第1章双极型半导体

合集下载

半导体物理与器件(尼曼第四版)答案

半导体物理与器件(尼曼第四版)答案

半导体物理与器件(尼曼第四版)答案第一章:半导体材料与晶体1.1 半导体材料的基本特性半导体材料是一种介于导体和绝缘体之间的材料。

它的基本特性包括:1.带隙:半导体材料的价带与导带之间存在一个禁带或带隙,是电子在能量上所能占据的禁止区域。

2.拉伸系统:半导体材料的结构是由原子或分子构成的晶格结构,其中的原子或分子以确定的方式排列。

3.载流子:在半导体中,存在两种载流子,即自由电子和空穴。

自由电子是在导带上的,在外加电场存在的情况下能够自由移动的电子。

空穴是在价带上的,当一个价带上的电子从该位置离开时,会留下一个类似电子的空位,空穴可以看作电子离开后的痕迹。

4.掺杂:为了改变半导体材料的导电性能,通常会对其进行掺杂。

掺杂是将少量元素添加到半导体材料中,以改变载流子浓度和导电性质。

1.2 半导体材料的结构与晶体缺陷半导体材料的结构包括晶体结构和非晶态结构。

晶体结构是指材料具有有序的周期性排列的结构,而非晶态结构是指无序排列的结构。

晶体结构的特点包括:1.晶体结构的基本单位是晶胞,晶胞在三维空间中重复排列。

2.晶格常数是晶胞边长的倍数,用于描述晶格的大小。

3.晶体结构可分为离子晶体、共价晶体和金属晶体等不同类型。

晶体结构中可能存在各种晶体缺陷,包括:1.点缺陷:晶体中原子位置的缺陷,主要包括实际缺陷和自间隙缺陷两种类型。

2.线缺陷:晶体中存在的晶面上或晶内的线状缺陷,主要包括位错和脆性断裂两种类型。

3.面缺陷:晶体中存在的晶面上的缺陷,主要包括晶面位错和穿孔两种类型。

1.3 半导体制备与加工半导体制备与加工是指将半导体材料制备成具有特定电性能的器件的过程。

它包括晶体生长、掺杂、薄膜制备和微电子加工等步骤。

晶体生长是将半导体材料从溶液或气相中生长出来的过程。

常用的晶体生长方法包括液相外延法、分子束外延法和气相外延法等。

掺杂是为了改变半导体材料的导电性能,通常会对其进行掺杂。

常用的掺杂方法包括扩散法、离子注入和分子束外延法等。

半导体基础知识

半导体基础知识
D
G
S 图 P 沟道结型场效应管结构图
S 符号
二、工作原理
N 沟道结型场效应管用改变 UGS 大小来控制漏极电
流 ID 的。
耗尽层
D 漏极
*在栅极和源极之间
加反向电压,耗尽层会变
栅极
G
N
P+ 型 P+
沟 道
N
S 源极
宽,导电沟道宽度减小, 使沟道本身的电阻值增大, 漏极电流 ID 减小,反之, 漏极 ID 电流将增加。
e
e
图 三极管中的两个 PN 结
c
三极管内部结构要求:
N
b
PP
NN
1. 发射区高掺杂。
2. 基区做得很薄。通常只有 几微米到几十微米,而且掺杂较 少。
3. 集电结面积大。
e
三极管放大的外部条件:外加电源的极性应使发射 结处于正向偏置状态,而集电结处于反向偏置状态。
三极管中载流子运动过程
c
Rc
IB
I / mA
60
40 死区 20 电压
0 0.4 0.8 U / V
正向特性
2. 反向特性 二极管加反向电压,反 向电流很小; 当电压超过零点几伏后, 反向电流不随电压增加而增
I / mA
–50 –25
0U / V
击穿 – 0.02 电压 U(BR) – 0.04
反向饱 和电流
大,即饱和;
反向特性
常用的 5 价杂质元素有磷、锑、砷等。
+4
+4
+4
自由电子
+4
+45
+4
施主原子
+4
+4

