八年级数学分式方程的解法
八年级数学分式方程
![八年级数学分式方程](https://img.taocdn.com/s3/m/1004b251c381e53a580216fc700abb68a982adf3.png)
工程优化问题
通过设定工程目标函数和 约束条件,建立分式方程 求解最优方案或最大效益。
行程问题
相遇问题
根据两物体相对运动的速 度、时间和距离,建立分 式方程求解相遇时间或相 对速度。
追及问题
根据两物体同向运动的速 度、时间和距离,建立分 式方程求解追及时间或速 度差。
航行问题
根据船在静水和流水中的 速度、时间和距离,建立 分式方程求解船速、水速 或航行时间。
预测未来情况
通过建立分式方程模型并求解,可以预测未来某些情况的 发生或变化趋势,为决策提供依据。
实际问题中分式方程解的意义
1 2
解释现象
通过求解分式方程得到的解可以解释实际问题的 现象或结果,如相遇时间、工作效率等。
指导实践
根据分式方程的解可以指导实践操作或决策制定, 如合理安排工作时间、选择最佳方案等。
利用高次方程的判别式,判断方程的根的情况,从而求解方程。
多元分式方程组解法
消元法
通过消去一个或多个未知数,将多元分式方程组转化为一元或低 元方程求解。
代入法
将一个方程的解代入另一个方程,逐步求解出所有未知数的值。
整体法
将方程组中的某些项看作一个整体,通过整体代入或整体消元的 方法求解方程组。
分式方程与函数关系探讨
分式函数定义域与值域
分析分式函数的定义域和值域,理解函数的基本性质。
分式函数图像与性质
通过绘制分式函数的图像,探讨函数的单调性、奇偶性等性质。
分式方程与函数零点
利用分式方程的解,确定分式函数的零点,进一步分析函数的性质。
分式方程在数学竞赛中应用
复杂分式方程求解
在数学竞赛中,常常遇到复杂的分式方程,需要灵活运用各种方法求解。
八上数学分式方程
![八上数学分式方程](https://img.taocdn.com/s3/m/9d29390e326c1eb91a37f111f18583d049640ff6.png)
八上数学分式方程数学作为一门学科,无处不在,贯穿于我们生活的方方面面。
而在数学的学习中,分式方程是一个非常重要且常见的内容。
在八年级的数学课程中,我们将开始接触和学习关于分式方程的知识。
什么是分式方程呢?简单来说,分式方程就是含有分式的方程。
分式是数的比的形式。
而分式方程则是含有未知数的分式的等式。
解分式方程的过程就是找出未知数的值,使得等式成立。
学习八年级的数学分式方程,需要掌握一些基本的知识。
首先要了解分式的概念,明确分子和分母的含义。
然后要学会如何化简分式,将分式化为最简形式。
接着就是学习如何解分式方程,常见的方法有通分、去分母、因式分解等。
在解题过程中,还需要注意约束条件,确保得到的解符合题目的要求。
在学习过程中,要多做练习,熟练掌握各种解题方法。
可以通过做题册、练习册、习题集等方式进行练习,巩固所学知识。
同时,要注意归纳总结,将不同类型的题目进行分类整理,形成自己的解题思路和方法。
除了理论知识外,实际问题的分析和解决也是学习分式方程的重要内容。
在解决实际问题时,要将问题转化为数学语言,建立分式方程,然后通过求解方程得到问题的答案。
这样可以帮助我们将抽象的数学知识与实际生活相结合,提高解决问题的能力。
此外,学习数学分式方程也需要培养逻辑思维和分析问题的能力。
在解题过程中,要善于观察、分析和推理,找出问题的关键点和解题思路。
通过不断练习和思考,提高自己的数学思维能力,培养解决问题的能力。
总的来说,八年级数学分式方程是一个重要且必要的学习内容。
通过学习分式方程,可以帮助我们提高数学能力,培养逻辑思维,解决实际问题。
希望大家在学习数学的过程中,能够认真对待,多加练习,提高自己的数学水平。
愿大家都能在数学的海洋中畅游,享受数学带来的乐趣!。
华东师大版数学八年级下册16.分式方程及其解法课件(共22张)
![华东师大版数学八年级下册16.分式方程及其解法课件(共22张)](https://img.taocdn.com/s3/m/cc298587a48da0116c175f0e7cd184254b351b32.png)
新课推动
轮船在顺水中航行80千米所需的时间和 逆水航行60千米所需的时间相同.已知水流的 速度是3千米/时,求轮船在静水中的速度.
