确的是( )A .||||b a MO MT -<-B .||||MT MO a b -=-C .||||MT MO a b ->-D .||||MT MO a b --与大小不定二.填空题:(本大题共4小题,每小题4分,共16分)13.双曲线22221x y a b-=的两条渐近线互相垂直,那么双曲线的离心率为14. 已知B ,C 是两个定点,坐标分别为(3,0),(-3,0),若顶点A 的轨迹方程为)0(1162522≠=+y y x ,则 △ABC 的周长为15.过抛物线)0(22>=p px y 的焦点作一条直线交抛物线于A(x 1,y 1),B(x 2,y 2),则2121x x y y 的值为 16.方程12422=-+-t y t x 所表示的曲线为C ,有下列命题:①若曲线C 为椭圆,则2<t<4;②若曲线C 为双曲线,则t>4或t<2;③曲线C 不可能为圆; ④若曲线C 表示焦点在y 轴上的双曲线, 则t>4, 则以上命题正确的是三. 解答题:(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.求双曲线14416922=-x y 的实轴长,虚轴长,顶点和焦点的坐标,离心率,渐近线方程。
空间解析几何试题
空间解析几何一、 填空题(每小题4分,共20分)1、已知2,==a b 且2⋅=a b , 则⨯=a b ;2、已知三向量,,a b c 两两互相垂直,且1,1===a b c ,则向量=+-s a b c 的模等于 ;3、旋转曲面2z =是由曲线 绕z 轴旋转一周而得;4、空间曲线⎩⎨⎧==+x z 1y x 在yOz 面上的投影为 ; 5、当λ=____时,直线231x y z ==-平行于平面40x y z λ++=。
二、选择题(每小题4分,共20分)1、若非零向量a,b 满足关系式-=+a b a b ,则必有 ;(A )-+a b =a b ; (B )=a b ; (C )0⋅a b =; (D )⨯a b =0.2、已知{}{}2,1,21,3,2---a =,b =,则Pr j b a = ;(A )53; (B )5; (C )3; (D . 3、直线11z 01y 11x -=-=--与平面04z y x 2=+-+的夹角为 ; (A )6π; (B )3π; (C )4π; (D )2π. 4、点(1,1,1)在平面02=+-+1z y x 的投影为 ;(A )⎪⎭⎫ ⎝⎛23,0,21; (B )13,0,22⎛⎫-- ⎪⎝⎭; (C )()1,1,0-;(D )11,1,22⎛⎫-- ⎪⎝⎭. 5、方程222231x y z -+=表示 曲面,其对称轴在 上;(A)单叶双曲面,x 轴; (B)双叶双曲面,x 轴;(C)单叶双曲面,y 轴; (B)双叶双曲面,z 轴;三、 判断题(每题3分,共18分)1.若0≠a ,且c a b a ⋅=⋅或c a b a ⨯=⨯,则c b =。
( )2.与ox,oy,oz 三个坐标轴之正向有相等夹角的向量,其方向角必为3,3,3πππ。
( ) 3.平面1432===z y z 与6x+4y+3z+12=0平行。
( ) 4.向量)()(c a b c a a ⋅-⋅与c 恒垂直。
解析几何单元测试题及答案
解析几何单元测试题及答案一、选择题(每题3分,共15分)1. 椭圆的标准方程是哪一个?A. \((x-h)^2/a^2 + (y-k)^2/b^2 = 1\)B. \((x-h)^2/b^2 + (y-k)^2/a^2 = 1\)C. \((x-h)^2/a^2 + (y-k)^2/b^2 = 0\)D. \((x-h)^2/a^2 - (y-k)^2/b^2 = 1\)2. 点P(-1, 3)到直线3x - 4y + 5 = 0的距离是?A. 2B. 3C. 4D. 53. 抛物线 \(y^2 = 4x\) 的焦点坐标是?A. (1, 0)B. (0, 2)C. (1, 2)D. (2, 0)4. 直线 \(ax + by + c = 0\) 与 \(dx + ey + f = 0\) 平行的条件是?A. \(a/d = b/e\)B. \(a/d = b/e ≠ c/f\)C. \(a/d ≠ b/e\)D. \(a/d = b/e = c/f\)5. 圆心在原点,半径为5的圆的标准方程是?A. \(x^2 + y^2 = 25\)B. \((x-5)^2 + y^2 = 25\)C. \(x^2 + y^2 = 5\)D. \((x-5)^2 + y^2 = 5\)二、填空题(每题2分,共10分)6. 已知椭圆 \(\frac{x^2}{9} + \frac{y^2}{4} = 1\),其长轴的长度为________。
7. 点A(2, -1)关于直线 \(x-y-1=0\) 对称的点的坐标是________。
8. 直线 \(2x - 3y + 1 = 0\) 与 \(x + y - 2 = 0\) 的交点坐标是________。
9. 抛物线 \(x^2 = 6y\) 的准线方程是________。
10. 圆 \(x^2 + y^2 - 2x - 4y + 4 = 0\) 的圆心坐标是________。
解析几何经典练习题(含答案)
解析几何经典练习题(含答案)题目一:已知平面直角坐标系中两点A(-3,4)和B(5,-2),求直线AB的斜率和方程。
解答:直线AB的斜率可以使用斜率公式计算:斜率 = (y2 - y1) / (x2 - x1)其中,A的坐标为(x1, y1) = (-3, 4),B的坐标为(x2, y2) = (5, -2)。
斜率 = (-2 - 4) / (5 - (-3)) = -6 / 8 = -3/4直线AB的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - 4 = (-3/4)(x + 3)化简得到直线AB的方程为:4y - 16 = -3x - 9整理得到标准形式方程:3x + 4y = 7答案:直线AB的斜率为 -3/4,方程为 3x + 4y = 7。
题目二:已知直线L的斜率为2,经过点A(3,-1),求直线L的方程。
解答:直线L的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = 2(x - 3)化简得到直线L的方程为:y + 1 = 2x - 6整理得到标准形式方程:2x - y = 7答案:直线L的方程为 2x - y = 7。
题目三:已知直线L的方程为 3x + y = 5,求直线L的斜率和经过点A (2,-1)的方程。
解答:直线L的斜率可以从方程的标准形式中直接读取:3x + y = 5将方程转化成斜截式形式:y = -3x + 5可以看出直线L的斜率为-3。
经过点A(2,-1)的直线方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = -3(x - 2)化简得到通过点A的直线方程为:y + 1 = -3x + 6整理得到标准形式方程:3x + y = 5答案:直线L的斜率为-3,经过点A(2,-1)的方程为 3x + y = 5。
高考数学解析几何部分测试习题
高考数学解析几何部分测试习题10.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是A .324+B .13-C .213+ D .13+5.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( )A .3B .23C .38 D .32 6、抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .1617B .1615C .87D .011、点)1,3(-P 在椭圆)0(12222>>=+b a by a x 的左准线上,过点P 且方向为)5,2(-=a 的光线经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A .33 B .31 C .22 D .21(12)设直线l:2x+y+2=0,关于原点对称的直线为l ’,若l ’与椭圆x 2+41y 2=1的交点为A 、B ,点P 为椭圆上的动点,则使△APB 面积为21的点P 的个数为(A )1(B )2(C )3(D )4(5)设双曲线以椭圆192522=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为(A)2±(B)34±(C)21±(D)43±(6)从集合{1,2,3…,11}中任选两个元素作为椭圆方程12222=+ny m x 中的m 和n,则能组成落在矩形区域B={(x,y)| |x|<11且|y|<9}内的椭圆个数为(A)43 (B) 72 (C) 86 (D) 901.圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为( )A .5)2(22=+-y xB .5)2(22=-+y xC .5)2()2(22=+++y xD .5)2(22=++y x2.点(1,-1)到直线x -y +1=0的距离是( )(A)21 (B) 32(C)(4)从原点向圆 x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为(A )π (B )2π (C )4π (D )6π13.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.5.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163 B .83 C .316 D .38 7.已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为( )A .30ºB .45ºC .60ºD .90º13.已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A 、B 两点,且|AB|=3,则OB OA ⋅= .(6)已知双曲线 62x - 32y = 1的焦点为F 1、、F 2,点M 在双曲线上且MF 1 ⊥ x 轴,则F 1到直线F 2 M 的距离为 (A )563 (B )665 (C )56 (D )65(14)设双曲线21a x 2-21by 2=1(a>0,b>0)的右交点为F ,右准线l 与两条渐近线交于P 、Q 两点,若△PQF 是直角三角形,则双曲线的离心率e=____________________。
解析几何小题压轴题题库题(适用培优)
解析几何压轴小题题库一、单选题1.中,,,,中,,则的取值范围是()A.B.C.D.2.是双曲线的左、右焦点,直线l为双曲线C的一条渐近线,关于直线l的对称点为,且点在以F2为圆心、以半虚轴长b为半径的圆上,则双曲线C的离心率为A.B.C.2D.3.已知椭圆的左、右焦点分别为,,为椭圆上不与左右顶点重合的任意一点,,分别为的内心、重心,当轴时,椭圆的离心率为( )A.B.C.D.4.设,分别是椭圆的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于C点,若满足且,则椭圆的离心率为A.B.C.D.5.若点A,F分别是椭圆的左顶点和左焦点,过点F的直线交椭圆于M,N两点,记直线的斜率为,其满足,则直线的斜率为A.B.C.D.6.已知点,是椭圆上的动点,且,则的取值范围是()A.B.C.D.7.过抛物线焦点的直线与抛物线交于,两点,与圆交于,两点,若有三条直线满足,则的取值范围为( )A .B .C .D .8.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A .[]0,1B .[]1,1- C .⎡⎢⎣⎦ D .⎡⎢⎣⎦9.过双曲线的左焦点作直线与双曲线交于,两点,使得,若这样的直线有且仅有两条,则离心率的取值范围是( )A .B .C .D .10.已知直线,直线,其中,.则直线与的交点位于第一象限的概率为( ) A .B .C .D . 11.已知正方体,空间一动点P 满足,且,则点P 的轨迹为A .直线B .圆C .椭圆D .抛物线12.已知直线l :x-y+3=0和点A (0,1),抛物线y=x 2上一动点P 到直线l 和点A 的距离之和的最小值是( ) A .2 B .C .D .13.已知实数满足,,则的最大值为( ) A .B .2C .D .414.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2B.3C.D.15.设不等式组所表示的平面区域为,其面积为.①若,则的值唯一;②若,则的值有2个;③若为三角形,则;④若为五边形,则.以上命题中,真命题的个数是( )A.B.C.D.16.过双曲线的焦点且垂直于x轴的直线与双曲线交于A,B两点,D为虚轴上的一个端点,且为钝角三角形,则此双曲线离心率的取值范围为A.B.C.D.17.过原点的一条直线与椭圆=1(a>b>0)交于A,B两点,以线段AB为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.B.C.D.18.已知抛物线的焦点为F,过F点的直线交抛物线于不同的两点A、B,且,点A关于轴的对称点为,线段的中垂线交轴于点D,则D点的坐标为A.(2,0)B.(3,0)C.(4,0)D.(5,0)19.在平面直角坐标系中,过双曲线上的一点作两条渐近线的平行线,与两条渐近线的交点分别为,,若平行四边形的面积为3,则该双曲线的离心率为()A.B.C.D.20.在坐标平面内,与点距离为2,且与点距离为1的直线共有()条A.4B.3C.2D.121.已知圆,直线,若直线上存在点,过点引圆的两条切线,使得,则实数的取值范围是()A.B.[,]C.D.)22.已知双曲线的一个焦点恰为圆Ω:的圆心,且双曲线C的渐近线方程为.