2016-2017学年高中数学人教A版选修4-5课时跟踪检测(五) 绝对值不等式的解法
高中数学人教a版高二选修4-5_第一讲_不等式和绝对值不等式_学业分层测评2 有答案
高中数学人教a 版高二选修4-5_第一讲_不等式和绝对值不等式_学业分层测评2 有答案(建议用时:45分钟)[学业达标]一、选择题1.函数f (x )=x x +1的最大值为( ) A.25 B.12 C.22D .1 【解析】 显然x ≥0.当x =0时,f (x )=0;当x >0时,x +1≥2x ,∴f (x )≤12, 当且仅当x =1时,等号成立,∴f (x )max =12. 【答案】 B2.设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b 2B .a <ab <a +b 2<b C .a <ab <b <a +b 2D.ab <a <a +b 2<b 【解析】 取特殊值法.取a =2,b =8,则ab =4,a +b 2=5,所以a <ab <a +b 2<b .故选B.【答案】 B3.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A.最大值为54B.最小值为54C.最大值为1 D.最小值为1【解析】∵x≥52,∴x-2≥12,∴f(x)=(x-2)2+12(x-2)=12(x-2)+12(x-2)≥2x-22·12(x-2)=1,当且仅当x-22=12(x-2),即x=3时,等号成立,∴f(x)min=1.【答案】 D4.已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则(a+b)2 cd的最小值是()A.0 B.1C.2 D.4【解析】由题意知a+b=x+y,cd=xy,∴(a+b)2=(x+y)2≥4xy=4cd,∴(a+b)2cd≥4,当且仅当x=y时,取等号.【答案】 D5.已知a,b是不相等的正数,x=a+b2,y=a+b,则x,y的关系是()A.x>y B.y>x C.x>2y D.y>2x【解析】因为a,b是不相等的正数,所以x2=a+b2+ab<a+b2+a+b2=a+b=y2,即x2<y2,故x<y.【答案】 B二、填空题6.若实数x,y满足x2+y2+xy=1,则x+y的最大值是________.【解析】 x 2+y 2+xy =(x +y )2-xy ≥(x +y )2-(x +y )24=34(x +y )2,∴(x +y )2≤43,∴|x +y |≤233,即x +y 的最大值为233. 【答案】 233 7.已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________. 【解析】 因为x >0,y >0,所以x 3+y 4≥2x 3·y 4=xy 3,即xy 3≤1,解得xy ≤3,所以其最大值为3. 【答案】 38.已知a ,b ,m ,n 均为正数,且a +b =1,mn =2,则(am +bn )(bm +an )的最小值为________.【解析】 ∵a ,b ,m ,n ∈R +,且a +b =1,mn =2,∴(am +bn )(bm +an )=abm 2+a 2mn +b 2mn +abn 2=ab (m 2+n 2)+2(a 2+b 2)≥2ab ·mn +2(a 2+b 2)=4ab +2(a 2+b 2)=2(a 2+b 2+2ab )=2(a +b )2=2,当且仅当m =n =2时,取“=”,∴所求最小值为2.【答案】 2三、解答题9.已知a ,b ,x ,y ∈R +,x ,y 为变量,a ,b 为常数,且a +b =10,a x +b y=1,x +y 的最小值为18,求a ,b .【解】 ∵x +y =(x +y )⎝ ⎛⎭⎪⎫a x +b y=a +b +bx y +ay x≥a +b +2ab =(a +b )2, 当且仅当bx y =ay x时取等号. 又(x +y )min =(a +b )2=18,即a +b +2ab =18.① 又a +b =10, ②由①②可得⎩⎨⎧ a =2,b =8或⎩⎨⎧a =8,b =2.10.已知x 1,x 2,x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 23x 2+x 21x 3≥1. 【证明】 ∵x 22x 1+x 1+x 23x 2+x 2+x 21x 3+x 3≥2x 22+2x 23+2x 21=2(x 1+x 2+x 3)=2, ∴x 22x 1+x 23x 2+x 21x 3≥1. [能力提升]1.设x ,y ∈R +,且满足x +4y =40,则lg x +lg y 的最大值是( )A .40B .10C .4 D.2【解析】 因为x ,y ∈R +,∴4xy ≤x +4y 2, ∴xy ≤x +4y 4=10,∴xy ≤100. ∴lg x +lg y =lg xy ≤lg 100=2.【答案】 D2.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( )A .5千米处B .4千米处C .3千米处 D.2千米处【解析】 由已知:y 1=20x, y 2=0.8x (x 为仓库到车站的距离).费用之和y =y 1+y 2=0.8x +20x≥20.8x ·20x=8. 当且仅当0.8x =20x , 即x =5时等号成立.【答案】 A3.y =3+x +x 2x +1(x >0)的最小值是________. 【解析】 ∵x >0,∴y =3+x +x 2x +1=3x +1+x +1-1≥23-1. 当且仅当x +1=3时取等号.【答案】 23-14.若对任意x >0,x x 2+3x +1≤a 恒成立,求实数a 的取值范围.【解】 由x >0,知原不等式等价于0<1a ≤x 2+3x +1x =x +1x+3恒成立. 又x >0时,x +1x ≥2x ·1x=2, ∴x +1x+3≥5,当且仅当x =1时,取等号. 因此⎝ ⎛⎭⎪⎫x +1x +3min =5, 从而0<1a ≤5,解得a ≥15. 故实数a 的取值范围为⎣⎢⎡⎭⎪⎫15,+∞.。
2016-2017学年高中数学人教A版选修4-5课时跟踪检测(三) 三个正数的算术—几何平均不等式
课时跟踪检测(三) 三个正数的算术—几何平均不等式1.已知x 为正数,下列各题求得的最值正确的是( )A .y =x 2+2x +4x 3≥33x 2·2x ·4x 3=6,∴y min =6. B .y =2+x +1x ≥332·x ·1x=332,∴y min =332. C .y =2+x +1x ≥4,∴y min =4.D .y =x (1-x )(1-2x )≤13⎣⎡⎦⎤3x +(1-x )+(1-2x )33=881,∴y max =881. 解析:选C A 、B 、D 在使用不等式a +b +c ≥33abc (a ,b ,c ∈R +)和abc ≤⎝⎛⎭⎫a +b +c 33(a ,b ,c ∈R +)都不能保证等号成立,最值取不到.C 中,∵x >0,∴y =2+x +1x =2+⎝⎛⎭⎫x +1x ≥2+2=4, 当且仅当x =1x ,即x =1时,等号成立.2.已知a ,b ,c 为正数,则a b +b c +c a 有( )A .最小值3B .最大值3C .最小值2D .最大值2解析:选A a b +b c +c a ≥33a b ×b c ×c a=3, 当且仅当a b =b c =c a ,即a =b =c 时,等号成立.3.若log x y =-2,则x +y 的最小值是( )A.3322B.833C.332D.223解析:选A 由log x y =-2,得y =1x 2.而x +y =x +1x2= x 2+x 2+1x 2≥33x 2·x 2·1x 2=3314=3322,当且仅当x 2=1x2,即x =32时,等号成立. 4.已知圆柱的轴截面周长为6,体积为V ,则下列不等式总成立的是( )A .V ≥πB .V ≤πC .V ≥18πD .V ≤18π解析:选B 设圆柱底面半径为r ,则圆柱的高h =6-4r 2,所以圆柱的体积为V =πr 2·h =πr 2·6-4r 2=πr 2(3-2r )≤π⎝⎛⎭⎫r +r +3-2r 33=π.当且仅当r =3-2r ,即r =1时,等号成立.5.若a >2,b >3,则a +b +1(a -2)(b -3)的最小值为________. 解析:∵a >2,b >3,∴a -2>0,b -3>0,则a +b +1(a -2)(b -3)=(a -2)+(b -3)+1(a -2)(b -3)+5 ≥33(a -2)×(b -3)×1(a -2)(b -3)+5=8. 当且仅当a -2=b -3=1(a -2)(b -3),即a =3,b =4时,等号成立. 答案:8 6.设0<x <1,则x (1-x )2的最大值为 ________.解析:∵0<x <1,∴1-x >0. 故x (1-x )2=12×2x (1-x )(1-x )≤12⎣⎡⎦⎤2x +(1-x )+(1+x )33=12×827=427(当且仅当x =13时,等号成立). 答案:4277.已知关于x 的不等式2x +1(x -a )2≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.解析:2x +1(x -a )2=(x -a )+(x -a )+1(x -a )2+2a . ∵x -a >0,∴2x +1(x -a )2≥33(x -a )(x -a )1(x -a )2+2a =3+2a ,当且仅当x -a =1(x -a )2即x =a +1时,等号成立.∴2x +1(x -a )2的最小值为3+2a . 由题意可得3+2a ≥7,得a ≥2.答案:28.设a ,b ,c ∈R +,求证:(a +b +c )⎝⎛⎭⎫1a +b +1b +c +1a +c ≥92. 证明:∵a ,b ,c ∈R +,∴2(a +b +c )=(a +b )+(b +c )+(c +a )≥33(a +b )(b +c )(c +a )>0.1a +b +1b +c +1a +c ≥331a +b ·1b +c ·1a +c>0, ∴(a +b +c )⎝⎛⎭⎫1a +b +1b +c +1a +c ≥92. 当且仅当a =b =c 时,等号成立.9.已知正数a ,b ,c 满足abc =1,求(a +2)(b +2)·(c +2)的最小值.解:因为(a +2)(b +2)(c +2)=(a +1+1)(b +1+1)(c +1+1)≥3·3a ·3·3b ·3·3c =27·3abc =27,当且仅当a =b =c =1时,等号成立.所以(a +2)(b +2)(c +2)的最小值为27.10.已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥63,并确定a ,b ,c 为何值时,等号成立.证明:法一:因为a ,b ,c 均为正数,由平均值不等式,得a 2+b 2+c 2≥3(abc )23,① 1a +1b +1c ≥3(abc )-13, 所以⎝⎛⎭⎫1a +1b +1c 2≥9(abc )-23.② 故a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥3(abc )23+9(abc )-23. 又3(abc )23+9(abc )-23≥227=63,③ 所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立.当且仅当3(abc )23=9(abc )-23时,③式等号成立. 即当且仅当a =b =c =314时,原式等号成立. 法二:因为a ,b ,c 均为正数,由基本不等式,得a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,所以a 2+b 2+c 2≥ab +bc +ac ,①同理1a 2+1b 2+1c 2≥1ab +1bc +1ac,② 故a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥ab +bc +ac +3ab +3bc +3ac ≥63,③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立;当且仅当a =b =c ,(ab )2=(bc )2=(ac )2=3时,③式等号成立,即当且仅当a =b =c =314时,原式等号成立.。
高中数学人教A版选修4-5课时跟踪检测(五) 绝对值不等式的解法 Word版含解析
课时跟踪检测(五)绝对值不等式的解法.不等式+>的解集是( ).{-<<}.{<-或>}.{-≤<}.{<-或≥}解析:选+>,则+>或+<-,因此<-或>..满足不等式+++<的所有实数解的集合是( ).(-) .(-).(-)解析:选+++表示数轴上一点到-,-两点的距离和,根据-,-之间的距离为,可得到-,-距离和为的点是-.因此+++<解集是(-)..不等式≤-<的解集为( )∪∪∪∪解析:选由≤-<,得≤-<或-<-≤-,因此-<≤或≤<..若关于的不等式-++>的解集为,则实数的取值范围是( ).(-∞,-)∪(,+∞).(-∞,-)∪(,+∞).[-].(-)解析:选由题意知,不等式-++>恒成立,即函数()=-++的最小值大于,根据绝对值不等式的性质可得-++≥(-)-(+)=+,故只要满足+>即可,所以+>或+<-,解得>或<-,故实数的取值范围是(-∞,-)∪(,+∞)..不等式+≥的解集是.解析:∵不等式两边是非负实数,∴不等式两边可以平方,两边平方,得(+)≥,∴++≥,即≥-,∴原不等式的解集为{≥-}.答案:{≥-}.不等式--<的解集是.解析:原不等式等价于-<+⇔--<-<+⇔⇔<<.答案:{<<}.已知函数()=++---,若函数()的图象恒在轴上方,则实数的取值范围为.解析:因为++-≥+-(-)=,所以()的最小值为--.由题意,得-<,解得-<<.答案:(-).解不等式:-+<-.解:原不等式⇔(-+)<(-)⇔[(-+)+(-)][(-+)-(-)]<⇔(++)(-+)<⇔-+<(因为++恒大于)⇔<<.所以原不等式的解集是{<<}..解关于的不等式-<-(∈).解:若-<,即≤,则-<-恒不成立,此时,原不等式无解;若->,即>,则-(-)<-<-,所以-<<.综上所述:当≤时,原不等式的解集为∅;当>时,原不等式的解集为{-<<}..已知函数()=-++,()=+.()当=-时,求不等式()<()的解集;()设>-,且当∈时,()≤(),求的取值范围.解:()当=-时,不等式()<()化为-+---<.设函数=-+---,则=(\\(-,<(),,--,()≤≤,-,>.))其图象如图所示.从图象可知,当且仅当∈()时,<,所以原不等式的解集是{<<}.()当∈时,()=+.不等式()≤()化为+≤+,所以≥-对∈都成立.故-≥-,即≤.从而的取值范围是.。
最新人教版高中数学选修4-5《绝对值不等式》教材梳理
庖丁巧解牛知识·巧学一、绝对值三角不等式1.定理1 如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理1的等号成立的情况具体来说,当a=0或b=0时,或a>0、b>0时,或a<0,b<0时,等号都是成立的,即有|a+b|=|a|+|b|.除此之外,就是|a+b|<|a|+|b|了.如果把定理1中的实数a,b分别替换为向量a,b,则定理1的形式仍旧成立.即有|a+b|≤|a|+|b|成立,当且仅当向量a,b不共线时,有|a+b|<|a|+|b|成立.联想发散根据定理1,我们可以得到许多正确的结论.其中比较常用的结论有:(1)如果a,b是实数,那么|a|-|b|≤|a±b|≤|a|+|b|.(2)|a1+a2+a3+…+a n|≤|a1|+|a2|+|a3|+…+|a n|(n∈N*).2.绝对值三角不等式所谓绝对值三角不等式就是指把定理1中的实数a,b分别替换为向量a,b,且向量a,b不共线时,所成立的不等式|a+b|<|a|+|b|.绝对值三角不等式即向量不等式|a+b|<|a|+|b|的几何意义就是三角形的两边之和大于第三边(如下图所示).记忆要诀由于绝对值三角不等式其形式与定理1是完全类似的,所以只要记住定理1,那么这个绝对值三角不等式也就记住了.3.定理2 如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.对于定理2,同学们不但要记住它的形式,还应注意它的特点,尤其要注意它的不等号左边没有字母b,只有右边才有.学法一得要注意|a-c|可以变形为|(a-b)+(b-c)|,熟悉这种变形,那么在具体解题时就可以通过变形来巧妙地利用定理2了.二、绝对值不等式的解法要熟记简单绝对值不等式的解法,它是解较复杂的绝对值不等式的基础,即要记住:一般地,如果a>0,则有:|x|<a⇔-a<x<a,因此,不等式|x|<a的解集是(-a,a);|x|>a⇔x<-a或x>a,因此,不等式|x|>a的解集是(-∞,-a)∪(a,+∞).1.|ax+b|≤c和|ax+b|≥c型不等式的解法.求解这类绝对值不等式,只要将ax+b看成一个整体,然后套用|x|<a或|x|>a的不等式的解法即可.2.|x-a|+|x-b|≤c和|x-a|+|x-b|≥c型不等式的解法.求解这类绝对值不等式,主要的方法有如下三种:(1)利用绝对值的几何意义;(2)分区间讨论法;(3)构造函数利用函数的图象求解.求解这类绝对值不等式时,可根据题目的不同而适时选用不同的方法求解.误区警示解绝对值不等式切勿盲目地套用某一类解法,一定要注意不等式的形式,要针对不同的形式对号入座采取相应的方法来求解.