第一章半导体器件的特性讲解

第一章半导体器件的特性讲解
第一章 半导体器件的 特性
主要内容及要求
1.1 半导体的导电特性 1.2 PN结 1.3 二极管 1.4 双极型晶体管(BJT) 1.5 场效应管(FET)
基础,必须掌握: 基本概念,原理, 特征曲线、参数, 应用等。
了解原理,掌握特 征曲线、参数。
1.1 半导体的导电特性
半导体材料:
物质根据其导电能力(电阻率)的不同,可划分 导体、绝缘体和半导体。 -4 导 体:ρ<10 Ω·cm 9 绝缘体:ρ>10 Ω·cm 半导体:导电性能介于导体和绝缘体之间。 典型的元素半导体有硅Si和锗Ge ,此外,还有 化合物半导体砷化镓GaAs等。
1.5 场效应管
二、工作原理
VDS=0时, VGS 对沟道的控制作用
当VGS<0时, PN结反偏,| VGS | 耗尽层加厚沟道变窄。 VGS继续 减小,沟道继续变窄,当沟道夹断时, 对应的栅源电压VGS称为夹断电压VP ( 或VGS(off) )。 对于N沟道的JFET,VP <0。 若在漏源极间加上适当电压,沟道中有 电流ID流过。 VGS=0时,ID较大; VGS=VGS(off)时,ID近似为零, 这时管子截止。
1.5 场效应管
特点:
利用输入回路的电场效应控制输出回路的电流;仅靠半导体 中的多数载流子导电(单极型晶体管);输入阻抗高 (107~1012),噪声低,热稳定性好,抗辐射能力强,功 耗小。
分类:
1.5 场效应管
1.5.1结型场效应管 一、结构
N沟道结型场效应管结构示意图
N沟道管符号
P沟道管符号
晶体管结构示意图
晶体管符号
1.4 双极型晶体管
生成类型:合金型和平面型
要实现电流放大作用,要求: 发射区掺杂浓度高; 基区薄且掺杂浓度低; 集电结面积大。

模拟电子技术基础简明教程-(第三版)第一章

模拟电子技术基础简明教程-(第三版)第一章

(a)外形图
21
(b)符号
第二节 半导体二极管
半导体二极管的类型: 按半导体材料分:有硅二极管、锗二极管等。 按 PN 结结构分:有点接触型和面接触型二极管。 点接触型管子中不允许通过较大的电流,因结电容
小,可在高频下工作。 面接触型二极管 PN 结的面积大,允许流过的电流
大,但只能在较低频率下工作。 按用途划分:有整流二极管、检波二极管、稳压
O
U
图 1.2.8
30
第二节 半导体二极管
2. 扩散电容 Cd
P区 耗 尽 层 N 区
是由多数载流子在扩散过程中积累而引起的。+ I
V P 区中电子
- R
N 区中空穴
浓 度 分布
浓 度 分布
x
Ln
Lp
在某个正向电压下,P 区中的电子浓度 np(或 N
区的空穴浓度 pn)分布曲线如图中曲线 1 所示。
路中反向电流非常小,几乎等于零, PN 结处
于截止状态。
PN 结具有单向导电性。
正向偏置:
电源正极接P区,负极接N区,即“P正N负” 反向偏置:
电源正极接N区2,0 负极接P区,即“P负N正”
第二节 半导体二极管
2 二极管的伏安特性
半导体二极管又称晶体二极管。 二极管的结构: 将 PN 结封装在塑料、玻璃或金属外壳里,再 从 P 区和 N 区分别焊出两根引线作正、负极。
28
第二节 半导体二极管
二极管的电容效应
当二极管上的电压发生变化时,PN 结中储存的 电荷量将随之发生变化,使二极管具有电容效应。
电容效应包括两部分 势垒电容 扩散电容
1. 势垒电容
是由 PN 结的空间电荷区变化形成的。

半导体原理

半导体原理

U
反向击穿电 压U(BR)
(1-46)
1.2.3 二极管的主要参数
(1) 最大整流电流IF
(2) 反向击穿电压VBR和最大反向工作电压VRM
(3) 反向电流IR
(4) 最高工作频率 fM
(1-47)
补充参数: (5)最大整流电流 IOM
(电信专业)
二极管长期使用时,允许流过二极管的最大正 向平均电流。 ——注意与IF的关系 (6) 正向压降VF
D/V
0.2 0.4 0.6
VBR
D/V