点P在双曲线C的右支上,,分别为双曲线C的左、右焦点,则当取得最小值时,=()A.2B.4C.6D.823.已知是双曲线的右焦点,过点作垂直于轴的直线交于双曲线于两点,分别为双曲线的左、右顶点,连接交轴于点,连接并延长交于点,且为线段的中点,则双曲线的离心率为()A.B.C.D.24.设F为双曲线E:的右焦点,过E的右顶点作x轴的垂线与E的渐近线相交于A,B两点,O为坐标原点,四边形OAFB为菱形,圆与E在第一象限的交点是P,且,则双曲线E的方程是A.B.C.D.25.已知抛物线:与圆:交于,,,四点.若轴,且线段恰为圆的一条直径,则点的横坐标为()A.B.3C.D.626.在圆锥中,已知高,底面圆的半径为4,为母线的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为()①圆的面积为;②椭圆的长轴为;③双曲线两渐近线的夹角为;④抛物线中焦点到准线的距离为.A.1个B.2个C.3个D.4个27.已知F为抛物线的焦点,点A,B在该抛物线上且位于x轴的两侧,其中O为坐标原点,则与面积之和的最小值是A.B.3C.D.28.已知,是椭圆的左右焦点,点M的坐标为,则的角平分线所在直线的斜率为A.B.C.D.29.双曲线的左、右焦点分别为,过的直线与圆相切,与的左、右两支分别交于点,若,则的离心率为()A.B.C.D.30.已知是抛物线的焦点,过点的直线与抛物线交于不同的两点,与圆交于不同的两点(如图),则的值是( )A.B.2C.1D.31.已知抛物线的焦点为,过点的直线与抛物线交于,两点,则的面积的最小值为( )A.B.C.D.32.已知双曲线C:,过左焦点的直线l的倾斜角满足,若直线l分别与双曲线的两条渐近线相交于A,B两点,且线段AB的垂直平分线恰好经过双曲线的右焦点,则该双曲线的离心率为( )A.B.C.D.33.在平面直角坐标系中,圆经过点,,且与轴正半轴相切,若圆上存在点,使得直线与直线关于轴对称,则的最小值为()A.B.C.D.34.已知A,B分别是双曲线C:的左、右顶点,P为C上一点,且P在第一象限.记直线PA,PB的斜率分别为k1,k2,当2k1+k2取得最小值时,△PAB的重心坐标为()A.B.C.D.35.如图所示,,是椭圆C:的短轴端点,点M在椭圆上运动,且点M不与,重合,点N满足,,则A.B.C.D.36.若三次函数()的图象上存在相互平行且距离为的两条切线,则称这两条切线为一组“距离为的友好切线组”.已知,则函数的图象上“距离为4的友好切线组”有()组?A.0B.1C.2D.337.已知是双曲线:上的一点,半焦距为,若(其中为坐标原点),则的取值范围是()A.B.C.D.38.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,已知、是一对相关曲线的焦点,是椭圆和双曲线在第一象限的交点,当时,这一对相关曲线中双曲线的离心率是( )A.B.C.D.239.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A.B.C.2D.40.已知抛物线的焦点为,点在抛物线上,以为边作一个等边三角形,若点在抛物线的准线上,则()A.B.C.D.41.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,则的横坐标范围是( )A.B.C.D.42.已知是双曲线上一点,是左焦点,是右支上一点,与的内切圆切于点,则的最小值为 ( )A.B.C.D.43.已知直线过抛物线:的焦点,交于两点,交的准线于点。
解析几何专题练习(带答案)
解析几何专题练习一、选择题 1.已知直线l 1:(k -3)x +(4-k)y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是A .1或3B .1或5C .3或5D .1或2 2.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有 A .1条 B .2条 C .3条 D .4条3.双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =A. 3 B .2 C .3 D .6 4.“b a =”是“直线2+=x y 与圆()()222=-+-b x a x 相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.椭圆31222yx+=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M在y 轴上,那么点M 的纵坐标是A .±43B .±23C .±22D .±43二、填空题 6.经过圆0222=++yx x 的圆心C ,且与直线x+y=0垂直的直线方程是___ .7.由直线2+=x y 上的点向圆()()22421x y -++= 引切线,则切线长的最小值为___. 8.若双曲线221x ky +=的离心率是2,则实数k 的值是______.9.已知圆C的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C的交点的直角坐标为 .10.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是__________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点=+不经过任何整点②如果k与b都是无理数,则直线y kx b③直线l经过无穷多个整点,当且仅当l经过两个不同的整点=+经过无穷多个整点的充分必要条件是:k与b都是有理数④直线y kx b⑤存在恰经过一个整点的直线三、解答题11.在△ABC中,已知点A(5,-2)、B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上.(1)求点C的坐标;(2)求直线MN的方程.12.求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.13.已知圆x2+y2-4ax+2ay+20(a-1)=0.(1)求证对任意实数a,该圆恒过一定点;(2)若该圆与圆x2+y2=4相切,求a的值.14.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标.15.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:MF 1⊥MF 2; (3)求△F 1MF 2的面积.16.已知直线l 过点P (1,1), 并与直线l 1:x -y+3=0和l 2:2x+y -6=0分别交于点A 、B ,若线段AB 被点P 平分,求: (1)直线l 的方程;(2)以O 为圆心且被l 截得的弦长为558的圆的方程.17.已知点A 的坐标为)4,4(-,直线l 的方程为3x +y -2=0,求: (1)点A 关于直线l 的对称点A ′的坐标;… (2)直线l 关于点A 的对称直线l '的方程.18.已知圆221:(4)1Cx y -+=,圆222:(2)1C x y +-=,动点P到圆1C ,2C 上点的距离的最小值相等.】 (1)求点P 的轨迹方程;(2)点P 的轨迹上是否存在点Q ,使得点Q 到点(22,0)A -的距离减去点Q 到点(22,0)B 的距离的差为4,如果存在求出Q 点坐标,如果不存在说明理由.19.已知椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:x3-2 42y32--422(1)求12C C 、的标准方程;(2)请问是否存在直线l 满足条件:①过2C 的焦点F ;②与1C 交不同两点,M N 、且满足OM ON ⊥?若存在,求出直线l 的方程;若不存在,说明理由.20.已知椭圆()22220y xC a b a b:+=1>>的离心率为63,过右顶点A 的直线l 与椭圆C 相交于A 、B 两点,且(13)B --,.(1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440xmx y y m -+++-=与D 有公共点,试求实数m 的最小值.参考答案一、选择题 1—5 CBAAA 二、填空题 6.x-y+1=0 7. 318.13-9. (1,1),(1,1)- 10. ①,③,⑤三、解答题11.解:(1)设点C(x ,y),由题意得5+x 2=0,3+y2=0,得x =-5,y =-3.故所求点C 的坐标是(-5,-3).(2)点M 的坐标是⎝⎛⎭⎪⎫0,-52,点N 的坐标是(1,0),直线MN 的方程是y -0-52-0=x -10-1, 即5x -2y -5=0.12. 解:根据圆的标准方程,只要求得圆心坐标和圆的半径即可.因为圆过A 、B 两点,所以圆心在线段AB 的垂直平分线上.由k AB =4-21-3=-1,AB 的中点为(2,3),故AB 的垂直平分线的方程为y -3=x -2, 即x -y +1=0.又圆心在直线y =0上, 因此圆心坐标是方程组 ⎩⎪⎨⎪⎧x -y +1=0y =0的解,即圆心坐标为(-1,0). 半径r =-1-12+0-42=20, 所以得所求圆的标准方程为(x +1)2+y 2=20.因为M 1到圆心C(-1,0)的距离为2+12+3-02=18,|M 1C|<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C|=2+12+4-02=25>20,所以M 2在圆C 外.13. 解:(1)将圆的方程整理为(x 2+y 2-20)+a(-4x +2y +20)=0,令⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0可得⎩⎪⎨⎪⎧x =4,y =-2,所以该圆恒过定点(4,-2).(2)圆的方程可化为(x -2a)2+(y +a)2=5a 2-20a +20=5(a -2)2,所以圆心为(2a ,a),半径为5|a -2|.若两圆外切,则2a -02+a -02=2+5|a -2|,即5|a|=2+5|a -2|,由此解得a =1+55.若两圆内切,则2a 2+a 2=|2-5|a -2||,即5|a|=|2-5|a -2||,由此解得a =1-55或a =1+55(舍去).综上所述,两圆相切时,a =1-55或a =1+55.14. 解:(1)抛物线y 2=2px 的准线x =-p 2,于是,4+p2=5,∴p =2.∴抛物线方程为y 2=4x.(2)∵点A 的坐标是(4,4),由题意得B(0,4),M(0,2).又∵F(1,0),∴k FA =43.又MN ⊥FA ,∴k MN =-34,则FA 的方程为y =43(x -1),MN 的方程为y -2=-34x ,解方程组),1(34),432(-=-=-x y x y 得.54),58(==y x ∴N )54,58(. 15. 解:(1)由e =2⇒ca=2⇒c 2=2a 2⇒a 2=b 2.设双曲线方程为x 2-y 2=λ, 将点(4,-10)代入得:λ=6, 故所求双曲线方程为x 2-y 2=6.(2)∵c 2=12,∴焦点坐标为(±23,0) 将M(3,m)代入x 2-y 2=6得:m 2=3.当m =3时,MF 1→=(-23-3,-3), MF2→=(23-3,-3)∴MF1→·MF 2→=(-3)2-(23)2+(-3)2=0, ∴MF 1⊥MF 2,当m =-3时,同理可证MF 1⊥MF 2.(3)S △F 1MF 2=12·|2c|·|m|=12·43·3=6.16. 解:(1)依题意可设A )n ,m (、)n 2,m 2(B --,则 ⎩⎨⎧=--+-=+-06)n 2()m 2(203n m , ⎩⎨⎧=+-=-023n m n m ,解得1m -=,2n =. 即)2,1(A -,又l 过点P )1,1(,易得AB 方程为03y 2x =-+.(2)设圆的半径为R ,则222)554(d R +=,其中d 为弦心距,53d=,可得5R 2=,故所求圆的方程为5yx22=+.17.解:(1)设点A ′的坐标为(x ′,y ′)。
(完整版)解析几何题库
解析几何题库一、选择题1.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 A.22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C.22(1)(1)2x y -+-= D. 22(1)(1)2x y +++=【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B 2.直线1y x =+与圆221x y +=的位置关系为( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离【解析】圆心(0,0)为到直线1y x =+,即10x y -+=的距离2d ==,而012<<,选B 。
【答案】B 3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .22(2)1xy +-=B .22(2)1xy ++=C .22(1)(3)1x y -+-=D .22(3)1xy +-=解法1(直接法):设圆心坐标为(0,)b1=,解得2b =,故圆的方程为22(2)1x y +-=。
解法2(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为22(2)1x y +-=解法3(验证法):将点(1,2)代入四个选择支,排除B ,D ,又由于圆心在y 轴上,排除C 。