典题·热题知识点一: 与定理1、2相关的绝对值不等式的判断与证明例1 若|x-a|<m,|y-a|<n ,则下列不等式一定成立的是( )A.|x-y|<2mB.|x-y|<2nC.|x-y|<n-mD.|x-y|<n+m思路分析:注意观察比较|x-y|与|x-a|,|y-a|之间的关系,不难发现通过适当变形就可运用定理1及已知条件来巧妙求解此题了,具体解题过程为:|x-y|=|x-a-(y-a)|≤|x -a|+|y-a|<m+n,故选D.答案:D巧解提示对某些式子进行适当的变形,以便创造条件利用某些定理、公式来解题,这是一种常用的技巧,如此题求解过程中的|x-y|=|x-a-(y-a)|就是变形,而变形的基础是必须要熟悉公式. 例2 已知a 、b 、c 、d 都是实数,且a 2+b 2=m 2,c 2+d 2=n 2(m>0,n>0),求证:|ac+bd|≤222n m +. 思路分析:证明此题时,可将ac 、bd 分别看成整体,那么就可以套用定理1来证明了. 证明:∵a 、b 、c 、d ∈R ,∴|a c+bd|≤|ac|+|bd|≤222222d b c a +++ =222222222r R d c b a +=+++, ∴|ac+bd|≤222R r +. 误区警示如果利用ab≤222b a +来证明此题,就容易出现似是而非的证法,而利用较严格的公式|ab|≤222b a +来证明就不易出错了.因此同学们要注意公式的适时选用. 知识点二: 绝对值不等式的解法例3 解关于x 的不等式|2x-1|<2m-1(m ∈R ).思路分析:要注意对2m-1的正负情况进行讨论.解:若2m-1≤0,即m≤21,则|2x-1|<2m-1恒不成立,此时,原不等式无解;若2m-1>0,即m>21,则-(2m-1)<2x-1<2m-1,所以1-m<x<m. 由上可得:当m≤21时,原不等式的解集为∅, 当m>21时,原不等式的解集为:{x|1-m<x<m}. 方法归纳对于不等号右侧是含有参数的式子的这类绝对值不等式,在求解时一定要通过对参数式子的正、负、零三种情况的讨论来求解.例4 解不等式3≤|x -2|<4.思路分析:此题的不等式属于绝对值的连不等式,求解时可将其化为绝对值的不等式组再求解.解:原不等式等价于⎩⎨⎧<-≥-)2.(4|2|)1(,3|2|x x 由(1)得x-2≤-3或x-2≥3,∴x≤-1,或x≥5.由(2)得-4<x-2<4,∴-2<x<6.如上图所示,原不等式的解集为{x|-2<x≤-1或5≤x<6}.误区警示有些同学求解这类问题时,为了图省事,往往不爱通过画图来寻找解集,总爱耍点小聪明,这是造成求解出错的主要原因.例5 解不等式|x+7|-|x-2|≤3.思路分析:解含有绝对值的不等式,总的思路是同解变形为不含绝对值的不等式,但要根据求解不等式的结构,选用恰当的方法.此题中有两个绝对值符号,故可用绝对值的几何意义来求解,或用分区间讨论法求解,还可构造函数利用函数图象求解.图1解:[方法一] |x+7|-|x-2|可以看成数轴上的动点(坐标为x)到-7对应的点的距离与到2对应的点的距离的差,先找到这个差等于3的点,即x=-1(如图1所示).从图易知不等式|x+7|-|x-2|≤3的解为x≤-1,即x ∈(-∞,-1].[方法二] 令x+7=0,x-2=0得x=-7,x=2.①当x<-7时,不等式变为-x-7+x-2≤3,∴-9≤3成立,∴x<-7.图2②当-7≤x≤2时,不等式变为x+7+x-2≤3,即2x≤-2,∴x≤-1,③当x>2时,不等式变为x+7-x+2≤3,即9≤3不成立,∴x ∈∅.∴原不等式的解集为(-∞,-1].[方法三] 将原不等式转化为|x+7|-|x-2|-3≤0,构造函数y=|x+7|-|x-2|-3,即y=⎪⎩⎪⎨⎧>≤≤-+-<-.2,6;27,22;7,12x x x x .作出函数的图象(如图2),从图可知,当x≤-1时,有y≤0,即|x+7|-|x-2|-3≤0,所以,原不等式的解集为(-∞,-1].巧妙变式针对此题,我们可以进行各种不同的题目变式.如:可以将两个绝对值里面的运算符号改变、可以将两个绝对值之间的运算符号改变、可以将“≤”改变为“≥”,还可以将不等号右边的数改成字母等等.变式后题目的求解还是用上述的几种解法.问题·探究误区陷阱探究问题1 对此题“写出不等式|2x-1|<3的解集并化简”,某同学的错解如下:不等式|2x-1|<3的解集是{x||2x-1|<3}={x|2x-1<3}∪{x|2x-1>-3}={x|x<2}∪{x|x>-1}={x|-1<x<2}.探究过程:这位同学解得的结果是正确的,但解法不对.解法中有两处错误,但却歪打正着得出了正确的结果.首先是把绝对值不等式的解法搞错了.这位同学写的求解过程中的两个集合{x|2x-1<3}与{x|2x-1>-3}的中间不应当用并的符号“∪”,而应改为“∩”.这两个集合是应该取交集的.另外,按照这位同学错写的两集合“并”来运算时又解错了.{x|x<2}∪{x|x>-1}的结果应为{x|-∞<x<+∞},而不是{x|-1<x<2}.探究结论:如果按照这位同学的思路求解,可以修改为:不等式|2x-1|<3的解集是: {x||2x-1|<3}={x|2x-1<3}∩{x|2x -1>-3}={x|x<2}∩{x|x>-1}={x|-1<x<2}.不过,更简单的解法应是:不等式|2x-1|<3的解集是:{x||2x-1|<3}={x|-3<2x-1<3}={x|-1<x<2}.思维发散探究问题2 已知a 、b 、c 是实数,函数f(x)=ax 2+bx+c ,g(x)=ax+b ,当-1≤x≤1时,|f(x)|≤1,试探究当x ∈[-1,1]时,|g(x)|≤2.探究过程:这是一个通过关联二次函数、一次函数考查不等式的变换能力的问题,因此在证明中要注意合理应用绝对值不等式的性质定理,由于g(x)是一次函数,可将|g(x)|≤2转化为g(-1)与g(1)与2的关系加以证明,也可挖掘g(x)与f(x)的隐含关系,构造函数模型,寻求整体突破.探究结论:[方法一] 当a>0时g(x)=ax+b 在[-1,1]上是增函数,∴g(-1)≤g(x)≤g(1),∵|f(x)|≤1(-1≤x≤1),∴|c|=|f(0)|≤1,∴g(1)=a+b=f(1)-c≤|f(1)|+|c|≤2,g(-1)=-a+b=-f(-1)+c≥-(|f(-1)|+|c|)≥-2,当a<0时,g(x)=ax+b 在[-1,1]上是减函数, ∴g(1)≤g(x)≤g(-1),∵|f(x)|≤1(-1≤x≤1),∴|c|=|f(0)|≤1,∴g(-1)=-a+b=-f(-1)+c≤|f(-1)|+|c|≤2,g(1)=a+b=f(1)-c≥-(|f(-1)|+|c|)≥-2,∴|g(x)|≤2.当a=0时,g(x)=b ,f(x)=bx+c ,∵-1≤x≤1,∴|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2.综上所述,当x ∈[-1,1]时,|g(x)|≤2.[方法二] ∵x=4)1()1(22--+x x , ∴g(x)=ax+b=a [(21+x )2-(21-x )2]+b(21+x -21-x ) =a [(21+x )2+b(21+x )+c ]-[a(21-x )2+b(21-x )+c ] =f(21+x )-f(21-x ). 当-1≤x≤1时,有0≤21+x ≤1,-1≤21-x ≤0, ∴|g(x)|=|f(21+x )-f(21-x )|≤|f(21+x )|+|f(21-x )|≤2,∴|g(x)|≤2.。
人教版高中数学选修4-5《1.2绝对值不等式的解法》
| |x 2| 5 例题5 解不等式 |x 1
解法二:零点分段法去掉绝对值.(分类讨论)
解:原不等式可化为
x 2 ( x 1) ( x 2) 5 2 x 1 或 ( x 1) ( x 2) 5 x 1 或 ( x 1) ( x 2) 5
① 不等式|x|<a的解集为{x|-a<x<a} -a 0
a
② 不等式|x|>a的解集为{x|x<-a或x>a }
-a
0
a
探究一:|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式解法
| 2 例题3 解不等式 |3x 1
思路一: 利用已有的结论(整体思想). 思路二: 利用绝对值的几何意义(数形结合).
1.2绝对值不等式的解法 (第1课时)
人教A版选修4-5
复习回顾:
1、绝对值的定义
x ,x>0 |x|= 0 ,x=0 -x ,x<0 |x-x1| x x1
2、绝对值的几何意义 |x|
x 0
3、解不等式(1)|x|<1;(2)|x-2|>1.
结论:不等式|x|<a和|x|>a (a>0)的解集
可利用平方,绝对值定义(分类讨论)等“去”绝对值.
思路四:转化为函数图像的问题(函数与方程).
2、两类绝对值不等式的解法:
(1)|ax+b|≤c和|ax+b|≥c型 (2)|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型
课后作业:
1、课本习题1.2第8,9题; 2、练习册相关习题.
根据刚才的学习,你有解不等式 |x 1| |x 2| 5 的思路了吗?
高中数学人教A版选修4-5同步辅导与检测1.2.3绝对值不等式的解法2
一层练习
6 1.A= xx∈N,且x∈N ,B={x||x2-3|≤2x},
则 A∩B 的所有非空子集有( B ) A.3 个 C.14 个 B.7 个 D.15 个
不等式和绝对值不等式
1.2 1.2.3
绝对值不等式
绝对值不等式的解法(2)
会利用绝对值的几何意义求解以下类型的 不等式:
|x-c|+|x-b|≥a.|x-c|+|x-b|≤a.
1.求解不等式:|x-c|+|x-b|≥a,|x-c|+|x-b|≤a.的 第一种方法分讨论去绝对值. 练习1:不等式|x-2|+|x-1|≥5的解集为:________ 2.求解不等式:|x-c|+|x-b|≥a, |x-c|+|x-b|≤a.的第二种方法用几何意义直接求边界 值,再利用几何意义写出解集.
解法二(几何法)x为不等式|x+2|+|x-1|≤4的解x是与数轴上的
点A(-2)及B(1)两点距离之和小于等于4的点.
A,B两点的距离为3,因此线段AB上任何一点到A,B距离 之和都等于3,因此都是原不等式的解.但我们需要找到原不 等式解的全体,于是关键在于找到A,B距离之和为4的点.
3 1 如图,我们将 B 向右移动 单位至点 B1 2 ,此时 2 B1 与 A 及 B 距离之和增加 1 个单位,同理我们将 A 点 5 1 向左移动 个单位到 A1-2,这时 A1 与 A 及 B 距离之和 2 也增加一个单位.从数轴上可以看到 A1 与 B1 之间的任何 点(包括点 A1 和 B1)到 A,B 的距离之和均小于等于 4,而 5 3 当 x<- 或 x> 时,x 与 A,B 两点的距离之和都大于 4. 2 2 5 3 因而原不等式的解集为 -2,2 .
人教版高中数学选修4-5课时提升作业 1.2绝对值不等式.2 Word版含答案
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业五绝对值不等式的解法一、选择题(每小题6分,共18分)1.(2016·临沂高二检测)>0的解集为( )A.B.C.D.{x|x∈R且x≠-3}【解析】选C.原不等式可化为解得x>或x<-且x≠-3.2.(2016·济南高二检测)不等式|x-2|+|x-1|≤3的最小整数解是( )A.0B.-1C.1D.2【解析】选A.根据绝对值的几何意义,得不等式|x-2|+|x-1|≤3的解为0≤x≤3.所以不等式|x-2|+|x-1|≤3的最小整数解为0.3.若关于x的不等式|x-2|+|x-a|≥a在R上恒成立,则a的最大值是( )A.0B.1C.-1D.2【解析】选B.|x-2|+|x-a|=|x-2|+|a-x|≥|x-2+a-x|=|a-2|,所以|a-2|≥a,解得a≤1,所以a的最大值为1.二、填空题(每小题6分,共12分)4.(2016·德州高二检测)已知集合A={x||x-4|+|x-1|<5},B={x|a<x<6}且A∩B=(2,b),则a+b=________. 【解析】A={x|0<x<5},由A∩B=(2,b)知故a+b=7.答案:75.(2016·石家庄高二检测)不等式|x-1|+|x+2|≥5的解集为__________.【解析】方法一:由得x≤-3;由无解;由得x≥2.即所求的解集为{x|x≤-3或x≥2}.方法二:在数轴上,点-2与点1的距离为3,所以往左右边界各找距离为1的两个点,即点-3到点-2与点1的距离之和为5,点2到点-2与点1的距离之和也为5,所以原不等式的解集为{x|x≤-3或x≥2}.答案:{x|x≤-3或x≥2}三、解答题(每小题10分,共30分)6.(2016·武汉高二检测)解不等式x+|2x+3|≥2.【解析】原不等式可化为或解得x≤-5或x≥-.综上,原不等式的解集是.7.已知a+b=1,对任意的a,b∈(0,+∞),+≥|2x-1|-|x+1|恒成立,求x的取值范围. 【解析】因为a>0,b>0且a+b=1,所以+=(a+b)=5++≥9,故+的最小值为9,因为对任意的a,b∈(0,+∞),使+≥|2x-1|-|x+1|恒成立,所以|2x-1|-|x+1|≤9,当x≤-1时,2-x≤9,所以-7≤x≤-1;当-1<x<时,-3x≤9,所以-1<x<;当x≥时,x-2≤9,所以≤x≤11.综上所述,x的取值范围是-7≤x≤11.8.(2016·聊城高二检测)已知函数f(x)=|x+1|+|2x+a|的最小值为3,求实数a的值. 【解析】①当a≤2时,f(x)=②当a>2时,f(x)=由①②可得f(x)min=f==3,解得a=-4或8.一、选择题(每小题5分,共10分)1.(2015·山东高考)不等式|x-1|-|x-5|<2的解集是( )A.(-∞,4)B.(-∞,1)C.(1,4)D.(1,5)【解题指南】可以分段讨论去掉绝对值符号,也可以利用绝对值的几何意义,还可以结合选择题的特点利用特殊值排除错误答案.【解析】选A.方法一:当x<1时,原不等式化为1-x-(5-x)<2,即-4<2,不等式恒成立;当1≤x<5时,原不等式即x-1-(5-x)<2,解得x<4;当x≥5时,原不等式化为x-1-(x-5)<2,即4<2,显然不成立,综上可得不等式的解集为(-∞,4).方法二:由绝对值的几何意义可得数轴上的点x到1,5两点 (距离为4)的距离之差小于2的点满足x<4,所求不等式的解集为(-∞,4).方法三:用排除法,令x=0符合题意,排除C,D;令x=2符合题意,排除B.2.(2016·石家庄高二检测)设函数f(x)=则使f(x)≥1的自变量x的取值范围是( )A.(-∞,-2]∪B.(-∞,-2]∪C.(-∞,-2]∪D.∪【解析】选A.由题意知,当x<1时,f(x)≥1等价于(x+1)2≥1,解得x≤-2或0≤x<1;当x≥1时,f(x)≥1等价于4-≥1,解得1≤x≤4.综上所述,满足题设的x的取值范围是(-∞,-2]∪.二、填空题(每小题5分,共10分)3.(2016·安阳高二检测)若关于x的不等式|ax-2|<3的解集为,则a=__________. 【解析】由|ax-2|<3得到-3<ax-2<3,-1<ax<5,又知道解集为,所以a=-3.答案:-34.设a,b∈R,|a-b|>2,则关于实数x的不等式|x-a|+|x-b|>2的解集是________.【解题指南】利用绝对值不等式的基本知识|x-a|+|x-b|表示数轴上某点到a,b的距离之和即可得解. 【解析】函数f(x)=| x-a|+|x-b|的值域为:2≤.【解析】(1)f(x)=2|x-1|+x-1=当x≥1时,由f(x)≤1得x≤,故1≤x≤;当x<1时,由f(x)≤1得x≥0,故0≤x<1;综上可知,f(x)≤1的解集为M=.(2)由g(x)=16x2-8x+1≤4得16≤4,解得-≤x≤.因此N=,故M∩N=.当x∈M∩N时,f(x)=1-x,于是x2f(x)+x2=xf(x)(x+f(x))=xf(x)=x(1-x)=-≤.关闭Word文档返回原板块。
人教A版选修【4-5】1.2.1《绝对值三角不等式》习题及答案