Vth
反向击穿特性

40
iD/ A
iD/ A
硅二极管2CP10的V-I 特性
锗二极管2AP15的V-I 特性
(1-45)
温度对伏安特性的影响
I
I Is(e
qu kT
1)
( 1.1.2 )
死区电压 硅管 0.6V,锗管0.2V。
导通压降: 硅 管0.6~0.7V,锗 管0.2~0.3V。
扩散运动
(1-24)
电位V
V0
P型区
空间 电荷 区
N型区
(1-25)
请注意
1、空间电荷区中没有载流子。
2、空间电荷区中内电场阻碍P中的空穴、 N中的电子(都是多子)向对方运动 (扩散运动)。
3、P中的电子和N中的空穴(都是少子), 数量有限,因此由它们形成的电流很 小。
(1-26)
二. PN结的单向导电性
二极管的伏安特性曲线可用下式表示
R
iD + vD -
iD I S (e vD / VT 1)
iD/mA
20 15 10
iD/mA

电子技术基础(电工Ⅱ)李春茂主编_机械工业出版社_课后习题答案

电子技术基础(电工Ⅱ)李春茂主编_机械工业出版社_课后习题答案

1-9 有 A、B、C 3 只晶体管,测得各管的有关参数与电流如题表 1-2 所示,试填写表中空白的栏目。
表 1-2 题 1-9 表
电流参数
管号
iE / mA iC / mA iB / μA ICBO / μA ICEO / μA
A
1
0.982
18
2
111
0.982
B
0.4
0.397
3
1
132.3 0.99
目录
第一章 双极型半导体器件∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 第二章 基本放大电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 第三章 场效应晶体管放大电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18 第四章 多级放大电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙23 第五章 集成运放电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙33 第七章 直流稳压电源∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙46 第九章 数字电路基础知识∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙51 第十章 组合逻辑电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙61 第十一章 时序逻辑电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙73 第十二章 脉冲波形的产生和整形∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙90 第十三章 数/模与模/数转换电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙96

半导体器件基础

半导体器件基础

对于PNP型三极管,其外部电压源极性相反,注入载流子为空穴,
实际电流方向相反,分析方法相同。
1.3 双极型三极管
1.3.3 双极型三极管的特性曲线和工作状态
三极管的特性曲线是指三极管各电极之间电压和电流的关系 曲线。它直观地表达了三极管内部的物理变化规律,描述了三极 管的外特性。下面以共发射极电路为例,讨论双极型三极管的输 入、输出特性曲线,测试电路如图1.3.3所示。。
1.1 PN结
1.1.3 PN结的单向导电性
1
PN结的正向偏置
1.1 PN结
1.1.3 PN结的单向导电性
2
PN结的反向偏置
1.1 PN结
1.1.3 PN结的单向导电性
3
PN结的伏安特性曲线
1.2 半导体二极管
1.2.1 二极管的结构
半导体二极管按其结构可分为点接触型和面接触型两种。点接触型二 极管(一般为锗管)由于其PN结的面积很小,因此结电容小,允许通过的 电流也小,适用于高频电路检波或小电流整流,也可用作数字电路中的开关 元件。面接触型二极管(一般为硅管)由于其PN结的面积大,结电容大, 允许通过的电流较大,适用于低频整流;对于硅平面型二极管,结面积大的 可用于大功率整流,结面积小的适用于脉冲数字电路的开关管。
1.2 半导体二极管
例1.2.2判断图1.2.7所示电路 中哪个二极电路中其阳极电位是相 同的。因此,两二极管中阴极电 位最低的那只导通。 显然VD2导 通,并使AO两端电压钳位于-6 V, 即UAO=-6 V。VD1上加的是-6 V, 所以VD1截止,VD1起隔离作用。
(1)N型半导体。在本征半导体硅(或锗)中掺入微量的五价 元素磷(P),如图1.1.4所示。
(2)P型半导体。若在本征半导体硅中掺入微量的三价元素硼 (B),如图1.1.5所示。

