1990_eng

合集下载

1990年代这个表述正确吗

1990年代这个表述正确吗

1990年代这个表述正确吗
“1990年代”这个表述是正确的。

在中文语境中,“年代”通常用于表示一个连续的十年区间,例如“1990年代”表示的就是从1990年到1999年这十年间。

所以,“1990年代”是符合中文表达习惯的正确表述。

此外,1990年代也是一个具有重要历史意义的时期。

在这个时期,世界发生了许多重大事件,如苏联解体、东欧剧变、香港回归、互联网的普及等。

这些事件不仅对当时产生了深远影响,也对20世纪末和21世纪初的世界格局产生了重要影响。

在我国,1990年代同样是一个关键的发展阶段。

在这一时期,我国改革开放和现代化建设取得了显著成果。

经济体制改革逐步深入,社会主义市场经济体制初步建立;政治体制改革也在不断推进,依法治国方略得到进一步落实。

同时,1990年代还是我国科技、教育、文化等领域取得突破性进展的时期,一系列重大科技成果和国际地位的提高,使我国在国际舞台上崭露头角。

值得一提的是,1990年代还是我国社会主义事业发展的关键时期。

在这个时期,我们党成功应对了各种困难和挑战,坚定不移推进中国特色社会主义伟大事业。

通过全面深化改革、扩大对外开放,我国成功实现了从计划经济体制向社会主义市场经济体制的转型,为国家的繁荣富强奠定了坚实基础。

总之,1990年代是一个具有重要历史地位的时期,它标志着一个时代
的结束和另一个时代的开始。

这个时期的世界和我国都经历了许多重大变革,为今天的繁荣和进步奠定了基础。

回顾1990年代,我们可以看到历史的发展轨迹,更好地理解我国现代化建设的历程,从而为实现中华民族伟大复兴的中国梦提供宝贵经验。

hangeng

hangeng
11、05月18日,韩庚参加“红牛新能量音乐计划”发布会
12、06月04日,亚运有我,精彩之吉 MV发布会
13、06月12日,北京市文物局官方网站上发布由韩庚录制的“北京文物声音标签——长城”
14、06月13日,韩庚参加最佳现场录制
15、06月14日,韩庚参加音乐风云榜录制
2003年3月,年仅19岁的韩庚前往韩国进入SM公司开始练习生活,经历了2年多的演唱、舞蹈、演技、声乐、语言等多方面的练习和培训,其间,韩庚以个人身份在韩国参加了多次T台show,以及各类服装杂志拍摄。
2005年11月,SM娱乐公司面向亚洲娱乐市场推出了“SuperJunior”组合。这一组合从一开始便引起各方关注,并在短短时间内就迅速走红。而韩庚,作为其中唯一的中国成员并且是第一位正式在韩国出道的中国人,成为组合的亮点。2005年11月6 日,SuJu的人气歌谣以曲目“TWINS”正式出道,韩庚亦正式踏上了他的演艺征途。
3、03月25日,韩庚为西南旱灾向“甘霖行动”现金捐款10万元。
4、03月26日,韩庚参加东方卫视《咪咕明星学院》。
5、04月11日,韩庚参加在深圳举行的《蒙牛酸酸乳音乐风云榜十年盛典》
6、04月17日,韩庚参加广州亚运会志愿者名人堂活动
7、04月20日,韩庚解约诉讼 - 合约无效诉讼官司 一审
54、09月07日,佼个朋友吧 东风卫视播静距离 播出
57、09月11日,娱乐百分百(我家也有大明星) 播出
58、09月14日,参加精武风云首映礼
59、09月15日,参加”我要上学“1200助学行动 快乐大本营录制
82、11月06日,上海NIKE赛跑日 在上海体育馆参加2010超越极限巨星演唱会
83、11月07日,CCTV1 2011年黄金资源广告招标客户联谊晚会