数学·选修4-5(人教A版)不等式和绝对值不等式1.1不等式1.2.1 绝对值三角不等式一层练习1.若|x-a|<m,|y-a|<n,则下列不等式一定成立的是( )A.|x-y|<2m B.|x-y|<2nC.|x-y|<n-m D.|x-y|<n+m[:答案:D2.设ab>0,下面四个不等式:①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|.其中正确的是( )A.①② B.①③C.①④ D.②④答案:C3.若a,b∈R,且|a|≤3,|b|≤2,则|a+b|的最大值是________,最小值是________.答案:5 04.已知p ,q ,x∈R,pq≥0,x≠0,则⎪⎪⎪⎪⎪⎪px +q x ______2pq(填“≥”,“≤”,“>”或“<”).答案:≥5.若不等式|x -4|+|x -3|>a 对一切实数x 恒成立,则实数a 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(3,4)D .[3,+∞)答案:A6.方程|x|+|log a x|=|x +log a x|(a>1)的解集是________________.答案:{x|x>1}二层练习7.函数y =|x -3|-|x +1|的最大值是________,最小值是________.答案:4 -48.|x -A|<ε2,|y -A|<ε2是|x -y|<ε的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .即不充分也不必要条件答案:A9.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,|x -2y +1|的最大值是________.解析:|x -2y +1|=|x -1-2(y -2)-2|≤|x-1|+2|y -2|+|-2|≤1+2+2=5. 答案:5三层练习10.设A(x 1,y 1),B(x 2,y 2)是平面直角坐标系xOy 上的两点,现定义点A 到点B 的一种折线距离为ρ(A ,B)=|x 2-x 1|+|y 2-y 1|,对于平面xOy 上给定的不同的两点A(x 1,y 1),B(x 2,y 2),若点C(x ,y)是平面xOy 上的点, 试证明:ρ(A ,C)+ρ(C ,B)≥ρ(A ,B).证明:由绝对值不等式知,ρ(A ,C)+ρ(C ,B)=|x -x 1|+|x 2-x|+|y -y 1|+|y 2-y| ≥|(x-x 1)+(x 2-x )|+|(y -y 1)+(y 2-y)|=|x 2-x 1|+|y 2-y 1|=ρ(A ,B).当且仅当(x -x 1)·(x 2-x)≥0且(y -y 1)·(y 2-y)≥0时等号成立.11.已知实数x ,y 满足:|x +y|<13,|2x -y|<16,求证:|y |<518.证明:∵3|y|=|3y|=|2(x +y)+(y -2x)|≤2|x+y|+|2x -y|,由题意设|x +y|<13,|2x -y|<16, ∴3|y|<2×13+16=56. ∴|y|<518.12.求证:|a 2-b 2|2|a|≥|a|2-|b|2. 证明:(1)当|a|≤|b|时,由|a 2-b 2|2|a|≥0, |a|2-|b|2≤0,知不等式成立 (2)当|a|>|b|时.|a 2-b 2|2|a|-⎝ ⎛⎭⎪⎫|a|2-|b|2=|a|2-|b|22|a|-|a|-|b|2=|a|-|b|2×⎝ ⎛⎭⎪⎫|a|+|b||a|-1 =|a|-|b|2×b a≥0. 所以|a 2-b 2|2|a|≥|a|2-|b|2.1.在掌握本节知识过程中,要充分认识和理解绝对值的意义和性质:设a∈R,则|a|=⎩⎪⎨⎪⎧ a ,a≥0,-a ,a <0.|a|≥0,-|a|≤a≤|a|,|a|2=a 2.2.绝对值不等式的性质定理的推广:|a 1+a 2+a 3|≤|a 1|+|a 2|+|a 3|;|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |;|a|-|b|≤|a-b|≤|a|+|b|.3.在应用含绝对值的不等式求某些函数的最值时,一定要注意等号成立的条件: |a +b|=|a|+|b|(ab≥0);|a -b|=|a|+|b|(ab ≤0);||a|-|b||=|a +b|(ab≤0);||a|-|b||=|a -b|(ab≥0).。
高中数学 第1讲 不等式和绝对值不等式 1.1 不等式的基本性质课后练习 新人教A版选修4-5-新人
2016-2017学年高中数学 第1讲 不等式和绝对值不等式 1.1 不等式的基本性质课后练习 新人教A 版选修4-5一、选择题1.若a <b <0,则( ) A.1a <1b B .0<a b<1C .ab >b 2D.b a >a b解析: 因为a <b <0,所以1a >1b ,故A 错.因为a <b <0,所以|a |>|b |,所以ab>1,故B 错.因为a <b <0,所以ab >b ·b ,即ab >b 2,故C 对.因为a ,b 同号,|a |>|b |,所以ab >1,0<b a<1,故D 错.答案: C2.已知三个不等式:ab >0,bc -ad >0,c a -d b>0(其中a ,b ,c ,d 均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是( )A .0B .1C .2D .3解析: 由ab >0,bc -ad >0可得bc >ad 两边同除以ab 得 c a >d b ,即c a -db>0. 由c a -d b >0得c a >d b,再由ab >0, 两边同乘以ab 得bc >ad ,即bc -ad >0.由bc -ad >0,c a -d b >0可得bc >ad ,c a >d b,所以可得ab >0. 答案: D3.若1a <1b <0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab>2中,正确的不等式有( )A .1个B .2个C .3个D .4个解析:1a <1b <0⇔b <a <0,∴a +b <0<ab ,|a |<|b |,b a +a b>2b a ·ab=2(∵b <a <0,故等号取不到),即①④正确,②③错误,故选B.(注:本题亦可用特值法,如取a =-1,b =-2验证得)答案: B4.已知0<x <y <a <1,则有( ) A .log a (xy )<0 B .0<log a (xy )<1 C .1<log a (xy )<2D .log a (xy )>2解析:∵0<x <y <a <1,∴0<xy <a 2<1,由对数函数的单调性和对数的定义得,log a (xy )>log a a 2=2.答案: D 二、填空题5.若x >0,则x +4x的最小值为( )A .2B .3C .2 2D .4解析:∵x >0, ∴x +4x≥2x ·4x =4, 当且仅当x =4x即x =2时取等号, 所以x +4x的最小值为4.答案: D6.若0<2α-β<π,-π2<α-2β<π,则α+β的取值X 围是________. 解析: 由-π2<α-2β<π得-π<2β-α<π2,再与0<2α-β<π相加得-π<α+β<3π2答案: -π<α+β<3π2三、解答题7.设a >0,b >0且a ≠b ,试比较a a b b与a b b a的大小.解析:a a b b a b b a =a a -b ÷b a -b =⎝ ⎛⎭⎪⎫a b a -b.当a >b >0时,ab>1,a -b >0, ∴⎝ ⎛⎭⎪⎫a ba -b >1,于是a a b b >a b b a . 当b >a >0时,0<a b<1,a -b <0, ∴⎝ ⎛⎭⎪⎫a b a -b >1,于是a a b b >a b b a . 综上所述,对于不相等的正数a ,b ,都有a a b b>a b b a.8.已知-6<a <8,2<b <3,分别求2a +b ,a -b ,a b的取值X 围. 解析:∵-6<a <8,∴-12<2a <16. 又2<b <3,∴-10<2a +b <19, ∵2<b <3,∴-3<-b <-2.又-6<a <8,∴-9<a -b <6. ∵2<b <3,∴13<1b <12.①当0≤a <8时,0≤a b <4;②当-6<a <0时,-3<a b<0. 综合①②得-3<a b<4.9.设f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4,求f (-2)的取值X 围. 解析: 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数), 则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a -(m -n )b .于是,得⎩⎪⎨⎪⎧m +n =4,m -n =2.解得⎩⎪⎨⎪⎧m =3,n =1.∴f (-2)=3f (-1)+f (1). ∵1≤f (-1)≤2,2≤f (1)≤4, ∴5≤3f (-1)+f (1)≤10. ∴5≤f (-2)≤10.。
人教版数学高二A版选修4-5第一讲不等式和绝对值不等式单元测试
《不等式和绝对值不等式》测评(时间90分钟,满分100分)10个小题;每小题4分,满分40分)1.若1a <1b<0,则下列结论不正确的是A .a 2<b 2B .ab <b 2 C.b a +ab >2 D .|a|-|b|=|a -b|2.函数y =log 2(x +1x -1+5)(x >1)的最小值为A .-3B .3C .4D .-43.已知等比数列{a n }的各项均为正数,公比q ≠1,设P =a 3+a 92,Q =a 5a 7,则P 与Q 的大小关系是A .P >QB .P <QC .P =QD .无法确定4.设6<a <10,a2≤b ≤2a ,c =a +b ,那么c 的取值范围是A .9<c <30B .0≤c ≤18C .0≤c ≤30D .15<c <30 5.不等式⎩⎪⎨⎪⎧x>0,3-x 3+x >|2-x 2+x|的解集是A .(0,2)B .(0,2.5)C .(0,6)D .(0,3)6.若不等式|ax +2|<6的解集为(-1,2),则实数a 等于 A .8 B .2 C .-4 D .-87.若1<1a <1b ,则下列结论中不正确的是A .log a b >log b aB .|log a b +log b a|>2C .(log b a )2<1D .|log a b|+|log b a|>|log a b +log b a| 8.当0<x <π2时,函数f (x )=1+cos2x +8sin 2x sin2x 的最小值为A .2B .2 3C .4D .4 39.不等式|sinx +tanx|<a 的解集为N ;不等式|sinx|+|tanx|<a 的解集为M ;则解集M 与N 的关系是A .N ⊆MB .M ⊆NC .M =ND .M N 10.下列四个命题:①若a >b ,c >1,则algc >blgc; ②若a >b ,c >0,则algc >blgc ; ③若a >b ,则a·2c >b·2c; ④若a <b <0,c >0,则c a >cb .其中,正确命题的个数为 A .1 B .2 C .3 D .4 答 题 栏 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(本大题共5个小题,每小题4分,共20分)11.不等式|x|>2x -1的解集为______. 12.定义运算x·y =⎩⎪⎨⎪⎧x (x ≤y ),y (x>y ),若|m -1|·m =|m -1|,则m 的取值范围是______.13.已知f (x )是定义在(-∞,+∞)上的减函数,其图象经过A (-4,1),B (0,-1)两点,f (x )的反函数是f -1(x ),则f -1(1)的值是______;不等式|f (x -2)|<1的解集是______.14.已知α,β是实数,给出下列四个论断: ①|α+β|=|α|+|β|; ②|α-β|≤|α+β|; ③|α|>22,|β|>22; ④|α·β|>5.以其中的两个论断为条件,其余两个论断作为结论,写出你认为正确的一个命题______________________________.15.已知不等式|x -3|<12(x +a )的解集为A ,且A ≠∅,则a 的取值范围是______.三、解答题(本大题共5个小题,每小题8分,共40分) 16.2008海南、宁夏高考,24 已知函数f (x )=|x -8|-|x -4|.(1)作出函数y =f (x )的图象; (2)解不等式|x -8|-|x -4|>2.17.设关于x 的不等式lg (|x +3|+|x -7|)>a. (1)当a =1时,解这个不等式;(2)当a 为何值时,这个不等式的解集为R?18.若a >b >c ,求证:1a -b +1b -c ≥4a -c .19.已知函数f(x)=2x -1的反函数为y =f -1(x). (1)求不等式2f -1(x)-log 2(1-x)≥0的解集P ;(2)若对(1)中的解集P ,当x ∈P 时,总有f -1(x)-log 2(1-x)≥t 成立,求t 的取值范围.20.如下图所示,电灯挂在圆桌的正中央上方.假定它与桌面上A 点的水平距离是a ,那么,电灯距离桌面的高度h 等于多少时,A 点处最亮?(亮度公式I =kr 2sinθ,这里k 是常数,r 是电灯到照射点的距离,θ是照射到某点的光线与水平平面所成的角.)参考答案1.D 解析:方法一(特殊值法):令a =-1,b =-2,代入A 、B 、C 、D 中,知D 不正确,故选D.方法二:由1a <1b <0,得b <a <0,所以b 2>ab ,ab >a 2,故A 、B 正确.又由b a >0,a b >0,且b a ≠a b ,得b a +ab >2正确.从而A 、B 、C 均正确,对于D ,由b <a <0⇒|a|<|b|. 即|a|-|b|<0,而|a -b|≥0,故D 错. 2.B 解析:x >1⇒x -1>0,y =log 2(x +1x -1+5)=log 2(x -1+1x -1+6)≥log 2(2+6)=log 28=3.3.A 解析:由等比知识,得Q =a 5·a 7=a 3·a 9,而P =a 3+a 92,且a 3>0,a 9>0,a 3≠a 9.∴a 3+a 92>a 3·a 9,即P >Q. 4.A 解析:因为a 2≤b ≤2a ,所以3a 2≤a +b ≤3a.又因为6<a <10,所以3a2>9,3a <30.所以9<3a2≤a +b ≤3a <30.即9<c <30.5.C 解析:用筛选法,容易验证x =2是不等式的解,否定A ;x =52不是不等式的解,否定D ;x =6使3-x 3+x 与|2-x 2+x|取“=”,∵6<52,故否定B.6.C 解析:由|ax +2|<6⇒-8<ax <4. 当a >0时,-8a <x <4a.∵解集是(-1,2),∴⎩⎨⎧-8a =-1,4a =2.解得⎩⎪⎨⎪⎧a =8,a =2,两值矛盾.当a <0时,4a <x <-8a.由⎩⎨⎧4a =-1,-8a =2⇒a =-4.7.D 解析:方法一(特殊值法):由1<1a <1b ,知0<b <a <1.令a =12,b =14,则log a b =2,log b a =12.可判定A 、B 、C 均正确;D 不正确,故选D. 方法二:由1<1a <1b ,得0<b <a <1.∴log a b >log a a =1,0<log b a <log b b =1. ∴A 、B 、C 选项正确.由绝对值不等式性质,知|log a b|+|log b a|=|log a b +log b a|,故D 不正确. 8.C 解析:方法一:f(x)=2cos 2x +8sin 2x 2sinxcosx =1+4tan 2x tanx =4tanx +1tanx ≥4.这里tanx >0且tanx =12时取等号,故选C.方法二:f(x)=1+cos2x +8sin 2x sin2x =5-3cos2xsin2x (0<2x <π).令μ=5-3cos2xsin2x ,有μsin2x +3cos2x =5.μ2+9sin(2x +φ)=5, ∴sin(2x +φ)=5μ2+9. ∴|5μ2+9|≤1,得μ2≥16. ∴μ≥4或μ≤-4. 又μ>0,故选C.9.B 解析:|sinx +tanx|≤|sinx|+|tanx|, 则M ⊆N(当a ≤0时,M =N =∅),故选B.10.C 解析:①正确,∵c >1,lgc >0;②不正确;∵0<c <1时,lgc <0;③正确,∵2c >0;④正确,∵a <b <0⇒0>1a >1b.11.{x|x <1或x >2} 解析:方法一:当x <1时,2x -1<0,不等式成立.当x >1时,原不等式化为x >2x -1,即x -2x -1>0,x 2-x -2x -1>0, (x -2)(x +1)x -1>0,得-1<x <1或x >2.故原不等式的解集为{x|x <1或x >2}.方法二:|x|>2x -1⇒⎩⎪⎨⎪⎧ x>2x -1,x ≥0或⎩⎪⎨⎪⎧x<21-x ,x<0.解得x <1或x >2.12.m ≥12 解析:依题意,有|m -1|≤m ⇔-m ≤m -1≤m ⇔m ≥12.13.-4 {x|-2<x <2} 解析:由互为反函数的对称性,知f -1(1)=-4.|f(x -2)|<1⇒-1<f(x -2)<1.因为f(x)在(-∞,+∞)上是减函数,所以-4<x -2<0,得-2<x <2.14.①③⇒②④或②③⇒①④(写一个即可)解析:①③成立时,|α+β|=|α|+|β|>42>5,∴④成立.又由①,知αβ>0,∴|α-β|≤|α+β|成立,即②成立,同理②③⇒①④.15.a >-3 解析:∵A ≠∅,∴|x -3|<12(x +a)⇒-12(x +a)<x -3<12(x +a)⇒6-a 3<x<6+a.∴6-a3<6+a.解得a >-3.16.解:(1)f(x)=⎩⎪⎨⎪⎧4,x ≤4,-2x +12,4<x ≤8,-4,x>8.图象如下:(2)不等式|x -8|-|x -4|>2,即f(x)>2, 由-2x +12=2得x =5.由函数f(x)图象可知,原不等式的解集为(-∞,5).17.解:(1)当a =1时,原不等式可变为|x +3|+|x -7|>10,可得其解集为{x|x <-3,或x >7}.(2)∵|x +3|+|x -7|≥|x +3-(x -7)|=10对任意x ∈R 都成立,∴lg(|x +3|+|x -7|)≥lg10=1对任何x ∈R 都成立,即lg(|x +3|+|x -7|)>a 当且仅当a <1时,对任何x ∈R 都成立.18.证明:∵a >b >c ,∴a -b >0,b -c >0,a -c >0, ∴(a -c)(1a -b +1b -c)=[(a -b)+(b -c)](1a -b +1b -c )≥2(a -b)(b -c)×21a -b ×1b -c=4. 当且仅当a +c =2b 时,等号成立. ∴1a -b +1b -c ≥4a -c. 19.解:(1)由y =2x -1,得y +1=2x , ∴f -1(x)=log 2(x +1). 由2f -1(x)-log 2(1-x)≥0, 得2log 2(1+x)-log 2(1-x)≥0. ⇔⎩⎪⎨⎪⎧1+x>0,1-x>0,(1+x)2≥1-x.解得0≤x <1, ∴P ={x|0≤x <1}.(2)∵x ∈P 时,恒有t ≤f -1(x)-log 2(1-x)成立,即t ≤log 2(1+x)-log 2(1-x)=log 21+x 1-x (0≤x <1),∴-1<-x ≤0,0<1-x ≤1,1+x <2, ∴21-x ≥2,21-x -1≥1,即1+x 1-x≥1, ∴log 21+x 1-x ≥0,∴log 21+x 1-x的最小值为0.∵t ≤f -1(x)-log 2(1-x)在[0,1)上恒成立, ∴t 的取值范围是{t|t ≤0}.20.解:设照射到A 点处的光线与桌面所成的角为x ,从图中可以看出,r =acosx,因此,A 点处的亮度I =k ×1a 2sinxcos 2x ,I 取最大值的问题可化为I 2取最大值的问题,由于I 2=k 2a 4sin 2xcos 4x ,这里k 2a 4是一个常数,所以只需讨论函数sin 2xcos 4x 在何时取得最大值.因为sin 2xcos 4x =4sin 2x·cos 2x 2·cos 2x 2≤4[sin 2x +cos 2x 2+cos 2x23]3=427,当且仅当sin 2x =cos 2x 2,即tanx=12时,等号成立,因此,当h =atanx =a 2=22a 时,I 取得最大值,即A 点最亮. 答:把电灯挂在距离桌面22a 的高度时,A 点最亮.。