【答案】A4.点P (4,-2)与圆224x y +=上任一点连续的中点轨迹方程是( )A.22(2)(1)1x y -++= B.22(2)(1)4x y -++=C.22(4)(2)4x y ++-=D.22(2)(1)1x y ++-=【解析】设圆上任一点为Q (s ,t ),PQ 的中点为A (x ,y ),解得:⎩⎨⎧+=-=2242y t x s ,代入圆方程,得(2x -4)2+(2y+2)2=4,整理,得:22(2)(1)1x y -++=【答案】A 5.已知直线12:(3)(4)10,:2(3)230,l kx k y l k x y -+-+=--+=与平行,则k 得值是( )A. 1或3B.1或5C.3或5D.1或2【解析】当k =3时,两直线平行,当k ≠3k -3,解得:k =5,故选C 。
解析几何小题基础练-高考数学重点专题冲刺演练(解析版)
解析几何小题基础练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·福建莆田·统考二模)已知F为抛物线C:y2=4x的焦点,A为C上的一点,AF中点的横坐标为2,则|AF|=()A.3B.4C.5D.6【答案】B【分析】根据AF中点的横坐标求出A点横坐标,进而由焦半径公式求出答案.【详解】由题意得:F1,0,准线方程为x=-1,设A m,n,则AF中点的横坐标为m+1 2,故m+12=2,解得:m=3,由抛物线的焦半径可知:|AF|=3+1=4.故选:B2.(2023·广东惠州·统考模拟预测)“m>2”是“方程x22-m +y2m+1=1表示双曲线”的( )条件A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B【分析】利用集合法进行求解.【详解】因为方程x22-m+y2m+1=1表示双曲线,所以2-mm+1<0,解得m<-1或m>2.即m∈(-∞,-1)∪(2,+∞).因为(2,+∞)是(-∞,-1)∪(2,+∞)的真子集,所以“m>2”是“方程x22-m+y2m+1=1表示双曲线”的充分不必要条件.故选:B.3.(2023·浙江·统考一模)设直线y=2x与抛物线y=x-32交于A,B两点,M是线段AB的中点,则点M的横坐标是()A.3B.4C.5D.6【答案】B【分析】直接联立直线方程与抛物线方程,消y整理得x2-8x+9=0,利用韦达定理以及中点坐标公式即可得解.【详解】联立y=2xy=x-32,消y整理得x2-8x+9=0,则x A+x B=8,所以x M=x A+x B 2=4.故选:B.4.(2023·浙江·校联考模拟预测)设椭圆C:x2a2+y2b2=1(a>b>0)的半焦距为c,若a-c=4,b=6,则C的离心率为()A.512B.35C.513D.1213【答案】C【分析】由a-c=4b=6a2=b2+c2解出a=132,c=52,再由离心率公式计算即可.【详解】由a-c=4b=6a2=b2+c2,解得a=132,c=52,即C的离心率为ca=52×213=513.故选:C5.(2023·江苏·统考一模)已知椭圆x2a2+y2b2=1a>b>0的右焦点为F c,0,点P,Q在直线x=a2c 上,FP⊥FQ,O为坐标原点,若OP⋅OQ=2OF2,则该椭圆的离心率为()A.23B.63C.22D.32【答案】B【分析】根据平面向量数量积的坐标运算公式和离心率公式求解.【详解】依题意,设Pa2c,m,Q a2c,n,则FP ⋅FQ =a2c-c2+mn=0,又OP⋅OQ=a2c2+mn=2c2,两式做差可得a2c2-a2c-c2=2c2即2a2=3c2,所以e=ca=63.故选;B6.(2023·广东肇庆·统考二模)已知F为双曲线C:x24-y25=1的左焦点,P为其右支上一点,点A0,-6,则△APF周长的最小值为()A.4+62B.4+65C.6+62D.6+65【答案】B【分析】设双曲线的右焦点为M,由双曲线方程可求出a,b,c的值,利用双曲线的定义以及三点共线即可求出△APF的周长的最小值.【详解】设双曲线的右焦点为M,由双曲线的方程可得:a2=4,b2=5,则a=2,b=5,c=3,所以F(-3,0),M(3,0),且|PF|-|PM|=2a=4,所以|PF|=|PM|+4,△APF的周长为|PA|+|PF|+|AF|=|PA|+|PM|+4+∣AF=PA+PM+4+35≥AM+4+35=4+65,当且仅当M,P,A三点共线时取等号,则△APF周长的最小值为4+65.故选:B.7.(2023·广东佛山·统考一模)已知双曲线C的中心位于坐标原点,焦点在坐标轴上,且虚轴比实轴长.若直线4x+3y-20=0与C的一条渐近线垂直,则C的离心率为()A.54B.43C.53D.74【答案】C【分析】根据条件得到渐近线方程为y=±34x,分类讨论双曲线焦点在x轴和y轴的情况,求出e即可.【详解】解:根据渐近线与直线4x+3y-20=0垂直可得渐近线方程为y=±34 x,当双曲线的焦点在x轴上时渐近线为y=±bax,即ba=34,因为双曲线的虚轴比实轴长,故不符合题意,舍去,当双曲线的焦点在y轴上时渐近线为y=±abx,即ab=34,满足虚轴比实轴长,所以a b=ac 2-a 2=1e 2-1=34,解得e =53或e =-53(舍去),所以e =53.故选:C .8.(2023·江苏常州·校考一模)设点A -2,3 ,B 0,a ,若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是()A.13,32B.-∞,13 ∪32+∞ C.12,1 D.-∞,12 ∪1+∞【答案】A【分析】根据直线关于直线的对称性求出直线AB 关于y =a 对称的直线方程,结合直线与圆的位置关系计算即可求解.【详解】由题意知,直线AB 的斜率为k AB =a -32,所以直线AB 关于y =a 对称的直线的斜率为k =3-a2,故对称直线的方程为y -a =k (x -0),即(3-a )x -2y +2a =0,由(x +3)2+(y +2)2=1知,圆心为(-3,-2),半径为1,因为对称直线与圆有公共点,所以3(a -3)+4+2a4+(3-a )2≤1,整理,得6a 2-11a +3≤0,解得13≤a ≤32,即实数a 的取值范围为13,32.故选:A .二、多选题9.(2023·江苏南通·统考模拟预测)已知双曲线x 2-y 23=1的右顶点为A ,右焦点为F ,双曲线上一点P 满足PA =2,则PF 的长度可能为()A.2B.3C.4D.5【答案】AB【分析】设P x ,y ,根据点P 在双曲线上且PA =2,则可求得x 的值,从而可求得y 的值,进而可求得PF 的长度.【详解】设P x ,y ,则y 2=3x 2-1 ,A 1,0 ,F 2,0 ,则PA =(x -1)2+y 2=2,得x =-1或32,当x =-1时,P -1,0 ,此时PF =3,当x=32时,y2=154,此时PF=32-22+154=2.故选:AB.10.(2023·山东枣庄·统考二模)已知曲线C1:5x2+y2=5,C2:x2-4y2=4,则()A.C1的长轴长为5B.C2的渐近线方程为x±2y=0C.C1与C2的离心率互为倒数D.C1与C2的焦点相同【答案】BC【分析】将曲线C1,C2化为标准方程,可知分别表示椭圆与双曲线,结合它们的几何性质逐项判断即可.【详解】曲线C1:5x2+y2=5整理得y25+x2=1,则曲线C1是焦点在y轴上的椭圆,其中a21=5,b21=1,所以c21=a21-b21=4,离心率为e1=c1a1=25=255,故曲线C1的长轴长2a1=25,故A错误;曲线C2:x2-4y2=4整理得x24-y2=1,则曲线C2是焦点在x轴上的双曲线,其中a22=4,b22=1,所以c22=a22+b22=5,离心率为e2=c2a2=52,C2的渐近线方程为y=±12x,即x±2y=0,故B正确;e1⋅e2=255×52=1,所以C1与C2的离心率互为倒数,故C正确;C1的焦点在y轴上,C2的焦点在x轴上,焦点位置不同,故D错误.故选:BC.11.(2023·湖北武汉·统考模拟预测)若椭圆x2m2+2+y2m2=1(m>0)的某两个顶点间的距离为4,则m的可能取值有()A.5B.7C.2D.2【答案】BCD【分析】讨论两顶点的位置,由椭圆的性质结合勾股定理求解.【详解】由题意可知,a=m2+2,b=m2=m,若这两个顶点为长轴的两个端点时,2m2+2=4,m=2;若这两个顶点为短轴的两个端点时,2m=4,m=2;若一个顶点短轴的端点,另一个为长轴的端点时,m2+2+m2=4,m=7;故选:BCD12.(2023·湖北·校联考模拟预测)已知F1,F2是椭圆E:y24+x23=1的两个焦点,点P在椭圆E上,则A.点F 1,F 2在x 轴上B.椭圆E 的长轴长为4C.椭圆E 的离心率为12D.使得△F 1PF 2为直角三角形的点P 恰有6个【答案】BC【分析】根据椭圆的方程可判断椭圆焦点的位置,以及求出长轴的长,计算出离心率,判断A ,B ,C ;结合向量的坐标运算判断∠F 1MF 2为锐角,根据椭圆对称性可判断D .【详解】由题意E :y 24+x 23=1的长半轴长a =2,短半轴长b =3,焦半距c =1,椭圆E :y 24+x 23=1的焦点在y 轴上,A 错误;椭圆E 的长轴长为2a =4,B 正确;椭圆E 的离心率为c a =12,C 正确;椭圆的右顶点M (3,0),焦点F 1(0,-1),F 2(0,1),所以MF 1 =(-3,-1),MF 2 =(-3,1),cos ‹MF 1 ,MF 2 ›=MF 1 ⋅MF 2MF 1 ⋅MF 2=12>0,则‹MF 1 ,MF 2 ›∈0,π2,即∠F 1MF 2为锐角,故根据椭圆的对称性可知,使得△F 1PF 2为直角三角形的点P 恰有4个(以F 1或F 2为直角),D 错误.故选:BC .13.(2023·湖南长沙·统考一模)已知双曲线的方程为y 264-x 216=1,则()A.渐近线方程为y =±12xB.焦距为85C.离心率为52 D.焦点到渐近线的距离为8【答案】BC【分析】A 选项,先判断出双曲线焦点在y 轴上,利用公式求出渐近线方程;B 选项,求出c =45,得到焦距;C 选项,根据离心率公式求出答案;D 选项,利用点到直线距离公式进行求解.【详解】y 264-x 216=1焦点在y 轴上,故渐近线方程为y =±a b x =±2x ,A 错误;c 2=64+16=80,故c =45,故焦距为85,B 正确;离心率为c a =458=52,C 正确;焦点坐标为0,±45 ,故焦点到渐近线y =±2x 的距离为±454+1=4,D 错误.14.(2023·湖南·模拟预测)已知圆C 1:x -1 2+y -3 2=12与圆C 2:x +1 2+y -m 2=4,则下列说法正确的是()A.若圆C 2与x 轴相切,则m =±4B.直线kx -y -2k +1=0与圆C 1始终有两个交点C.若m =-3,则圆C 1与圆C 2相离D.若圆C 1与圆C 2存在公共弦,则公共弦所在的直线方程为4x +6-2m y +m 2+2=0【答案】BC【分析】选项A :若圆C 2与x 轴相切,则m 等于圆的半径;选项B :直线恒过定点2,1 ,点2,1 在圆C 1内部,故直线与圆C 1始终有两个交点;选项C :利用圆心距与半径之和的关系,判断两圆是否外离;选项D :若圆C 1与圆C 2有公共弦,联立两个圆的方程可得公共弦所在的直线方程为.【详解】对于选项A :圆C 2:x +1 2+y -m 2=4,半径为2,若圆C 2与x 轴相切,则m =±2,故A 错误;对于选项B :直线kx -y -2k +1=0,即y -1=k x -2 ,恒过定点2,1 ,又由2-1 2+1-3 2=5<12,则点2,1 在圆C 1内部,故直线kx -y -2k +1=0与圆C 1始终有两个交点,故B 正确;对于选项C :若m =-3,圆C 2为x +1 2+y +3 2=4,其圆心为-1,-3 ,半径r =2,圆C 1:x -1 2+y -3 2=12,其圆心为1,3 ,半径R =23,圆心距d =C 1C 2 =4+36=210>R +r ,两圆外离,故C 正确;对于选项D :若圆C 1与圆C 2有公共弦,联立两个圆的方程可得4x +6-2m y +m 2-1=0即公共弦所在的直线方程为4x +6-2m y +m 2-1=0,故D 错误.故选:BC .15.(2023·广东江门·统考一模)已知曲线C :x 2sin α+y 2cos α=10≤α<π ,则下列说法正确的是()A.若曲线C 表示两条平行线,则α=0B.若曲线C 表示双曲线,则π2<α<πC.若0<α<π2,则曲线C 表示椭圆 D.若0<α<π4,则曲线C 表示焦点在x 轴的椭圆【答案】BD【分析】根据曲线的形状求出参数α的取值范围,逐项判断可得出合适的选项.【详解】对于A 选项,若曲线C 表示两条平行线,则有sin α=0或cos α=0,且0≤α<π.若sin α=0,则α=0,此时曲线C 的方程为y 2=1,可得y =-1或y =1,合乎题意,若cos α=0,则α=π2,此时曲线C 的方程为x 2=1,可得x =-1或x =1,合乎题意,故A 错;对于B 选项,若曲线C 表示双曲线,则sin αcos α<0,由于0≤α<π且sin α≠0,则sin α>0,可得cos α<0,则π2<α<π,B 对;对于C 选项,若曲线C 表示椭圆,则sin α>0cos α>00≤α<πsin α≠cos α ,解得0<α<π2且α≠π4,C 错;对于D 选项,若0<α<π4,则0<sin α<cos α,则1sin α>1cos α>0,曲线C 的方程可化为x 21sin α+y 21cos α=1,此时,曲线C 表示焦点在x 轴上的椭圆,D 对.故选:BD .16.(2023·浙江·校联考模拟预测)已知圆O 1:(x -1)2+y 2=4,圆O 2:(x -5)2+y 2=4m ,下列说法正确的是()A.若m =4,则圆O 1与圆O 2相交B.若m =4,则圆O 1与圆O 2外离C.若直线x -y =0与圆O 2相交,则m >258D.若直线x -y =0与圆O 1相交于M ,N 两点,则|MN |=142【答案】AC【分析】根据直线与圆相交、圆与圆位置关系逐项判断即可.