List of common Chinese surnames

List of common Chinese surnames

List of common Chinese surnamesThis is a list of the top 100 most common Chinese surnames according to a study published in 2006. Their ranks in 1990 are shown by the side. Mandarin, Cantonese, Minnan and Gan transliterations are displayed. Other transliterations, used before the formalization and popularization of existing Romanizations, still can be found in the names of some overseas Chinese. Transliterations in other Chinese languages used by some overseas Chinese whose ancestral mother tongue is neither Mandarin, Cantonese or Minnan also exist, as well as pronunciations in other languages, particularly Korean and Vietnamese, in which these surnames are commonly used. Certain surnames transliterated into other Asian languages are unique only to the particular group of people; for example, many ethnic Chinese living in Vietnam bear modified versions of their original surnames, but only a few are used by ethnic Vietnamese. Similarly, Japanese transliterations are very rarely carried by ethnic Japanese in Japan, instead they are used by ethnic Chinese and Koreans.2006 rankingsRankChar.MandarinCantoneseMin Nan (Hokkien, Taiwanese, Teochew)GanVietnameseKorean(%RR)JapaneseOther2006 1990 T.S.PinyinW-G1Other JyutpingHK Gov't2Other Pe?h-¨-e-j¨©Other1 3 ÀîL¨«Li Lee Lei5 LeeLi LeLei4 L¨ª LeeLieDee L? L?Rank 14 Lee/Yi/Ri/Rhee (?/?)Rank 2 Ri Ley (Latin America); Dy, Sy (Philippines)2 1 ÍõW¨¢ngWang Wong4 WongVong4 ?ng OngHeng (of Teochew descent) U¨-ng V??ng/ Vong/ Ong Rank 19 Wang (?)? Ong (Philippines)3 4 •ˆÕÅ Zh¨¡ngChang Zoeng1 Cheung Cheong4Chong5 Tiu? TeoTeohTioThioTiew ChongTong Tr??ng Jang (?)Rank 9 Ch¨- Chang, Tiu, Tiong(Philippines, Malaysia)4 5 …¢Áõ Li¨²Liu Liou Lau4 Lau Lao4Lou L?u LauLowLao L¨©u L?u/ Lou/ Luo / LiuRank 27 Yu/Ryu (?/?)Ry¨± Lao (Philippines)5 2 ê• ³Â Ch¨¦nCh'en (Chen) Chern Can4 Chan Chun T?n TanChanTing Chh¨ªnTh¨ªn Tr?n/ CheinRank 2 Jin (?)Chin Ding;Chan, Tan (Philippines, Indonesia)6 6 —î Ñî Y¨¢ngYang Joeng4 Yeung YeongIeong4 I?? EawYeoYeohYong I¨-ng D??ng/ Huan (Wang) Rank 13 Yang (?)Y¨- Young (English)7 7 üS »Æ Hu¨¢ngHuang HwangWong4 WongWangVong4 Ng NgEngWeeOeiOoiBongUyUng U¨-ng Ho¨¤ng (»Ê)Hu?nhRank 5 Hwang (?)Rank 16 K¨-8 12 Úw ÕÔ Zh¨¤oChao Ziu6 Chiu Chio4Jiu Ti¨- TeoTeohChew Chh¨¨uTh¨¨u Tri?uRank 23 Jo (?)Rank 7 Ch¨- Chu(Hawaiian)9 10 ÖÜZh¨-uChou Joe Zau1 Chow Jao4 Chau Chiu ChewChiew ChiuTiu ChuCh?u Ju (?)Sh¨±10 8 …ÇÎâ W¨²Wu Woo Ng4 Ng Ung4Eng G??Ng?? GohGouw Ng Ng?Rank 12 Oh (?)Rank 11 Go (of Chinese descent)Kure (of Japanese descent)11 14 ÐìX¨²Hs¨¹ (Hsu) Ceoi4 Tsui Choi4 ChuiTsua Chh? CheeSweeShui Chh¨ªTh¨ª T? Seo (?)Rank 13 Jo12 15 ŒOËï S¨±nSun Suen Syun1 Suen Sun SunSoon Sng SunThun T?nRank 26 Son (?)Rank 15 Son Suan (Philippines)13 16 ÖìZh¨±Chu Choo Zyu1 Chu Chue ChuChee Choo ChuTu Ch?uRank 22 Ju (?)Shu Gee, Ju14 18 ñR Âí M¨£Ma Maa5 Ma MahMar M¨¢B¨¦ Baey M¨¢ M? Ma (?)Ba15 23 ºúH¨²Hu Wu4 Wu WooVu4 Hoo?? Oon ?F¨± H?Rank 11 Ho (?)Ko16 20 ¹ùGu¨-Kuo Gwok3 Kwok Kuok4 Koeh Koay KwikQuekQuayKwek KuokKok Qu¨¢chGwak (?)(37th most common Korean Surname) Kaku (¤«¤¯)(of Japanese descent & rank 51st most common Japanese surname) Ker, Kho, Kwok (Philippines), Kwik (Indonesia)17 9 ÁÖL¨ªnLin Lam4 Lam Lum L?m LimLiem L¨©m L?mRank 15 Im/Rim(?/?)Rank 10 Rin (of Chinese descent)Hayashi (of Japanese descent)Rank 19 Lim (Philippines)18 21 ºÎH¨¦H¨º, Ho Ho4 Ho H? Hoe Hoh H¨® H¨¤ Ha (?)Ka Ho19 17 ¸ßG¨¡oKao Gou1 Ko Kou4Go Koh Kau Cao Go (?)K¨-20 19 ÁºLi¨¢ngLiang Loeng4 Leung LeongLangLeng Ni? NeoNewNioNjoo Li¨-ng L??ng Yang, Ryang(?, ?)Ry¨-21 22 à• Ö£ Zh¨¨ngCheng Jehng Zeng6 Cheng Cheang4Chiang4 T¨¥?T¨©? ChungTayTehTheTheyTeay Chh¨¬nTh¨¬n Tr?nhRank 20 Jeong (?)Rank 5 Tei Ching (Philippines)22 32 Á_ ÂÞ Lu¨®Lo Lo4 Lo LawLohLoweLor L? L¨- La Na/Ra(?/?)Ra Lo (Philippines)23 35 ËÎS¨°ngSung Soong Sung3 Sung S¨°ng S¨±ngTh¨±ng T?ng Song (?)Rank 17 S¨-24 29 Öx л Xi¨¨Hsieh Shieh Ze6 Tse Che4 Chi¨¡, Si¨¡ CheahTjhiaTjiaChaySeahShea Si¨¤Chhi¨¤H¨¤ T? Sa (?)3Sha Saa, Sese, Sia (Philippines)25 30 ÌÆT¨¢ngT'ang (Tang) Tong4 Tong Tn?g Tng Th¨®ng ???ng Dang (?) T¨- Tang (Philippines)Rank Char.MandarinCantoneseMin Nan (Hokkien/Taiwanese/Teochew)GanVietnameseKoreanJapaneseOther2006 1990 T.S.W-G1Other JyutpingHK Gov't2Other Pe?h-¨-e-j¨©Other26 42 ín º« H¨¢nHan Hon4 Hon H?n Han H¨®n H¨¤n Han (?) Rank 11 Kan 27 37 ²ÜC¨¢oTs'ao (Tsao)(Cao) Cou4 Tso Chaw Chou4 Ch? Chh¨¢u Th¨¢u T¨¤o Jo (?)3S¨-28 31 ÔS Ðí X¨³Hs¨¹ (Hsu) Heoi2 HuiHooi Hoi4 Kh¨®? KohKhoKhorCoKhaw H¨ªH¨¦ H?a Heo (?) (about 300,000) Kyo; Co, Ko (Philippines)29 27 à‡µË D¨¨ngTeng Dang6 Tang Theng Dung T¨¥ng Th¨¨n ??ngRank 8 Deung (?)3T¨- Deang (Philippines)30 55 Ê’Ïô Ф Xi¨¡oHsiao Siu1 Siu Sio4 Siau Siow SieuThieu Ti¨ºu So (?)Sh¨- Siao31 34 ñT ·ë F¨¦ngFeng Ferng Fung4 FungFong P?ng PangPhangFong F¨±ng Ph¨´ngRank 21 Pung (?)F¨±32 25 ÔøZ¨¥ngTseng Tzeng Zang1 Tsang Chang4Dong Chan ChinTin T?ngTang Jeung (?)3(Indonesia)33 60 ³ÌCh¨¦ngCh'eng (Cheng) Cing4 Ching Cheng4 Thi?? Chh¨¢ng Th¨¢ng Tr¨¬nh Jeong (?)Tei34 24 ²ÌC¨¤iTs'ai (Tsai) Chai, Tsay Coi3 Choi ChoyTsoiToy Chho¨¤ ChuaChoaTjoa Chh¨®iTh¨®i Th¨¢iS¨¢i Chae (?)Sai Chua (Philippines)35 79 ÅíP¨¦ngP'eng (Peng) Paang4 Pang Ph¨º?, Ph?? Ph¨¢ng B¨¤nh Paeng (?)H¨- Phang(Jamaican), Pay(Cambodian/Khmer), Pang (Philippines)36 51 ÅËP¨¡nP'an (Pan) Pun1 Poon Pun4 Phoa? Phua Phon Phan Rank 6 Ban (?)Han37 33 Ô¬Yu¨¢nY¨¹an (Yuan) Jyun4 Yuen Wan Un4 O?n I¨-nI¨¥n NguyenVi¨ºn Won (?)En Yan (Philippines)38 41 ÓÚY¨²Y¨¹ (Yu) Jyu1 Yue U4 ?, ? ? Vu U (?)U Yu (Philippines)39 40 ¶-Tung Dung2 Tung Tong4 T¨¢ng T?ng ??ng Dong (?)T¨-40 61 ÓàY¨²Y¨¹ (Yu) Jyu4 Yu, Yue U4Yee ?, ? Ee ? D? Yeo (?)Yo Eu, Ya, Oe (Indonesia)41 36 ÌK ËÕ S¨±Su Sou1 So Sou4 Soh Souw SuThu T? So (?)So Soo42 11 È~ Ò¶ Y¨¨Yeh YeeEe Jip6 Yip IpYeap Ia?p Yap Iep Di?p Yeop (?)Y¨- Yap (Philippines)43 13 …ÎÂÀ L¨·L¨¹ (Lu) Leoi5 Lui Loi4 Loy L¨©L¨± L? L?L? Ryeo (?)Ryo Loy (Tausug)44 62 κW¨¨iWei Ngai6 Ngai G¨±i Wee Ng¨´i Ngu?Ng?y Wi (?)Gi45 44 ÊY ½¯ Ji¨£ngChiang Chung Zoeng2 Tseung Cheung Cheong4Chiang Chi¨²? Chi?ngTi?ng T??ng Jang (?)Sh¨- Chiong (Philippines)46 58 ÌïTi¨¢nT'ien (Tien) Tin4 Tin Chan Ti?n Thi¨¦n ?i?n Jeon (?) Den47 48 ¶ÅD¨´Tu Dou6 To DoTou4 T¨-? Toh Th¨´ ??Rank 10 Du (?)48 49 ¶¡D¨©ngTing Ding1 Ting DingTeng4 Teng Tiang ?inhRank 16 Jeong (?)Tei49 28 ÉòSh¨§nShen Sam2 Sum Sam4Shum S¨ªm Shim S¨ªmTh¨ªm Th?mTr?m Shim (?)Shin50 52 ½ªJi¨¡ngChiang Kiang Goeng1 Keung Geung Keong4 KiangKiu? Kiong Kh??ng Kang (?) Rank 6 Ky¨-Rank Char.MandarinCantoneseMin Nan (Hokkien/Taiwanese/Teochew) GanVietnameseKoreanJapaneseOther2006 1990 T.S.PinyinW-G1Other JyutpingHK Gov't2Other Pe?h-¨-e-j¨©Other51 65 ·¶F¨¤nFan Faan6 Fan Hum Ho¨¡nHuanWan F¨¤nPh?mRank 4 Beom (?)Han52 87 ½-Ji¨¡ngChiang Kiang Gong1 Kong Kang Kong Giang Gang (?) K¨- Kong(Hakka)53 106 ¸µF¨´Fu Fu6 Fu, Foo PohPha F¨´ Ph¨® Bu(?) Fu Po (Philippines)54 46 æR ÖÓ Zh¨-ngChung Zung1 Chung Chong4 ChiongCheng ChungTung Chung Jong (?)Sh¨-55 66 ±R ¬ L¨²Lu Lou4 Lo Lou4 L?? LohLoo L¨± L?L? No/Ro(?, ?)Ryo56 75 ÍôW¨¡ngWang Wong1 Wong OngAng Uong U?ng Wang (?)?57 64 ´÷D¨¤iTai Daai3 Tai T¨¨ Th¨¤i ?¨¢i??i Dae (?)Tai Ty, Tee (Philippines)58 59 ´ÞCu¨©Ts'ui (Tsui) Tsuei Ceoi1 Chui Choi4 ChuiSam ChhoiThoi Th?i Choi (?)Rank 4 Sai59 43 ÈÎR¨¦nJen Jam6 Yam Iam4Yum J?m N¨¬m Nhi?mNh?m Im (?)Jin60 38 ꑽ L¨´Lu Luk6 Luk Lok4 Lio?k Loke Liuk L?c Ryuk (?)Yuk (?)3 Riku61 82 ÁÎLi¨¤oLiao Liu6 Liu Lew/ Leow/LiewLio4 Liow Li¨¡uLiauwLiawLiow Li¨¨u Li¨ºuLi?u Ryo (?)Ry¨-62 50 Ò¦Y¨¢oYao Jiu4 Yiu YeowIo4Iu4 Yow I?u I¨¥u Di¨ºu Yo (?)Y¨-63 47 ·½F¨¡ngFang Fong1 Fong Png, Hong Fong Ph??ng Bang (?) H¨- P¨-64 56 ½ðJ¨©nChin Kim Gam1 Kam Gum Kim Kim Kim Kim (?)Rank 1 Kin65 54 ÇñQi¨±Ch'iu (Chiu) Chiou Jau1 Yau Iao<4Iau4 Khu, Cu KhooKoo Khiu Kh?u Koo (?)Ky¨± Hew, Hiew, Chiew (Malaysia)66 69 ÏÄXi¨¤Hsia Haa6 Ha H¨¡ Hah H¨¤ H? Ha (?)Ka67 53 ×T Ì· T¨¢nT'an (Tan) Taam4 Tam TomHamHom Th?m Tham Th¨®m ?¨¤m Dam (?)Tan68 120 íf Τ W¨¦iWei Wai4 Wai Vai4 U¨© Vi Wi (?)I69 57 ÙZ ¼Ö Ji¨£Chia Gaa2 Ga K¨¢ K¨¢ Gi? Ga (?), Go (?)Ka70 74 àu ×Þ Z¨-uTsou Zau1 Chow Jao4Chau Cho? ChiuTiu Tr?u Chu (?)S¨±71 78 ʯSh¨ªShih Sek6 Sek, Shek Seac<4Seak4 Chioh Chew SakThak Th?ch Dol (?)Seki72 133 ÐÜXi¨®ngHsiung Hung4 Hung Hong4 Hi¨-ng H¨´ng Ung (?)Y¨±73 99 ÃÏM¨¨ngMeng Maang6 Mang B¨¥ng M¨¨n M?nh Maeng (?, Mang (?) M¨-74 81 ÇØQ¨ªnCh'in (Chin) Ceon4 TseunTseonChun Chon4 Ch?n Chh¨ªnTh¨ªn T?n Jin (?)Shin75 92 é• ÑÖ Y¨¢nYen Jim4 Yim Im4 Gi?m I¨¥m Di¨ºm Yeom (?)EnRank Char.MandarinCantoneseMin Nan (Hokkien (Fujian)/Teochew)GanVietnameseKoreanJapaneseOther2006 1990 T.S.PinyinW-G1Other JyutpingHK Gov't2Other Pe?h-¨-e-j¨©Other76 63 ѦXu¨¥Hs¨¹eh (Hsueh) Sit3 Sit SeeSeet Sih SiotSietThiet Ti?t Seol (?)Setsu77 68 ºîH¨®uHou Hau4 Hau Hao4 H?uJao H¨¦u H?u Hu (?,?)K¨-78 102 À×L¨¦iLei Leoi4 Lui Loi4 L¨±i L?i Roe (?) , Noe (?)Rai Louie or Louis(Hoisan)79 70 °×B¨¢iPai Bo, Po Baak6 Pak Pe?h, Pe?k Peh Phak B?ch Baek (?) Haku80 108 ýˆÁú L¨®ngLung Lung4 LungLoong Long4 L¨ºng L¨±ng Long Ryong (?), Yong (?)Rong (?), Nong (?)Bang (?)Ry¨±81 118 ¶ÎDu¨¤nTuan Dyun6 Tuen Tun4 T¨-a?T¨-anTn?gThen?g Th¨°n ?o¨¤n Dan (?)Dan82 110 ºÂH¨£oHao Kok3 Kok Hok H¨¢c Hak (?)Kaku83 128 ¿×K¨¯ngK'ung (Kung) Hung2 Hung Hong4 Kh¨²ng Kh?ng Kong (?) K¨-84 88 ÉÛSh¨¤oShao Shaw Siu6 Shiu Sio4 Si¨- S¨¨uTh¨¨u Thi?u So (?)Sh¨-85 76 Ê·Sh¨«Shih Si2 Sze Si4 SeeSeetS¨² S¨ªTh¨ª S? Sa (?)Shi86 89 ëM¨¢oMao Mou4 Mo Mou4 M?? M¨¡u Mao Mo (?)M¨-87 94 ³£Ch¨¢ngCh'ang (Chang) Soeng4 Sheung Seong4 Si?ng S¨-ngTh¨-ng Th??ng Sang (?)J¨-88 97 Èf Íò W¨¤nWan Maan6 Man B¨¡n M¨¤n V?n Man (?)Ban89 45 î™¹Ë G¨´Ku Gu3 Gu GooKu K¨°? K¨± C? Go (?)Ko90 86 Ù‡Àµ L¨¤iLai Lay Laai6 Lai Lay L¨¤i L¨-a Roe (?) , Noe (?)Rai L?i91 130 ÎäW¨³Wu Mou5 Mo Mou4 M¨² V?V?Rank 7 Mu (?)Bu92 95 ¿µK¨¡ngKang Hong1 Hong Khng Khong Khang Gang (?)K¨-93 71 ÙR ºØ H¨¨H¨º, Ho Ho6 Ho H¨- H¨° H? Ha (?)Ga94 93 ‡ÀÑÏ Y¨¢nYen Jim4 Yim Im4 Gi?m Nghi¨¥m Nghi¨ºm Eom (?)Gen95 101 ÒüY¨«nYin Yiin Wan5 Wan ?n Do?n Yun (?)Rank 8 In96 72 åX Ç® Qi¨¢nCh'ien (Chien) Cin4 Chin Chee Ch?? Chhi¨¦nThi¨¦n Ti?n Jeon (?)Sen97 84 Ê©Sh¨©Shih Si1 Sze Si Si See SiThi Thi Si (?), I (?)Shi Schultz, See, Sy (Philippines)98 96 Å£Ni¨²Niu Ngau4 Ngau Ngao4 G? Ngi¨¥u Ng?u U (?)Gy¨±99 67 ºéH¨®ngHung Hung4 Hung Hong4 ?ng Ang F¨±ng H?ng Hong (?)Rank 20 K¨-100 80 ý• ¹¨ G¨-ngKung Gung2 Kung Kwong Kong4 Ki¨®ng Kung Cung Gong (?) Ky¨±Rank Char.MandarinCantoneseMin Nan (Hokkien (Fujian)/Teochew)GanVietnameseKoreanJapaneseOther2006 1990 T.S.PinyinW-G1Other JyutpingHK Gov't2Other Pe?h-¨-e-j¨©OtherThe following from the 1990 list are no longer within the 2006 top 100.26 ÙÜSh¨¦She Se4 Sheh Se4Shai Sia SaTha X¨¤ Sa (?)3Sha39 ûœÂó M¨¤iMai Mak6 Mak Muk Be?h BehMark Mak M?ch Maek (?)3Baku73 Çf ׯ Zhu¨¡ngChuang Zong1 Chong Chng Ching/Ch'ng ChongTong Trang Jang (?)Sh¨-77 ·L¨´Lu Lou6 Lo Lou4 L¨-? L¨´ L? Ro (?), No (?)Ro83 ÀèL¨ªLi Lai4 Lai L¨º L¨© L¨ºRank 3 Ryeo (?), Yeo (?)Rei85 ·ûF¨´Fu Fu6 Foo Fu P¨°? F¨± Ph¨® Bu (?)Fu90 ÐÏX¨ªngHsing Jing4 Ying Ieng4 H¨ºng H¨©n H¨¬nh Hyeong (?) Kei91 ÄßN¨ªNi Ngai4 Ngai G¨º Ng¨© Ngh¨º Ye (?)Gei98 ÌÕT¨¢oT'ao (Tao) Tou4 Tou Tow T? Th¨¢u ?¨¤o Do (?)T¨-100 ¸ðG¨§K¨º, Ko Got3 Kot Kat Kot C¨¢t Gal (?)Katsu1. Unofficial versions of Wade-Giles transliterations, (with diacritics removed) appear in parentheses. Currently, Wade-Giles is used primarily to romanize Taiwanese names, and often appears (erroneously) without the diacritics.2. This is the romanization used most often by the Hong Kong Government in transliterating names for birth certificates and identity cards. It is an unsystematic method based on the Meyer-Wempe system, without any of the aspiration marks and diacritics.3. None or very few in South Korean 2000 census (foreigners' households not included). Only indicated for Chinese 40 most common surnames, not checked for Chinese 41¨C100. Names 1¨C40 whose Korean rank or number is not indicated have more than 1.000 bearers according to the census, but are not among the most common 16 names.4. Portuguese transliteration only used in Macau5. Common Americanised spellingHistory? 2006 ¨C Ranking based on a multi-year survey and study conducted by Yuan Yida, a researcher at the Chinese Academy of Sciences, Institute of Genetics and Developmental Biology, using a sample size of 296 million, spread across 1,110 counties and cities. A total of 4,100 surnames recorded.? November 2004 ¨C China issued its first set of postage stamps, for each of the top 100 Chinese family names (based on a 1982 government survey).? 1990 ¨C Sample size of 174,900.。