数学人教A版选修4-5学案:第一讲二绝对值不等式第1课时 含解析 精品
1.绝对值三角不等式1.理解绝对值的几何意义.2.掌握绝对值三角不等式及其几何意义.3.三个实数的绝对值不等式及应用.1.绝对值的几何意义(1)实数a 的绝对值|a |表示数轴上坐标为____的点A 到______的距离.(2)对于任意两个实数a ,b ,设它们在数轴上的对应点分别为A ,B ,那么|a -b |的几何意义是数轴上A ,B 两点之间的______,即线段AB 的______.(1)|a |=⎩⎪⎨⎪⎧ a ,当a >0时,0,当a =0时,-a ,当a <0时.(2)对任意实数a ,都有|a |=a 2.(3)实数积和商的绝对值运算法则:|ab |=|a |×|b |,|a b |=|a ||b |(b ≠0). 2.绝对值三角不等式(1)如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当________时,等号成立.(2)如果把上面的绝对值三角不等式中的实数a ,b 换成向量a ,b ,当向量a ,b 不共线时,由向量加法的三角形法则,向量a +b ,a ,b 构成三角形,因此有向量形式的不等式|a +b |<|a |+|b |,它的几何意义是______________.【做一做】 若|x -a |<h ,|y -a |<k ,则下列不等式一定成立的是( )A .|x -y |<2hB .|x -y |<2kC .|x -y |<h +kD .|x -y |<|h -k |3.三个实数的绝对值不等式如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当__________时,等号成立.答案:1.(1)a 原点(2)距离 长度2.(1)ab ≥0(2)三角形两边之和大于第三边【做一做】 C |x -y |=|(x -a )+(a -y )|≤|x -a |+|a -y |<h +k .3.(a -b )(b -c )≥01.对绝对值三角不等式的理解剖析:绝对值三角不等式实质是两个实数的和差的绝对值与绝对值的和差的关系,我们可以类比得到另外一种形式:|a |-|b |≤|a -b |≤|a |+|b |.和差的绝对值与绝对值的和差的关系是由ab >0,ab <0,ab =0三种情况来确定的,其本质是叙述两个实数符号的各种情形下得到的结果,即这个定理本身就是一个分类讨论问题.“数”分正、负、零等不同情况讨论,往往在所难免,因此,对绝对值的认识要有分类讨论的习惯.2.对绝对值三角不等式几何意义的理解剖析:用向量a ,b 替换实数a ,b 时,问题就从一维扩展到二维,当向量a ,b 不共线时,a +b ,a ,b 构成三角形,有|a +b|<|a|+|b|.当向量a ,b 共线时,a ,b 同向(相当于ab ≥0)时,|a +b|=|a|+|b|;a ,b 异向(相当于ab <0)时,|a +b|<|a|+|b|,这些都是利用了三角形的性质定理,如两边之和大于第三边等,这样处理,可以形象地描绘绝对值三角不等式,更易于记忆定理,并应用定理解题.绝对值三角不等式体现了“放缩法”的一种形式,但放缩的“尺度”还要仔细把握,如下面的式子:|a |-|b |≤||a |-|b ||≤|a +b |≤|a |+|b |.我们较为常用的形式是|a |-|b |≤|a +b |≤|a |+|b |,但有些学生就会误认为只能如此,而实质上,|a +b |是不小于||a |-|b ||的,|a |-|b |不一定是正数,当然,这需对绝对值不等式有更深的理解,从而使放缩的“尺度”更为准确.题型一 绝对值三角不等式的性质【例1】 若x <5,n ∈N ,则下列不等式:①|x lg n n +1|<5|lg n n +1|; ②|x |lg n n +1<5lg n n +1; ③x lg n n +1<5|lg n n +1|; ④|x |lg n n +1<5|lg n n +1|. 其中,能够成立的有______.反思:判断一个不等式成立与否,往往是对影响不等号的因素进行分析,如一个数的正、负、零等,数(或式子)的积、平方、取倒数等都对不等号产生影响,注意考查这些因素在不等式中的作用,一个不等式的成立与否也就比较好判断了.题型二 用绝对值三角不等式的性质证明不等式【例2】 设m 等于|a |,|b |和1中最大的一个,当|x |>m 时,求证:|a x +b x 2|<2. 分析:本题的关键是对题设条件的理解和运用.|a |,|b |和1这三个数中哪一个最大?如果两两比较大小,将十分复杂,但我们可以得到一个重要的信息:m ≥|a |,m ≥|b |,m ≥1.反思:分析题目时,题目中的语言文字是我们解题的信息的重要来源与依据,而解题时的数学符号语言也往往需要从文字语言“翻译”转化而来,那么准确理解题目中的文字语言,适时准确地进行转化也就成了解题的关键,如本题中题设条件中的文字语言“m 等于|a |,|b |和1中最大的一个”转化为符号语言“m ≥|a |,|m |≥|b |,m ≥1”是证明本题的关键.题型三 绝对值三角不等式的综合应用【例3】 已知函数f (x )=lg x 2-x +1x 2+1. (1)判断f (x )在[-1,1]上的单调性,并给出证明.(2)若t ∈R ,求证:lg 710≤f (|t -16|-|t +16|)≤lg 1310. 分析:(1)借助定义判别f (x )的单调性;(2)利用绝对值三角不等式解决.反思:此类题目综合性强,不仅用到绝对值不等式的性质、推论及已知条件,还要用到配方等等价变形.在应用绝对值不等式放缩性质求最值时要注意等号成立的条件,这是关键所在.答案:【例1】 ④ ∵0<n n +1<1, ∴lg n n +1<0. 由x <5,并不能确定|x |与5的关系, ∴可以否定①②③,而|x |lgn n +1<0,故④成立. 【例2】 证明:∵|x |>m ≥|a |,|x |>m ≥|b |,|x |>m ≥1,∴|x |2>|b |,∴|a x +b x 2|≤|a x |+|b x 2|=|a ||x |+|b ||x |2<|x ||x |+|x |2|x |2=2. ∴|a x +b x 2|<2. 故原不等式成立.【例3】 解:(1)f (x )在[-1,1]上是减函数.证明:令u =x 2-x +1x 2+1=1-x x 2+1. 取-1≤x 1<x 2≤1.则u 1-u 2=(x 2-x 1)(1-x 1x 2)(x 21+1)(x 22+1), ∵|x 1|≤1,|x 2|≤1,x 1<x 2,∴u 1-u 2>0,即u 1>u 2.由u >0,lg u 1>lg u 2,得f (x 1)>f (x 2),∴f (x )在[-1,1]上是减函数.(2)∵|t -16|-|t +16| ≤|(t -16)-(t +16)|=13. |t +16|-|t -16| ≤|t +16-(t -16)|=13,∴-13≤|t -16|-|t +16|≤13. 由(1)的结论,有f (13)≤f (|t -16|-|t +16|)≤f (-13). 而f (13)=lg 710,f (-13)=lg 1310, ∴lg 710≤f (|t -16|-|t +16|)≤lg 1310.1.设ab >0,下面四个不等式①|a +b |>|a |;②|a +b |<|b |;③|a +b |<|a -b |;④|a +b |>|a |-|b |中,正确的是( )A .①和②B .①和③C .①和④D .②和④2.已知实数a ,b 满足ab <0,则下列不等式成立的是( )A .|a +b |>|a -b |B .|a +b |<|a -b |C .|a -b |<||a |-|b ||D .|a -b |<|a |+|b |3.不等式||||||a b a b +-≥1成立的充要条件是________. 4.设|a |≤1,函数f (x )=ax 2+x -a (-1≤x ≤1),证明|f (x )|≤54.答案:1.C ∵ab >0,∴a ,b 同号.∴|a +b |=|a |+|b |.∴①④正确.2.B3.|a |>|b | ||||||a b a b +-≥1||(||||)||||a b a b a b +---≥0(|a |-|b |)[|a +b |-(|a |-|b |)]≥0. 而|a +b |≥|a |-|b |,∴|a +b |-(|a |-|b |)≥0.∴|a |-|b |>0,即|a |>|b |.4.证明:|f (x )|=|a (x 2-1)+x |≤|a (x 2-1)|+|x |≤|x 2-1|+|x |=1-x 2+|x |=215(||)24x --+ ≤54,即|f (x )|≤54.。
新人教A版:选修4-5不等式和绝对值不等式
授课主题不等式和绝对值不等式教学目标1.会用基本不等式证明一些简单问题.2.能够利用两项的平均值不等式求一些特定函数的最值,从而学会解决简单的应用问题.3.会利用绝对值的几何意义求解以下类型的不等式:①|ax+b|≤c;②|ax+b|≥c.4.会利用绝对值的几何意义求解以下类型的不等式:|x-a|+|x-b|≥c,|x-a|+|x-b|≤c.教学内容1.两实数大小比较的三种情况.设a,b为两个实数,它们在实轴上的点分别记为A,B.如果A落在B的右边,则称a大于b,记为a>b;如果A落在B的左边,则称a小于b,记作a<b;如果A与B重合,则称a与b相等,记为a=b.2.不等式的基本性质.(1)对称性:a>b⇔b<a.(2)传递性:a>b,b>c⇔a>c.(3)加(减):a>b⇔a+c>b+c.(4)乘(除):a>b,c>0⇔ac>bc;a>b,c<0⇔ac<bc.(5)乘方:a>b>0⇒a n>b n,其中n为正整数,且n≥2.(6)开方(取算术根):a>b>0⇒na>nb,其中n为正整数,且n≥2.(7)a>b,c>d⇒a+c>b+d.本性质说明两个同向不等式相加,所得的不等式和原不等式同向.(8)a>b>0,c>d>0⇒ac>bd.本性质说明两边都是正数的同时不等式两边分别相乘,所得的不等式和原不等式同向.3.基本不等式.定理1:设a,b∈R,则a2+b2≥2ab,当且仅当a=b时,等号成立.定理2:如果a,b为正数,则a+b2≥ab,当且仅当a=b时,等号成立.我们称a+b2为正数a,b的算术平均数,ab为正数a,b的几何平均数,因而这一定理可用语言叙述为:两个正数的算术平均数大于或等于它们的几何平均数.定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.我们称a +b +c 3为正数a ,b ,c 的算术平均数,3abc 为正数a ,b ,c 的几何平均数,定理3中的不等式为三个正数的算术—几何平均不等式,或简称为平均不等式.定理4(一般形式的算术—几何平均不等式):如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n ≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 4.绝对值的三角不等式.定理1:若a ,b 为实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 定理2:设a ,b ,c 为实数,则|a -c |≤|a -b |+|b -c |. 等号成立⇔(a -b )(b -c )≥0,即b 落在a ,c 之间, 5.绝对值不等式的解法.(1)|ax +b |≤c ,|ax +b |≥c 型不等式的解法.①c >0,则|ax +b |≤c 的解为-c ≤ax +b ≤c ,|ax +b |≥c 的解为ax +b ≥c 或ax +b ≤-c ,然后根据a ,b 的值解出即可. ②c <0,则|ax +b |≤c 的解集为∅,|ax +b |≥c 的解集为R.(2)|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c 型不等式的解法.解这类含绝对值的不等式的一般步骤是: ①令每个绝对值符号里的一次式为0,求出相应的根. ②把这些根由小到大顺序,它们把实数轴分为若干个区间.③在所分区间上,根据绝对值的定义去掉绝对值符号,讨论所得的不等式在这个区间上的解集. ④这些解集的并集就是原不等式的解集. 6.解不等式常用技巧.解不等式时,在不等式的两边分别作恒等变形,在不等式的两边同时加上(或减去)一个数或代数式,移项,在不等式的两边同时乘以(或除以)一个正数或一个正的代数式,得到的不等式都和原来的不等式等价.这些方法,也是利用综合法和分析法证明不等式时常常用到的技巧.题型一 用作差比较法比较大小例1 若x ∈R ,试比较(x +1)(x 2+x 2+1)与(x +12)(x 2+x +1)的大小.分析:根据这个式子的特点,先把代数式变形,再用作差法比较法比较大小. 解析:∵(x +1)(x 2+x 2+1)=(x +1)(x 2+x +1-x 2)=(x +1)(x 2+x +1)-x2(x +1),(x +12)(x 2+x +1)=(x +1-12)(x 2+x +1)=(x +1)(x 2+x +1)-12(x 2+x +1). ∴(x +1)(x 2+x 2+1)-(x +12)(x 2+x +1)=(x +1)(x 2+x +1)-x 2(x +1)-(x +1)(x 2+x +1)+12(x 2+x +1)=12(x 2+x +1)-12(x 2+x )=12>0. ∴(x +1)(x 2+x 2+1)>(x +12)(x 2+x +1).点评:比较大小的一般方法是作差比较法,先作差,再判断差与0的大小关系.若a -b >0.则a >b ;若a -b <0,则a <b ;若a -b =0,则a =b .作差比较法的步骤是①作差;②变形;③定号;④下结论. 巩 固 比较x 2-x 与x -2的大小.解析:(x 2-x )-(x -2)=x 2-2x +2=(x -1)2+1,因为(x -1)2≥0, 所以(x -1)2+1>0,即(x 2-x )-(x -2)>0. 所以x 2-x >x -2.题型二 用不等式性质证明或判断不等式 例2 已知a >b ,c <d ,求证,a -c >b -d .证明:∵c <d ,∴-c >-d .又∵a >b ,∴a +(-c )>b +(-d ).即a -c >b -d .巩 固 设f (x )=ax 2+bx ,且-1≤f (-1)≤2,2≤f (1)≤4.求证:-1≤f (-2)≤10.证明:设f (-2)=mf (-1)+nf (1),即4a -2b =m (a -b )+n (a +b )=(m +n )a +(n -m )b .比较系数得⎩⎪⎨⎪⎧ 4=m +n ,2=m -n ,解得⎩⎪⎨⎪⎧m =3,n =1.所以f (-2)=3f (-1)+f (1). 又因为-1≤f (-1)≤2,2≤f (1)≤4, 所以-1≤f (-2)≤10.巩 固 如果a ,b ,c 均为正数且b <c ,则ab 与ac +bc 的大小关系是________.答案:ab <ac +bc题型三 利用基本不等式求函数的值域或最值 例3 已知x <54,求y =4x -2+14x -5的最大值.解析:∵x <54,∴5-4x >0.∴y =4x -2+14x -5=-(5-4x +15-4x)+3≤-2+3=1.当且仅当5-4x =15-4x,即x =1(x =32舍去)时等号成立,∴当x =1时,y max =1.巩 固 设x ≥0,y ≥0,x 2+y 22=1,则x1+y 2的最大值为__________.分析:∵x 2+y 22=1是常数,∴x 2与y 22的积可能有最大值. ∴可把x 放到根号里面去考虑,即化为x 2(1+y 2), 注意到x 2与1+y 2的积,应处理成2x 2·1+y 22. 解析:方法一 ∵x ≥0,y ≥0,x 2+y 22=1, ∴x 1+y 2=x 2(1+y 2)= 2x 2·1+y 22≤2x 2+1+y 222=2x 2+y 22+122=324, 当且仅当x 2=1+y 22,即x =32,y =22时, x 1+y 2取得最大值324.方法二 令 x =cos θ,y =2sin θ⎝⎛⎭⎫0≤θ≤π2, 则x1+y 2=cos θ1+2sin 2θ=2cos 2θ(1+2sin 2θ)·12≤12·⎣⎡⎦⎤2cos 2θ+(1+2sin 2θ)22=324.