【详解】解:圆O 1:(x -1)2+y 2=4的圆心O 11,0 ,半径r 1=2若m =4,O 2:(x -5)2+y 2=16,则圆心O 25,0 ,半径r 2=4,则O 1O 2=4,r 1+r 2=6,r 1-r 2 =2,所以r 1-r 2 <O 1O 2<r 1+r 2,则圆O 1与圆O 2相交,故A 正确,B 错误;若直线x -y =0与圆O 2相交,则圆心O 25,0 到直线x -y =0的距离d =5-02<4m ,解得m >258,故C 正确;若直线x -y =0与圆O 1相交于M ,N 两点,则圆心O 11,0 到直线x -y =0的距离d =1-02=22,所以相交弦长MN =2r 21-d 2=24-222=14,故D 错误.故选:AC .三、填空题17.(2023·山东青岛·统考一模)已知O 为坐标原点,在抛物线y 2=2px p >0 上存在两点E ,F ,使得△OEF 是边长为4的正三角形,则p =.【答案】3 3【分析】根据抛物线的对称性以及边长可得E23,2,进而代入抛物线方程即可求解.【详解】根据抛物线的对称性可知:由△OEF为等边三角形,所以E,F关于坐标轴x对称,由EO=4,∠AOx=30°,所以E23,2,将E23,2代入可得4=43p⇒p=3 3,故答案为:3 318.(2023·浙江·统考一模)已知F1,F2分别是双曲线C:x2a2-y2=1a>0的左右焦点,且C上存在点P使得PF1=4PF2,则a的取值范围是.【答案】34,+∞【分析】根据双曲线的定义结合条件可得PF1=8a3,PF2=2a3,进而可得103a≥2a2+1,即得.【详解】因为PF1=4PF2,双曲线C:x2a2-y2=1a>0,又PF1-PF2=2a,所以PF1=8a3,PF2=2a3,又103a=PF1+PF2≥F1F2=2c=2a2+1,解得a≥3 4,即a的取值范围是34,+∞.故答案为:34,+∞.19.(2023·浙江温州·统考二模)已知抛物线y2=4x和椭圆x2a2+y2b2=1(a>b>0)相交于A,B两点,且抛物线的焦点F也是椭圆的焦点,若直线AB过点F,则椭圆的离心率是.【答案】2-1##-1+2【分析】由题意可判断AB为抛物线和椭圆的通径,通过通径的公式可求出a、c的值,进而求出椭圆的离心率.【详解】显然c =p2=1,由对称性易知AB 为双通径,所以4=2b 2a ⇒b 2=2a ⇒a 2-c 2=2a ⇒a 2-2a -1=0⇒a =1+2,所以e =c a =11+2=2-1.故答案为:2-1.20.(2023·江苏连云港·统考模拟预测)直线y =23x 与双曲线x 2a2-y 28=1(a >0)相交于A ,B 两点,且A ,B 两点的横坐标之积为-9,则离心率e =.【答案】213##1321【分析】设出点的坐标,利用横坐标之积求出坐标,代入双曲线方程求出a ,进一步求出离心率【详解】由A ,B 两点在直线y =23x 上,设A x 0,23x 0 (x 0>0),因为A ,B 两点关于原点对称,所以B -x 0,-23x 0 ,由A ,B 两点的横坐标之积为-9得x 0×(-x 0)=-9,解得x 0=3,所以A 3,2 ,代入双曲线方程得9a2-48=1,所以a =6,所以c =a 2+b 2=14,所以离心率为ca=146=213.故答案为:21321.(2023·江苏泰州·统考一模)已知圆O :x 2+y 2=r 2(r >0),设直线x +3y -3=0与两坐标轴的交点分别为A ,B ,若圆O 上有且只有一个点P 满足AP =BP ,则r 的值为.【答案】12##0.5【分析】根据AP =BP 可得P 在AB 的垂直平分线上,且垂直平分线与圆相切可求解.【详解】A 3,0 ,B 0,1 ,PA =PB ,∴P 在AB 的垂直平分线上,k AB =-33,所以中垂线的斜率为3,AB 的中点为32,12,由点斜式得y -12=3x -32,化简得y =3x -1,P 在圆O :x 2+y 2=r 2满足条件的P 有且仅有一个,∴直线y =3x -1与圆相切,∴r =d =13+1=12,故答案为:12.22.(2023·江苏·统考一模)已知圆C :x 2-2x +y 2-3=0,过点T 2,0 的直线l 交圆C 于A ,B 两点,点P 在圆C 上,若CP ∥AB ,PA ⋅PB =12,则AB =【答案】15【分析】根据向量的加减法运算可得PA ⋅PB =PD 2-AB 24,再根据圆的性质可得PD 2=PC 2+CD 2=PC 2+AC 2-AB 24即可求解.【详解】易知圆心1,0 ,半径r =2,取AB 中点D ,则CD ⊥AB ,因为PD =12(PA +PB ),AB =PB -PA ,所以PD 2-14AB 2=14(PA +PB )2-14(PB -PA )2=PA ⋅PB ,所以PA ⋅PB =PD 2-AB 24,则PD 2=AB 24+12,又PD 2=PC 2+CD 2=PC 2+AC 2-AB 24,所以AB 24+12=PC 2+AC 2-AB 24即AB 2=15,故AB =15.故答案为:15.23.(2023·江苏·统考一模)已知抛物线y 2=4x 的焦点为F ,点Р是其准线上一点,过点P 作PF 的垂线,交y 轴于点A ,线段AF 交抛物线于点B .若PB 平行于x 轴,则AF 的长度为.【答案】3【分析】根据题意分别设出点B ,P ,A 的坐标,根据AP ⊥PF 可建立变量之间的等式,再根据A 、B 、F 在一条直线上,可再建立一个等式,两等式联立求出点的坐标,再根据两点间的距离公式即可求得结果.【详解】解:因为抛物线y 2=4x ,所以F 1,0 ,根据题意不妨设B m 24,m ,P -1,m ,A 0,n ,因为AP ⊥PF ,所以AP ⋅PF =0,即1,n -m ⋅2,-m =0,解得2-mn +m 2=0,即2=m n -m ①,因为A 、B 、F 三点共线,所以k AF =k BF ,即n -1=mm 24-1,即m 2n -4n +4m =0,即m 2n =4n -m ②,①除以②可得,2m 2n=m 4,即m 3n =8,即n =8m 3,将n =8m 3代入①中可得2-8m2+m 2=0,即m 4+2m 2-8=0,解得m 2=-4(舍)或m 2=2,所以m =±2,代入n =8m3中可得n =±22,所以AF =1+n 2=3.故答案为:324.(2023·山东潍坊·统考模拟预测)已知圆M 满足与直线l :x -6=0和圆N :x -1 2+y -2 2=9都相切,且直线MN 与l 垂直,请写出一个符合条件的圆M 的标准方程.【答案】x -5 2+y -2 2=1(答案不唯一)【分析】不妨设圆M 与圆N 外切,根据直线MN 与l 垂直,可得圆M 的纵坐标,由两圆的位置关系列出横坐标和半径的等量关系,求解可得圆M 的一个方程.【详解】由条件可知:直线x =6与圆N 相离,不妨设圆M 与圆N 外切,设M a ,b ,半径为r ,因为直线MN 与l 垂直,所以b =2,则有r =6-a a -1=r +3 ,解得:a =5b =2r =1,所以圆M 的标准方程为:x -5 2+y -2 2=1.故答案为:x -5 2+y -2 2=125.(2023·湖北·校联考模拟预测)过抛物线y 2=2px (p >0)焦点F 的射线与抛物线交于点A ,与准线交于点B ,若|AF |=2,|BF |=6,则p 的值为.【答案】3【分析】作出辅助线,结合焦半径公式和AMDF =AB BF 求出答案.【详解】过点A 作AM ⊥准线于点M ,则AM =AF =2,∵|AF |=2,|BF |=6,∴|AB |=4,由AM ⎳DF 可得:AM DF =AB BF ,即2p =46,解得:p =3,故答案为:326.(2023·湖北武汉·统考模拟预测)若两条直线l 1:y =3x +m ,l 2:y =3x +n 与圆x 2+y 2+3x +y +k =0的四个交点能构成矩形,则m +n =.【答案】8【分析】由题意知圆心到两直线的距离相等,得到等量关系求解即可.【详解】由题意直线l 1,l 2平行,且与圆的四个交点构成矩形,则可知圆心到两直线的距离相等,由圆x 2+y 2+3x +y +k =0的圆心为:-32,-12 ,圆心到l 1:y =3x +m 的距离为:d 1=3×-32 --12 +m10=m -410,圆心到l 2:y =3x +n 的距离为:d 2=3×-32 --12 +n 10=n -4 10,所以m -4 10=n -410⇒m -4 =n -4 ,由题意m ≠n ,所以m -4=4-n ⇒m +n =8,故答案为:8.27.(2023·广东茂名·统考一模)过四点-1,1 、1,-1 、2,2 、3,1 中的三点的一个圆的方程为(写出一个即可).【答案】x -1 2+y -1 2=4(答案不唯一)【分析】利用圆的一般式方程求过三点的圆.【详解】过-1,1 ,1,-1 ,3,1 时,设圆的方程为x 2+y 2+Dx +Ey +F =0,则2-D +E +F =02+D -E +F =010+3D +E +F =0 ,解得D =-2E =-2F =-2,圆的方程是:x 2+y 2-2x -2y -2=0,即x -1 2+y -1 2=4;同理可得:过1,-1 、2,2 、3,1 时,圆的方程是:x -32 2+y -122=52;过-1,1 ,1,-1 ,2,2 时,圆的方程是:x -34 2+y -34 2=5016;过-1,1 ,2,2 ,3,1 时,圆的方程是:x -1 2+y 2=5.故答案为:x -1 2+y -1 2=4.(x -1 2+y -1 2=4、x -32 2+y -12 2=52、x -34 2+y -34 2=5016、x -1 2+y 2=5写其中一个即可)28.(2023·广东·统考一模)在平面直角坐标系中,等边三角形ABC 的边AB 所在直线斜率为23,则边AC 所在直线斜率的一个可能值为.【答案】-335或37【分析】由等边三角形的性质和直线的倾斜角与斜率的关系以及两角和与差的正切公式,得出边AC 所在直线斜率.【详解】设直线AB 的倾斜角为α,由已知得k AB =tan α=23,设直线AC 的倾斜角为θ,则k Ac =tan θ,因为在等边三角形ABC 中,∠BAC =60°,所以θ=α±60°,当θ=α+60°,tan θ=tan (α+60°)=tan α+tan60°1-tan αtan60°=23+31-23×3=-335,所以k AC =tan θ=-335当θ=α-60°,tan θ=tan (α-60°)=tan α-tan60°1+tan αtan60°=23-31+23×3=37,所以k AC =tan θ=37综上,k AC =-335或k AC =37,故答案为:-335或3729.(2023·广东·统考一模)已知动圆N 经过点A -6,0 及原点O ,点P 是圆N 与圆M :x 2+(y -4)2=4的一个公共点,则当∠OPA 最小时,圆N 的半径为.【答案】5【分析】利用两圆的位置关系确定两圆内切时∠OPA 最小,根据位置关系可得圆N 的半径.【详解】如图:记圆N 半径为R ,∠OPA =θ,则∠ANO =2θ,∠BNO =θ,所以sin ∠OPA =sin ∠BNO =BOON =3R,当∠OPA 最小时,R 最大,此时两圆内切.由已知设动圆N 的圆心为N -3,t ,又圆心M 0,4 可得R -2=MN即(-3-0)2+(t -0)2-2=(-3-0)2+(t -4)2,解得t =4,所以R =5,即圆N 的半径为5.故答案为:5.30.(2023·浙江温州·统考模拟预测)已知F 1,F 2是椭圆C 的两个焦点,点M 在C 上,且MF 1 ⋅MF 2 的最大值是它的最小值的2倍,则椭圆的离心率为.【答案】22##122.【分析】先结合椭圆的定义表示出MF 1 ⋅MF 2 =MF 1 2a -MF 1 ,化简后结合MF 1 的范围可求出MF 1 ⋅MF 2 的最值,然后列方程可表示出a ,c 的关系,从而可求出椭圆的离心率.【详解】因为MF 1 +MF 2 =2a ,所以MF 1 ⋅MF 2 =MF 1 2a -MF 1 =-MF 1 2+2a MF 1 =-MF 1 -a 2+a 2,所以当MF 1 =a 时,MF 1 ⋅MF 2 取得最大值a 2,因为MF 1 =[a -c ,a +c ],所以MF 1 ⋅MF 2 的最小值为-c 2+a 2=b 2,因为MF 1 ⋅MF 2 的最大值是它的最小值的2倍,所以a 2=2b 2,所以c 2=a 2-b 2=b 2,所以a =2b ,c =b ,所以椭圆的离心率为e =c a =b 2b =22,故答案为:22.。
解析几何初中试题及答案
解析几何初中试题及答案1. 已知点A(2,3)和点B(-1,-2),求线段AB的中点坐标。
答案:线段AB的中点坐标为(\(\frac{2+(-1)}{2}, \frac{3+(-2)}{2}\)),即(\(\frac{1}{2}, \frac{1}{2}\))。
2. 已知直线l的方程为y=2x+3,求直线l与x轴的交点坐标。
答案:当直线l与x轴相交时,y=0,代入方程得2x+3=0,解得x=-\(\frac{3}{2}\)。
因此,交点坐标为(-\(\frac{3}{2}\), 0)。
3. 已知圆C的方程为(x-1)^2 + (y+2)^2 = 9,求圆C的半径和圆心坐标。
答案:圆C的半径为3,圆心坐标为(1, -2)。
4. 已知直线l1: y=x+1与直线l2: y=-2x+4相交,求两直线的交点坐标。
答案:将两个方程联立,得到x+1=-2x+4,解得x=1。
将x=1代入任一方程得y=2。
因此,两直线的交点坐标为(1, 2)。
5. 已知抛物线y^2=4px(p>0)的焦点坐标为(2,0),求抛物线的方程。
答案:由焦点坐标(2,0)可得p=2,因此抛物线的方程为y^2=8x。
6. 已知椭圆的长轴为10,短轴为6,求椭圆的方程。