半导体、二级管和三极管概述

半导体、二级管和三极管概述

PN结加反向电压
PN结加反向电压时, 内建电场被增强,势垒 高度升高,空间电荷区 宽度变宽。这就使得多 子扩散运动很难进行, 扩散电流趋于零;
而少子漂移运动处于优势,形成微小的反向的电流。
流过PN结的反向电流称为反向饱和电流(即IS), PN结呈现为大电阻。由于IS很小,可忽略不计,所 以该状态称为:PN结反向截止。 总结 PN结加正向电压时,正向扩散电流远大于漂移电 流, PN结导通;PN结加反向电压时,仅有很小的 反向饱和电流IS,考虑到IS≈0,则认为PN结截止。
基区空穴 的扩散
扩散运动形成发射极电流IE,复合运动Байду номын сангаас成基极电 流IB,漂移运动形成集电极电流IC。
电流分配:
IE=IB+IC
IE-扩散运动形成的电流 IB-复合运动形成的电流 IC-漂移运动形成的电流
直流电流 放大系数
IC IB
iC iB
交流电流放大系数
I CEO (1 ) I CBO
稳压管的伏安特性
稳压管的主要参数 稳定电压Uz:Uz是在规定电流下稳压管的反向击 穿电压。 稳定电流IZ:它是指稳压管工作在稳压状态时, 稳压管中流过的电流,有最小稳定电流IZmin和最大 稳定电流IZmax之分。
(6)其它类型二极管 发光二极管:在正向导通其正向电流足够大时, 便可发出光,光的颜色与二极管的材料有关。广 泛用于显示电路。
图4 本征半导体中 自由电子和空穴
本征半导体的载流子的浓度 本征激发:半导体在热激发下产生自由电子和空 穴对的现象称为本征激发。 复合:自由电子在运动过程中如果与空穴相遇就 会填补空穴,使两者同时消失。 在一定的温度下,本征激发所产生的自由电子与 空穴对,与复合的自由电子与空穴对数目相等,达 到动态平衡。即在一定温度下本征半导体的浓度是 一定的,并且自由电子与空穴浓度相等。

半导体器件的基本知识

半导体器件的基本知识

1.4.2 光敏二极管
a) 光敏二极管伏安特性曲线
b) 光敏二极管图形符号
图1-17 光敏二极管伏安特性曲线及图形符号
1.4.3 发光二极管
发光二极管简写为LED,其工作原理与光电二极管相反。 由于它采用砷化镓、磷化镓等半导体材料制成,所以在通 过正向电流时,由于电子与空穴的直接复合而发出光来。
a) 发光二极管图形符号
b) 发光二极管工作电路
图1-18 发光二极管的图形符号及其工作电路
1.5 双极型晶体管
• 双极型晶体管(Bipolar Junction Transistor, BJT),简称晶体管,它是通过一定的工艺 将两个PN结结合在一起的器件。由于PN结 之间相互影响,BJT表现出不同于单个PN 结的特性,具有电流放大作用,使PN结的 应用发生了质的飞跃。
1.输入特性曲线 UCE=0V的输入特性曲线类似二极管正向于特性曲线。UCE≥1V时,集电极 已反向偏置,而基区又很薄,可以把从发射极扩散到基区的电子中的绝大 部分拉入集电区。此后,UCE对IB就不再有明显的影响,其特性曲线会向 右稍微移动,但UCE再增加时,曲线右移很不明显,就是说UCE≥1V后的 输入特性曲线基本是重合的。所以,通常只画出UCE≥1V的一条输入特性 曲线。
PN结的两端外加不同极性的电压时,PN结呈现截然 不同的导电性能。
1.PN结外加正向电压
当外加电压V,正极接P区,负极接N区时,称PN结外加正 向电压或PN结正向偏置(简称正偏)。外加正向电压后,外 电场与内电场的方向相反,扩散与漂移运动的平衡被破坏。 外电场促使N区的自由电子进入空间电荷区抵消一部分正 空间电荷,P区的空穴进入空间电荷区抵消一部分负空间 电荷,整个空间电荷区变窄,内电场被削弱,多数载流子 的扩散运动增强,形成较大的扩散电流(正向电流)。在 一定范围内,外电场愈强,正向电流愈大,PN结呈现出一 个阻值很小的电阻,称为PN结正向导通。

第一章半导体基础知识

第一章半导体基础知识

第一章半导体基础知识〖本章主要内容〗本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。

首先介绍构成PN结的半导体材料、PN结的形成及其特点。

其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。

然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。

〖本章学时分配〗本章分为4讲,每讲2学时。

第一讲常用半导体器件一、主要内容1、半导体及其导电性能根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。