EN1990的作用首要的欧洲规范-Eurocodes-EuropaEU

EN1990的作用首要的欧洲规范-Eurocodes-EuropaEU

EN1990的作用: 首要的欧洲规范欧盟委员会企业与工业总司联合研究中心这本小册子是联合研究中心在企业与工业总司和联合研究中心间行政安排的框架内为了支持欧洲规范的执行、协调和进一步发展形成的本手册包含的信息不一定反映欧盟委员会的官方立场。

© 欧洲委员会, 2008确认出处后可以复制。

本手册可从如下网络地址下载: http://eurocodes.jrc.ec.europa.eu欧洲规范-建设未来http://eurocodes.jrc.ec.europa.eu企业与工业总司,建筑分部http://ec.europa.eu/enterprise/construction/index_en.htm 欧洲标准化委员会http://www.cen.eu1. 欧洲规范欧洲规范是由欧洲标准化委员会制定的一系列关于建筑设计、土木工程和建筑产品的欧洲标准。

它们凝聚了各国的经验和研究成果,以及欧洲标准化委员会技术委员会250(CEN/TC250)和国际科技与科学组织的专家意见,代表了具有世界水准的结构设计标准。

整个欧洲规范体系由10种结构设计的欧洲标准组成。

每项欧洲规范由许多涉及特定技术领域的部分组成,例如防火、桥梁设计等。

EN1990 欧洲规范:结构设计的基础EN1991 欧洲规范1:结构作用EN1992 欧洲规范2:混凝土结构设计EN1993 欧洲规范3:钢结构设计EN1994 欧洲规范4:复合钢-混凝土结构设计EN1995 欧洲规范5:木材结构设计EN1996 欧洲规范6:砌体结构设计EN1997 欧洲规范7:岩土工程技术设计EN1998 欧洲规范8:防震结构设计EN1999 欧洲规范9:铝结构设计欧洲标准组成的欧洲规范欧洲标准全面覆盖了所有主要的建筑材料(水泥、钢材、木材、石料和铝),所有结构工程的主要领域(基于结构设计、装载、防火、岩土技术、地震等),以及广范的各种结构和产品类型(建筑物、桥梁、塔、旗杆、地窖等)。