答案:设椭圆的方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中a为长轴的一半,b为短轴的一半。
由题意得a=5,b=3,因此椭圆的方程为\(\frac{x^2}{25} + \frac{y^2}{9} = 1\)。
7. 已知双曲线的实轴长为8,虚轴长为6,求双曲线的方程。
答案:设双曲线的方程为\(\frac{x^2}{a^2} - \frac{y^2}{b^2} =1\),其中a为实轴的一半,b为虚轴的一半。
由题意得a=4,b=3,因此双曲线的方程为\(\frac{x^2}{16} - \frac{y^2}{9} = 1\)。
《解析几何》测试试题及答案
《解析几何》测试试题及答案(时间:120分钟 满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若双曲线C :x 2m-y 2=1(m >0)的一条渐近线的方程为3x +2y =0,则m =( )A.49B.94C.23D.32解析 由题意知,双曲线的渐近线方程为y =±1mx (m >0).3x +2y =0可化为 y =-32x ,所以1m =32,解得m =49.故选A.答案 A2.若圆x 2+y 2-4x +2y +a =0与x 轴、y 轴均有公共点,则实数a 的取值范围是( ) A.(-∞,1] B.(-∞,0] C.[0,+∞)D.[5,+∞)解析 将圆的一般方程化作标准方程为(x -2)2+(y +1)2=5-a ,则该圆的圆心坐标为(2,-1),半径r =5-a .因为该圆与x 轴、y 轴均有公共点,所以⎩⎨⎧2≤5-a ,1≤5-a ,5-a >0,解得a ≤1,则实数a 的取值范围是(-∞,1].故选A. 答案 A3.已知P 为圆C :(x -5)2+y 2=36上任意一点,A (-5,0).若线段PA 的垂直平分线交直线PC 于点Q ,则点Q 的轨迹方程为( )A.x 29+y 216=1B.x 29-y 216=1C.x 29-y 216=1(x <0) D.x 29-y 216=1(x >0) 解析 如图,由题意知|QA |=|QP |,||QA |-|QC ||=||QP |-|QC ||=|PC |=6<|AC |=10,所以动点Q 的轨迹是以A ,C 为焦点的双曲线,其方程为x 29-y 216=1.故选B.答案 B4.仿照“Dandelin 双球”模型,人们借助圆柱内的两个内切球完美地证明了平面截圆柱的截面为椭圆面.如图,底面半径为1的圆柱内两个内切球球心距离为4,现用与两球都相切的平面截圆柱所得到的截面边缘线是一椭圆,则该椭圆的离心率为( )A.12B.33C.22D.32解析 由题意可知椭圆的长轴与两球心连线的夹角为30°,所以椭圆的长轴2a =2sin 30°=4,a =2,椭圆的短轴长等于球的直径,所以b =1,c =3,e =c a =32,故选D. 答案 D5.已知点P 在圆C :x 2+(y -2)2=1上,点Q 在直线l :x -2y +1=0上,且点Q 的横坐标x ∈[-1,a ).若|PQ |既有最大值又有最小值,则实数a 的取值范围是( )A.⎝ ⎛⎦⎥⎤35,115B.⎝ ⎛⎭⎪⎫35,+∞C.⎣⎢⎡⎦⎥⎤35,115D.⎣⎢⎡⎭⎪⎫35,+∞ 解析 如图,直线l :x -2y +1=0与x 轴交于点Q 1(-1,0).连接Q 1C 并延长,交圆C 于点P 1.过点C 作CQ 2⊥直线l 于点Q 2,交圆C 于点P 2,则|P 2Q 2|为|PQ |的最小值.易知直线CQ 2:y=-2x +2.设Q 2(x 2,y 2),联立得方程组⎩⎪⎨⎪⎧y =-2x +2,x -2y +1=0,解得x 2=35,∴a >35.设点Q 3(x 3,y 3).为点Q 1关于点Q 2的对称点,则x 3=115.当a >115时,|PQ |无法取到最大值,当35<a ≤115时,|PQ |的最大值为|P 1Q 1|,∴35<a ≤115.故选A.答案 A6.已知直线y =k (x -1)与抛物线C :y 2=4x 交于A ,B 两点,直线y =2k (x -2)与抛物线D :y 2=8x 交于M ,N 两点,设λ=|AB |-2|MN |,则( )A.λ<-16B.λ=-16C.-12<λ<0D.λ=-12解析 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,则x 1+x 2=2k 2+4k 2=2+4k 2.因为直线y =k (x -1)经过抛物线C 的焦点,所以|AB |=x 1+x 2+p =4+4k2.同理可得|MN |=8+2k 2.所以λ=4+4k2-2×⎝ ⎛⎭⎪⎫8+2k 2=4-16=-12.故选D.答案 D7.圆C :x 2+y 2-10y +16=0上有且仅有两点到双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的距离为1,则该双曲线离心率的取值范围是( ) A.(2,5)B.⎝ ⎛⎭⎪⎫53,52 C.⎝ ⎛⎭⎪⎫54,52D.(5,2+1)解析 双曲线x 2a 2-y 2b2=1的一条渐近线方程为bx -ay =0,圆C :x 2+y 2-10y +16=0的圆心坐标为(0,5),半径为3.因为圆C 上有且仅有两点到直线bx -ay =0的距离为1,所以圆心(0,5)到直线bx -ay =0的距离d 的范围为2<d <4,即2<5aa 2+b2<4.又a 2+b 2=c 2,所以2<5a c<4,即54<e <52.故选C.答案 C8.如图,已知抛物线C :y 2=2px (p >0)的焦点为F ,点P (x 0,23)⎝ ⎛⎭⎪⎫x 0>p 2是抛物线C 上一点.以P 为圆心的圆与线段PF 交于点Q ,与过焦点F 且垂直于x 轴的直线交于点A ,B ,|AB |=|PQ |,直线PF 与抛物线C 的另一交点为M .若|PF |=3|PQ |,则|PQ ||FM |=( )A.1B. 3C.2D. 5解析 如图,连接PA ,PB .因为|AB |=|PQ |,所以△PAB 是正三角形.又x 0>p 2,所以x 0-p 2=32|PQ |.又因为|PF |=x 0+p 2=3|PQ |,所以x 0=3p 2.所以点P ⎝ ⎛⎭⎪⎫3p 2,23,所以(23)2=2p ·3p 2.因为p >0,所以p =2.所以F (1,0),P (3,23),所以|PQ |=33|PF |=33·(23-0)2+(3-1)2=433,抛物线C 的方程为y 2=4x ,直线PF 的方程为y =3(x -1).由⎩⎨⎧y =3(x -1),y 2=4x ,得M ⎝ ⎛⎭⎪⎫13,-233,所以|FM |=13+1=43,所以|PQ ||FM |= 3.故选B. 答案 B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.过点P (2,2)作圆C :(x +2)2+(y +2)2=r 2(r >0)的两条切线,切点分别为A ,B ,下列说法正确的是( ) A.0<r <2 2B.若△PAB 为直角三角形,则r =4C.△PAB 外接圆的方程为x 2+y 2=4D.直线AB 的方程为4x +4y +16-r 2=0解析 因为过点P (2,2)作圆C :(x +2)2+(y +2)2=r 2(r >0)的切线有两条,则点P 在圆C 外,则r <|PC |=42,故A 错误;若△PAB 为直角三角形,则四边形PACB 为正方形,则2r =|PC |=42,解得r =4,故B 正确;由PA ⊥CA ,PB ⊥CB ,可得点P ,A ,C ,B 共圆,所以△PAB 的外接圆就是以PC 为直径的圆,即x 2+y 2=8,故C 错误;将(x +2)2+(y +2)2=r 2与x 2+y2=8相减即得直线AB 的方程,所以直线AB 的方程为4x +4y +16-r 2=0,所以D 正确.故选BD. 答案 BD10.已知双曲线x 24-y 22=sin 2θ(θ≠k π,k ∈Z ),则不因θ改变而变化的是( )A.焦距B.离心率C.顶点坐标D.渐近线方程解析 由题意,得双曲线的标准方程为x 24sin 2θ-y 22sin 2θ=1,则a =2|sin θ|, b =2|sin θ|,则c =a 2+b 2=6|sin θ|,则双曲线的焦距为2c =26|sin θ|,顶点坐标为(±2|sin θ|,0),离心率为e =c a =62,渐近线方程为y =±22x .所以不因θ改变而变化的是离心率、渐近线方程.故选BD. 答案 BD11.设P 是椭圆C :x 22+y 2=1上任意一点,F 1,F 2是椭圆C 的左、右焦点,则( )A.|PF 1|+|PF 2|=2 2B.-2<|PF 1|-|PF 2|<2C.1≤|PF 1|·|PF 2|≤2D.0≤PF 1→·PF 2→≤1解析 椭圆C 的长轴长为22,根据椭圆的定义得|PF 1|+|PF 2|=22,故A 正确;||PF 1|-|PF 2||≤|F 1F 2|=22-1=2,所以-2≤|PF 1|-|PF 2|≤2,B 错误;|PF 1|·|PF 2|=14[(|PF 1|+|PF 2|)2-(|PF 1|-|PF 2|)2],而0≤(|PF 1|-|PF 2|)2≤4,所以1≤|PF 1|·|PF 2|≤2,C 正确;PF 1→·PF 2→=(OF 1→-OP →)·(OF 2→-OP →)=OF 1→·OF 2→-OP →·(OF 1→+OF 2→)+|OP →|2=|OP →|2-1,根据椭圆性质有1≤|OP |≤2,所以0≤PF 1→·PF 2→=|OP →|2-1≤1,D 正确.故选ACD.答案ACD12.如图,在平面直角坐标系xOy中,抛物线C:y2=2px(p>0)的焦点为F,准线为l.设l与x轴的交点为K,P为C上异于O的任意一点,P在l上的射影为E,∠EPF的外角平分线交x 轴于点Q,过点Q作QN⊥PE交EP的延长线于点N,作QM⊥PF交线段PF于点M,则( )A.|PE|=|PF|B.|PF|=|QF|C.|PN|=|MF|D.|PN|=|KF|解析由抛物线的定义,得|PE|=|PF|,A正确;∵PN∥QF,PQ是∠FPN的平分线,∴∠FQP =∠NPQ=∠FPQ,∴|PF|=|QF|,B正确;若|PN|=|MF|,则由PQ是∠FPN的平分线,QN⊥PE,QM⊥PF,得|QM|=|QN|,从而有|PM|=|PN|,于是有|PM|=|FM|,则有|QP|=|QF|,∴△PFQ为等边三角形,∠FPQ=60°,也即有∠FPE=60°,这只是在特殊位置才有可能,因此C错误;连接EF,如图,由选项A、B知|PE|=|QF|,又PE∥QF,∴EPQF是平行四边形,∴|EF|=|PQ|,∴△EKF≌△QNP,∴|KF|=|PN|,D正确.故选ABD.答案ABD三、填空题:本题共4小题,每小题5分,共20分.13.已知以x±2y=0为渐近线的双曲线经过点(4,1),则该双曲线的标准方程为________. 解析由题知,双曲线的渐近线方程为x±2y=0,设双曲线的方程为x2-4y2=λ(λ≠0).因为点(4,1)在双曲线上,所以λ=42-4=12,所以双曲线的标准方程为x212-y23=1.答案x212-y23=114.已知点A(-5,0),B(-1,-3),若圆x2+y2=r2(r>0)上恰有两点M,N,使得△MAB和△NAB的面积均为5,则r的取值范围是________.解析由题意可得|AB|=(-1+5)2+(-3-0)2=5,根据△MAB和△NAB的面积均为5可得M ,N 到直线AB 的距离均为2,由于直线AB 的方程为y -0-3-0=x +5-1+5,即3x +4y +15=0,若圆上只有一个点到直线AB 的距离为2,则圆心到直线AB 的距离为|0+0+15|9+16=r +2,解得r =1,若圆上只有3个点到直线AB 的距离为2,则圆心到直线AB 的距离为|0+0+15|9+16=r -2,解得r =5.故r 的取值范围是(1,5).答案 (1,5)15.如图,点A ,B 分别是椭圆x 225+y 2b2=1(0<b <5)的长轴的左、右端点,F 为椭圆的右焦点,直线PF 的方程为15x +y -415=0,且PA →·PF →=0,设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于|MB |,则椭圆上的点到点M 的距离d 的最小值为________.解析 依题意得直线AP 的方程为x -15y +5=0,直线PF 与x 轴的交点为(4,0),即F (4,0),∴b 2=25-16=9,即椭圆方程为x 225+y 29=1.设M (m ,0)(-5≤m ≤5),则M 到直线AP 的距离为|m +5|4,又|MB |=|5-m |,所以|m +5|4=|5-m |,∵-5≤m ≤5,∴m +54=5-m ,解得m =3,∴M (3,0).设椭圆上的点(x ,y )(x ∈[-5,5])到M (3,0)的距离为d ,则d 2=(x -3)2+y 2=(x -3)2+9⎝ ⎛⎭⎪⎫1-x 225=1625x 2-6x +18=1625⎝ ⎛⎭⎪⎫x -75162+6316,∵x ∈[-5,5],∴当x =7516时,d 2最小,此时d min =374.答案37416.已知F 为抛物线x 2=2py (p >0)的焦点,点A (1,p ),M 为抛物线上任意一点,且|MA |+|MF |的最小值为3,则该抛物线的方程为________.若线段AF 的垂直平分线交抛物线于P ,Q 两点,则四边形APFQ 的面积为________.(本小题第一空2分,第二空3分)解析 由题意,得抛物线x 2=2py (p >0)的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,准线的方程为y =-p2.