当2cos 2θ=1+2sin 2θ,即θ=π6时,也即x =32,y =22时, x1+y 2取得最大值324.答案:324题型四 利用基本不等式证明不等式例4 已知a ,b ∈(0,+∞)且a +b =1,求证:(1)a 2+b 2≥12;(2)1a 2+1b2≥8.证明:由⎩⎪⎨⎪⎧a +b2≥ab ,a +b =1,a ,b ∈0,+∞得ab ≤12.∴ab ≤14,1ab≥4.(1)∵a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12.∴a 2+b 2≥12(2)∵1a 2+1b 2≥2ab ≥8,∴1a 2+1b2≥8 巩 固 已知x ,y >0且x +y =1.求证:(1+1x )(1+1y)≥9.证明:(1+1x )(1+1y )=(x +1)(y +1)xy =(2x +y )(2y +x )xy =5xy +2(x 2+y 2)xy =5+2(x 2+y 2)xy ≥5+2×2xy xy =9.当且仅当x =y =12时取等号.∴(1+1x )(1+1y )≥9.题型五 证明不等式例5 设a ,b ,c ∈R +,求证:(a +b +c )(1a +1b +1c)≥9.分析:观察式子的结构,通过变形转化来证明. 证明:∵a ,b ,c ∈R +,∴a +b +c ≥33abc ,1a +1b +1c ≥33(abc )-1,两不等式相乘,有:(a +b +c )(1a +1b +1c )≥33abc ×33(abc )-1=9.∴(a +b +c )(1a +1b +1c)≥9.当且仅当a =b =c =0时,等号成立.巩 固 已知a ,b ,c ∈R +,a +b +c =1,求证:1a +1b +1c≥9.证明:∵a ,b ,c ∈R +,a +b +c ≥33abc .又a +b +c =1,∴3abc ≤13,∴13abc ≥3,∴1a +1b +1c ≥331abc ≥9. 即原不等式成立. 题型六 求函数的最值例6 已知x ∈R +,求函数y =x (1-x 2)的最大值.分析:为使数的“和”为定值,可以先平方,即y 2=x 2(1-x 2)2=x 2(1-x 2)(1-x 2)=2x 2(1-x 2)(1-x 2)×12,求出最值后再开方.解析:∵y =x (1-x 2), ∴y 2=x 2(1-x 2)2=12×2x 2(1-x 2)(1-x 2)≤12⎝⎛⎭⎫2x 2+1-x 2+1-x 233=427.当且仅当2x 2=1-x 2,即x =33时等号成立. ∴y ≤239.∴y max =239. 巩 固 设θ为锐角,求y =12sin 2 θ cos θ的最大值.解析:y 2=14sin 4θcos 2θ=18×2sin 2θ sin 2θ cos 2θ≤18⎝⎛⎭⎫sin 2θ+sin 2θ+2 cos 2θ33=127.当且仅当sin 2 θ=2cos 2θ=2-2sin 2θ. 即sin θ=63时取等号,此时y max =39. 题型七 利用绝对值三角不等式证明不等式例7 若|a -b |>c ,|b -c |<a ,求证:c <a .证明:由|a -b |>c 及|b -c |<a 得c -a <|a -b |-|b -c |≤|(a -b )+(b -c )|=|a -c |=|c -a |. 由c -a <|c -a |知c -a <0,故c <a .点评:不等式的证明方法比较多.关键是从式子的结构入手进行分析.多联想定理的形式以便用好它. 巩 固 设ε>0,|x -a |<ε4,|y -b |<ε6. 求证:|2x +3y -2a -3b |<ε.分析:将2x +3y -2a -3b 写成2(x -a )+3(y -b )的形式后利用定理1和不等式性质证明. 证明:|2x +3y -2a -3b |=|2(x -a )+3(y -b )|≤|2(x -a )|+|3(y -b )|=2|x -a |+3|y -b |<2×ε4+3×ε6=ε.巩 固 设m 等于|a |、|b |和1中最大的一个.当|x |>m 时,求证:⎪⎪⎪⎪a x +b x 2<2.分析:本题的关键是对题设条件的理解和运用,|a |、|b |和1这三个数中哪一个最大.如果两两比较大小,将十分复杂,我们可得到一个重要的信息:m ≥|a |,m ≥|b |,m ≥1.证明:∵m 等于|a |,|b |和1中最大的一个,|x |>m , ∴⎩⎪⎨⎪⎧|x |>m ≥|a |,|x |>m ≥|b |,|x |>m ≥1⇒⎩⎪⎨⎪⎧|x |>|a |,|x |2>|b |.∴⎪⎪⎪⎪a x +b x 2≤⎪⎪⎪⎪a x +⎪⎪⎪⎪b x 2=|a ||x |+|b ||x |2<|x ||x |+|x |2|x |2=2,故原不等式成立.巩 固 设A 、ε>0,|x -a |<ε2,|y -b |<ε2,|b |≤A ,|x |≤A ,求证:|xy -ab |<Aε.证明:|xy -ab |=|xy -bx +bx -ab |=|x (y -b )+b (x -a )|≤|x (y -b )|+|b (x -a )| ≤|x ||y -b |+|b ||x -a |<A ·ε2+A ·ε2=Aε.所以有|xy -ab |<Aε.巩 固 已知函数f (x )=x 2-x +13,|x -a |<1,求证:|f (x )-f (a )|<2(|a |+1).证明:|f (x )-f (a )|=|x 2-x +13-(a 2-a +13)|=|x 2-a 2-x +a |=|(x -a )(x +a -1)|=|x -a ||x +a -1|<|x +a -1| =|x -a +2a -1|≤|x -a |+|2a -1|<1+|2a |+1=2(|a |+1). ∴|f (x )-f (a )|<2(|a |+1).题型八 利用绝对值三角不等式求最值例8 设a ,b ∈R 且|a +b +1|≤1,|a +2b +4|≤4,求|a |+|b |的最大值.解析:|a +b |=|(a +b +1)-1|≤|a +b +1|+|-1|≤1+1=2,|a -b |=|3(a +b +1)-2(a +2b +4)+5|≤3|a +b +1|+2|a +2b +4|+5≤3×1+2×4+5=16. ①当ab ≥0时,|a |+|b |=|a +b |≤2; ②当ab <0时,则a (-b )>0, |a |+|b |=|a |+|-b |=|a +(-b )|≤16. 总之,恒有|a |+|b |≤16. 而a =8,b =-8时,满足|a +b +1|=1,|a +2b +4|=4,且|a |+|b |=16. 因此|a |+|b |的最大值为16.巩 固 求函数y =|x -3|-|x +1|的最大值和最小值.分析:若把x -3,x +1看作两个实数,则所给的代数式符合两个数绝对值的差的形式,因而可以联想到两个数和(差)的绝对值与两个数绝对值的和(差)之间的关系,进而可转化求解,另一思维是:含有这种绝对值函数式表示的是分段函数,所以也可以视为是分段函数求最值.解析:方法一 ∵||x -3|-|x +1||≤|(x -3)-(x +1)|=4, ∴-4≤|x -3|-|x +1|≤4. ∴ymax=4,ymin=-4.方法二 把函数看作分段函数. y =|x -3|-|x +1|=⎩⎪⎨⎪⎧4,x <-1,2-2x ,-1≤x ≤3,-4,x >3.∴-4≤y ≤4,∴y max =4,y min =-4.点评:对于含有两个以上绝对值的代数式,通常利用分段讨论的方法转化为分段函数,进而利用分段函数的性质解决相应问题.利用含绝对值不等式的性质定理进行“放缩”,有时也能产生比较好的效果,但这需要准确地处理“数”的差或和,以达到所需要的结果.题型九 |ax +b |≤e (或|ax +b |≥e )(e >0)型不等式的解法 例9 解下列不等式.(1)⎪⎪⎪⎪x +12>2; (2)|3x -1|≤6.分析:解两个不等式的关键是去掉绝对值符号.解析:(1)方法一 原不等式即⎪⎪⎪⎪x -⎝⎛⎭⎫-12>2,它表示与点-12的距离大于2的点的集合,如下图所示,所以符合条件的x 的范围是x >2+⎝⎛⎭⎫-12或x <-2+⎝⎛⎭⎫-12,即原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪x <-52或x >32.方法二 因为⎪⎪⎪⎪x +12>2⇔x +12>2或x +12<-2⇔x >32或x <-52, 所以原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪x >32或x <-52. (2)由于|3x -1|≤6⇔-6≤3x -1≤6,即-5≤3x ≤7, ∴-53≤x ≤73,所以原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-53≤x ≤73. 巩 固 解下列不等式(1)|1-2x |>5; (2)|4x -1|+2≤10.解析:(1)|1-2x |>5⇔|2x -1|>5⇔2x -1>5或2x -1<-5⇔2x >6或2x <-4⇔x >3或x >-2. 所以原不等式的解集为{x |x >3或x <-2}(2)|4x -1|+2≤10⇔|4x -1|≤10-2⇔|4x -1|≤8⇔-8≤4x -1≤8⇔-7≤4x ≤9⇔-74≤x ≤94.所以原不等式的解集为⎩⎨⎧⎭⎬⎫x -74≤x ≤94.题型十 绝对值不等式的综合性问题 例10 已知不等式|x +3|>2|x |,①x +2x 2-3x +2≥1,②2x 2+mx -1<0,③若同时满足①②的x 值也满足③,求m 的取值范围. 解析:由|x +3|>2|x |解得-1<x <3, 由x +2x 2-3x +2≥1解得0≤x <1或2<x ≤4,∴0≤x <1或2<x <3.由2x 2+mx -1<0解得-m -m 2+84<x <-m +m 2+84,满足①②的x 值也满足③,则有⎩⎪⎨⎪⎧-m -m 2+84<0,-m +m 2+84≥3.∴m ≤-173,即m 的取值范围是⎝⎛⎦⎤-∞,-173. 巩 固 x 2-2|x |-15>0的解集是________.解析:∵|x |2-2|x |-15>0, ∴|x |>5或|x |<-3(舍去).∴x <-5或x >5.故不等式的解集为{x |x <-5或x >5}. 答案:{x |x <-5或x >5}题型十一 |x -a |+|x -b |≥c (或|x -a |+|x -b |≤c )型不等式的解法 例11 解不等式|x +1|+|x -1|≥3.分析:本题可以用分段讨论法或数形结合法求解.对于形如|x +a |+|x +b |的代数式,可以认为是分段函数. 解析:方法一 如下图,设数轴上与-1,1对应的点分别为A ,B ,那么A ,B 两点的距离和为2,因此区间[-1,1]上的数都不是不等式的解.设在A 点左侧有一点A 1到A ,B 两点的距离和为3,A 1对应数轴上的x .∴-1-x +1-x =3,得x =-32,同理设B 点右侧有一点B 1到A ,B 两点距离和为3,B 1对应数轴上的x , ∴x -1+x -(-1)=3.∴x =32.从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都小于3;点A 1的左边或点B 1的右边的任何点到A ,B 的距离之和都大于3.∴原不等式的解集是(-∞,-32]∪[32,+∞).方法二 当x ≤-1时,原不等式可以化为-(x +1)-(x -1)≥3, 解得x ≤-32.当-1<x <1时,原不等式可以化为x +1-(x -1)≥3,即2≥3.不成立,无解. 当x ≥1时,原不等式可以化为x +1+x -1≥3.所以x ≥32.综上,可知原不等式的解集为{x|x ≤-32或x ≥32}.方法三 将原不等式转化为|x +1|+|x -1|-3≥0.构造函数y =|x +1|+|x -1|-3,即y =⎩⎪⎨⎪⎧-2x -3,x ≤-1,-1,-1<x <1,2x -3,x ≥1.作出函数的图象(如下图). 函数的零点是-32,32.从图象可知,当x ≤-32或x ≥32时,y ≥0,即|x +1|+|x -1|-3≥0.所以原不等式的解集为⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞. 点评:这三种解法以第二种解法最重要,但是其中的分段讨论要遵循分类讨论的原则“不重不漏”;第一种解法中,关键是找到一些特殊的点如A 1,B 1;第三种解法中,准确画出图象,是y =|x +1|+|x -1|-3的图象,而不是y =|x +1|+|x -1|的,其次函数的零点要找准.这些都是求解集的关键. 巩 固 解不等式|x -1|+|x -2|>5.解析:方法一 分类讨论|x -1|=0.|x -2|=0的根1,2把数轴分成三个区间.在这三个区间上,根据绝对值的定义.代数式|x -1|+|x -2|有不同的解析表达式,因而原不等式的解集为以下三个不等式组解集的并集.(1)因为在x ≤1的限制条件之下:|x -1|+|x -2|=1-x +2-x =3-2x ,所以当x ≤1时,|x -1|+|x -2|>5⇔3-2x >5⇔2x <-2⇔x <-1.因此不等式组⎩⎪⎨⎪⎧ x ≤1,|x -1|+|x -2|>5的解集为(-∞,-1).(2)因为在1<x <2的限制条件之下: |x -1|+|x -2|=x -1+2-x =1.所以当1<x <2时.不等式|x -1|+|x -2|>5无解.因此不等式组⎩⎪⎨⎪⎧ 1<x <2,|x -1|+|x -2|>5的解集为∅.(3)由于在x ≥2的限制条件之下: |x -1|+|x -2|=x -1+x -2=2x -3,所以当x ≥2时,|x -1|+|x -2|>5⇔2x -3>5⇔2x >8⇔x >4.所以不等式组⎩⎪⎨⎪⎧x ≥2,|x -1|+|x -2|>5的解集为(4,+∞).于是原不等式的解集为以上三个不等式组解集的并集,即(-∞,-1)∪∅∪(4,+∞)=(-∞,-1)∪(4,+∞).方法二 |x -1|+|x -2|>5⇔|x -1|+|x -2|-5>0.构造函数f (x )=|x -1|+|x -2|-5,于是原不等式的解集为{x |f (x )>0}.写出f (x )的分段解析表达式:f (x )=⎩⎪⎨⎪⎧ -2x -2,x ≤1,-4,1<x <2,2x -8,x ≥2.作出函数f (x )的图象如下图所示.f (x )为分段函数,其零点为-1,4,于是f (x )>0⇔x <-1或x >4.所以原不等式的解集为(-∞,-1)∪(4,+∞).方法三 x 为不等式|x -1|+|x -2|>5的解集⇔x 是与数轴的点A (1)及B (2)两点距离之和大于5的点.由于A 、B 两点的距离1,线段AB 上的点不符合要求,利用图形(如上图),可知符合条件的点应该是在A 点的左侧离A 最近距离是2,在B 点的右侧离B 最近距离为2的点处,即x >4或x <-1,所以原不等式的解集为(-∞,-1)∪(4,+∞).题型十二 函数图象相关的应用题例12 解关于x 的不等式|log a ax 2|<|log a x |+2.分析:换元求解,令log a x =t .解析:原不等式化为|1+2log a x |<|log a x |+2,令t =log a x ,所以|2t +1|<|t |+2,两边平方得:4t 2+4t +1<t 2+4|t |+4⇒3t 2+4t -4|t |-3<0.当t ≥0时,3t 2-3<0⇒t 2<1⇒-1<t <1,所以0≤t <1;当t <0时,3t 2+8t -3<0⇒-3<t <13, 所以-3<t <0.综上所述,-3<t <1.因为t =log a x ,所以-3<log a x <1.当0<a <1时,a <x <a -3,当a >1时,a -3<x <a ,所以原不等式的解集为:当0<a <1时,{x |a <x <a -3};当a >1时,{x |a -3<x <a }. 巩 固 已知y =log a (2-ax )在(0,1)上是增函数,则不等式log a |x +1|>log a|x -3|的解集为( )A .{x |x <-1}B .{x |x <1}C .{x |x <1,且x ≠-1}D .{x |x >1}解析:∵y =log a(2-ax )在(0,1)上是增函数, 又a >0,∴2-ax 为减函数.∴0<a <1,即y =log ax 为减函数. ∴|x +1|<|x -3|,且x +1≠0,x -3≠0,即x ≠-1,且x ≠3.由|x +1|<|x -3|,得(x +1)2<(x -3)2,∴x 2+2x +1<x 2-6x +9.∴x <1.结上可得x <1且x ≠-1.答案:C不等式1.若a ,b ,c ,d ∈R ,且a >b ,c >d ,那么( )A .a -c >b -dB .ac >bdC .-a d >-b cD .a -d >b -c答案:D2.若1a <1b<0,则下列等式: ①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2. 其中,正确的不等式是( )A .①④B .②③C .①③D .②④ 答案:C3.若a ,b ∈R ,则不等式:①a 2+3>2a ;②a 2+b 2≥2(a -b -1);③a 5+b 5>a 3b 2+a 2b 3;④a +1a≥2中一定成立的是( ) A .①②③B .①②④C .①②D .②④答案:C4.若x >54,则f (x )=4x +14x -5的最小值为( ) A .-3B .2C .5D .7答案:D5.若a >0,b >0,且ln(a +b )=0,则1a +1b的最小值是( ) A.14B .1C .4D .8 答案:C6.