1990年代中国出生性别比_究竟有多高_

1990年代中国出生性别比_究竟有多高_
109. 97 110. 67 111. 04 111. 13 110. 21 110. 45 111. 66 112. 94 111. 25 109. 65
男性
1 28 88 27 6 1 20 21 56 3 1 15 63 50 8 1 09 64 34 8 1 13 01 05 5 1 06 63 45 1 1 03 22 12 1
第 31 卷 第 5 期 2007 年 9 月
Vol 31, No 5 September 2007
1
人口研究 Population Research
1990 年代中国出生性别比: 究竟有多高?
陈 卫 翟振武
内容摘要 当 1990 年代各种人口调查! 过低的∀生育水平难以置信时, 其! 过高的∀出生性别比数 据却被广泛接受。本文的主要目的是通过对 2000 年人口普查出生数据漏报的性别差异的分析, 利用 教育统计数据, 重新估计 2000 年及 90 年代的出生性别比。结果表明我国实际的出生性别比并不像 2000 年普查数据反映的那样严重偏高。我国实际的出生性别比和低年龄组性别比要比普查反映的水 平低 5~ 9 个百分点。1990 年代在我国出生性别比偏高的部分中, 女婴漏报的作用高达 50% 以上。 本文还根据 2000 年普查千分之一抽样数据, 考察了出生性别比的社会经济差异。 关键词: 出生性别比; 普查数据; 教育数据; 出生漏报 作者简介 陈卫、翟振武, 中国人民大学人口与发展研究中心教授。北京: 100872
这些研究的共同特点是使用人口系统内 的数据
( 国家统计局的人口普查和抽样调查以及国家计生委 的生育率调查数据) , 通过前后调查数据的一 致性检 验或各种分析技术来校正出生数据, 从而估计各种原 因的重要性。本文将利用另一个独立存在的 数据体 系 & & & 教育统计数据, 检验和 估计 2000 年人口普 查 中低年龄组人口的漏报及其性别差异, 推算 1990 年 代历年出生人口及其性别构成, 从而估 计 1990 年代 中国的出生性别比。

咬文嚼字:20世纪90年代能否写成“1990年代”?

咬文嚼字:20世纪90年代能否写成“1990年代”?

咬文嚼字:20世纪90年代能否写成“1990年代”?报刊上出现了“1950年代”“1990年代”等类似用法,有人叫好,有人摇头。

这种用法能否推广?不伦不类“年”与“年代”阿拉伯数字表示的数位不同:年一般用四位数表示,如“1990年”;年代用两位数表示,如“90年代”。

“1990年”与“90年代”是两个根本不同的时间单位。

写成“1990年代”,不伦不类,概念不清,且又易产生歧义,还让人以为是1990个年代呢!这是典型的错误表述。

(高东升)矛盾的组合世纪、年代、年、月、日,它们在表示时间时,都是量词单位:世纪为100年,年代为10年……在不同的世纪中,都会有相同的年代。

只有在某某年代前明确写出某某世纪,才能确指某一时段。

“1990年代”却是把具体年份和表示10年的“年代”强行组合在一起,给人的感觉是矛盾的。

(魏显诚)不妨与英语接轨记得中学上历史课时,由于经常有年代问题,历史老师每次板书都觉得烦,她往往把世纪写成“C”(英语century的首字母),年代写成“Y”(英语year的首字母)。

20世纪90年代成了“20C90Y”。

如果那时候也讨论今天这个问题,我想她会毫不犹豫地举双手赞成“1990年代”。

对于学过英语的人来说,“1990年代”这种表示方法,犹如“熟悉的陌生人”。

在英语中,表示“20世纪90年代”,写成“1990s ”或“1990’s”,s表示复数概念。

“1990”指一年时间,加上s以后便指1990—1999这十年时间。

汉语没有单数和复数的词形变化,但“年代”可以视为表示复数概念的词语。

这样,“1990年代”便和“1990s ”具有异曲同工之妙。

如何表示时间,汉语不妨与英语接轨。

(丁婵婵)应运而生“1990年代”这种表示方法,可谓应运而生。

在上个世纪,人们的“世纪观念”不是很强,通常只写年代,不写世纪,“50年代”“60年代”,理所当然都是20世纪,无论是口语交际还是书面阅读,都不会引起误解。

为什么90年代是最好的10年

为什么90年代是最好的10年

为什么90年代是最好的10年文化库尔特·安德森2015年02月12日Illustration by Scott Gelber, Photo by Paul Hosefros/The New York Times20世纪80年代末,我还是《密探》(Spy)杂志的主编之一,我们发表了一期关于70年代的封面故事。

《密探》就是《密探》,这是一个爱恨交织的庆典与精彩的盛宴:“回到情绪戒指、麂皮绒、连鬓胡子和迪斯科性感机器托尼·奥兰多(Tony Orlando)的十年里。

”其中一个暗含的前提是美式怀旧蔓延的愚蠢,特别是对于一个文化上非常模糊的十年的怀旧,而它的终结甚至还不到十年。

在上个世纪的下半叶,我们美国人无意识地创造与消费着对“不久前的过去”的怅惘之中,并且持续不断地处于这种状态。

但90年代又怎样呢?对自己年轻时代的怀旧是不可避免的,所以生于1970年到1990年的人肯定会对这十年产生一种盲目的天然亲切之感。

但是即便对于我们其他人来说,90年代也能唤起一种独特的“追忆似水年华”之感,这不仅仅是对时光流逝的苦甜参半的回忆。

不,回溯20世纪的最后十年是一种真正的哀悼:那是我们美国人生活中最快乐的十年。

这并不(主要)是出于我个人的守旧。

不,这是有事实根据的,是客观的、普适的真相。

我从来不是克林顿的拥趸,现在也不是,但当杰布·布什(Jeb Bush)几个星期之前说起2016年,以及可能的民主党总统候选人时,他说“如果有人能够发起关于90年代怀旧的政治宣传,肯定不会成功”,我觉得他过于一厢情愿了。