分析 设轮船在静水中的速度为x千米/时,
根据题意,得
80 60 x3 x3
(*)
概 括 方程(*)中含有分式,并且分母中含 有未知数,像这样的方程叫做分式方程.
概括
上述解分式方程的过程,实质上是将方 程的两边乘以同一个整式,约去分母,把分 式方程转化为整式方程来解.所乘的整式通常 取方程中出现的各分式的最简公分母.
例1
解方程:
1 x1
2 x2 1
解:方程两边同乘以(x2-1), 约去分母,得x+1=2. 解这个整式方程,得x=1.
思考:x=1是不是原分式方 程的解(或根)呢?
当x=1时,原分式方程左边和右边的分母 (x-1)与(x2-1)都是0,方程中出现的 两个分式都没有意义,因此,x=1不是原分式 方程的解,应当舍去.所以原分式方程无解.
概括 在解分式方程时,产生不合适原分式方
程的解(或根),这种根通常称为增根.因此, 在解分式方程时必须进行检验.
如何判定一个值是否为这个分式方程 的根呢?分式方程如何检验呢?
ቤተ መጻሕፍቲ ባይዱ
分式方程的检验
解分式方程进行检验的关键是看所求得 的整式方程的根是否使原分式方程中的分式 的分母为零.有时为了简便起见,也可将它代 入所乘的整式(即最简公分母),看它的值 是否为零.如果为零,即为增根.
例2
解方程:
100 30 x x7
解:方程两边同乘以x(x-7),约
去分母,得 100(x-7)=30x.
明老师初中数学课堂八年级下册分式方程
![明老师初中数学课堂八年级下册分式方程](https://img.taocdn.com/s3/m/0d8c0292f424ccbff121dd36a32d7375a417c699.png)
明老师初中数学课堂八年级下册分式方程本文主要针对八年级下册分式方程这个数学知识点进行讲解。
介绍分式方程的定义、解法和注意事项。
希望通过本文的讲解,能为初中八年级学生更好地掌握这一知识点提供帮助。
一、分式方程是什么?分式方程是指方程中含有未知数在分式中或分式的分母中,通常表示为$\frac{a}{x}+b=c$或$\frac{a}{x}+\frac{b}{x^2}=c$等形式。
其中$\frac{a}{x}$和$\frac{b}{x^2}$为分式项,$c$为常数项,$x$为未知数。
二、分式方程的解法解分式方程的方法和解一元一次方程类似,主要分为以下步骤:步骤一:去分母。
将方程两端的分式化为通分式,使方程转化为一元一次方程。
步骤二:移项。
将常数项移到等式的右边,将含有未知数的项移到等式的左边。
步骤三:化简。
对于复杂的式子,可以利用乘法分配律、化简平方等方法将式子化简为更简单的形式。
步骤四:求解。
使用解一元一次方程的方法求解未知数的值。
步骤五:检验。
将求得的解代入原方程中,检验方程是否成立。
例如,对于方程$\frac{2}{x-3}=4$,我们可以首先将其化简为$2=4(x-3)$,然后移项得$2=4x-12$,进一步化简为$x=\frac{2+12}{4}=3$。
最后,将$x=3$代入原方程中检验可知这个解是正确的。
三、分式方程的注意事项1.分母不能为0。
在消去分母的过程中,需要确保分母不为0,否则方程无解。
2.化简时要注意符号。
由于分数中含有分子和分母,因此在化简过程中需要特别注意符号的变化,防止出现错误。
3.求解时要考虑特殊情况。
有时候方程解可能存在特殊情况,如等式两边可能同时为0,或者含有根号时可能会出现正负号的问题,需要在求解时特别注意。
四、分式方程的实际应用分式方程在实际生活中有着广泛的应用,如在化学中用于计算物质的比例、计算机网络中用于计算带宽利用率等等。
此外,分式方程还可以用于求解有关人口、财富、能源等方面的实际问题,具有很重要的意义。
人教版八年级上册数学精品教学课件 第1课时 分式方程及其解法3
![人教版八年级上册数学精品教学课件 第1课时 分式方程及其解法3](https://img.taocdn.com/s3/m/583f9fffcf2f0066f5335a8102d276a200296035.png)
8
8
x 2 2x 15 x 2 16x 48
x2
x2x159
x2
16x
48
2
经检验, x 9 是原方程的根
2
11 1 1 x 3 x 4 x 5 x 12
1 1 11 x 3 x 12 x 5 x 4
2x 9 0
x
2x
3x
9 12
x
2x 9
5x
4
x 9 2
x2 9x 36 x2 9x 9
经检验, x 9 是 2
原方程的根
例3 :解方程 y 4 y 5 y 7 y 8 y5 y6 y8 y9
点拨: 此方程的特点是:各分式的分子与分母的次数相
同, 这样一般可将各分式拆成: 整式+分式 的形式。
解:1 1 1 1 1 1 1 1
y 5
y6
y 8
y9
1
1
1
y 1 y 2y01yy12y1,y2102yyy1121y,y220 20
下面的过程请同学们自己完成 相信你们能行
以下各方程能利用换元法进行换元吗?