当点(x ,y )在直线x +3y =2上移动时,表达式3x +27y +1的最小值为( )A .3B .5C .1D .7答案:D7.若1<a <3,-4<b <2,则a -|b |的取值范围是________答案:(-3,3)8.设正数x ,y 满足log 2(x +y +3)=log 2x +log 2y ,则x +y 的最小值为________.答案:69.设x ,y ,z 为正实数,满足x -2y +3z =0,则y 2xz的最小值是________. 答案:310.若正实数x ,y ,满足2x +y +6=xy ,则xy 的最小值是________.解析:由x >0,y >0,2x +y +6=xy 得xy ≥22xy +6(当且仅当2x =y 时,取“=”),即(xy )2-22(xy )-6≥0.∴(xy -32)(xy +2)≥0.又∵xy >0,∴xy ≥32,即xy ≥18.∴xy 的最小值为18.答案:1811.已知a ,b ,c 均为正数,且a +b +c =1.求证:1a +1b +1c≥9. 证明:1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9. 当且仅当a =b =c =13时取等号. 12.已知x ,y ,z 都为正数,且xyz (x +y +z )=1.求证:(x +y )(y +z )≥2.证明:由已知得xz >0,y (x +y +z )>0.又xyz (x +y +z )=1,所以(x +y )(y +z )=xy +xz +y 2+yz =xz +y (x +y +z )≥2xz ·y (x +y +z )=2,即(x +y )(y +z )≥2.当且仅当⎩⎪⎨⎪⎧xz =y (x +y +z ),xyz (x +y +z )=1时取等号. 13.(1)已知x >1,求函数y =x 2x -1的最小值; (2)若x <12,求函数y =2x +2+12x -1的最大值. 解析:(1)y =x 2x -1=(x +1)(x -1)+1x -1=x +1+1x -1=x -1+1x -1+2. ∵x >1,∴x -1>0.∴y =x -1+1x -1+2≥2(x -1)·1x -1+2=4. 当且仅当x -1=1x -1,即x =2时等号成立. ∴y min =4.(2)y =2x +2+12x -1=(2x -1)+12x -1+3 ∵x <12,∴2x -1<0.即1-2x >0. ∴y =2x +2+12x -1=-⎣⎡⎦⎤(1-2x )+11-2x +3≤-2(1-2x )·1(1-2x )+3=1. 当且仅当1-2x =11-2x,即x =0时,等号成立. ∴y max =1.绝对值不等式1.已知集合A ={x |x 2-5x +6≤0},B =x |2x -1|>3,则A ∩B 等于( )A .{x |2≤x ≤3}B .{x |2≤x <3}C .{x |2<x ≤3}D .{x |-1<x <3}答案:C2.不等式|x +3|-|x -3|>3的解集是( )A .{x|x >32} B .{x|32<x ≤3} C .{x |x ≥3} D .{x |-3<x ≤0}答案:A3.不等式|x +2|≥|x |的解集是________.答案:{x |x ≥-1}4.|x -1|+|x +2|+|x |>10的解集是________.答案:{x|x >3或x <-113} 5.x 2-2|x |-15>0的解集是________.答案:(-∞,-5)∪(5,+∞)6.解不等式|x +5|-|x -3|>10.解析:|x +5|=0,|x -3|=0的根为-5,3.(1)当x ≤-5时,|x +5|-|x -3|>10⇔-x -5+x -3>10⇔-18>10.所以⎩⎪⎨⎪⎧x ≤-5,|x +5|-|x -3|>10的解集为∅. (2)当-5<x <3时,|x +5|-|x -3|>10⇔x +5+x -3>10⇔2x +2>10⇔x >4.所以⎩⎪⎨⎪⎧ -5<x <3,|x +5|-|x -3|>10的解集为∅. (3)当x ≥3时,|x +5|-|x -3|>10⇔x +5-x +3>10⇔8>10.所以⎩⎪⎨⎪⎧x ≥3,|x +5|-|x -3|>0的解集为∅. 综上所述,原不等式的解集为∅.7.解不等式x +|2x -1|<3.解析:原不等式可化为⎩⎪⎨⎪⎧ 2x -1≥0,x +(2x -1)<3或⎩⎪⎨⎪⎧2x -1<0,x -(2x -1)<3. 解得12≤x <43或-2<x <12. 所以原不等式的解集是{x |-2<x <43}. 8.解不等式|x 2+x -2|>x .解析:当x <0时,原不等式恒成立;当x ≥0时,原不等式可化为x 2+x -2>x 或x 2+x -2<-x .即x 2>2或x 2+2x -2<0.∴x >2或x <-2或-1-3<x <-1+ 3.又x ≥0,∴0≤x <3-1或x > 2.综上所述,原不等式的解集是{x |x <3-1或x >2}.9.解不等式|x 2-3x -4|>x +2.解析:方法一 原不等式等价于x +2≤0①或⎩⎪⎨⎪⎧x +2>0,x 2-3x -4>x +2或x 2-3x -4<-(x +2).② 由①⇔x ≤-2,由②⇔⎩⎨⎧x >-2,x >2+10或x <2-10或1-3<x <1+3⇔-2<x <2-10或x >2+10或1-3<x <1+3,所以原不等式的解集为(-∞,2-10)∪(1-3,1+3)∪(2+10,+∞).方法二 原不等式等价于⎩⎪⎨⎪⎧ x 2-3x -4≥0,x 2-3x -4>x +2或⎩⎪⎨⎪⎧x 2-3x -4<0,-(x 2-3x -4)>x +2. 即⎩⎨⎧ (x +1)(x -4)≥0,(x -2-10)(x -2+10)>0①或⎩⎨⎧(x +1)(x -4)<0,(x -1-3)(x -1+3)<0,② ∴不等式组①的解集为(-∞,2-10)∪(2+10,+∞),不等式组②的解集为(1-3,1+3).所以原不等式的解集为(-∞,2-10)∪(1-3,1+3)∪(2+10,+∞).方法三 原不等式等价于[(x 2-3x -4)+(x +2)][(x 2-3x -4)-(x +2)]>0即(x 2-2x -2)(x 2-4x -6)>0,(x -1-3)(x -1+3)(x -2-10)(x -2+10)>0,结合图形(如上图)可知原不等式的解集为(-∞,2-10)∪(1-3,1+3)∪(2+10,+∞).10.若x ∈R 不等式|x -1|+|x -2|≤a 的解集为非空集合.求实数a 的取值范围.解析:要使|x -1|+|x -2|≤a 的解集非空,只需a 不小于|x -1|+|x -2|的最小值即可.由|x -1|,|x -2|可以看作数轴上的点到1,2两点的距离,可以看出|x -1|+|x -2|的最小值为1.所以a ≥1.故a 的取值范围是[1,+∞).11.已知f (x )=|ax +1|(a ∈R),不等式f (x )≤3的解集为{x |-2≤x ≤1}.(1)求a 的值;(2)若f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围.解析:(1)由|ax +1|≤3得-4≤ax ≤2,又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意.当a >0时,-4a ≤x ≤2a,得a =2.(2)记h(x)=f(x)-2f(x2),则h(x)=⎩⎪⎨⎪⎧1,x≤-1,-4x-3,-1<x<-12,-1,x≥-12.所以|h(x)|≤1,因此k≥1.所以k的取值范围是[1,+∞).12.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈-a2,12时,f(x)≤g(x),求a的取值范围.解析:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0,设函数y=|2x-1|+|2x-2|-x-3,y=⎩⎪⎨⎪⎧-5x,x<12,-x-2,12≤x≤1,3x-6,x>1.其图象如图所示,从图象可知,当且仅当x∈(0,2)时,y<0,∴原不等式解集是{x|0<x<2}.(2)当x∈-a2,12时,f(x)=1+a,不等式f(x)≤g(x)化为1+a≤x+3,∴x≥a-2对x∈-a2,12都成立,故-a2≥a-2,即a≤43,∴a的取值范围为⎝⎛⎦⎤-1,43.13.如下图,O为数轴的原点,A,B,M为数轴上三点,C为线段OM上的动点,设x表示C与原点的距离,y表示C到A距离的4倍与C到B距离的6倍的和.(1)将y表示为x的函数.(2)要使y的值不超过70,x应该在什么范围内取值?解析:(1)由题设,CO=x,CA=|10-x|,CB=|20-x|,故y=4×|10-x|+6×|20-x|,x∈[0,30],即y=⎩⎪⎨⎪⎧160-10x,x∈[0,10],80-2x,x∈(10,20],10x-160,x∈(20,30].(2)令y≤70,当x∈[0,10]时,由160-10x≤70得x≥9,故x∈[9,10];当x∈(10,20]时,由80-2x≤70得x≥5,故x∈(10,20];当x∈(20,30]时,由10x-160≤70得x≤23,故x∈(20,23].综上知,x∈[9,23].。
人教课标版高中数学选修4-5《绝对值不等式》章末回顾
第一讲绝对值不等式回顾一、思维导图二.例题例1 已知190,01x y x y >>+=,,求x y +的最小值.【知识点】基本不等式【解答过程】因为190,01x y x y >>+=,,所以199()1()()10y xx y x y x y x y x y+=+⋅=++=++1016≥+=,当且仅当9y xx y=,即4,12x y ==时,等号成立. 【思路点拨】在用基本不等式求最值时,“正数”“相等”等条件往往容易从题设中获得或验证,而“定值”则需要一定的技巧和方法.常用的方法有“加-项、减-项”“配系数”“拆项法”“1的代换”等. 【答案】16例2 解不等式|1||2|3x x x -+->+. 【知识点】含绝对值不等式的解法 【数学思想】零点分段法【解答过程】解:令|1|0x -=,得1x =;令|2|0x -=,得2x =. 这样,1,2的对应点把数轴分成了三个部分.(1)当1x <时,10x -<,20x ->,所以原不等式变为123x x x -+->+,解得0x <.所以0x <. (2)当12x ≤≤时,10x -≥,20x -≥,所以原不等式变为123x x x -+->+,解得2x <-.所以无解. (3)当2x >时,10x ->,20x -<,所以原不等式变为123x x x -+->+,解得6x >.所以6x >. 综上所示,原不等式的解集为(,0)(6,)-∞+∞.【思路点拨】绝对值三角不等式指的是||||||||||||a b a b a b -≤±≤+.这是一类特殊的不等式,它反映的是实数和与差的绝对值与绝对值的和差之间的关系,常用于解决最值问题、不等式恒成立问题及不等式的证明. 【答案】(,0)(6,)-∞+∞例3 已知关于x 的不等式|1||2|2x x ax -+->-解集为R ,求实数a 的取值范围. 【知识点】含绝对值不等式的解法;恒成立问题 【数学思想】数形结合法【解答过程】32,1|1||2|1,1223,2x x y x x x x x -<⎧⎪=-+-=≤≤⎨⎪->⎩,2y ax =-表示过(0,2)-的直线,由题意可知|1||2|y x x =-+-的图像在直线2y ax =-的上方,如图由图可知,3[2,)2a ∈-.【思路点拨】在应用零点分段法分类讨论时,要注意做到分类标准统一,分类方法既不重复又不遗漏,在应用平方法时,要注意同解变形.【答案】3[2,)2 a∈-三、检测题(一)选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求1.已知ac2>bc2,则下列不等式一定成立的是()A.a2>b2B.lg a>lg bC.1b>1a D.11()()33b a>【知识点】不等式的性质【解答过程】由ac2>bc2,得a>b(c≠0),显然,当a,b异号或其中一个为0时,A,B,C不正确.【思路点拨】利用不等式的性质验证【答案】D2.下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b-1C.a2>b2D.a3>b3【知识点】不等式性质、充分、必要条件【解答过程】由a>b+1,得a>b+1>b,即a>b,而由a>b不能得出a>b+1,因此,使a>b成立的充分不必要条件是a>b+1,选A.【思路点拨】根据不等式性质推导和充分、必要条件定义求解【答案】A3.若a>b,x>y,下列不等式不正确的是()A.a+x>b+yB.y-a<x-bC.|a|x>|a|yD.(a-b)x>(a-b)y【知识点】不等式性质【解答过程】对于A,两式相加可得a+x>b+y,A正确;对于B,a>b⇒-a<-b,与y<x相加得y-a<x-b,B正确;对于D,∵a-b>0,∴(a-b)x>(a-b)y,D正确;对于C,当a=0时,不等式不正确,故选C.【思路点拨】利用不等式的性质代入验证【答案】C4.关于x 的不等式5x 2-a ≤0的非负整数解是0,1,2,3,则实数a 的取值范围是( ) A.45≤a <80 B.50<a <80 C.a <80 D.a >45 【知识点】解不等式【解答过程】由5x 2-a ≤0,得-a5≤x ≤a5,而正整数解是1,2,3,则3≤a5<4,解得45≤a <80. 【思路点拨】熟练掌握常规不等式的解法 【答案】A5.若a ,b 为非零实数,那么不等式恒成立的是( )A.|a +b |>|a -b |B.a +b 2≥abC.2()2a b +≥ab D.b a +a b ≥2【知识点】均值不等式【解题过程】a ,b 为非零实数时,A ,B ,D 均不一定成立. 而2()2a b +-ab =2()2a b -≥0恒成立. 【思路点拨】利用不等式的基本性质,两式相减与0的大小关系比较 【答案】C6.在下列函数中,当x 取正数时,最小值为2的是( ) A.y =x +4x B.y =lg x +1lg x C.y =x 2+1+1x 2+1D.y =sin x +1sin x (0<x <π) 【知识点】均值不等式【解题过程】y =x +4x ≥24=4,A 错;当0<x ≤1时,lg x ≤0,B 错; 当x 2+1=1x 2+1时,x =0, ∴y =x 2+1+1x 2+1≥2此时等号取不到,C 错; y =sin x +1sin x ≥2,此时sin x =1,D 正确.【思路点拨】利用均值不等式的性质,注意“一正,二定,三取等”的验证 【答案】D7.不等式|2x -log 2x |<|2x |+|log 2x |的解为( )A.1<x <2B.0<x <1C.x >1D.x >2 【知识点】解绝对值不等式、对数函数【解题过程】由题意知⎩⎨⎧2x ·log 2x >0,x >0,∴log 2x >0,解得x >1,故选C.【思路点拨】熟练掌握常规不等式的解法 【答案】C8.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( ) A.2 B.3 C.6 D.9 【知识点】函数极值、均值不等式【解题思想】f ′(x )=12x 2-2ax -2b ,由f (x )在x =1处有极值,得f ′(1)=12-2a -2b =0,∴a +b =6.又a >0,b >0,∴ab ≤2()2a b +=9,当且仅当a =b =3时取到等号,故选D. 【思路点拨】根据极值的重要结论求解 【答案】D9.设a >b >c ,n ∈N ,且1a -b +1b -c ≥n a -c恒成立,则n 的最大值是( ) A.2 B.3 C.4 D.6 【知识点】均值不等式【解题过程】∵a -c a -b +a -c b -c =a -b +b -c a -b +a -b +b -c b -c =2+b -c a -b +a -b b -c ≥4,当且仅当b -ca -b =a -b b -c 时,取等号,∴1a -b +1b -c ≥4a -c ,而1a -b +1b -c ≥na -c 恒成立,得n ≤4. 【思路点拨】通过配凑,再利用均值不等式 【答案】C10.若0<x <12,则x 2(1-2x )有( ) A.最小值为127 B.最大值为127 C.最小值为13D.最大值为13【知识点】均值不等式【解题过程】x 2(1-2x )=x ·x (1-2x )≤3)321(x x x -++=127.当且仅当x =13时,等号成立.【思路点拨】通过分解使得能利用均值不等式求解 【答案】B11.关于x 的不等式|x -1|+|x -2|≤a 2+a +1的解集是空集,则a 的取值范围是( ) A.(0,1) B.(-1,0) C.(1,2) D.(-∞,-1) 【知识点】解绝对值不等式 【数学思想】化归与转化的思想【解题过程】|x -1|+|x -2|的最小值为1,故只需a 2+a +1<1,∴-1<a <0. 【思路点拨】转化为最值问题,再解不等式 【答案】B12.已知a 1>a 2>a 3>0,则使得(1-a i x )2<1(i =1,2,3)都成立的x 的取值范围是( ) A.11(0,)a B.12(0,)a C.31(0,)a D.32(0,)a 【知识点】解不等式【数学思想】化归与转化的思想【解题过程】由(1-a i x )2<1,得0<a i x <2.又a i >0,∴0<x <2a i对a i (i =1,2,3)恒成立,则x小于2a i 的最小值.又a 1>a 2>a 3,∴2a i 的最小值为2a 1,则x <2a 1.因此x 的取值范围为12(0,)a ,选B.