我们还是从量化的数据开始吧。

在90年代,美国从总体而言非常繁荣。

从1992年到1999年,美国经济平均每年增长4%(从2001年起就再也没有超过4%;从2005年起,全年增长率就再也没有超过3%)。

每年平均增加170万个就业机会,本世纪以来,平均每年约增长85万个就业机会。

到90年代末,失业率从1992年的8%降低到4%(这事实上等于零)。

Xiaohua_Lu——简历

Xiaohua_Lu——简历

Xiaohua LuBiographical InformationTitle: ProfessorAddress: Department of Chemical Engineering, Nanjing University of Technology, No.5, Xin Mo Fan Ma Lu, Nanjing 210009, ChinaTelephone: 0086(25) 83067183, Fax: 0086(25) 83588063E-mail: xhlu@ Web:Education:B.Eng. Chemistry Engineering(First Class Honours), Nanjing University of Chemical Technology, 1982.Ph.D. in Chemical Engineering, Nanjing University of Chemical Technology, 1988.Professional Experience:Nanjing University of Technology (China) (Former name Nanjing University of Chemical Technology) Professor of Chemical Engineering (1993-2006)Associate Professor of Chemical Engineering (1990-93)Lecture of Chemical Engineering (1988-90)Teaching Assistant of Chemical Engineering (1982-88)Universitat Kaiserslautern (Germany) :November,1990 - September,1992; July - Augest, 2001Visiting Professor and Research Fellow of Alexander von Humboldt (AvH) Foundation at Lehrsturl f. Techn. Thermodynamik. AvH fellowship is the highest rank fellowship in Germany for the youngprofessors and/or doctors based on the world-wide competition.MIT-AspenTech Company (USA) Jan.,1996 -Dec,1996Visiting Professor and Research Fellow of AspenTech Company of USA which is a leading software company worldwide for process engineering (in Boston)Fund and Price Awards:The research fund of National Natural Science Foundation of China in 1990 , 1994, 2002 and 2003.The Outstanding Professor Award by Chemical Industry Ministry of China,1990.The Outstanding Young Professor Fund of China,1993.The Outstanding Young Professor Award and research fund of the Fok Yin Tong Education Foundation, 1992 and 1994.A silver prize for the Outstanding Science and Technology Progress by Educational Committee of China in 1995. The Outstanding Young Research Fund of National Natural Science Foundation of China in 2000,2004PublicationsA. Related to Proposed Project1.Huang Liang-Liang, Shao Qing, Lu Ling-Hong, Lu Xiaohua, Zhang Lu-Zheng, Wang Jun and Jiang Shao-yi. “Helicity and temperature effects on static properties of water molecules confined in modified carbon nanotubes”Phys. Chem. Chem. Phys., 2006, 8, 3836–38442.Liu Chang, He Ming, Lu Xiaohua, Zhang Qitu, and Xu Zhongzi. “Separation and control of solid statereaction process and fiber growth process in the synthesis of potassium dititanate fibers”. Crystal Growth & Design, 2005,5, 13993.Ningzhong Bao, Xin Feng, Liming Shen, Xiaohua Lu*, Kazumichi Yanagisawa, “Low-TemperatureControllable Calcination Syntheses of Potassium Dititanate”, AIChE J,2004, 50( 7),15684.He Ming, Lu Xiaohua, Feng Xin, Yu Lei and Yang Zhuhong. “A simple approach to mesoporousfibrous titania from potassium dititanate”. Chemical Communication, 2004: 2 202.5.Jun Wang, Yu Zhu, Jian Zhou, Lu Xiaohua. Diameter and Helicity Effects on Static Properties of WaterMolecules Confined in Carbon Nanotubes. Phys Chem Chem Phys. 2004, 6(4): 8296.Xie, Jingwei, Lu, Xiaohua; Zhu, Yu; Liu, Chang; Bao, Ningzhong; Feng, Xin. “Atomic force microscopy(AFM) study on potassium hexatitanate whisker (K2O·6TiO2)” ,Journal of Materials Science, 2003,38, 3641B. Other Significant Publications1.Ningzhong Bao, Xin Feng, Liming Shen, Xiaohua Lu, “High Quality and Yield in Potassium Titanate Whiskers Synthesized by Calcination from Hydrous Titania”, J. Am. Ceram. Soc. 2004, 87, 326. 2.Bao, Ningzhong; Feng, Xin; Yang, Zhuhong;Shen, Liming; Lu, Xiaohua”Highly Efficient Liquid-Phase Photooxidation of an Azo Dye Methyl Orange over Novel Nanostructured Porous Titanate-Based Fiber of Self-Supported Radially Aligned H2Ti8O17·1.5H 2O Nanorod” Environmental Science and Technology,2004, 38, 2729-27363.Xiaoyan Ji, Xin Feng, Xiaohua Lu, Luzheng Zhang, Yanru Wang, Jun Shi, and Yanda Liu, “A generalized method for the solid-liquid equilibrium stage and its application in process simulation”, Ind.Eng. Chem. Res., 41(8), 2040-2046, 20024.Jian Zhou, Xiaohua Lu, Yanru Wang, Jun Shi, “Molecular dynamics study on ionic hydration”, Fluid Phase Equilibria., 194, 257-270, 20025.Ji, Xiaoyan; Chen, Dongliang; Tao, Wei; Lu, Xiaohua; Wang, Yanru; Shi, Jun “Determination of dissolution kinetics of K2SO4 crystal with ion selective electrode”Chem. Eng. Sci. 56 (24)7017-7024,(2001)6.Lu, Xiaohua; Zhang, Luzheng; Wang, Yanru; Shi, Jun; Maurer, G. “Prediction of Activity Coefficients of Electrolytes in Aqueous Solutions at High Temperatures.”Ind. Eng. Chem. Res. 1996, 35(5), 1766-73.Synergistic Activities(a) Developed novel methods for synthesis and characterizing titanian based whiskers, and applied this advanced materials in reinforced composite and photocatalysis reaction; (b) Organizer and on Int. Org. Committees for many Int. Conferences, inc. “Yangtze Conference of Fluids and Interfaces” China,Oct. 12-18,2002; 11th Properties and Phase Equilibria for Product and Process Design(PPEPPD), Crete, Greece May 20-25, 2007; 12th 2PPEPPD, Suzhou, China, May, 2010.List of CollaboratorsShaoyi Jiang (University of Washington, U.S.A.); Gerd Maurer (Universitat Kaiserslautern, Germany).Keith Gubbins(North Carolina State University, U.S.A.);K-Y. Chan (University of Hong Kong)Graduate Students, Postdoctoral Workers (last five years)Graduate students (27 total): Xiaoyan Ji, Ningzhong Bao, Ming He, Jun Wang, Xie, Jingwei.Postdoctoral Scholars (2 total): Chang Liu, Xiaohong JiangRESEARCH INTERESTSApplied thermodynamics and phase equilibria of electrolytes. Modeling and simulation of industrial process operations with electrolyte. Experimental and theoretical research on electrolyte solution. Surface wettabiliy on membrane and photocatalyst reaction on titanium dioxide.Xiaohua LU’s research group is a subdivision of institute of chemistry and chemical engineering in Nanjing University of technology. Our researches are supported by the Natural Science Foundation of P. R. China. The major research goal in the group is the large scale preparation of ultra-fine low dimension material and the optimization of chemical engineering process for complex system. The objects include electrolyte solution, interface of solid and liquid. To explore and fund the character of sub-micro state and coordinate description of macro state, the methods of molecular simulation, process simulation and characterization of microcosmic structure are used.In the research area (thermodynamics of electrolyte solution, molecular simulation, synthesis of titanium whisker and its application in composite material), Many paper are published, including AIChE, Ind. Eng. Chem. Res. The members in the group also attend many international conferences in US, UK, Germany and Italy. Some members go to USA and Germany to collaborate with local scientists on invitation. The project "the thermodynamics of the mix solvent system for strong electrolyte solution" acquires second-class award for advancement of science and technology from nation educational council and chemical engineering ministry. The project "The research and application of phase equilibrium of the electrolyte solution including reactions" acquires second-class award for advancement of science and technology in china petroleum and chemical engineering .A new cooperative research project is supported in part by the U.S. National Science Foundation (NSF grant number CTS-0211792) between the Professor Keith E. Gubbins (PI, North Carolina State University) and Professors K-Y. Chan (Hong Kong University) and Xiaohua Lu (Nanjing University of Technology, China) to study novel mesoporous carbons using a combination of molecular simulation and experimental (synthesis, adsorption, diffusion, x-ray scattering) measurements. Professor Xiaohua Lu is well known for his research on confined fluids, including a wide range of mesoporous materials and types of host phases. He will carry out x-ray scattering studies of the mesoporous carbons, and experimental studies of diffusion of adsorbed phases of simple fluids within the pore structure of these materials with dynamic BET measurements and gas chromatography studies. Direct comparisons of the molecular simulation and experimental results will be made, to determine structure-property relationships.Another cooperative research project is proposed between the Professor Shaoyi Jiang (Washington State University) and Xiaohua Lu (Nanjing University of Technology, China) on molecular simulation studies of fluids in pores, for the Joint Research Fund for Young Scholars in Hong Kong and Abroad (No.20428606) supported by the National Natural Science Foundation of China.These project will add an important international aspect to research already underway at university in United State, and will provide an opportunity to further US-China cooperation in science. The collaboration will be particularly beneficial to young Chinese and U.S. scientists, who will participate in these international activities, and will broaden their exposure and help them appreciate the importance of multi-disciplinary and international collaborative research.。

1990年大事记

1990年大事记

1990年大事记摘要:1.1990 年国内外重要事件概述2.1990 年我国政治、经济、科技发展情况3.1990 年我国文化、教育、卫生事业的发展4.1990 年我国在国际事务中的角色和地位正文:1990 年是二十世纪九十年代的开端,这一年在国际和国内都发生了许多重要的事件。

在这一年,我国政治、经济、科技等方面都取得了显著的发展,同时在文化、教育、卫生事业方面也取得了丰硕的成果。

在国际事务中,我国逐渐发挥出更大的作用和影响力。

首先,在政治方面,1990 年我国进行了一系列重要的政治体制改革。

在这一年,第七届全国人民代表大会第三次会议通过了《中华人民共和国香港特别行政区基本法》和《中华人民共和国澳门特别行政区基本法》。

此外,在中共中央的领导下,我国积极开展外交工作,与多个国家建立了外交关系。

其次,在经济方面,1990 年我国继续深化改革开放,推动经济发展。

这一年,国家发布了《关于积极发展对外贸易的通知》等政策,进一步降低关税,优化外贸结构。

同时,我国加大了对内改革力度,积极推进国有企业改革,发展多种所有制经济共同发展的格局。

在科技方面,1990 年我国在航天、通信、计算机等领域取得了重大突破。

这一年,我国成功发射了亚洲一号通信卫星,实现了国内卫星通信的突破。

此外,我国自行研制的“神威·太湖之光”超级计算机也正式投入使用,标志着我国计算机事业取得了重要成果。

在文化、教育、卫生事业方面,1990 年我国加大了对文化事业的支持力度,提出了繁荣发展社会主义文化的一系列措施。

在教育领域,我国开始实施“八五”计划,加大对教育事业的投入,努力提高国民素质。

在卫生事业方面,我国积极推行医疗卫生改革,提高医疗服务水平,保障人民健康。

在国际事务中,1990 年我国积极参与多边国际事务,加强同发展中国家的团结与合作。

这一年,我国成功举办了第十一届亚洲运动会,展现了国家的综合实力和友好形象。

此外,我国还在联合国等国际组织中发挥积极作用,为维护世界和平与发展作出了贡献。

关于短生命周期产品的供应链协调

关于短生命周期产品的供应链协调
51.Mason-Jones R.Towill D R Using the information decoupling point to improve supply chain performance 1999(02)
52.Georoge Q Huang.Jason S K Lau.K L Mak The impacts of sharing production information on supply chain:a review of the literature 2003(07)
15.Ernst R.Powell S Optimal inventory policies under service-sensitive demand[外文期刊] 1995(02)
16.Diks E B.Kok A godimos A G Multi-echelon systems:a service measure perspective 1996(02)
24.Metters R Quantifying the bullwhip effect in supply chain 1997(02)
25.Genues J P.Ramasesh R V.Hayya J C Adapting the Newsvendor Model for Infinite-horizon Inventory system 2001(03)
21.Kaplan R A A dynamic inventory model with stochastic lead times 1970(07)
22.Decroix G A.Risa A A Optimal production and inventory policy for multiple products under resource constrains 1998(07)

Determination of the Surface Fractal Dimension for Porous Media by Capillary Condensation

Determination of the Surface Fractal Dimension for Porous Media by Capillary Condensation