x x2 1
x2 1 x
5 2
能 y 1 5 y2
( x )2 5( x ) 3 能 y2 5y 3
x 1
x 1
x2 x2
1 1
3(x2 1) x2 1
2x
0
不能
小结
有些分式方程用常规方法-----------去分母,是很复 杂 ,甚至无法求解,有时要采取其他的方法
①采取局部通分法,会使解法很简单.这种解 法称为 ——通 分 法
②各分式的分子、分母的次数相同,且相差 一定的数,可将各分式拆成几项的和。这种 解法称为 —— 拆 项 法
八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)
![八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)](https://img.taocdn.com/s3/m/0d9ff43559fafab069dc5022aaea998fcc22408d.png)
探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5
八年级数学上册教学课件《分式方程及其解法》
![八年级数学上册教学课件《分式方程及其解法》](https://img.taocdn.com/s3/m/e2909f7a0622192e453610661ed9ad51f01d54b5.png)
【课本P152 练习 】
(2) x 2x 1 x 1 3x 3
4. 解下列方程:
(1) 1 2 2x x 3
【课本P152 练习 】
(2) x 2x 1 x 1 3x 3
4. 解下列方程:
(3) 2 4 x 1 x2 1
【课本P152 练习 】
1
3
x
1
1
1
8
解得x=-3, 经检验:x=-3是原方程的根.
课堂小结
解分式方程的一般步骤:
去分母
分式方程
整式方程
解整式方程
x=a
检验
x=a是分式 最简公分母不为0 最简公分母为0 x=a不是分
方程的解
式方程的解
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
x=5是原分式方 程的解吗?
将x=5代入原分式方程检验,发现这时分母 x-5和x2-25的值都为0,相应的分式无意义,因 此x=5不是分式方程的解,实际上,这个分式方 程无解.
练习1 下列方程哪些是分式方程?__⑤___
①x+y=1
② x 2 2y z ③ 1
5
3
x2
④ y 3 ⑤x 1 1 ⑥ x 3 2 x
例1 解方程
2
3
.
x3 x
解:方程两边乘 x(x-3),得
2x = 3x-9 x=9
检验: 当 x = 9时, x(x-3)≠0,
所以,原分式方程的解为 x =9.
例2
解方程
x
x
1
1
(x
3 1)(x
2)
.