因为|MF |等于点M 到准线的距离,所以当p >12p 时,|MA |+|MF |的最小值为点A 到准线y =-p2的距离,而|MA |+|MF |的最小值为3,所以3p 2=3,解得p =2,满足p >12p ;当p ≤12p 时,|MA |+|MF |的最小值为|AF |,而|MA |+|MF |的最小值为3,所以(1-0)2+⎝ ⎛⎭⎪⎫p -p 22=3,解得p =42,不满足p ≤12p.综上所述,p =2.因此抛物线的方程为x 2=4y .由p =2得,点A (1,2),焦点F (0,1),则线段AF 的垂直平分线的方程为x +y -2=0,且|AF |=(1-0)2+(2-1)2=2.设线段AF 的垂直平分线与抛物线的交点分别为P (x 1,y 1),Q (x 2,y 2).由⎩⎪⎨⎪⎧x +y -2=0,x 2=4y .解得⎩⎨⎧x 1=-2+23,y 1=4-23或⎩⎨⎧x 2=-2-23,y 2=4+23,则|PQ |=(4+23-4+23)2+(-2-23+2-23)2=4 6.所以四边形APFQ 的面积S =12|AF |·|PQ |=12×2×46=4 3.答案 x 2=4y 4 3四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知椭圆C 的短轴的两个端点分别为A (0,1),B (0,-1),焦距为2 3. (1)求椭圆C 的方程;(2)已知直线y =m 与椭圆C 有两个不同的交点M ,N ,设D 为直线AN 上一点,且直线BD ,BM 的斜率的积为-14.证明:点D 在x 轴上.(1)解 由题意知c =3,b =1,∴a 2=b 2+c 2=4. ∵焦点在x 轴上,∴椭圆C 的方程为x 24+y 2=1.(2)证明 由题意可设M (-x 0,m ),N (x 0,m ),-1<m <1, 则x 20=4(1-m 2).①∵点D 在直线AN 上一点,A (0,1), ∴AD →=λAN →=λ(x 0,m -1),∴OD →=OA →+AD →=(λx 0,λ(m -1)+1), ∴D (λx 0,λ(m -1)+1). ∵B (0,-1),M (-x 0,m ),∴k BD ·k BM =λ(m -1)+2λx 0·m +1-x 0=-14.整理,得4λ(m 2-1)+8(m +1)=λx 20. 将①代入上式得(m +1)[λ(m -1)+1]=0. ∵m +1≠0,∴λ(m -1)+1=0, ∴点D 在x 轴上.18.(本小题满分12分)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点,过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ).(1)若p =116,求抛物线C 2的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值. 解 (1)由p =116,得抛物线C 2的焦点坐标是⎝ ⎛⎭⎪⎫132,0. (2)由题意可设直线l :x =my +t (m ≠0,t ≠0),点A (x 0,y 0). 将直线l 的方程代入椭圆C 1:x 22+y 2=1,得(m 2+2)y 2+2mty +t 2-2=0, 所以点M 的纵坐标y M =-mtm 2+2.将直线l 的方程代入抛物线C 2:y 2=2px ,得y 2-2pmy -2pt =0, 所以y 0y M =-2pt ,解得y 0=2p (m 2+2)m,因此x 0=2p (m 2+2)2m2. 由x 202+y 20=1,得1p 2=4⎝ ⎛⎭⎪⎫m +2m 2+2⎝ ⎛⎭⎪⎫m +2m 4≥160, 当且仅当m =2,t =105时,p 取到最大值1040. 19.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点. (1)解 由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1.又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0, 则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1=⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k (t -1)(x 1+x 2)+(t -1)2=⎪⎪⎪⎪⎪⎪2t 2-21+2k2k 2·2t 2-21+2k 2+k (t -1)·⎝ ⎛⎭⎪⎫-4kt 1+2k 2+(t -1)2=2⎪⎪⎪⎪⎪⎪1+t 1-t .又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0).20.(本小题满分12分)已知抛物线C :y 2=2px (p >0)的焦点为F ,点A (2,2),点B 在抛物线C 上,且满足OF →=FB →-2FA →(O 为坐标原点).(1)求抛物线C 的方程;(2)过焦点F 任作两条相互垂直的直线l 与l ′,直线l 与抛物线C 交于P ,Q 两点,直线l ′与抛物线C 交于M ,N 两点,△OPQ 的面积记为S 1,△OMN 的面积记为S 2,求证:1S 21+1S 22为定值.(1)解 设B (x 0,y 0),∵F ⎝ ⎛⎭⎪⎫p 2,0, ∴OF →=FB →-2FA →=⎝ ⎛⎭⎪⎫x 0-p 2,y 0-2⎝ ⎛⎭⎪⎫2-p 2,2=⎝ ⎛⎭⎪⎫x 0+p 2-4,y 0-4=⎝ ⎛⎭⎪⎫p 2,0, ∴⎩⎪⎨⎪⎧x 0+p 2-4=p 2,y 0-4=0,∴⎩⎪⎨⎪⎧x 0=4,y 0=4. ∵点B 在抛物线C 上,∴42=2p ×4,∴p =2,∴y 2=4x .(2)证明 设P (x 1,y 1),Q (x 2,y 2),由题意得,直线l 的斜率存在且不为零.设l :x =my +1,代入y 2=4x 得,y 2-4my -4=0.∴y 1+y 2=4m ,y 1y 2=-4.∴|y 1-y 2|=(y 1+y 2)2-4y 1y 2=16m 2+16=4m 2+1.因此S 1=12|y 1-y 2|×1=2m 2+1. 同理可得,S 2=21m 2+1. ∴1S 21+1S 22=14(m 2+1)+14⎝ ⎛⎭⎪⎫1m 2+1=14(m 2+1)+m 24(m 2+1)=14. ∴1S 21+1S 22为定值,定值为14. 21.(本小题满分12分)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.(1)证明 因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.由题设得A (-1,0),B (1,0),|AB |=2,又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4>|AB |.由椭圆定义可得点E 的轨迹方程为:x 24+y 23=1(y ≠0). (2)解 当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0. 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3, 所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1,所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,故四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83).22.(本小题满分12分)已知以动点P 为圆心的⊙P 与直线l :x =-12相切,与定圆F :(x -1)2+y 2=14外切. (1)求动圆圆心P 的轨迹C 的方程;(2)过曲线C 上位于x 轴两侧的点M ,N (MN 不与x 轴垂直)分别作直线l 的垂线,垂足分别为M 1,N 1,直线l 交x 轴于点A ,记△AMM 1,△AMN ,△ANN 1的面积分别为S 1,S 2,S 3,且S 22=4S 1S 3,求证:直线MN 过定点.(1)解 设P (x ,y ),⊙P 的半径为R ,则R =x +12,|PF |=R +12, ∴点P 到直线x =-1的距离与到定点F (1,0)的距离相等,故点P 的轨迹C 的方程为y 2=4x .(2)证明 设M (x 1,y 1),N (x 2,y 2), 则M 1⎝ ⎛⎭⎪⎫-12,y 1,N ⎝ ⎛⎭⎪⎫-12,y 2, 设直线MN :x =ty +n (t ≠0,n >0).将直线MN 的方程代入y 2=4x 消去x 并整理,得y 2-4ty -4n =0,则y 1+y 2=4t ,y 1y 2=-4n <0.∵S 1=12⎝ ⎛⎭⎪⎫x 1+12·|y 1|,S 3=12⎝⎛⎭⎪⎫x 2+12·|y 2|, ∴4S 1S 3=⎝⎛⎭⎪⎫x 1+12⎝ ⎛⎭⎪⎫x 2+12|y 1y 2| =⎝⎛⎭⎪⎫ty 1+n +12⎝ ⎛⎭⎪⎫ty 2+n +12|y 1y 2| =⎣⎢⎡⎦⎥⎤t 2y 1y 2+⎝ ⎛⎭⎪⎫n +12t (y 1+y 2)+⎝ ⎛⎭⎪⎫n +122·|-4n | =⎣⎢⎡⎦⎥⎤-4nt 2+4t 2⎝ ⎛⎭⎪⎫n +12+⎝ ⎛⎭⎪⎫n +122·4n =⎣⎢⎡⎦⎥⎤2t 2+⎝ ⎛⎭⎪⎫n +122·4n . ∵S 2=12⎝⎛⎭⎪⎫n +12·|y 1-y 2| =12⎝⎛⎭⎪⎫n +12·(y 1+y 2)2-4y 1y 2, ∴S 22=14⎝ ⎛⎭⎪⎫n +122·(16t 2+16n )=4⎝ ⎛⎭⎪⎫n +122(t 2+n ). ∵S 22=4S 1S 3,∴n ⎣⎢⎡⎦⎥⎤2t 2+⎝ ⎛⎭⎪⎫n +122=⎝ ⎛⎭⎪⎫n +122(t 2+n ), 即2n =⎝ ⎛⎭⎪⎫n +122,解得n =12. ∴直线MN 恒过定点⎝ ⎛⎭⎪⎫12,0.。
解析几何试题
一、单项选择题(以下四个选项中只有一个是正确答案,请将其代号填在后面横线上,选错或未选均不得分,每小题2分,共20分)1、当两向量a ,b 有等式a b a b +=-成立时,向量a ,b 满足的条件是 . A a ,b 同向 B a ,b 反向 C 2a =2b D a b ⊥2、已知向量a ,b不共线,若7ka b +与4a b +线性相关,则k 等于 .A 4B 7C 28D -283、当两平面523140x y z +++=与28100x my z +-+=垂直时,m 应为 .A 2B 7C 7-D 14 4、直线16:23x y L y z -=⎧⎨+=⎩与2158:121x y z L --+==-的夹角为 . A 6π B 4π C 3π D 2π5、直线23743x t y t z t =-+⎧⎪=--⎨⎪=⎩与平面422100x y z --+=位置关系是 .A 平行B 垂直C 相交D 直线在平面上6、空间两直线111111c c z b b y a a x -=-=-与222222c c z b b y a a x -=-=-(其中222111::::c b a c b a ≠)的位置关系是 .A 异面B 平行C 相交D 重合7、方程0222222=-+c z b y a x ()+∈R c b a ,,所表示的曲面是 . A 柱面 B 锥面 C 椭球面 D 双曲面8、二次曲线()0,=y x F 按其中心进行分类,二次曲线22224630x xy y x y -+--+=属于 . A 中心曲线 B 无心曲线 C 线心曲线 D 直线9、球面2220x y z Dx Ey Fz G ++++++=与xoy 面相切,则其系数必满足关系式 .A 224D F G +=B 224D E G +=C 224E F G +=D 224D G F +=10、曲面的参数方程为()()(),x a u v y b u v u v z uv =+⎧⎪=-⎨⎪=⎩为参数,则曲面是 .A 单叶双曲面B 双叶双曲面C 椭圆抛物面D 双曲抛物面二、填空题(请将正确答案写在题目后面的横线上,每小题2分,共20分) 1、已知三角形三顶点为()3,2,1A ,()1,2,3B ,()8,5,2C 则ABC ∆的面积是 . 2、若0a b c ++=,且5a =,2=b ,3c =,则()a b c +⋅= . 3、如果点(2,1,1)P --关于平面π的对称点为'(2,3,11)P -,那么π的方程是 .4、球面的一条直径的两端点是()0,0,0O ,()4,2,4-P ,则该球面的标准方程是 .5、平面014632=+-+z y x 的法式方程是 .6、点(3,4,1)P -到直线⎩⎨⎧=+=-00y x y x 的距离是是 .7、坐标原点O 关于平面0922=--+z y x 的对称点的坐标是 .8、与平面0932=--+z y x 平行且在Oz 轴上截距等于8的平面方程是 .9、曲线22125160x y z ⎧-=⎪⎨⎪=⎩绕y 轴旋转一周生成旋转曲面的方程是为 .10、线心二次曲线02364422=+-++-y x y xy x 的中心直线的方程为 . 三、计算题(请写出详细的解答过程,1、2小题7分,3小题6分,共20分)1、已知{1,0,0},{0,1,2},{2,2,1}a b c ==--=,求一单位向量m ,使得m c ⊥,且m 与,a b 共面.2、确定λ的值使两直线1111:12x y z L λ-+-==与2:11L x y z +=-=相交. 3、二次曲线2224260x axy y x y ++---=,当a 的值取何时为椭圆型曲线、双曲型曲线、抛物型曲线. 四、求方程. (请写出详细的解答过程,每小题8分,共40分)1、求通过直线1129:133x y z L ---==与平面3520x y z +--=的交点,并且与L 垂直的平面方程. 2、求通过点(2,1,0)P -,且又与直线12:213x y z L +-==-垂直相交的直线的方程. 