半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9Ω∙cm。

典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。

半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。

2、本征半导体的结构及其导电性能本征半导体是纯净的、没有结构缺陷的半导体单晶。

制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。

在热力学温度零度和没有外界激发时,本征半导体不导电。

3、半导体的本征激发与复合现象当导体处于热力学温度0K时,导体中没有自由电子。

当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。

这一现象称为本征激发(也称热激发)。

因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。

游离的部分自由电子也可能回到空穴中去,称为复合。

在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。

4、半导体的导电机理自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。

半导体器件基础 - 1

半导体器件基础 - 1

Introduction
导论
Introduction
发明的锗片上集 成电路 和 Robert Noycy 发明 的硅片上集成电路无疑是 将半导体产业引入 “ 量 产阶段 ” 的重大里程碑。
Jack Kilby
Fundamental of Semiconductor Devices
导论
Introduction
重大事件是中星微电子在 纳斯达克成功上市。此后 风险投资对中国半导体行 业空前关注和看好。
Fundamental of Semiconductor Devices
导论
Introduction
2006
年,私募基金加入半
导体行业。这种基于大者 恒大的定论将变成一种趋
势。对中国半导体行业也 算得上是一个里程碑。
导论
年,支持速度更快和 占用内存更少的精简指令 集芯片 ( RISC ) 技术实现商 业化。 同年 16M DRAM 问世,标志 着半导体产业进入超大规 模集成电路 ( ULSI ) 阶段。
1988
Fundamental of Semiconductor Devices
Introduction
导论
导论
Introduction
年英特尔推出第一片 DRAM; 次年推出 SRAM 和 EPROM 以及第一片微处理 器 4004 。存储器芯片和微 处理器的发明,决定了半 导体工业发展的方向。
1970
Fundamental of Semiconductor Devices
导论
Introduction
于是,半导体产业常青树 德州仪器 ( Texas Introments ) 、 摩托罗拉 ( Motorola ) 、飞兆 ( Fairchild ) 和国家半导体 ( National Semiconductor ) 等诞生 硅谷开始成为半导体产业 的中心……

第一章常用半导体器件 (2)

第一章常用半导体器件 (2)

Cb
• d
S
式中ε是介质常数,S是PN结的面积,d是PN结的宽度。
❖ 扩散电容Cd
Cd是PN结正向电压变化时, 多数载流子在扩散过程中积累 引起的。反向偏置时,以扩散 电容Cd为主。
PN结正偏时,多数载流子扩 散到对方成为对方区域中的“少 子” (称为“非平衡少子”)这 些少子在正偏电压变化时,也有 堆积与泄放的过程。
+4
+4
+4
电流是电子电流和空穴电流之和,
(而导体只有自由电子导电)。
图 1.1.2 电子-空穴对的产生和空穴的移动
在本征半导体中不断地进行着激发与复合 两种相反的过程, 当温度一定时, 两种状态 达到动态平衡,即本征激发产生的电子-空穴对, 与复合的电子-空穴对数目相等,这种状态称为 动态平衡状态(热平衡)。 半导体中自由 电子和空穴的多少分别用浓度(单位体积中载 流子的数目)ni和pi来表示。处于热平衡状态 下的本征半导体,其载流子的浓度是一定的, 并且自由电子的浓度和空穴的浓度相等。
第一章 常用半导体器件
1.1 半导体的基本知识 1.2 半导体二极管 1.3 双极型晶体管 1.4 场效应管
有关半导体的基本概念
• 本征半导体、杂质半导体 • 施主杂质、受主杂质 • N型半导体、P型半导体 • 自由电子、空穴 • 多数载流子、少数载流子
§ 1.1 半导体基础知识
自然界的物质按其导电能力可分为导体、半导 体和绝缘体三类。常用的半导体材料有硅(Si)和 锗(Ge)。半导体导电能力介于导体和绝缘体之间。
1.2.4. 二极管的等效电路
(a)理想二极管
(b)正向导通时端电压为常量 (c)正向导通时端电压与电流成线性关系
图1.2.4由伏安特性折线化得到的等效电路