【思路点拨】先解不等式,再转化为最值问题 【答案】B二、填空题:本大题共4小题,每小题5分,共20分.将答案填在题中的横线上 13.不等式|2x -1|-|x -2|<0的解集为________. 【知识点】解绝对值不等式【解题过程】|2x -1|-|x -2|<0,即|2x -1|<|x -2|,两边平方并整理得,x 2<1,解得-1<x <1,故解集为{x |-1<x <1}.【思路点拨】利用常规解不等式的解法求解 【答案】{x |-1<x <1}14.设x >0,y >0,且xy -(x +y )=1,则x +y 的取值范围为__________. 【知识点】均值不等式【解题过程】因为xy -(x +y )=1,且xy ≤x +y24,所以1=xy -(x +y )≤x +y 24-(x+y).设x+y=a,则a24-a-1≥0(a>0),则a≥2+22,即x+y≥22+2,故x+y的取值范围为[22+2,+∞).【思路点拨】利用均值不等式的性质,注意“一正,二定,三取等”的验证【答案】[22+2,+∞)15.不等式1()()ax yx y++≥9对任意正实数x,y恒成立,则正实数a的最小值为_________.【知识点】均值不等式的应用【解题过程】1()()ax yx y++=1+a+yx+xay≥1+a+2a,∴1+a+2a≥9,即a+2a-8≥0,故a≥4.【思路点拨】利用均值不等式的性质,注意“一正,二定,三取等”的验证【答案】416.设变量x,y满足|x|+|y|≤1,则x+2y的最大值和最小值分别为________.【知识点】绝对值不等式的应用【数学思想】数形结合【解题过程】如图,先画出不等式|x|+|y|≤1表示的平面区域,易知当直线x+2y=u经过点B,D时分别对应u的最大值和最小值,所以u max=2,u min=-2.【思路点拨】将不等式转化为平面区域,利用数形结合的思想求解【答案】2-2三、解答题:本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤17.(本小题满分10分)解不等式x+|2x-1|<3.【知识点】解绝对值不等式【数学思想】分类讨论【解题过程】法一:原不等式可化为⎩⎨⎧ 2x -1≥0,x +2x -1<3或⎩⎨⎧2x -1<0,x -2x -1<3.解得12≤x <43或-2<x <12. 所以原不等式的解集是4{|2}3x x -<<.法二:由于|2x -1|<3-x ,∴x -3<2x -1<3-x ,解得x >-2且x <43.∴原不等式的解集是4{|2}3x x -<<.【思路点拨】利用分类讨论的思想求解【答案】4{|2}3x x -<<18.(本小题满分12分)已知函数11()||||22f x x x =-++,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |. 【知识点】解绝对值不等式、不等式证明 【数学思想】分类讨论的思想【解题过程】(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1. 所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0.因此|a +b |<|1+ab |.【思路点拨】利用分类讨论的思想转化为一般不等式的求解【答案】(1)M ={x |-1<x <1};(2)见解析 19.(本小题满分12分)已知实数x ,y 满足:|x +y |<13,|2x -y |<16,求证:|y |<518. 【知识点】绝对值不等式【解题过程】因为3|y |=|3y |=|2(x +y )-(2x -y )|≤2|x +y |+|2x -y |, 由题设知|x +y |<13,|2x -y |<16,从而3|y |<23+16=56,所以|y |<518. 【思路点拨】利用绝对值的三角不等式 【答案】见解析 20.(本小题满分12分) 已知a 和b 是任意非零实数. (1)求|2a +b |+|2a -b ||a |的最小值;(2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,求实数x 的取值范围. 【知识点】绝对值不等式【解题过程】(1)∵|2a +b |+|2a -b |≥|2a +b +2a -b |=4|a |对于任意非零实数a 和b 恒成立, 当且仅当(2a +b )(2a -b )≥0时取等号, ∴|2a +b |+|2a -b ||a |的最小值等于4.(2)∵|2+x |+|2-x |≤|2a +b |+|2a -b ||a |恒成立,故|2+x |+|2-x |不大于|2a +b |+|2a -b ||a |的最小值.由(1)可知|2a +b |+|2a -b ||a |的最小值等于4.实数x 的取值范围即为不等式|2+x |+|2-x |≤4的解, 解不等式得-2≤x ≤2, ∴x 的取值范围是[-2,2].【思路点拨】利用绝对值的三角不等式求解 【答案】(1)最小值等于4;(2)[-2,2] 21.(本小题满分12分)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1时,且当x ∈1[,)22a -时,f (x )≤g (x ),求a 的取值范围.【知识点】绝对值不等式、恒成立问题 【数学思想】分类与整合思想 【解题过程】(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1,其图象如图所示,由图象可知,当且仅当x ∈(0,2)时,y <0,所以原不等式的解集是{x |0<x <2}.(2)当x ∈1[,)22a -时,f (x )=1+a ,不等式f (x )≤g (x )化为1+a ≤x +3,所以x ≥a -2对x ∈1[,)22a -都成立,故-a 2≥a -2,即a ≤43.从而a 的取值范围是4(1,]3-.【思路点拨】利用分类讨论的思想转化为一般不等式的求解【答案】(1){x |0<x <2};(2)4(1,]3-.22.(本小题满分12分)某小区要建一座八边形的休闲小区,如图1所示,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为200平方米的十字形地域.计划在正方形MNPQ 上建一座花坛,11 / 11 造价为每平方米4 200元,并在四周的四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为每平方米210元,再在四个空角上铺草坪,造价为每平方米80元.图1(1)设总造价为S 元,AD 长为x 米,试求S 关于x 的函数关系式;(2)当x 为何值时,S 取得最小值?并求出这个最小值.【知识点】均值不等式【解题过程】(1)设DQ =y 米,又AD =x 米,故x 2+4xy =200,即y =200-x 24x . 依题意,得S =4 200x 2+210×4xy +80×2y 2=4 200x 2+210(200-x 2)+16022200()4x x=38 000+4 000x 2+400 000x 2.依题意x >0,且y =200-x 24x >0,∴0<x <10 2.故所求函数为S =38 000+4 000x 2+400 000x 2,x ∈(0,102). (2)因为x >0,所以S ≥38 000+2 4 000x 2·400 000x 2=118 000,当且仅当4 000x 2=400 000x 2, 即x =10时取等号.∴当x =10∈(0,102)时,S min =118 000元.故AD =10米时,S 有最小值118 000元.【思路点拨】将实际问题转抽象为数学问题,利用均值不等式求最值【答案】(1)S =38 000+4 000x 2+400 000x 2,x ∈(0,102)(2)当x =10∈时,S min =118000元。
含多个绝对值的不等式的解法(人教A版选修4-5)
小结2:函数图像法解题步骤
1.构造函数 2.分段讨论去掉绝对值符号,写成分段函数 3.画出函数图像 4.观察图像,结合函数零点及不等号写出解集
小结3:利用绝对值的几何意义,先找边界值,再结合 数轴观察求解
变 式 训 练
三、自主练习
1.解不等式|x-1|+|x-2|>5.
解析:方法一 分类讨论|x-1|=0.|x-2|=0的根1,2 把数轴分成三个区间.在这三个区间上,根据绝对值的定 义.代数式|x-1|+|x-2|有不同的解析表达式,因而原不 等式的解集为以下三个不等式组解集的并集.
(1)因为在x≤1的限制条件之下:
|x-1|+|x-2|=1-x+2-x=3-2x,所以当x≤1时,
|x-1|+|x-2|>5⇔3-2x>5⇔2x<-2⇔x<-1.
变 式 训 练
x≤1, 因此不等式组 的解集为(-∞,-1). |x-1|+|x-2|>5
(2)因为在 1<x<2 的限制条件之下: |x-1|+|x-2|=x-1+2-x=1. 所以当 1<x<2 时.不等式|x-1|+|x-2|>5 无解. 1<x<2, 因此不等式组 的解集为∅. |x-1|+|x-2|>5 (3)由于在 x≥2 的限制条件之下: |x-1|+|x-2|=x-1+x-2=2x-3, 所以当 x≥2 时,|x-1|+|x-2|>5⇔2x-3>5⇔ a 0 a 0 a a 0
• 3.解绝对值不等式的关键是 • 4.去绝对值的常用方法有
二、新课教学
例1 解不等式|x+1|+|x-1|≥3.
小结1:零点分段讨论法的解题步骤 1.求零点,即求使各绝对值等于零的值,并按顺序标 在数轴上,划分区间 2.分区间讨论,去掉绝对值符号并解不等式(组), 得到每一区间上的解集 3.求每一区间所得解集的并集,即为原不等式的解集
人教A版高中数学选修4-5绝对值不等式的练习
高中数学学习材料(灿若寒星 精心整理制作)高二年级(下)数学练习绝对值不等式制作人:岳双珊 审核人:张艳芬 时间 2013.031.设,,1x y R x y ∈+>则使成立的充分不必要条件是( ) A.1x y +≥ B.1122x y >>或 C.1x ≥ D.1-<x 2.不等式220x x -++<的解集是( )A.{}|22x x -<<B.{}|22x x x <->或C.{}|11x x -<<D.{}|11x x x <->或3.设a 、b 、c 是互不相等的正数,现给出下列不等式 ⑴c b c a b a -+-≤-;⑵221a a +aa 1+≥;⑶21≥-+-b a b a ;⑷a a a a -+≤+-+213,则其中正确个数是( ) A . 0B . 1C . 2D . 3 4.已知函数1(),()12x x f x g x x +==+,若()()f x gx >,则实数x 的取值范围是( )A .(,1)(0,1)-∞-B .15(,1)(0,)2-+-∞-C. 15(1,0)(,)2-+-+∞D .15(1,0)(0,)2-+- 5.若不等式+a 21x x -≥2log 2x 在)2,21(∈x 上恒成立,则a 的取值范围为 . 6.不等式1||40x a x+-+>对于一切非零实数x 均成立,则实数a 的取值范围是 7.解关于x 的不等式|log (1)||log (1)|a a x x ->+(a >0且a ≠1).8.设450≤<a ,若满足不等式b a x <-的 一切实数x ,亦满足不等式212<-a x , 求正实数b 的取值范围。
9.设函数313)(++-=ax x x f ,(Ⅰ)若1=a ,解不等式5)(≤x f ;(Ⅱ)若函数)(x f 有最小值,求实数a 的取值范围.10.已知函数52)(---=x x x f(1)证明:3)(3≤≤-x f ; (2)求不等式:158)(2+-≥x x x f 的解集.。
高中数学课时跟踪检测(五)绝对值不等式的解法(含解析)新人教A版选修45
高中数学课时跟踪检测(五)绝对值不等式的解法(含解析)新人教A 版选修451.若不等式|ax +2|<6的解集为(-1,2),则实数a 的取值为( )A .8B .2C .-4D .-8解析:选C 原不等式化为-6<ax +2<6,即-8<ax <4.又∵-1<x <2,∴验证选项易知a =-4适合.2.不等式⎪⎪⎪⎪⎪⎪x 2-x >x 2-x的解集是( ) A .{x |0<x <2} B .{x |x <0或x >2}C .{x |x <0}D .{x |x >2} 解析:选B 由⎪⎪⎪⎪⎪⎪x 2-x >x 2-x,可知x 2-x <0, ∴x <0或x >2. 3.若关于x 的不等式|x +1|≥kx 恒成立,则实数k 的取值范围是( )A .(-∞,0]B .[-1,0]C .[0,1]D .[0,+∞)解析:选C 作出y =|x +1|与l 1:y =kx 的图象如图所示,当k <0时,直线一定经过第二、四象限,从图看出明显不恒成立;当k=0时,直线为x 轴,符合题意;当k >0时,要使|x +1|≥kx 恒成立,只需k ≤1.综上可知k ∈[0,1].4.如果关于x 的不等式|x -a |+|x +4|≥1的解集是全体实数,则实数a 的取值范围是( )A .(-∞,3]∪[5,+∞)B .[-5,-3]C .[3,5]D .(-∞,-5]∪[-3,+∞)解析:选D 在数轴上,结合绝对值的几何意义可知a ≤-5或a ≥-3.5.不等式|x +2|≥|x |的解集是________.解析:∵不等式两边是非负实数,所以不等式两边可以平方,两边平方得(x +2)2≥x 2, ∴x 2+4x +4≥x 2.即x ≥-1.∴原不等式的解集为{x |x ≥-1}.答案:{x |x ≥-1}6.不等式|2x -1|-x <1的解集是__________.解析:原不等式等价于|2x -1|<x +1⇔-x -1<2x -1<x +1⇔⎩⎪⎨⎪⎧ 3x >0,x <2⇔0<x <2.答案:{x |0<x <2}7.若关于x 的不等式|x +2|+|x -1|<a 的解集为∅,则a 的取值范围为________. 解析:法一:由|x +2|+|x -1|=|x +2|+|1-x |≥|x +2+1-x |=3,知a ≤3时,原不等式无解.法二:数轴上任一点到-2与1的距离之和最小值为3.所以当a ≤3时,原不等式的解集为∅.答案:(-∞,3]8.解不等式|2x -4|-|3x +9|<1.解:(1)当x >2时,原不等式可化为⎩⎪⎨⎪⎧x >2,2x -4-3x +9<1,解得x >2. (2)当-3≤x ≤2时,原不等式可化为⎩⎪⎨⎪⎧ -3≤x ≤2,-2x -4-3x +9<1,解得-65<x ≤2. (3)当x <-3时,原不等式可化为⎩⎪⎨⎪⎧ x <-3,-2x -4+3x +9<1,解得x <-12. 综上所述,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <-12或x >-65. 9.已知函数f (x )=|x -2|-|x +1|.(1)解不等式f (x )>1;(2)当x >0时,函数g (x )=ax 2-x +1x(a >0)的最小值大于函数f (x ),试求实数a 的取值范围.解:(1)当x >2时,原不等式可化为x -2-x -1>1,解集为∅.当-1≤x ≤2时,原不等式可化为2-x -x -1>1,即-1≤x <0;当x <-1时,原不等式可化为2-x +x +1>1,即x <-1.综上,原不等式的解集是{x |x <0}.(2)因为g (x )=ax +1x-1≥2a -1,当且仅当x =a a时等号成立,所以g (x )min =2a -1, 当x >0时,f (x )=⎩⎪⎨⎪⎧ 1-2x ,0<x ≤2,-3,x >2,所以f (x )∈[-3,1), 所以2a -1≥1,即a ≥1,故实数a 的取值范围是[1,+∞).10.已知f (x )=|ax -2|+|ax -a |(a >0).(1)当a =1时,求f (x )≥x 的解集;(2)若不存在实数x ,使f (x )<3成立,求a 的取值范围.解:(1)当a =1时,f (x )=|x -2|+|x -1|≥x ,当x ≥2时,原不等式可转化为x -2+x -1≥x ,解得x ≥3;当1<x <2时,原不等式可转化为2-x +x -1≥x ,解得x ≤1,∴x ∈∅; 当x ≤1时,原不等式可转化为2-x +1-x ≥x ,解得x ≤1.综上可得,f (x )≥x 的解集为{x |x ≤1或x ≥3}.(2)依题意,对∀x ∈R ,都有f (x )≥3,则f (x )=|ax -2|+|ax -a |≥|(ax -2)-(ax -a )|=|a -2|≥3, ∴a -2≥3或a -2≤-3,∴a ≥5或a ≤-1(舍去),∴a 的取值范围是[5,+∞).。
2016-2017学年高中数学 课时跟踪检测(四)绝对值三角不等式 新人教A版选修4-5