3、试求通过点(0,3,1)P -且与xoy 平面的交线为22160x y z ⎧+=⎨=⎩的球面方程.4、已知圆柱面的准线是过点A ()0,0,1、B ()0,1,0、C ()1,0,0的圆,母线垂直于这三点所在的平面,求该圆柱面的方程.5、光线沿直线3010x y x z +-=⎧⎨+-=⎩投射到平面:10x y z ∏+++=上,求该光线的反射线所在的直线方程.一、单项选择题(以下四个选项中只有一个是正确答案,请将其代号填在后面横线上,选错或未选均不得分,每小题2分,共20分) 1、当两向量a ,b 有等式a b a b -=+成立时,向量a ,b 满足的条件是 . A a ,b 同向 B a ,b 反向 C 2a =2b D a b ⊥ 2、已知向量a ,b不共线,若9ka b +与5a b +线性相关,则k 等于 .A 9B 5C 45D -453、当两平面23140x y z +++=与39100x my z -+-+=垂直时,m 应为 .A 15B -15C 10D -104、直线11:112x y z L --==-与平面230x y z +--=的交角为 . A 6π B 4π C 3π D 2π5、直线2994x t y t z t =⎧⎪=-+⎨⎪=-⎩与平面347100x y z -+-=位置关系是 .A 平行B 垂直C 相交D 直线在平面上6、已知方程1222222=-+-+-k c z k b y k a x (其中222,,,0c b k a k c b a ≠<>>>)则当k 满足 时,方程表示一双叶双曲面A 2c k <B 22c k b >>C 22b k a >>D 2222b k c a k b <<<<或7、方程222000222()()()0x x y y z z a b c ---+-=()+∈R c b a ,,所表示的曲面是 . A 柱面 B 锥面 C 椭球面 D 双曲面8、二次曲线()0,=y x F 按其渐近方向进行分类,二次曲线0565222=+-+++y x y xy x 属于 . A 抛物型曲线 B 双曲型曲线 C 椭圆型曲线 D 圆柱型曲线9、若直线的方向角为,,,γβα则下列式子中正确的是 .A 2cos cos cos 222=++γβα B0cos cos cos 222=++γβα C 1sin sin sin 222=++γβα D2sin sin sin 222=++γβα 10、曲面的参数方程为sec cos sec sin 22tan x a y b z c αβππααβπβπα=⎧⎛⎫-<<⎪ ⎪=⎨ ⎪⎪-≤<=⎝⎭⎩,则曲面是 .A 椭球面B 单叶双曲面C 双叶双曲面D 抛物面二、填空题(请将正确答案写在题目后面的横线上,每小题2分,共20分)1、已知三角形三顶点为()3,2,1A ,()1,2,3B ,()8,5,2C 则ABC ∆的重心坐标是 .2、若0a b c ++=,且5a =,2=b ,3c =,则=⨯+⨯+⨯a c c b b a .3、如果点(1,2,3)P --关于平面π的对称点为'(1,4,9)P -,那么π的方程是 .4、球面的一条直径的两端点是()0,0,0O ,()6,2,8P --,则该球面的标准方程是 .5、自原点指向平面326350x y z -++=的单位法向量0n = .6、点(6,7,8)P -到直线00x z x z -=⎧⎨+=⎩的距离是是 .7、坐标原点O 关于平面22120x y z -+--=的对称点的坐标是 .8、与平面0932=--+z y x 平行且通过点()1,2,3的平面方程是 .9、曲线22125160x y z ⎧-=⎪⎨⎪=⎩绕x 轴旋转一周生成旋转曲面的方程是为 .10、中心二次曲线034864322=+--+-y x y xy x 的中心为 . 三、计算题(请写出详细的解答过程,1、2小题7分,3小题6分,共20分)1、若向量3a b +垂直向量75a b -,向量4a b -垂直向量72a b -,求向量a b 与的夹角.2、确定λ的值使两直线3260:4150x y z L x y z λ-+-=⎧⎨++-=⎩与x 轴相交.3、二次曲线222210x axy y x y ++---=,当a 的值取何时为椭圆型曲线、双曲型曲线、抛物型曲线. 四、求方程(请写出详细的解答过程,每小题8分,共40分)1、平面π过Ox 轴,且与平面0:0x y π+=的夹角为3π,求平面π的方程.2、求通过点(1,1,1)P ,且又与直线2:213x y z L +==-垂直相交的直线的方程.3、已知单叶双曲面的轴与三坐标轴重合,且通过椭圆0,141622==+z y x与点(4,M ,求(1)单叶双曲面的方程;(2)该单叶双曲面与平面032=+-z x 的交线对xoy 平面的射影柱面的方程.4、已知圆锥面的顶点在坐标原点O ,准线是过点A ()0,0,1、B ()0,1,0、C ()1,0,0的圆,且轴线垂直于这三点所在的平面,求该圆锥面的方程.5、设直线20:10x z L y z +=⎧⎨++=⎩与平面:10x y z ∏+++=的交点为P ,在平面∏上求过点P 且垂直于直线L 的直线方程.一、判断题(请将你认为正确的论述在题目后面的横线上写T ,错误写F ,每题1分共10分)1、共面的三个向量中一定有两向量是共线的.2、若0 =⨯b a ,0=⨯c a ,那么0 =⨯c b . 3、若c b c a ⨯=⨯且0 ≠c ,那么b a=. 4、对任意的三个向量a ,b ,c 均有()()c b a c b a ⨯⋅=⋅⨯. 5、对任意的向量a ,b均有()()22b a b a b a -=-⋅+. 6、对任意的向量a ,b ,c 均有()()c b a b a c b a ,,,,=++μλ. 7、由方程191636222=--z y x 所表示的图形是一个单叶双曲面.8、单叶双曲面与双曲抛物面统称为双曲面,它们都有一个对称中心.9、对于单叶双曲面上的点,两族直母线中各有一条直母线通过这点.10、二次曲线的渐近线与这二次曲线没有交点.二、单项选择题(以下四个选项中只有一个是正确答案,请将其代号填在后面横线上,选错或未选均不得分,每小题2分,共20分) 1、当两向量a ,b 有等式b a b a -=+成立时,向量a ,b 满足的条件是 . A a ,b 同向. B a ,b 反向. C a ,b 同向且b a ≥. D a ,b 反向且b a ≥. 2、已知向量a ,b 不共线,若b a k 5+与b a -3线性相关,则k 等于 .A 3.B 5.C 15.D 15-. 3、向量a ,b ,b a⨯共面的充要条件是 . A a ,b 同向. B a ,b 反向. C a ,b 共线. D a ,b垂直.4、当两平面01432=+-+z y x 与01042=+-+z my x 垂直时,m 应为 . A 2. B 7-. C 7. D 14.5、直线⎪⎩⎪⎨⎧-=+-=-=23321t z t y t x 与平面01032=+-+z y x 位置关系是 .A 平行.B 垂直.C 相交 .D 直线在平面上.6、方程0222222=-+c z b y a x ()+∈R c b a ,,所表示的曲面是 . A 柱面. B 锥面. C 椭球面. D 双曲面.7、将椭圆⎪⎩⎪⎨⎧==+Γ01916:22z y x 绕其长轴旋转所得的旋转曲面的方程是 . A 116916222=++z y x . B 19916222=++z y x . C 11699222=++z y x . D 191622=+y x .8、二次曲线()0,=y x F 按其渐近方向进行分类,二次曲线0565222=+-+++y x y xy x 属于 . A 抛物型曲线. B 双曲型曲线. C 椭球型曲线. D 圆柱型曲线.9、二次曲线522=+y x 在点()1,2的切线方程是 . A 52=+y x . B 52=-y x . C 52=-y x . D 52=+y x .10、球面8222=++z y x 与曲面0222=-+z y x 的交线方程,在下列表示法中错误的是 . A ⎩⎨⎧=+=++z y x z y x 2822222. B ⎩⎨⎧==++28222z z y x . C ⎩⎨⎧=+=+242222z x y x . D ⎩⎨⎧==+2422z y x .三、填空题(请将正确答案写在题目后面的横线上,每小题2分,共20分)1、已知三角形三顶点为()3,2,1A ,()1,2,3B ,()8,5,2C 则ABC ∆的重心的坐标是 .2、若0 =++c b a ,且1=a ,2=b ,3=c ,则()=⋅+c b a .3、若()0,,≠c b a ,且0=⋅=⋅=⋅c r b r a r ,则r = . 4、球面的一条直径的两端点是()0,0,0O ,()4,2,4-P ,则该球面的标准方程是 .5、自原点到平面014632=+-+z y x 的距离p = .6、球心在原点且与平面01432=+-+z y x 相切的球面标准方程是 .7、坐标原点O 关于平面0922=--+z y x 的对称点的坐标是 .8、与0932=--+z y x 平行且在Oz 轴上截距等于5的平面方程是 .9、已知椭球面的轴与坐标轴重合,且通过椭圆⎪⎩⎪⎨⎧==+Γ01169:22z y x 与点⎪⎭⎫ ⎝⎛2,2,223,则该椭球面的方程为 .10、二次曲线05642222=+--+-y x y xy x 按其中心的分类,该二次曲线属于 . 四、计算题. (请写出详细的解答过程,每小题10分,共50分)1、已知直角坐标系内A ()1,0,1、B ()5,2,2、C ()6,4,3、D ()5,5,5四点坐标,判别它们是否共面?如果不共面,求以它们为顶点的四面体的体积和从顶点D 所引出的高的长.2、求通过直线⎩⎨⎧=+--=--+032032z y x z y x ,且与平面018=+-+z y x 垂直的平面方程.3、已知两直线:521:1z y x l ==,433221:2-=-=-z y x l ,判断两直线是否为异面直线?若为异面直线求两直线间的距离与它们的公垂线方程. 4、已知圆柱面的准线是过点A ()0,0,1、B ()0,1,0、C ()1,0,0的圆,母线垂直于这三点所在的平面,求该圆柱面的方程.5、求二次曲线0422222=+-+-y x y xy x 在点()1,2的切线方程.一、判断题(请将你认为正确的论述在题目后面的横线上写T ,错误写F ,每题1分共10分)1、一组共线向量一定是共面向量.2、若0=⋅b a,0 =⨯c a 且0 ≠a ,那么0=⋅c b . 3、若c b c a ⋅=⋅且0 ≠c ,那么b a=. 4、对任意的三个向量a ,b ,c 均有()()c b a c b a ⋅⋅=⋅⋅. 5、对任意的向量a ,b 均有22b a b a b a -=-⋅+. 6、对任意的向量a ,b ,c 均有()()c b a a c c b b a ,,2,,=+++. 7、由方程1963222=+-z y x 所表示的图形是一个双叶双曲面.8、椭圆抛物面与双曲抛物面统称为抛物面,它们都没有对称中心.9、对于双曲抛物面上,异族的任两条直母线必共面.10、二次曲线()0,=y x F 的非零特征根确定的主方向为二次曲线的渐近方向.二、单项选择题(以下四个选项中只有一个是正确答案,请将其代号填在后面横线上,选错或未选均不得分,每小题2分,共20分) 1、 当向量b a⊥时,下列等式成立的是 A b a b a -=+ B b a b a +=+ C b a b a -=+ D b a b a +=- 2、已知向量a ,b 不共线,若b a 52+与b k a -6线性无关,则k 不能等于 .A 2.B 6.C 15.D 15-. 3、对于非零向量a ,b,在何时()b a b a ⨯,,取得最大值 . A a ,b 同向. B a ,b 反向. C a ,b 共线. D a ,b垂直.4、当两平面01432=+-+z y x 与01062=+-+z my x 平行时,m 应为 . A 2. B 3 . C 4. D 6-.5、直线32231+=--=+z y x 与平面01032=+-+z y x 位置关系是 . A 平行. B 垂直. C 相交 . D 直线在平面上.6、方程()()()0321222222=+--+-c z b y a x ()+∈R c b a ,,所表示的曲面是 . A 柱面. B 锥面. C 椭球面. D 双曲面.7、二次曲线()0,=y x F ,其非渐近方向的个数有 .A 0个.B 1个.C 2个.D 无数多个.8、将双曲线⎪⎩⎪⎨⎧==-Γ01916:22z y x 绕实轴旋转所得的旋转曲面的方程是 .A 19916222=--z y x .B 116916222=+-z y x .C 19916222=+-z y x . D 191622=-y x9、二次曲线136422=+y x 在点()3,3的切线方程是 . A 1233=+y x . B 1233=-y x . C 1233=-y x . D 1233=-y x .10、二次曲线010*********=+-++-y x y xy x 按其渐近方向进行分类,该二次曲线属于 .A 双曲型曲线.B 抛物型曲线.C 椭球型曲线.D 圆柱型曲线.三、填空题(请将正确答案写在题目后面的横线上,每小题2分,共20分)1、已知三角形三顶点为()()3,2,1,,=i z y x P i i i i ,则321P P P∆的重心的坐标是 . 2、若0 =++c b a ,且1=a ,2=b ,3=c ,则=⨯+⨯+⨯a c c b b a . 3、若c b a ,,是两两相互垂直且成右手次序的三个向量,且1=a ,2=b ,3=c ,,则()b c a = .4、球面的方程是05442222=++--++z y x z y x ,则该球面的球心坐标是 ,半径是 .5、自原点指向平面014632=+-+z y x 的单位法向量0n = .6、两平行平面014632=+-+z y x 与07632=--+z y x 的距离p = .7、坐标原点关于平面0922=--+z y x 的对称点的坐标是 .8、与0932=--+z y x 平行且通过点()1,1,1的平面方程是 .9、二次曲线054222=+-++-y x y xy x 按其中心的分类,该二次曲线属于 . 10、抛物线px y 22=的主直径方程是 .四、计算题. (请写出详细的解答过程,每小题10分,共50分)1、已知直角坐标系内A ()1,1,1、B ()4,1,3-、C ()6,1,5、D ()5,2,4四点坐标,判别它们是否共面?如果不共面,求以它们为顶点的四面体的体积和从顶点所引出的高的长.2、设一平面与已知平面0332=--+z y x 平行,且与三个坐标平面围成的四面体的体积为6,试求该平面的方程.3、已知两直线:0111:1+=-=z y x l ,12111:2z y x l =-=-,判断两直线是否为异面直线?若为异面直线求两直线间的距离与它们的公垂线方程.4、已知圆锥面的顶点在坐标原点O ,准线是过点A ()0,0,1、B ()0,1,0、C ()1,0,0的圆,且轴线垂直于这三点所在的平面,求该圆锥面的方程.5、求二次曲线0183622=+++--y x y xy x 的渐近线.。