1-2_半导体三极管

1-2_半导体三极管

场效应型半导体三极管仅由一种载流子参与导电,是一种VCCS器件。

载流子参与导电是种器件半导体三极管是具有电流放大功能的元件频率:功率:材料:类型:1.2.1 三极管的结构及工作原理1.2.2 三极管的基本特性极管的基本特性1.2.3 三极管的主要参数及电路模型123三极管的主要参数及电路模型侧称为发射区,电极称为一侧称为发射区,电极称为e-b间的PN结称为发射结(Je)c-b间的PN结称为集电结(Jc)中间部分称为基区,连上电极称为基极,用B或b表示(Base);示向。

集电结反偏集电结反偏,有平衡少子的漂移运动形成的反向电流。

CBO基区空穴向发射区的扩散可忽略扩散可忽略。

进入P 区的电进入P子少部分与基区的空穴复合,形成电流IBN数扩散到集电结。

3、三极管的电流分配关系I B定义:发射极直流电流放大倍数βICCEO忽略如输入电压变化,则会导致在流在定义:流放大倍数流放大倍数:的态信号时的(1)三极管放大电路的02.03 三极管的三种组态0203三极管的三种组态后达到集电极的电子电流的比值。

所以三极管的基本特性由基本特性曲线刻画,即各电极电压与电流的关系曲线,是其内部载流子运动的外部表现为什么要研究特性曲线:好的电路1. 输入特性曲线①死区②非线性区③线性区可以用解释即u CE 对i 的影响,可以用三极管的内部反馈作用解释,即:结和发射结的两个性曲线。

(反偏状态,可以将发射区注入基区的绝大多数非平衡少子收集到集电区,且基区复合减少,明显增大,特性曲线将向右稍微移动一些。

输出特性曲线=0V时,因集电极无收集作用,i C=0。

当uCEu稍增大时,发射结虽处于正向电压之下,但集电当稍增大时发射结虽处于正向电压之下但集电增加到使集电结反偏电压较大时如u增加到使集电结反偏电压较大时,如CEu CE ≥1V≥0.7Vu07BE运动到集电结的电子基本上都可以被集电再增区收集,此后uCE电流没有明加,电流也没有明显的增加,特性曲线进轴基本平行的入与uCE区域(这与输入特性曲增大而右移的共发射极接法输出特性曲线线随uCE饱和区的下方此时发射结反偏集电结反偏的下方。

模拟电子技术三极管详解

模拟电子技术三极管详解
成导电沟道。 uGS 越大沟道越厚。
第 2 章 半导体三极管
2) uDS 对 iD的影响(uGS > UGS(th))
MOS工作原理
DS 间的电位差使 沟 道 呈 楔 形 , uDS , 靠近漏极端的沟道厚
度变薄。
预夹断(UGD = UGS(th)):漏极附近反型层消失。 预夹断发生之前: uDS iD。
第2章
半导体三极管
2.1 双极型半导体三极管 2.2 单极型半导体三极管 2.3 半导体三极管电路的基本分析方法 2.4 半导体三极管的测试与应用
第2章
半导体三极管
2.1 双极型半导体三极管
2.1.1 晶体三极管 2.1.2 晶体三极管的特性曲线 2.1.3 晶体三极管的主要参数
第 2 章 半导体三极管
第 2 章 半导体三极管
二、耗尽型 N 沟道 MOSFET
Sio2 绝缘层中掺入正离子
D 在 uGS = 0 时已形成沟道;
B 在 DS 间加正电压时形成 iD,
G S
uGS UGS(off) 时,全夹断。
iD /mA
2V
0V
2V
uGS = 4 V
O
uDS /V
输出特性
当 uGS UGS(off) 时,
O
iiiBBB===
00 0uCE
第 2 章 半导体三极管
2.1.3 晶体三极管的主要参数
一、电流放大系数
4 iC / mA
1. 共发射极电流放大系数
3
— 直流电流放大系数
Q
II23CB.40NN5110II0CB63AA
IC8B2O ICBO
IC IB
2 1
— 交流电流放大系数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1.1 电路如图所示,已知 ui =6sin t V, E = 3 V,画出 uo 的波形(设 VD 为理想二极管)。