解:方程两边乘(x-1)(x+2),得
八年级上册数学第十五章分式方程
![八年级上册数学第十五章分式方程](https://img.taocdn.com/s3/m/42c9082b0a1c59eef8c75fbfc77da26924c5967c.png)
第一节:认识分式方程1.1 分式方程的定义分式方程是指含有分式的方程,其中未知数出现在分式中。
1.2 分式方程的性质分式方程的性质包括有理数的性质、分式的性质、方程的性质。
1.3 分式方程的解分式方程的解是指能满足方程的未知数的数值,求解分式方程的过程就是求方程的解的过程。
第二节:分式方程的基本形式2.1 一元一次分式方程一元一次分式方程的形式是a/x+b=c,其中a、b、c是已知数,x是未知数,x≠0。
2.2 一元一次分式不等式一元一次分式不等式是a/x+b<c,其中a、b、c是已知数,x是未知数,x≠0。
第三节:分式方程的解法3.1 通分法对于分式方程中的分式进行通分,使得方程变得更容易计算。
3.2 消去法通过约去分式中的公因式,使得方程变得更简单,从而更容易求解。
第四节:用分式方程解实际问题4.1 问题拆解将实际问题转化为分式方程,对实际问题进行分析和拆解,得到问题的数学表示形式。
4.2 方程求解将转化得到的分式方程进行求解,得到问题的解。
第五节:应用题5.1 填空题给定一元一次分式方程,要求填写方程的解。
5.2 计算题给定一元一次分式方程,要求解出方程的解并进行计算。
结语:分式方程是数学中常见的一种方程形式,掌握分式方程的基本概念、基本形式、基本解法,能够帮助我们更好地理解数学知识,在实际问题中也能够更加灵活地运用数学知识解决问题。
希望同学们能够认真学习分式方程的知识,掌握分式方程的解题方法,提高自己的数学水平。
在进行进一步的学习中,我们将深入探讨分式方程的解法,包括更复杂的情况和实际问题的应用。
同时也会针对一些常见的困惑和错误进行讲解和解答,以帮助同学们更好地掌握分式方程的知识。
第一节:分式方程的解法1.1 假分式方程假分式方程是指分式方程中含有未知数的分母含有未知数的方程形式。
在解假分式方程时,我们需要通过通分的方法将方程转化为一般的分式方程,然后再按照常规的分式方程解法进行求解。
八年级上册数学15.3第1课时分式方程及其解法
![八年级上册数学15.3第1课时分式方程及其解法](https://img.taocdn.com/s3/m/aaaca94200f69e3143323968011ca300a6c3f68f.png)
方法
如何把它转化为整式方程呢?
去分母
怎样去分母?
把方程的两边乘各分母的最简公分母
在方程两边乘什么样的式子才 能把每一个分母都约去?
(30+v)(30-v)
探索新知
知识点2 分式方程的解法
90 60 30 v 30 v
解:方程两边乘(30+v)(30-v),得
90(30-v)=60(30+v).
一元一次方程:
指只含有一个未知数,未知数的最高次数
为1且两边都为整式的等式.
二元一次方程:
指含有两个未知数,并且含有未知数的项
的次数都是1的整式方程.
两者都是整式方程. 方程里面所有的未知数都出现在分子上,分 母只是常数而没有未知数.
复习导入
练一练
解方程: x 2 2x 3 1.
4
6
解:去分母,得3(x+2)-2(2x-3)=12.
a
x x 1
.
探索新知
判断一个式子是否为分式方程的注意事项 (1)分式方程必须满足的条件:①是方程;②含有分母;③分 母中含有未知数.三者缺一不可. (2)分母中含有字母的方程不一定是分式方程,如关于x的方程 x 2 x(m为非0常数), 分母中虽然含有字母m,但m不是未知数,
m
所以该方程是整式方程.
课堂练习
1.下列关于x的方程,是分式方程的是( B )
4
A.
3
x
x
2
5
x
B.
3
1
x
1Leabharlann 2 xC.πx 1 8
x
D. 2x 1 x 75
2.方程 1 1 x 1去分母后的结果正确的是( C )
八年级数学分式方程的解法
![八年级数学分式方程的解法](https://img.taocdn.com/s3/m/20b04bf11711cc7930b7162b.png)
4 3 7 xy
整式方程
2) 1 3 x2 x
(4) x(x 1) 1 x
(3)
3
x
x(6)2x 2
x 1 5
10
(5)x 1 2 x
2x 1 3x 1 x
分式方程
风怒吼, 【变天】biàn∥tiān动①天气发生变化,唐宋时极盛。 【砭骨】biānɡǔ动刺入骨髓,【别】(彆)biè〈方〉动改变别人坚持的意见或习 性(多用于“别不过”):我想不依他,【辩才】biàncái名辩论的才能:在法庭上, 。想个办法,③跳动:脉~。 敬请~。②花椰菜的通称。③〈方
2、解分式方程的一般步骤:
1、在方程的两边都乘以最简公分母,约去分母,化成整 式方程.
2、解这个整式方程.
3、 把整式方程的解代入最简公分母,如果最简公分母的 值不为0,则整式方程的解是原分式方程的解;否则,这个解 不是原分式方程的解,必须舍去.
4、写出原方程的根.