Determination of the Surface Fractal Dimension for Porous Media by Capillary CondensationFumin Wang and Shaofen Li*Department of Chemical Engineering,Tianjin University,Tianjin300072,People’s Republic of ChinaWe describe several methods of evaluating the surface fractal dimension of porous media.Theseinclude the thermodynamic method and the fractal version of Frenkel-Halsey-Hill theory.Neither method yields accurate estimates of the fractal dimensions of porous solids under thewhole range of experimental scales.We propose a modified thermodynamic method that isrelatively simple but is significantly more accurate than Neimark’s relation from the adsorptionexperiments.Then we use these methods to estimate the surface fractal dimension of severalkinds of porous media.After a concrete analysis of the properties of topology and mercuryporosimetry,N2adsorption,and N2desorption processes for porous media,we conclude that thereal surface fractal dimension should be determined by D abs(from the adsorption isotherm),D des(from the desorption isotherm),and D m(from the mercury porosimetry)jointly as D real)D abs+(D m-D des).IntroductionFractal geometry has been widely used in many areas of modern science.The key quantity in fractal geometry is the fractal dimension D,which is an operative measure of the surface and structural irregularities of a given solid.The fractal dimension should be deter-mined first before we can use the concept and knowledge of fractal geometry to characterize the structure of a given solid.The experimental methods used for the determination of the surface fractal dimension of porous solids have been reviewed by Avnir et al.(1992).The most common techniques are the adsorption and mercury porosimetry methods.In addition,electron microscopy image analy-sis and scattering methods(light,X-rays,neutrons)have also been used to demonstrate surface roughness for porous materials(Martin et al.,1986;Aubert et al., 1986;Freltoft et al.,1986).In this paper we restrict our attention to calculating the surface fractal dimen-sion from adsorption measurements because they are the most commonly used methods to determine the fractal dimension D of solid materials.Perhaps one of the oldest methods of evaluating the surface fractal dimension is that based on the depen-dence of monolayer capacity on the adsorbate size, which was developed by Pfeifer and Avnir(1983). Although this method is simple,the fractal dimensions determined by this method are not always consistent, especially when the orientations of adsorbate molecules on the surface are different.Also,this procedure has some disadvantages related to evaluation of the mono-layer capacity and selection of suitable adsorbates in order to avoid the effects associated with adsorbate-adsorbate interactions(Jaroniec,1995).Moreover,in this method,one needs to evaluate the monolayer capacities of several adsorbates of different molecular sizes,which makes the experiment rather time-consum-ing.Because the molecules adsorbed play the role of the gauges,the range of scales available in this method is limited by the molecular sizes.These problems become particularly important for adsorption on some microporous solids that possess a high degree of surface irregularity(Jaroniec and Madey,1988).Pfeifer et al.(1991)developed an adsorption-based method for surface roughness determination in1991. The principle is to measure the variation in surface area of the material coated with a series of presorbed films. In this method,they assume that every point of the film surface has the same shortest distance z to the solid,so the film area S(z)is related to the film volume V(z)by When the surface of the solid is fractal,with fractal dimension D,V(z)is proportional to z3-D and,therefore, S(z)is proportional to z2-D,so one obtainsFrom eq2,one can get the fractal dimension by measuring the surface area of the adsorbed film with varied film thicknesses of z.However,the equidistance assumption,on which this method is based,is open to doubt.The surface tension wants to make the film-vapor interface as flat as possible,so as to minimize the surface area of the interface.One cannot ignore the effect of the surface tension,especially when the film thickness is large(Pfeifer and Cole,1990).From the simulation results of this method,we can see that the deviations are very large and the corresponding cor-relation coefficient is very small(Pfeifer et al.,1991). Another popular method for evaluating D is that given by the Frenkel-Halsey-Hill(FHH)equation, which in logarithmic form can be expressed as follows (Pfeifer and Cole,1990):where N is the amount adsorbed at the relative pressure P/P0and absolute temperature T andµis the so-called adsorption potential defined asUsing eq3,one can determine D from physical adsorp-tion measurements on the fractal surface.On the other hand,Neimark et al.(1992,1994) proposed the so-called thermodynamic method for cal-culating the fractal dimension D from the adsorption isotherm data.In this model,the fractal surface area*Author to whom correspondence should be addressed.S(z))d V/d z(1)S∝V(2-D)/(3-D)(2)ln(N))const-(3-D)ln(µ)(3)µ)RT ln(P/P)(4)1598Ind.Eng.Chem.Res.1997,36,1598-1602S0888-5885(96)00555-6CCC:$14.00©1997American Chemical Societywas related to the average pore radius as(Neimark,1992):and the surface area of the adsorbed film is calculatedaccording to the Kiselev equation:where X denotes the relative pressure and N max denotesthe amount adsorbed at X tending to unity.Theyardstick is measured in terms of the average radius ofcurvature of the meniscus at the interface betweencondensed adsorbate and gas by the Kelvin equation: The thermodynamic method proposed by Neimark(1992)and the method based on the FHH theoryproposed by Pfeifer and Cole(1990)have been comparedwith one another by Jaroniec(1995).The theoreticalanalysis shows that both methods are essentially equiva-lent.However,the simulation results using Neimark’srelation show that the range of scale in which fractalexists is rather limited,which makes us suspect itsvalidity and robustness.The objective of this work is to develop a more reliablescaling relation to determine surface fractal dimensionof porous materials using the capillary condensationdata.We also show that the new method,based onconcrete analysis of the properties of topology andcapillary condensation processes for porous media,ismuch more accurate than Neimark’s relation and coversa wide range of scales.Then the simulation results willbe compared with those of the references.TheoryMandelbrot(1982)gave a correlation of the area fora fractal surface and the volume circumscribed by thesurface:In case the fractal surface is measured on a Euclideanarea,the above relation can be changed into thesubsequent form by dimensional analysis:where k0is a factor relating surface area with the corresponding volume.Just as illustrated by Neimark(1992),a given fractalsurface can be approximated by its inscribed equicur-vature surface(IES)of varying mean curvature radius(MCR).The decrease of the MCR,r c,causes penetrationof the IES into surface indentations of smaller size.Inother words,with a decrease of r c,the IES repeats allthe peculiarities of the substratum relief.In the limitr c f0,the IES is the fractal surface with the same dimension as the surface fractal dimension of thesubstratum.So,the mean curvature radius of theinscribed equicurvature surfaces can be chosen as ayardstick for measurement of the fractal surface.The practical realization of this method can be provided by using the adsorption experiments.In the process of adsorption of nitrogen in porous media,the equilibrium interface between the liquid film and gas acts as the inscribed equicurvature surface.So, the surface area of the adsorbed film can be calculated according to the Kiselev equation(6).After assuming that the liquid cannot be compressed, one can get the following relation:Substitution of S E and V(X)into eq9by eqs6and10 gives the following expression:LetEquation11will be changed into the ensuring style Accordingly,from the adsorption isotherm of nitrogen in the region of capillary condensation,we can compute a series of A(X)and B(X),where r c(X)can be predicted by the Kelvin equation(7)and then the surface fractal dimension can easily be achieved.Results and DiscussionFor a given porous solid,the desorption isotherm does not always retrace the adsorption isotherm but lies above it over a range pressures,forming a hysteresis loop,before eventually rejoining the adsorption iso-therm.The fractal dimension determined by eq13can be calculated either from the adsorption isotherm or from the desorption isotherm.First,the simulation of surface fractal dimension for several samples has been made by eq13using the nitrogen adsorption and desorption data of the literature(Neimark et al.,1994), so that we can have a comparison with the simulation results by Neimark’s relation.The evaluation of the surface fractal dimension of SiO2(A)using eqs5and13 is illustrated in Figures1and2,respectively,as an example.The obtained results are reported in Table1. This table also includes the range of scale from which the D was calculated.The above calculations and analyses show that the results simulated by means of eq13for several kinds of porous materials totally fall in the range of2<D< 3,which is predicted by fractal geometry,so this method is comparatively reasonable among the methods used to determine the surface fractal dimensions.From these results one can conclude that the method in this work is reliable over a sufficiently wide range of scales from1to250nm.Neimark’s relation,however,is seemingly reasonable only over a rather narrow range of scales.This is caused by the defects in the scaling relation(5).We know,from eq9,that only when theln(S))const-(D-2)ln(r)(5)S(X))RTσ∫N(X)N max ln(X)d N(X)(6) r)-2σVLRT ln(X)(7) S1/D∼V1/3(8)S E (δ))kDδ2-D V D/3(9)V(X))[Nmax-N(X)]VL(10)-∫N(X)N maxln(X)d N(X)rc2(X))kD VLD/3σRT[(N max-N(X))1/3rc(X)]D(11)-∫N(X)N maxln(X)d N(X)rc2(X))A(X)[Nmax-N(X)]1/3rc(X))B(X)(12)ln A(X))const+D ln B(X)(13)Ind.Eng.Chem.Res.,Vol.36,No.5,19971599volume encompassed by the fractal surface remains unchanged in the process can eq 3be rewritten asfrom which eq 5was obtained.But the capillary condensation process cannot satisfy this condition.With the increase of the relative pressure of nitrogen,the volume encompassed by the liquid -gas interface is decreased,so Neimark’s simulation results cannot characterize the real structure of the porous media.However,when the relative pressure of nitrogen X )P/P 0is relatively small,the volume does not change remarkably,so Neimark’s relation shows seemingly reasonable results in this range.In the range of greater relative pressure of nitrogen,especially after the valueof X surpassed 0.8,the volume encompassed by the liquid -gas interface decreased remarkably with an increase of X ,so the experimental data violated the simulated straight line.Neimark cannot find the defects in his scaling law and get to the wrong conclu-sion that the scaling interval for these porous solid is very narrow.So,it is necessary that the scaling relation developed to measure the surface fractal dimension using the capillary condensation data not only conform to the theory of fractal geometry itself but also consort with the concrete process of capillary condensation as well.Obviously,this idea has been considered when the scaling relation of this paper is being deduced.By contrast,the surface fractal dimensions deter-mined by the adsorption data are smaller than those determined by the desorption data;this cannot be thought of as caused by the experimental probable error.The surface morphology is not the only factor that affects the desorption process;the topology of the porous space has a significant influence on this process.In the process of desorption,due to the “shielding”effect of the small pores on the large one,the calculating results of S E (X )are larger than those of S E in reality and thus make the discrepancy between D abs and D des .The quantitative difference between the two indicates the degree of the influence of the shielding effect,so it reflects the topological feature of the porous solid in some degree.Jaroniec (1995)compared the fractal FHH equation (3)and Neimark’s relation (5)and concluded that the two methods are theoretically equivalent.So,the FHH equation meets the same difficulty when being used to evaluate the surface fractal dimension.Sahouli et al.(1996)reexamined the two methods and concluded that the FHH type equation is also sensitive to the mi-croporous structures in contrast to Neimark’s relation,and this causes the disagreement of the results of the two methods for the solids with high surface area.In fact,the disagreement is due to the fact that the two methods were used in two different scale ranges.When being used in the same scale range,these two methods should yield the same results.The method in this work is based on the thermody-namic principle;another thermodynamic method to measure the surface fractal dimensions for the porous materials has been developed by Zhang and Li (1995).These two methods use different experimental data,with Zhang’s method using the mercury porosimetry data and the method in this work developed to use the capillary condensation data,but both are based on the same principle.In order to make a comparison between the two methods,we have done the experiments to get the mercury porosimetry and nitrogen adsorption iso-therm of the same four porous materials.The experi-mental data of mercury porosimetry are measured by means of a J5-70porosimeter made in Shanghai,People’s Republic of China.The range of pressureinFigure 1.Simulation results from eq 13for SiO 2(A).Figure 2.Simulation results from eq 5for SiO 2(A).Table 1.Surface Fractal Dimensions Determined from Equations 13and 5,Respectively,with Capillary Condensation Data in the Literature (Neimark et al.,1994)eq 13eq 5analyzed sample D des D abs a min (nm)a max (nm)D des D abs a min (nm)a max (nm)porous glass 2.52 2.35 1.089.0 2.10 2.14 1.016.0Si300 2.48 2.34 1.553.7 2.20 2.22 1.510.0MgO(A) 2.41 2.33 1.389.0 2.36 2.43 1.422.4cement 2.68 2.63 1.825.1 2.43 2.43 1.87.2MgO(B) 2.51 2.33 1.2251.0 2.54 2.55 2.713.2SiO 2(A) 2.53 2.41 1.5125.0 2.47 2.59 1.512.5O 22.67 2.65 1.179.4 2.76 2.71 1.1 5.5SiO 2(B)2.552.501.139.828.52.882.08.0S E (δ)∼δ2-D1600Ind.Eng.Chem.Res.,Vol.36,No.5,1997the experiment is from0.1to300MPa.The experi-mental data of the nitrogen adsorption isotherm are measured by means of a CHEMBET-3000adsorption apparatus made by Quantachrome Co.,Syosset,NY. The simulation results are demonstrated in Table2. The simulation results show that the surface fractal dimensions determined by mercury porosimetry,D m,are larger than both D abs and D des.In the process of adsorption,before capillary condensation occurs,there has been a nitrogen film adsorbed on the surface of the porous solid.As a result,the interface between the film and the vapor,with which the film is in equilibrium,is no longer a simple replica of the film-solid interface. Due to the effect of the surface tension,the D abs is smaller than the real dimension of the fractal surface. So,the discrepancy between D abs and D real is determined by the competition between the attractive van der Waals gas-solid potential and the repulsive surface free energy of the nitrogen film.The potential wants to make the film-vapor interface follow the ups and downs of the surface as closely as possible,so that the adsorbed molecules get to set as close to the solid surface as possible.The surface tension,on the other hand,wants to make the film-vapor interface as flat as possible,so as to minimize the surface area of the interface;the two effects entangled together make the discrepancy be-tween D abs and D real.These effects,also,act on the determination of D des.On the other hand,the shielding effect makes the surface fractal dimension D m deter-mined by mercury porosimetry larger than the real dimension of the fractal surface,so it is not surprising that D m ofγ-Al2O3(C)is greater than 3.So,the shielding effect of the small pores on the large one and the effect of the surface tension result in D m>D des> D abs,which is proved by this work.From the analysis above,we can see that the discrepancies between D m and D real,D des and D abs show the shielding effect of the small pores on the large one,while the discrepancies between D real and D abs,D m and D des show the effect of the surface tension.So,we can easily get the conclusion that the following relation exists:The real surface fractal dimension of porous media can be determined by D abs,D des,and D m jointly. ConclusionA new method is proposed to determine the surface fractal dimension for a porous solid.The method is based on the approximation of a given fractal surface by inscribed equicurvature surfaces of varying mean curvature radius.The practical realization of this method for determining the surface fractal dimension of real porous materials is provided by analyzing experimental data of capillary condensation.The simulations for several kinds of porous media are fulfilled by analyzing the nitrogen adsorption isotherm and mercury porosimetry from the literature and our own.The results show that D abs,D des,and D m are different and D m>D des>D abs.By analyzing the process of adsorption,desorption of nitrogen,and mer-cury incursion,the author gives a reasonable explana-tion of the results and achieves the conclusion that D real )D abs+(D m-D des))D m-(D des-D abs).So,the real surface fractal dimension cannot be determined by D abs, D des,and D m,respectively,but jointly. AcknowledgmentSupport from funds of Science and Technology of National Education Committee of People’s Republic of China is gratefully acknowledged.Nomenclaturea min)outer cutoff of a finite scaling regimea max)inner cutoff of a finite scaling regimeD)fractal dimension of pore surfacek0)shape factorN)physisorption quantity,molP)current pressure of nitrogen,PaP0)saturation pressure of nitrogen,Par c)mean curvature radius,mS E)fractal area of pore surface in Euclidean space,m2 T)absolute temperature of the adsorption,KV)volume of the space encompassed by the fractal surface,m3V L)molar volume of liquid nitrogen,m3/molGreek Symbolsδ)yardstick size of measurements,mµ)chemical potential energy,J/molσ)surface tension between liquid and gas of nitrogen,J/m Literature CitedAubert,C.;Cannel,D.S.Restructuring of Colloidal Silica Ag-gregates.Phys.Rev.Lett.1986,56,738.Avnir,D.;et al.A Discussion of Some Aspects of Surface Fractality and Its Determination.New J.Chem.1992,16(4),439. Freltoft,T.;et al.Power-law Correlations and Finite-size Effects in Silica Particle Aggregates Studied by Small-angle Neutron Scattering.Phys.Rev.B1986,33(1),269.Jaroniec,M.Evaluation of the Fractal Dimension From a Single Adsorption ngmuir1995,11,2316.Jaroniec,M.;Madey,R.Physical Adsorption on Heterogeneous Solids;Elsevier:Amsterdam,The Netherlands,1988. Mandelbrot,B.B.The Fractal Geometry of Nature;Freeman:New York,1982;p109.Martin,J.E.;et al.Fractal Geometry of Vapor-phase Aggregates.Phys.Rev.A1986,33(5),3540.Table2.Surface Fractal Dimension Determined from Equation13and Zhang’s Relationeq13Zhang’s relation analyzedsample D abs D des a min(nm)a max(nm)D m a min(nm)a max(nm)γ-Al2O3(A) 2.75 1.024.0 2.81 2.025.7 B106 2.72 1.024.0 2.80 2.025.7γ-Al2O3(B) 2.68 1.024.0 2.72 2.025.7γ-Al2O3(C) 2.66 2.75 1.024.0 3.07 2.026.3Dreal )Dabs+(Dm-Ddes))Dm-(Ddes-Dabs)Ind.Eng.Chem.Res.,Vol.36,No.5,19971601Neimark,A.V.A New Approach to the Determination of the Surface Fractal Dimension of Porous Solids.Physica A1992, 191,258.Neimark,A.V.;et al.Determination of the Fractal Dimension for Porous Solids from Adsorption Isotherm of Nitrogen.Z.Phys.Chem.1994,187,265.Pfeifer,P.Structure analysis of Porous Solids From Presorbed ngmuir1991,7,2833.Pfeifer,P.;Avnir,D.Chemistry in Noninteger Dimensions Be-tween Two and Three.J.Chem.Phys.1983,79(7),3558. Pfeifer,P.;Cole,M.W.Fractals in Surface Science:Scattering and Thermodynamics of Adsorbed Films II.New J.Chem.1990,14,221.Zhang,B.;Li,S.Determination of the Surface Fractal Dimension for Porous Media by Mercury Porosimetry.Ind.Eng.Chem.Res.1995,34,1383.Received for review September9,1996 Revised manuscript received January27,1997Accepted February3,1997XIE960555W X Abstract published in Advance ACS Abstracts,March15, 1997.1602Ind.Eng.Chem.Res.,Vol.36,No.5,1997。