VD
R
ui

+ uR -
+ uo
6
ui/V
3 O
E

uo/V 3 O
t
解: (1) ui<3 V 时 VD 导通: uo = ui (2) ui>3 V 时 VD 截止: uo = E
电工教研室 制作
大连交通大学电气信息学院
1.1 半导体的基础知识
二、杂质半导体
在本征半导体中掺入某些微量的杂质,就会 使半导体的导电性能发生显著变化。 掺入五价的杂质元素: 自由电子的浓度 空穴的浓度。 自由电子为多数载流子,空穴为少数载流子。 称这种杂质半导体为 N 型半导体。 掺入三价的杂质元素: 自由电子的浓度 空穴的浓度。 空穴为多数载流子。自由电子为少数载流子。 称这种杂质半导体为 P 型半导体。
价电子参与导电 掺杂增强导电能力 热敏特性 光敏特性
一、本征半导体
1. 什么是本征半导体 是一种完全纯净的、结构完整的半导体晶体。 常用的半导体:硅、锗、砷化镓等。
电工教研室 制作 大连交通大学电气信息学院
1.1 半导体的基础知识
1. 本征半导体的共价键结构
+4 +4 +4
+
硅原子(Si)
+4
+4
大连交通大学电气信息学院
1.2 半导体二极管
2. 伏安特性的近似处理 (1) 理想模型 正向偏置(导通)时 : ID UD = 0,RD = 0。 反向偏置(截止)时: O UD ID = 0,RD→∞。 (2) 近似模型
ID
O
UD
UD
正向导通时 : UD = 0.7 V(或 0.2 V)。 反向偏置(截止)时: ID = 0,RD→∞。
1.1 半导体的基础知识
3. 本征半导体的导电特性 在绝对零度时,不导电。 温度(或光照) → 价电子获得能量
本征激发
产生自由电子和空穴对。
自由电子和空穴均参与导电, 统称为载流子。 温度 →载流子的浓度 →导电能力 。 自由电子释放能量跳回共价键 —— 复合。 本征半导体载流子浓度较低,导电能力较弱。
电工教研室 制作
t
大连交通大学电气信息学院
1.2 半导体二极管
例1.2 电路如图所示,已知 VD1 与 VD2 是硅二极管。求:(1) Ui1= 3 V,Ui2 = 0 V 时, Uo = ? (2) Ui1= Ui2 = 0 V 时,Uo = ? 解: VD1与 VD2 是共阴极 接法。 (1) Ui1 = 3 V,Ui2 = 0 V 时 VD1 导通,VD2 截止。 Uo = Ui1-UD = 2.4 V (2) Ui1= Ui2 = 0 V 时 VD1与 VD2 均导通。 Uo = Ui1-UD = -0.6 V
1.2 半导体二极管
二、二极管的伏安特性
1. 伏安特性
死区电压 U死区 th : 硅管 0.5 V 锗管 0.1 V
击穿电压
ID
正向 特性
UBR
反向截止区 反向击穿区 反向 特性
电工教研室 制作
O
IR UD UD
导通压降 UD : 反向饱 硅管 0.6 ~ 0.7V 和电流 锗管 0.2 ~ 0.3V

1.3 特殊二极管
三、发光二极管
伏安特性与普通二极管相似。 + 发光的颜色取决于制造材料。 U 磷砷化镓:红光,磷化镓:绿光。 - 作用 ① 作显示器件。 ② 将电信号转化为光信号。 +5 V
R 光缆 Uo
LED
电工教研室 制作
大连交通大学电气信息学院
1.3 特殊二极管
发光二极管
电工教研室 制作
+4
+
+4 +4 +4
锗原子(Ge) 硅和锗的二维晶格结构图
电工教研室 制作 大连交通大学电气信息学院
1.1 半导体的基础知识
2. 本征激发
+4 +4 +4
空穴
+4 +4 +4
自由电子
+4 +4 +4
电工教研室 制作
大连交通大学电气信息学院
1.1 半导体的基础知识
外电场的作用使价电子定向移动
+4 +4 +4
------ ++++++
多数载流子的扩散运动与少数载流子的漂移运 动达到动态平衡 —— 平衡的 PN 结。
电工教研室 制作
大连交通大学电气信息学院
1.1 半导体的基础知识
2. PN 结的特性
正向导通
偏置
正向偏置 反向偏置
I