1 作业:习题16.3:
使最简公分母值为零的根
产生的原因:分式方程两边同乘以一个 后的,根所.得 所的 以根 我是 们·整 解·式 分·方 式·程 方的 程根时,一而定不要是·代分·入式·最方·简程 公分母检验
小组讨论、相互交流,大家畅 所欲言,表达自己的收获。
一化二解三检验
1、解分式方程的思路是:
分式方程 去分母
整式方程
16.3.1分式方程的解法(1)
解:
100 60 20 v 20 v
分母中含未知数的 方程叫做?.
100 60 20 v 20 v
像这样,分母里含有未知数的方程叫 做分式方程。
以前学过的分母里不含有未知数的方 程叫做整式方程。
下列方程中,哪些是分式方程?哪些整式方程.
八年级数学上册 分式方程的解法 人教版
![八年级数学上册 分式方程的解法 人教版](https://img.taocdn.com/s3/m/279079115acfa1c7ab00cc49.png)
解得: x=1
检验:当x=1时,(x-1)(x+2) =0 ,因此x=1不 是原方程的解.
所以,原分式方程无解
备选练习
解下列方程:
(1) 5 7 x x2
解:方程两边乘x(x-2),得: 5(x-2)=7x 解得: x=-5 检验:当x=-5时,x(x-2) ≠0
所以,原分式方程的解为 x=-5
①
30v 30v
方程①有何特点?
方程①中含有分式,并且分母中含有未知 数,像这样的方程叫做分式方程.
你还能举出一个分式方程的例子吗?
练习
判断下列各式哪些是分式方程?
(1)xy5; (2)x22y-z; (3)1;
5
3
x
(4) y 0; (5)12x5
x5
x
(1)(2)是整式方程; (3)是分式;
约去分母,得: 90(30-v)=60(30+ v)
解这个整式方程,得:v=6
所以江水的流速为6 km/h.
解分式方程的过程,实质上是将方程的两边 乘同一个整式,约去分母,把分式方程转化为整 式方程来解.所乘的整式通常取方程中出现的各分 式的最简公分母.
解方程:
1 10 x 5 x2 25
怎样才能拿得起?王国维《人间词话》中曾提出,古今之成大事业者,须经过三重境界。这三重境界体现的正是儒家精神,所以正是路径所在。 第一重境界是“昨夜西风凋碧树,独上高楼,望尽天涯路”。登上高楼,远眺天际,正是踌(chóu)躇(chú)满志,志存高远,高瞻远瞩,一腔抱负。人生,志向决定方向,格局决定高度;小溪只能入湖,大河则能入海。所以做事,要先立心中志向;成事,要先拓胸中格局。
如何才能放得下?唐代禅宗高僧青原行思曾提出参禅的三境界,那正是路径所在。 第一重境界是“看山是山,看水是水”。人之最初,比如年少之时,心思是简单的,看到什么就是什么,别人说什么就相信什么。这样看待世界当然是简单而粗糙的,所看到的往往只是表面。但同时,正是因为简单而不放在心上,于是不受其困扰,这就是放下的心境。只是还太脆弱,容易被现实击碎。 第二重境界是“看山不是山,看水不是水”。人随着年龄渐长,经历的世事渐多,就发现这个世界的问题越来越多、越来越复杂,经常是黑白颠倒、是非混淆,无理走遍天下、有理寸步难行,好人无好报、恶人活千年。这时人是激愤的,不平的,忧虑的,怀疑的,警惕的,复杂的。于是人不愿意再轻易地相信什么,容易变得争强好胜、与人比较、绞尽脑汁、机关算尽,永无满足的一天。大多数人都困在这一阶段,虽然纠结、挣扎、痛苦,这却恰恰是顿悟的契机。因为看到了,才能出来;经历了,才能明白。 第三重境界是“看山还是山,看水还是水”。那些保持住本心、做得到忍耐的人,等他看得够了,经得多了,悟得深了,终于有一天豁然顿悟,明白了万般只是自然,存在就有存在的合理性,生会走向灭,繁华会变成寂寞,那些以前认为好的坏的对的错的,都会在规律里走向其应有的结局,人间只是无常,没有一定。这个时候他就不会再与人计较,只是做自己,活在当下之中。任你红尘滚滚,我自清风朗月;面对世俗芜杂,我只一笑了之。这个时候,就是放下了。
八年级数学上11.5可化为一元一次方程的分式方程及其应
![八年级数学上11.5可化为一元一次方程的分式方程及其应](https://img.taocdn.com/s3/m/f43755c485868762caaedd3383c4bb4cf7ecb7ca.png)
实际生活中的应用
金融问题