高中数学立体几何小题100题(含答案与解析)
立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C【解析】设AB =a.由题设知AQ 为棱锥Q -ABCD 的高,所以棱锥Q -ABCD 的体积V 1=.易证PQ ⊥面DCQ ,而PQ =,△DCQ 的面积为,所以棱锥P -DCQ 的体积V 2=.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1:1,选C.25.正四面体ABCD ,线段AB //平面α,E ,F 分别是线段AD 和BC 的中点,当正四面体绕以AB 为轴旋转时,则线段AB 与EF 在平面α上的射影所成角余弦值的范围是( )A . [0,22]B .[22,1]C .[21,1] D .[21,22] 【答案】B【解析】试题分析:如图,取AC 中点为G ,结合已知得GF //AB ,则线段AB 、EF 在平面α上的射影所成角等于GF 与EF 在平面α上的射影所成角,在正四面体中,AB ⊥CD ,又GE //CD ,所以GE ⊥GF,所以222GF GE EF +=,当四面体绕AB 转动时,因为GF //平面α,GE 与GF 的垂直性保持不变,显然,当CD 与平面α垂直时,GE 在平面上的射影长最短为0,此时EF 在平面α上的射影11F E 的长取得最小值21,当CD 与平面α平行时,GE 在平面上的射影长最长为21,11F E 取得最大值22,所以射影11F E 长的取值范围是 [21,22],而GF 在平面α上的射影长为定值21,所以AB 与EF 在平面α上的射影所成角余弦值的范围是[22,1].故选B 考点:1线面平行;2线面垂直。
高中数学解析几何练习题
解析几何练习题一选择题1.椭圆181622=+y x 的离心率为( ) A.31 B. 21 C. 33 D. 22 2.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A.12B.1C.2D.4 3.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是( ) A 28y x =- B 28y x = C 24y x =- D 24y x =4.双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r=( ) A 3 B 2 C 3 D65.已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。
若FB FA 2=,则k= A.31 B 32 C 32 D 322 6中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的 离心率为( )7过点)0,1(且与直线022=--y x 平行的直线方程是( )A 012=--y xB 012=+-y xC 022=-+y xD 012=-+y x8若圆心在x O 位于y 轴左侧,且与直线x+2y=0相切,则圆O 的方程是( )A 22(5x y +=B 22(5x y ++=C 22(5)5x y -+=D 22(5)5x y ++=9若直线01-+-y x 与圆2)(22=+-y a x 有公共点,则实数a 取值范围是( )A [-3 ,-1 ] B[ -1 , 3 ] C [ -3 ,1 ] D (- ∞ ,-3 ] U [1 ,+ ∞ )10若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是A 45B 35C 25D 1511.若点O 和点F 分别为椭圆3422y x +的中心和左焦点,点P 为椭圆上点的任意一点,则⋅的最大值为A.2B.3C.6D.812已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙ 的最小值为( )A 4-B 3-+C 4-+D 3-+13已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A 1x =B 1x =-C 2x =D 2x =-14设圆C 与圆x 2+(y-3)2=1外切,与直线y =0相切,则C 的圆心轨迹为A .抛物线B .双曲线C .椭圆D .圆15已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB的中点到y 轴的距离为( ) A 34 B 1 C 54 D 7416已知椭圆22122:1x y C a b +=(a >b >0)与双曲线222:14y C x -=有公共的焦点C 2的一条渐近线与以C 1的长轴为直径的圆相交于,A B 两点.若C 1恰好将线段AB 三等分,则( )A 2a =132B 2a =13C 2b =12D 2b =2 17.在平面直角坐标系xoy 中,直线0543=-+y x 与圆422=+y x 相交于A 、B 两点,则弦AB 的长等于A. B. D.118.椭圆)0(,12222>>=+b a by a x 的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。
解析几何训练题1
解析几何解答题答题训练(一)模板示例:(2021•新高考Ⅰ)在平面直角坐标系xOy 中,已知点F 1(﹣,0),F 2(,0),点M 满足|MF 1|﹣|MF 2|=2.记M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线x =上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |•|TB |=|TP |•|TQ |,求直线AB 的斜率与直线PQ 的斜率之和.解:(1)因为|MF 1|﹣|MF 2|=2<21F F =172,所以轨迹C 是以点21F F ,为左,右焦点的。
设轨迹C 的方程为:则=a 2,可得所以,轨迹C 的方程为:(2)第一步:设(所有未知量)。
设⎪⎭⎫ ⎝⎛,21T ,A (,)B (,)P (,)Q (,),直线AB 、PQ 的方程分别为,第二步:列(未知量之间的等式、不等式)由“过点T 的两条直线分别交C 于A,B 两点和P,Q 两点”得:由“|TA |•|TB |=|TP |•|TQ |”得第三步:析(根据目标检查未知量个数与等式个数.分析解题思路)。
目标:“”,属于“求值题”,未知量个数等于等式个数。
(本题11个未知量,9个等式,属于特殊情况)第四步:解(逐步消去未知量,获得答案)一.解答题(共10小题)1.(2022•甲卷)设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过F的直线交C 于M,N两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α﹣β取得最大值时,求直线AB的方程.2.(2022•浙江)如图,已知椭圆+y2=1.设A,B是椭圆上异于P(0,1)的两点,且点Q(0,)在线段AB上,直线PA,PB分别交直线y=﹣x+3于C,D两点.(Ⅰ)求点P到椭圆上点的距离的最大值;(Ⅱ)求|CD|的最小值.3.(2023•北京)已知椭圆E:+=1(a>b>0)的离心率为,A、C分别为E的上、下顶点,B、D分别为E的左、右顶点,|AC|=4.(1)求E的方程;(2)点P为第一象限内E上的一个动点,直线PD与直线BC交于点M,直线PA与直线y=﹣2交于点N.求证:MN∥CD.4.(2023秋•城区校级月考)曲线Γ:y2=4x,第一象限内点A在Γ上,A的纵坐标是a.(1)若A到准线距离为3,求a;(2)若a=4,B在x轴上,AB中点在F上,求点B坐标和坐标原点O到AB距离;(3)直线l:x=﹣3,令P是第一象限Γ上异于A的一点,直线PA交l于Q,H是P在l上的投影,若点A满足“对于任意P都有|HQ|>4”,求a的取值范围.5.(2023•天津)设椭圆+=1(a>b>0)的左、右顶点分别为A1,A2,右焦点为F,已知|A1F|=3,|A2F|=1.(Ⅰ)求椭圆方程及其离心率;(Ⅱ)已知点P是椭圆上一动点(不与顶点重合),直线A2P交y轴于点Q,若△A1PQ 的面积是△A2FP面积的二倍,求直线A2P的方程.6.(2023•新高考Ⅰ)在直角坐标系xOy中,点P到x轴的距离等于点P到点(0,)的距离,记动点P的轨迹为W.(1)求W的方程;(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于3.7.(2023•新高考Ⅱ)已知双曲线C中心为坐标原点,左焦点为(﹣2,0),离心率为.(1)求C的方程;(2)记C的左、右顶点分别为A1,A2,过点(﹣4,0)的直线与C的左支交于M,N 两点,M在第二象限,直线MA1与NA2交于P,证明P在定直线上.8.(2023•甲卷)已知直线x﹣2y+1=0与抛物线C:y2=2px(p>0)交于A,B两点,|AB|=4.(1)求p;(2)设F为C的焦点,M,N为C上两点,且•=0,求△MFN面积的最小值.9.(2023•乙卷)已知椭圆C:+=1(a>b>0)的离心率为,点A(﹣2,0)在C上.(1)求C的方程;(2)过点(﹣2,3)的直线交C于点P,Q两点,直线AP,AQ与y轴的交点分别为M,N,证明:线段MN的中点为定点.10.(2020•山东)已知椭圆C:+=1(a>b>0)的离心率为,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何小题训练
1.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( )
A.1133y x =-+ B.113y x =-+ C.33y x =- D.113
y x =+ 2.圆221x y +=与直线2y kx =+没有..
公共点的充要条件是( )
A .(k ∈
B .((2)k ∈-+,∞
C .(k ∈
D .((3)k ∈-+,∞
3.已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )
(A )106 (B )206 (C )306 (D )406
4.已知圆C 的圆心与点(2,1)P -关于直线1y x =+对称.直线34110x y +-=与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为______________
1.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是( )
A .(0,1)
B .1(0,]2
C .
D . 2.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )
A .2
B .3
C
D .92
3.设椭圆C 1的离心率为
13
5,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( ) (A )1342222=-y x (B)15132222=-y x (C)14
32222=-y x (D)1121322
22=-y x 4.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且
AK AF =,则AFK ∆的面积为( )
(A)4 (B)8 (C)16 (D)32
5.在平面直角坐标系中,椭圆22
22x y a b
+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫ ⎪⎝⎭
作圆的两切线互相垂直,则离心率e = .
6.过抛物线22(0)x py p =>的焦点F 作倾角为30的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧),则AF
FB = .
7.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .
8.已知21F F 、为椭圆19
252
2=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =______________。
1.如图,在平面直角坐标系中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于点A ,B 两点
(1) 若点N 是点C 关于坐标原点O 的对称点,
求三角形ANB 面积的最小值;
(2)是否存在垂直于y 轴的直线L 使得L 被以AC 为直径的圆截得的弦长为定值?若存在,求出L 的方程;若不存在,说明理由。