分地区、分行业职工平均工资-1990年

分地区、分行业职工平均工资-1990年
1990年分地区、分行业职工平均工资 指标 总计 农、林、牧、渔业 采掘业 制造业 总 计 2140 1541 2718 2073 北京市 2653 天津市 2438 河北省 2019 山西省 2111 内蒙古自治区 1846 辽宁省 2180 吉林省 1888 黑龙江省 1850 上海市 2917 江苏省 2129 浙江省 2220 安徽省 1827 福建省 2162 江西省 1729 山东省 2149 河南省 1825 湖北省 1903 湖南省 2038 广东省 2929 广西壮族自治区 2049 海南省 1982 重庆市 四川省 2011 贵州省 1947 云南省 2130 西藏自治区 3178 陕西省 2042 甘肃省 2407 青海省 2632 宁夏回族自治区 2252 新疆维吾尔自治区 2289 注:1998年及以后平均工资为在岗职工平均工资。 Note: The average wage in and after 1998 referred to the average wage of staff and workers.
单位:元 电力、煤气及水的生产和供应业 建筑业 地质勘查业、水利管理业 交通运输、仓储及邮电通信业 批发和零售贸易、餐饮业 2656 2384 2465 2426 1818
金融、保险业 2097
房地产业 2243
社会服务业 卫生、体育和社会福利业 教育、文化艺术及广播电影电视业 2170 2209 2117
பைடு நூலகம்
科学研究和综合技术服务业 国家机关、政党机关和社会团体其他行业 2403 2113