N
主要特性: 单向导电性。 多子运动



反向截止
N
少子运动

电工教研室 制作 大连交通大学电气信息学院
ID Q ID
UD
O
电工教研室 制作
UD
大连交通大学电气信息学院
1.2 半导体二极管
三、主要参数
1. 最大整流电流 IOM 2. 最大整流电流时的正向压降 UF 3. 反向击穿电压 UBR 4. 反向工作峰值电压 URWM 5. 反向峰值电流 IRM
电工教研室 制作
大连交通大学电气信息学院
1.2 半导体二极管
稳压原理 (1)Ui发生波动,RL不变
IR
R DZ
IL IZ
RL
Ui
Uo
Ui→Uo→Uz→Iz→IR→UR→Uo↓ (2) Ui不变, RL发生变化 RL↓→Io↑→IR↑→Uo↓→Uz↓→Iz↓→IR↓→UR↓ →Uo↑
电工教研室 制作 大连交通大学电气信息学院
1.3 特殊二极管
2. 图形符号和分类 P 阳极 (1) 按结构分类 点接触型、面接触型。 N 阴极 (2) 按材料分类 图形符号 硅管、锗管。 (3) 按功率分类 大功率管、小功率管。 (4) 按频率分类 高频管、低频管。 (5) 按用途不同分类 普通管、整流管、开关管等等。
电工教研室 制作 大连交通大学电气信息学院
2. N 型半导体 在硅晶体中掺入少量五价元素杂质(如磷)。
自由电子
+4 +4 +4
施主原子
一个施主原子 提供一个电子
+4
+5 +4
+4
失去电子而形 成一个正离子
+4 +4 +4
电工教研室 制作
大连交通大学电气信息学院
1.1 半导体的基础知识
3. 杂质半导体的示意表示法
------
------ ------
势垒区
耗尽层
------ ++++++ ------ ++++++ ------ ++++++
电工教研室 制作
大连交通大学电气信息学院
1.1 半导体的基础知识
- - - - -- + + + + + + ++
------ ++++++ ++ - - - - -- + + + + + + ++
- - - - -- + + + + + + ++
大连交通大学电气信息学院
1.3 特殊二极管
四、激光二极管
作用 产生相干的单色光信号,便于光缆传输。 结构和图形符号 在发光二极管的结间安置一层具有光活性的半 导体,其端面抛光,具有部分反射功能。 +
光活性 半导体
抛光面 激光

电工教研室 制作 大连交通大学电气信息学院
1.4
整流、滤波及稳压电路
一、直流稳压电源框图
5.5 ~ 6.5
10
10 20
55
38 100
0.25
0.25 1
≤70
≤30 10
2CW107 8.5 ~ 9.5
稳压值为 8 V 左右的稳压管动态电阻较小。 UZ<5.7 V时,温度系数为负值; UZ>5.7 V时,温度系数为正值。
电工教研室 制作 大连交通大学电气信息学院
3. 稳压管电路原理及分析 +
uZ
电工教研室 制作
大连交通大学电气信息学院
1.3 特殊二极管
2. 主要参数 (1) 稳定电压 UZ (2) 稳定电流 IZ (3) 动态电阻 rZ
UZ (越小越好) rZ = IZ
(4) 电压温度系数 U(%/℃) 温度每变化 1℃ 稳定电压变化的百分数。
例如 2CW18 稳压管: U = 0.095%/℃, 若 20 ℃时 UZ = 11 V,则 50 ℃时的稳压值为 0.095 UZ = 11+ (50-20)×11V ≈11.3 V 100
T
整 流 电 路 滤 波 电 路 稳 压 电 路
++++++ ++++++ ++++++
------
P 型半导体
空间电 荷
电工教研室 制作
++++++
N 型半导体
大连交通大学电气信息学院
1.1 半导体的基础知识
三、PN 结
1. PN 结的形成
扩散运动
------
------ ------
++++++ ++++++ ++++++ ++++++
------
大连交通大学电气信息学院
电工教研室 制作
1.2 半导体二极管
(3) 折线模型
ID
O
UD
正向导通时 : 将其作为一个线性电阻处理。 反向偏置(截止)时: ID = 0,RD→∞。 当工作点在 Q 点附近变化时: 用 Q 点的切线代替曲线。 UD rD = I (动态电阻为常数) D
(4) 小信号模型
- - - - -- + + + + + + ++
相关文档
最新文档