分式方程在金融领域也有广泛的应用。例如,复利的计算、 投资回报率的计算等可以用分式方程来表示和解决。
交通问题
在交通管理中,分式方程可以用于描述车辆行驶的速度和时 间关系,以及道路交通流量等问题。例如,在高速公路上, 车辆的平均速度和行驶时间的关系可以用分式方程来表示和 计算。
根据方程定义取舍
有些分式方程在特定条件下无解 或无穷多解,需要根据方程的定 义和条件进行取舍。
解的适用范围
注意变量的取值范围
在分式方程中,变量的取值范围可能 会影响解的存在性和唯一性,因此需 要注意变量的取值范围。
注意方程的定义域
分式方程可能只在特定的定义域内有 解,因此需要注意方程的定义域,确 保解的适用范围。
转化原理和方法
1 2
消除分母
通过通分或消去分母,将分式方程转化为整式方 程。
转化为一元一次方程
将转化后的整式方程整理为一元一次方程的形式。
3
求解一元一次方程
解出转化后的一元一次方程的解。
转化过程和步骤
01
02
03
04
确定最简公分母
找到分式方程中各分母的最小 公倍数,作为最简公分母。
通分
将方程两边的分式通分,使分 式方程转化为整式方程。
移项与合并同类项
将整式方程中的项移至等号同 一边,并合并同类项。
化简整理
将整式方程化简整理为标准的 一元一次方程形式。
转化后的解法
01
02
03
直接求解法
对于简单的分式方程,可 以直接求解得到解。
换元法
对于复杂的分式方程,可 以通过换元法简化计算过 程。
图解法
湘教版数学八年级上册1.5《可化为一元一次方程的分式方程的解法》说课稿1
![湘教版数学八年级上册1.5《可化为一元一次方程的分式方程的解法》说课稿1](https://img.taocdn.com/s3/m/83e0446942323968011ca300a6c30c225901f03e.png)
湘教版数学八年级上册1.5《可化为一元一次方程的分式方程的解法》说课稿1一. 教材分析《可化为一元一次方程的分式方程的解法》是湘教版数学八年级上册1.5节的内容。
这部分内容是在学生已经掌握了分式的基本性质、分式的运算、分式方程的初步知识的基础上进行学习的。
本节课的主要内容是让学生掌握如何将分式方程化为整式方程,并运用一元一次方程的解法来求解。
通过这部分的学习,让学生能够解决一些实际问题,提高他们的数学应用能力。
二. 学情分析学生在学习这部分内容时,已经有了一定的分式知识基础,但对于如何将分式方程化为整式方程,以及如何运用一元一次方程的解法来求解,可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生理解分式方程的化简过程,以及如何将问题转化为一元一次方程来解决。
三. 说教学目标1.知识与技能目标:让学生掌握将分式方程化为整式方程的方法,以及运用一元一次方程的解法来求解分式方程。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 说教学重难点1.教学重点:将分式方程化为整式方程的方法,以及一元一次方程的解法。
2.教学难点:如何引导学生理解分式方程的化简过程,以及如何将问题转化为一元一次方程来解决。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师引导的教学方法。
2.教学手段:利用多媒体课件、黑板、粉笔等教学工具。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何解决分式方程。
2.自主学习:让学生自主探究如何将分式方程化为整式方程。
3.合作交流:学生分组讨论,分享各自的解题方法。
4.教师引导:教师引导学生总结分式方程化简的方法,并讲解一元一次方程的解法。
5.巩固练习:让学生运用所学知识解决一些实际问题。
6.课堂小结:教师引导学生总结本节课的主要内容和收获。
人教版数学八年级上册第一课时 分式方程及其解法课件
![人教版数学八年级上册第一课时 分式方程及其解法课件](https://img.taocdn.com/s3/m/2f926d348bd63186bdebbc4d.png)
第十五章 分 式
上一页 返回导航 下一页
解:根据题意,得
x x+1
=2,解得x=-2.经检验,x=-2是分式方程的解,∴x
的值是-2.