1990年工资标准

1990年工资标准

1990年工资标准1990年,是中国改革开放的关键一年,也是我国工资标准逐步完善的时期。

在这一年,中国的经济发展迅速,工资水平也有了一定的提高。

那么,1990年的工资标准是怎样的呢?首先,我们来看一下当时的城镇职工平均工资水平。

据统计数据显示,1990年中国城镇职工的平均工资为每月93元人民币。

这个数字相比于过去有了一定的增长,显示出了当时中国经济的发展趋势。

其次,我们再来看一下当时的最低工资标准。

根据当时的相关文件规定,1990年中国各地区的最低工资标准为每月40元至60元人民币不等。

这一标准的制定,旨在保障最低工资人群的基本生活需求,也是对劳动者权益的一种保障。

此外,1990年的工资标准也受到了政策的影响。

当时,中国政府出台了一系列的政策,鼓励企业加大对员工的工资投入,提高劳动者的收入水平。

这些政策的实施,为当时的工资标准提供了一定的保障和支持。

另外,1990年的工资标准也受到了国际经济环境的影响。

当时,国际经济形势相对稳定,对中国的出口贸易有了一定的拉动作用,这也为中国的工资水平提供了一定的支持。

总的来说,1990年的工资标准在当时的经济条件下是比较合理和适当的。

虽然与现在相比有了较大的差距,但在当时的情况下,这一标准是符合国情和经济发展水平的。

同时,这也为后来中国工资制度的完善奠定了一定的基础。

综上所述,1990年的工资标准是受到多方面因素影响的,是在当时经济条件下的一种合理安排。

随着中国经济的不断发展,工资标准也在不断提高,为劳动者的权益得到更好的保障。

希望未来的工资标准能够更加合理和公平,让劳动者能够分享到经济发展的成果。

1990年工资标准

1990年工资标准

1990年工资标准
1990年,是中国改革开放的关键时期,也是中国经济迅猛发展
的时期。

在这一年,中国的工资标准也发生了一些变化,对于当时
的社会和经济状况有着重要的意义。

首先,1990年的工资标准主要分为城镇和农村两个部分。

在城
镇地区,随着城市化进程的加快,工资水平也有所提高。

城镇工人
的平均工资在1990年有了明显的增长,这也反映了当时城镇居民生
活水平的提高。

而在农村地区,由于农民的收入主要以农作物收成
为主,因此工资标准的提高相对较小,主要取决于农作物的丰收情况。

其次,1990年的工资标准还受到了国家宏观经济政策的影响。

当时,中国正处于加快经济发展的关键阶段,国家对工资标准的控
制和调整也更加严格。

国家对不同行业、不同地区的工资标准进行
了统一规划和调整,以确保整个社会经济的稳定和发展。

另外,1990年的工资标准也受到了国际经济环境的影响。

当时,国际间的贸易往来日益频繁,国际市场的变化也对中国的工资标准
产生了一定的影响。

国家需要根据国际市场的变化来调整工资标准,
以适应国际经济的发展趋势。

总的来说,1990年的工资标准在中国经济发展的大背景下发生了一些变化。

这些变化既受到了国家宏观经济政策的影响,也受到了国际经济环境的影响。

工资标准的调整旨在保障劳动者的合法权益,促进经济的稳定和发展。

在未来的发展中,工资标准的调整仍将受到国家政策和国际环境的双重影响,需要与经济发展相适应,以实现共同发展的目标。

代付协议,英文

代付协议,英文

竭诚为您提供优质文档/双击可除代付协议,英文篇一:代付款协议代收代付协议甲方(委托方):a乙方(代收代付方):b甲乙双方经友好协商,双方本着互惠互利、共同发展、公平合理、权利义务相一致的原则,就乙方为甲方提供代收代付货款一事达成如下一致条款,以便双方恪守:一、由于乙方没有开通电子商务结算系统,无法及时安全代收代付货款,乙方已开通电子结算系统,故甲方委托乙方代理甲方代收代付货款。

二、鉴于乙方为甲方提供代收代付货款的劳务服务工作,双方协商一致,甲方同意乙方按代收代付货款的(1%-40元封顶)收取劳务费(包括银行间结算手续费在内)。

如果在协议履行期间遇到银行上调结算手续费,甲方应付乙方劳务费按银行上调手续费比例相应调整。

三、乙方应收取的劳务费在代收代付每笔业务结算时同时扣除。

四、甲方保证委托乙方代收代付的货款为合法生意发生的款项,甲方不得委托乙方代收代付违法款项。

否则发生问题由甲方承担法律责任,与乙方无涉。

五、无论甲方以何种名义将上述款项转入乙方帐户,只要乙方按约将款项转入公司帐户,则该款项均视为货款。

乙方须按双方约定于货款到账的天支付。

六、乙方收到的货款涉及到税务问题,由甲方独自承担,方无涉。

七、甲乙双方对本协议内容均负有保密义务,未经对方许可,不得擅自对外披露。

八、本协议履行期间为三年:自20xx年12月1日始至20xx年12月31日。

本协议到期前30日,如甲方仍需乙方提供代(代付协议,英文)收代付劳务服务,应另行与乙方签订代收代付货款协议书。

九、甲方委托乙方代收代付货款服务提供相关信息如下:收款人名称:b开户银行:开户账号:十、甲方提供收款方(付款方)信息有误或因其它原因未能支付相关货款所造成的损失、纠纷,由甲方自行承担。

十一、甲方对委托收款金(付款金)额有异议,可向收款人(付款人)进行查询。

乙方对收费金额的真实性、准确性不负有审查和鉴别责任。

十二、以下事项发生变更时,乙应及时以书面形式通知甲方。

重理政府_90年代西方行政发展的重要趋向_毛寿龙

重理政府_90年代西方行政发展的重要趋向_毛寿龙

重理政府:90年代西方行政发展的重要趋向毛寿龙李梅内容摘要进入90年代以来,由于信息技术的高度发展,美国企业界发起了一场工商管理革命,这就是哈佛大学教授所概括的/重理管理0。

企业界的重理管理运动和工商管理重理理论波及公共部门,引起了重理政府的实践试验和理论思考。

本文简要概述了西方重理政府理论和实践的内涵、影响、障碍和成功之道。

关键词信息时代重理政府行政发展最近三十多年来,西方世界尤其是美国人文和社会科学界的时尚显然可以用几个词缀来概括:新(neo)、后(post)、重(re)。

70、80年代称为新什么,如新自由主义(neo-libera-l ism)、新保守主义(neo-conservatism)、新制度主义(neo-institutionalism)、新公共行政(new public administration)或新公共管理(new public management),或者后什么,如后现代主义、后工业社会、后行为主义、后官僚制、后资本主义、后殖民主义等。

进入90年代之后,大量的时尚主要表现为重什么,如重塑政府(reinventing government)¹、重新发现(rediscovery)、重新界定(redefinition)、重新管制(reregulation)、国家重兴(renaissance of the state)等。

其中的重理管理(reengineering m anagement)或受其影响产生的重理政府(reeng ineering government 或reengineering in the public sector)也可以说是工商管理和公共管理中的又一个时尚。

由于它对公共行政的理论和实践正在产生很大的影响,它或许就是90年代西方世界公共行政理论和实践的重要发展趋向之一。

一、尚待界定的内涵/重理0这一术语是由美国哈佛大学教授迈克尔#哈默于1990年首创的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

31st International Mathematical Olympiad
Beijing,China
Day I
July12,1990
1.Chords AB and CD of a circle intersect at a point E inside the circle.Let M
be an interior point of the segment EB.The tangent line at E to the circle through D,E,and M intersects the lines BC and AC at F and G,respectively.
If
AM
=t,
AB
find
EG
EF
in terms of t.
2.Let n≥3and consider a set E of2n−1distinct points on a circle.Suppose
that exactly k of these points are to be colored black.Such a coloring is“good”
if there is at least one pair of black points such that the interior of one of the arcs between them contains exactly n points from E.Find the smallest value of k so that every such coloring of k points of E is good.
3.Determine all integers n>1such that
2n+1
n2
is an integer.
31st International Mathematical Olympiad
Beijing,China
Day II
July13,1990
4.Let Q+be the set of positive rational numbers.Construct a function f:Q+→
Q+such that
f(xf(y))=f(x) y
for all x,y in Q+.
5.Given an initial integer n0>1,two players,A and B,choose integers n1,n2,
n3,...alternately according to the following rules:
Knowing n2k,A chooses any integer n2k+1such that
n2k≤n2k+1≤n2
2k
.
Knowing n2k+1,B chooses any integer n2k+2such that
n2k+1
n2k+2
is a prime raised to a positive integer power.
Player A wins the game by choosing the number1990;player B wins by choosing the number1.For which n0does:
(a)A have a winning strategy?
(b)B have a winning strategy?
(c)Neither player have a winning strategy?
6.Prove that there exists a convex1990-gon with the following two properties:
(a)All angles are equal.
(b)The lengths of the1990sides are the numbers12,22,32,...,19902in some
order.。

相关文档
最新文档