课时跟踪检测(四) 绝对值三角不等式1.对于|a|-|b|≤|a+b|≤|a|+|b|,下列结论正确的是( )A.当a,b异号时,左边等号成立B.当a,b同号时,右边等号成立C.当a+b=0时,两边等号均成立D.当a+b>0时,右边等号成立;当a+b<0时,左边等号成立解析:选B 当a,b异号且|a|>|b|时左边等号才成立,A不正确,显然B正确;当a +b=0时,右边等号不成立,C不正确,D显然不正确.2.不等式|a+b||a|+|b|<1成立的充要条件是( )A.a,b都不为零B.ab<0C.ab为非负数D.a,b中至少有一个不为零解析:选B 原不等式即为|a+b|<|a|+|b|⇔a2+b2+2ab<a2+b2+2|ab|⇔ab<0.3.已知a,b,c∈R,且a>b>c,则有( )A.|a|>|b|>|c| B.|ab|>|bc|C.|a+b|>|b+c| D.|a-c|>|a-b|解析:选D ∵a,b,c∈R,且a>b>c,令a=2,b=1,c=-6.∴|a|=2,|b|=1,|c|=6,|b|<|a|<|c|,故排除A.又|ab|=2,|bc|=6,|ab|<|bc|,故排除B.又|a+b|=3,|b+c|=5,|a+b|<|b+c|,排除C.而|a-c|=|2-(-6)|=8,|a-b|=1,∴|a-c|>|a-b|.4.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是( )A.|a+b|+|a-b|>2B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2D.不可能比较大小解析:选B 当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2.当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.5.(陕西高考)若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.解析:|x-a|+|x-1|≥|a-1|,则只需要|a-1|≤3,解得-2≤a≤4.答案:[-2,4]6.设a ,b ∈R ,|a -b |>2,则关于实数x 的不等式|x -a |+|x -b |>2的解集是________. 解析:∵|x -a |+|x -b |=|a -x |+|x -b |≥|(a -x )+(x -b )|=|a -b |>2, ∴|x -a |+|x -b |>2对x ∈R 恒成立,故解集为(-∞,+∞).答案:(-∞,+∞)7.下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0); ④|x -1|+|x -2|≥1.其中恒成立的是______(把你认为正确的序号都填上).解析:log x 10+lg x =1lg x+lg x ≥2,①正确;ab ≤0时,|a -b |=|a |+|b |,②不正确;∵ab ≠0时,b a 与a b同号, ∴⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知|x -1|+|x -2|≥1恒成立,④正确.综上可知①③④正确.答案:①③④8.已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1. 证明:|x +5y |=|3(x +y )-2(x -y )|.由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )|=3|x +y |+2|x -y |≤3×16+2×14=1,即|x +5y |≤1. 9.设f (x )=x 2-x +b ,|x -a |<1,求证:|f (x )-f (a )|<2(|a |+1).证明:∵f (x )-f (a )=x 2-x -a 2+a =(x -a )(x +a -1),|f (x )-f (a )|=|(x -a )(x +a -1)|=|x -a ||x +a -1|<|x +a -1|=|(x -a )+2a -1|≤|x -a |+|2a -1|≤|x -a |+2|a |+1<2|a |+2=2(|a |+1),∴|f (x )-f (a )|<2(|a |+1).10.设函数y=|x-4|+|x-3|.求:(1)y的最小值;(2)使y<a有解的a的取值范围;(3)使y≥a恒成立的a的最大值.解:(1)y=|x-4|+|x-3|=|x-4|+|3-x|≥|(x-4)+(3-x)|=1,∴y min=1.(2)由(1)知y≥1,要使y<a有解,∴a>1,即a的取值范围为(1,+∞).(3)要使y≥a恒成立,只要y的最小值1≥a即可,∴a max=1.。
人教版高中数学高二选修4-5课时作业1-5绝对值不等式
课时作业5一、选择题1.a<0时,|x|≤a的解集为()A.{x|x≤±a} B.{x|-a≤x≤a}C.{x|x≤-a或x≥a} D.∅D2.|x-2|≥0的解集为()A.{x|-2≤x≤2} B.{x|x≥2或x<-2}C.{x|x∈R且x≠2} D.RD3.已知集合A={x|x2-5x+6≤0},B={x||2x-1|>3},则A∩B 等于()A.{x|2≤x≤3} B.{x|2≤x<3}C.{x|2<x≤3} D.{x|-1<x<3}A={x|2≤x≤3},B={x|x>2或x<-1}.∴A∩B={x|2<x≤3}.C4.不等式|2x2-1|≤1的解集为()A.{x|-1≤x≤1} B.{x|-2≤x≤2}C.{x|0≤x≤2} D.{x|-2≤x≤0}|2x2-1|≤1⇔-1≤2x2-1≤1⇔0≤2x2≤2⇔0≤x2≤1⇔-1≤x≤1.A5.已知集合M ={x ||x -1|≤2,x ∈R},P ={x |5x +1≥1,x ∈Z},则M ∩P 等于( )A .{x |0<x ≤3,x ∈Z}B .{x |0≤x ≤3,x ∈Z}C .{x |-1≤x ≤0,x ∈Z}D .{x |-1≤x <0,x ∈Z} M ={x |-1≤x ≤3,x ∈R},P ={x |-1<x ≤4,x ∈Z}.B6.不等式|x -1|+|x +2|<5的解集是( ) A .{x |-3<x <2} B .{x |-1<x <2} C .{x |-2<x <1} D .{x |-32<x <72}由绝对值的几何意义,|x -1|+|x +2|表示数轴上与-2和1的距离之和.由图知满足题意的点在(-3,2)内,故选A. A7.不等式3≤|5-2x |<9的解集为( ) A .[-2,1)∪[4,7)B .(-2,1]∪(4,7]C .(-2,-1]∪[4,7)D .(-2,1]∪[4,7)⎩⎨⎧|2x -5|<9,|2x -5|≥3⇒⎩⎨⎧-9<2x -5<9,2x -5≥3,或2x -5≤-3⇒⎩⎨⎧-2<x <7,x ≥4,或x ≤1,得(-2,1]∪[4,7).D8.对任意实数x ,若不等式|x +1|-|x -2|>k 恒成立,则k 的取值范围是( )A .k <3B .k <-3C .k ≤3D .k ≤-3方法1:(1)⎩⎨⎧x ≤-1,-(x +1)+(x -2)>k或(2)⎩⎨⎧ -1<x <2,x +1+(x -2)>k ,或(3)⎩⎨⎧x ≥2,(x +1)-(x -2)>k .由(1)得k <-3.由(2)得-1<x <2时,k <2x -1. 而2x -1∈(-3,3).由(3)得k <3. 依题意,要对任意x 都使该不等式成立, ∴k <-3时,(1)(2)(3)都可以满足.故选B.方法2:根据绝对值的几何意义,|x +1|可看做点x 到点-1的距离,|x -2|可看做点x 到点2的距离,因此|x +1|-|x -2|即为数轴上任一点x 到点-1的距离与到点2的距离的差,记作(*),要使它大于k 恒成立就要讨论点x 的位置.(1)当点x 在点-1左侧时,如图中的点R ,则(*)恒为-3.(2)当点x 在点2右侧时,如图中的点T ,则(*)恒为3. (3)当点-1≤x ≤2时,如图中的点S ,则-3≤(*)≤3. 由(1)(2)(3)可知,无论x 为任何实数,(*)的范围是-3≤(*)≤3. 因此,若使|x +1|-|x -2|>k ,只需k <-3. 方法3:令y =|x +1|-|x -2|, 则y =⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.在直角坐标系下作出其图象(如图所示).由图象得到-3≤y =|x +1|-|x -2|≤3.以下同方法2. B 二、填空题9.不等式4<|3x -2|<8的解集为__________.本题是由两个绝对值不等式构成的不等式组,可分别解出其解集,然后取交集即可.方法1:由4<|3x -2|<8,得⎩⎨⎧|3x -2|>4,|3x -2|<8⇒⎩⎨⎧3x -2<-4或3x -2>4,-8<3x -2<8⇒⎩⎪⎨⎪⎧x <-23或x >2,-2<x <103.∴-2<x <-23或2<x <103.∴原不等式的解集为{x |-2<x <-23或2<x <103}.方法2:由4<|3x -2|<8,得 4<3x -2<8或-8<3x -2<-4. 解之得2<x <103或-2<x <-23.∴原不等式的解集为{x |2<x <103或-2<x <-23}.{x |2<x <103或-2<x <-23}10.(2010·陕西)不等式|x +3|-|x -2|≥3的解集为__________. 当x ≥2时,原不等式可化为(x +3)-(x -2)≥3,即5≥3,所以此时x ≥2;当-3<x <2时,原不等式可化为(x +3)+(x -2)≥3, 即2x +1≥3,即x ≥1,所以此时1≤x <2;当x ≤-3时,原不等式可化为-(x +3)+(x -2)≥3, 即-5≥3,此时无解.综上可知,原不等式的解集为{x |x ≥1}. {x |x ≥1}11.不等式|x +2|≥|x |的解集是__________. |x +2|2≥|x |2,(x +2)2≥x 2,x ≥-1. {x |x ≥-1}12.x 2-2|x |-15>0的解集是__________. ∵x 2-2|x |-15>0,∴|x |2-2|x |-15>0, ∴|x |>5或|x |<-3(舍去),∴x <-5或x >5. (-∞,-5)∪(5,+∞)三、解答题13.解不等式:|x -1|+|2-x |>3+x . 原不等式⇔|x -1|+|x -2|>x +3. 令x -1=0,x -2=0,得x =1,x =2. ①当x ≤1时,原不等式⇔⎩⎨⎧x ≤1,-(x -1)-(x -2)>3+x⇔⎩⎨⎧x ≤1,x <0⇔x <0.②当1<x ≤2时,原不等式⇔⎩⎨⎧1<x ≤2,x -1-(x -2)>x +3⇔x ∈∅.③当x >2时,原不等式⇔⎩⎨⎧x >2,x -1+x -2>x +3,解得x >6.将以上三种结果求并集,得原不等式的解集为 {x |x <0,或x >6}.14.解不等式|x -x 2-2|>x 2-3x -4. 方法1:原不等式等价于x -x 2-2>x 2-3x -4或x -x 2-2<-(x 2-3x -4). ∴原不等式的解集为{x |x >-3}. 方法2:∵|x -x 2-2|=|x 2-x +2|, 而x 2-x +2=(x -12)2+74>0,∴|x -x 2-2|=|x 2-x +2|=x 2-x +2, 故原不等式等价于x 2-x +2>x 2-3x -4. ∴x >-3.∴原不等式的解集为{x |x >-3}. 15.解不等式|2x +1|+|x -2|+|x -1|>4.当x ≤-12时,原不等式化为:-2x -1+2-x +1-x >4,∴x<-12.当-12<x ≤1时,原不等式化为:2x +1+2-x +1-x >4,4>4,矛盾.当1<x ≤2时,原不等式化为;2x +1+2-x +x -1>4, ∴x >1. 又1<x ≤2, ∴1<x ≤2.当x >2时,原不等式化为:2x +1+x -2+x -1>4, ∴x >32.又x >2,∴x >2.综上所述,原不等式的解集为{x |x <-12,或x >1}.16.解关于x 的不等式|x -1x +a |<1.方法1:原不等式可以化为|x -1x +a|<1⇔-1<x -1x +a <1⇔⎩⎪⎨⎪⎧ x -1x +a >-1,x -1x +a <1⇔⎩⎪⎨⎪⎧2x -(1-a )x +a >0, ①a +1x +a >0. ②(1)当a +1>0时,由①得x >1-a2,由②得x >-a .又1-a 2>-a ,∴x >1-a 2,∴原不等式的解集为{x |x >1-a 2}.(2)当a +1=0时,②无解. ∴原不等式的解集为∅.(3)当a +1<0时,由②得x <-a ,由①得x <1-a2.又1-a 2<-a ,∴x <1-a 2.综上(1)当a >-1时,原不等式的解集为{x |x >1-a 2};(2)当a =-1时,原不等式的解集为∅;(3)当a <-1时,原不等式的解集为{x |x <1-a2}.方法2:原不等式化为|x -1|<|x +a |. 两边平方得x 2-2x +1<x 2+2ax +a 2, 即2(a +1)x >1-a 2,当a +1>0即a >-1时,2(a +1)x >(1+a )(1-a ), ∴x >1-a 2.当a +1=0即a =-1时,0·x >0,无解.当a +1<0即a <-1时,2(a +1)x >(1+a )(1-a ). ∴x <1-a 2.综上,当a >-1时,原不等式的解集为{x |x >1-a2};当a =-1时,原不等式的解集为∅;当a <-1时,原不等式的解集为{x |x <1-a2}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(五) 绝对值不等式的解法
1.不等式|x +1|>3的解集是( )
A .{x |x <-4或x >2}
B .{x |-4<x <2}
C .{x |x <-4或x ≥2}
D .{x |-4≤x <2}
解析:选A |x +1|>3,则x +1>3或x +1<-3,因此x <-4或x >2.
2.满足不等式|x +1|+|x +2|<5的所有实数解的集合是( )
A .(-3,2)
B .(-1,3)
C .(-4,1) D.⎝⎛⎭
⎫-32,72 解析:选C |x +1|+|x +2|表示数轴上一点到-2,-1两点的距离和,根据-2,-1之间的距离为1,可得到-2,-1距离和为5的点是-4,1.因此|x +1|+|x +2|<5解集是(-4,1).
3.不等式1≤|2x -1|<2的解集为( )
A.⎝⎛⎭⎫-12,0∪⎣⎡⎦⎤1,32
B.⎝⎛⎦⎤-12,0∪⎣⎡⎦
⎤1,32 C.⎝⎛⎦⎤-12,0∪⎝⎛⎦⎤1,32 D.⎝⎛⎦⎤-12,0∪⎣⎡⎭
⎫1,32 解析:选D 由1≤|2x -1|<2,得1≤2x -1<2或-2<2x -1≤-1,因此-12
<x ≤0或1≤x <32
. 4.若关于x 的不等式|x -1|+|x +m |>3的解集为R ,则实数m 的取值范围是( )
A .(-∞,-4)∪(2,+∞)
B .(-∞,-4)∪(1,+∞)
C .(-4,2)
D .[-4,1]
解析:选A 由题意知,不等式|x -1|+|x +m |>3恒成立,即函数f (x )=|x -1|+|x +m |的最小值大于3,根据绝对值不等式的性质可得|x -1|+|x +m |≥|(x -1)-(x +m )|=|m +1|,故只要满足|m +1|>3即可,所以m +1>3或m +1<-3,解得m >2或m <-4,故实数m 的取值范围是(-∞,-4)∪(2,+∞).
5.不等式|x +2|≥|x |的解集是________.
解析:∵不等式两边是非负实数,∴不等式两边可以平方,两边平方,得(x +2)2≥x 2, ∴x 2+4x +4≥x 2,即x ≥-1,
∴原不等式的解集为{x |x ≥-1}.
答案:{x |x ≥-1}
6.不等式|2x -1|-x <1的解集是__________.
解析:原不等式等价于|2x -1|<x +1⇔-x -1<2x -1<x +1⇔⎩⎪⎨⎪⎧
3x >0,x <2⇔0<x <2. 答案:{x |0<x <2}
7.已知函数f (x )=|x +1|+|x -2|-|a 2-2a |,若函数f (x )的图象恒在x 轴上方,则实数a 的取值范围为________.
解析:因为|x +1|+|x -2|≥|x +1-(x -2)|=3,
所以f (x )的最小值为3-|a 2-2a |.
由题意,得|a 2-2a |<3,解得-1<a <3.
答案:(-1,3)
8.解不等式:|x 2-2x +3|<|3x -1|.
解:原不等式⇔(x 2-2x +3)2<(3x -1)2
⇔[(x 2-2x +3)+(3x -1)][(x 2-2x +3)-(3x -1)]<0
⇔(x 2+x +2)(x 2-5x +4)<0
⇔x 2-5x +4<0(因为x 2+x +2恒大于0)⇔1<x <4.
所以原不等式的解集是{x |1<x <4}.
9.解关于x 的不等式|2x -1|<2m -1(m ∈R).
解:若2m -1<0,即m ≤12
,则|2x -1|<2m -1恒不成立,此时,原不等式无解;若2m -1>0,即m >12
, 则-(2m -1)<2x -1<2m -1,
所以1-m <x <m .
综上所述:
当m ≤12
时,原不等式的解集为∅; 当m >12
时,原不等式的解集为{x |1-m <x <m }.
10.已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.
(1)当a =-2时,求不等式f (x )<g (x )的解集;
(2)设a >-1,且当x ∈⎣⎡⎭
⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围. 解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.
设函数y =|2x -1|+|2x -2|-x -3,则
y =⎩⎪⎨⎪⎧ -5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.
其图象如图所示.
从图象可知,当且仅当x ∈(0,2)时,y <0, 所以原不等式的解集是{x |0<x <2}.
(2)当x ∈⎣⎡⎭
⎫-a 2,12时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3,
所以x ≥a -2对x ∈⎣⎡⎭
⎫-a 2,12都成立. 故-a 2≥a -2,即a ≤43
. 从而a 的取值范围是⎝
⎛⎦⎤-1,43.。