第十五章 分 式
上一页 返回导航 下一页
数学·八年级 (上)·配人教
16
思维训练
15.(1)m为何值时,方程x3-x3+5=3-m x有增根?
解:方程两边同乘x-3,得3x+5(x-3)=-m.当原方程有增根时,x-3=0, 解得x=3.当x=3时,m=-9.故当m=-9时,方程x3-x3+5=3-m x有增根.
(2)m为何值时,方程x3-x3+5=3-m x的根是-1? 解:方程两边同乘x-3,得3x+5(x-3)=-m.当原方程的根为x=-1时,m= 23.故当m=23时,方程x3-x3+5=3-m x的根是-1.
第十五章 分 式
上一页 返回导航 下一页
数学·八年级 (上)·配人教
17
(3)任意写出三个m的值,使对应的方程x3-x3+5=3-m x的三个根中两个根之和等 于第三个根;
14
(2)xx+ -11-x2-4 1=1; 解:方程两边同乘(x+1)(x-1),得(x+1)2-4=x2-1.去括号,得x2+2x+1-4 =x2-1,解得x=1.检验:当x=1时,(x+1)(x-1)=0,∴x=1是原分式方程的增 根,∴原分式方程无解.
(3)【四川广安中考】x-x 2-1=x2-44x+4.
第十五章 分 式
上一页 返回导航 下一页
基础过关
数学·八年级 (上)·配人教
6
1.下列是关于x的分式方程的是 A.x+4 2-3=3+6 x C.xa-xb=1
B.xa- +77=3-x D.x22+x 2=5
八年级数学上册第十五章分式方程课时1分式方程及其解法教学课件新版新人教版ppt
![八年级数学上册第十五章分式方程课时1分式方程及其解法教学课件新版新人教版ppt](https://img.taocdn.com/s3/m/5920c5c55ebfc77da26925c52cc58bd631869381.png)
检验:当x=6时,(2x+1)(2x-1)≠0,
所以原分式方程的解是x=6.
当堂小练
关于x的方程
的解是正数,则a的取值范围是a<-1且.a≠-2
【分析】去分母,得2x+a=x-1,解得x=-a-1. ∵关于x的方程 2x a 1的解是正数,
x 1
∴x>0且x≠1,∴-a-1>0且-a-1≠1, 解得a<-1且a≠-2.
方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列 关于未知字母的不等式求解,特别注意分母不能为0.
当堂小练
若关于x的分式方程
无解,求m 的值.
解:方程两边都乘(x+2)(x-2),得2(x+2)+mx=3(x-2),
即(m-1)x=-10.
①当m-1=0时,此方程无解,此时m=1;
新课导入
思 考 一艘轮船在静水中的最大航速为40 km/h,它以最大航速顺流 行驶130 km所用的时间,与它以最大航速逆流行驶70 km所 用的时间相等,则江水的流速为多少?
新课导入
思 考 一艘轮船在静水中的最大航速为40 km/h,它以最大航速顺流 行驶130 km所用的时间,与它以最大航速逆流行驶70 km所 用的时间相等,则江水的流速为多少? 解:根据题意得: 130 70 40 v 40 - v 解出该方程即可求出v的值,即江水的流速.
第十五章 分式
15.3 分式方程 课时一 分式方程及其解法
目 录
CONTENTS
1 学习目标 3 新课讲解 5 当堂小练 7 布置作业
2 新课导入 4 课堂小结 6 拓展与延伸
学习目标
1.了解分式方程的概念,会判断一个方程是分式方程. (难点) 2.掌握解分式方程的基本思路和方法.(重点) 3.了解分式方程验根的必要性.(重点)
人教版八年级数学上《分式方程》知识全解
![人教版八年级数学上《分式方程》知识全解](https://img.taocdn.com/s3/m/1214283dc4da50e2524de518964bcf84b9d52d34.png)
《分式方程》知识全解课标要求1.会解一元一次分式方程(方程中的分式不超过两个)2.能根据具体问题中的数量关系,列出上述类型的方程,并进一步体会这类重要的刻画现实世界的数学模型的作用.知识结构1. 分式方程概念,和产生增根的原因.2. 分式方程的解法3.列出可化为一元一次方程的分式方程解决实际问题.内容解析(1)分式方程的概念:含分式,并且分母中含未知数的方程——分式方程(2)分式方程的解法: ①能化简的先化简.②方程两边同乘以最简公分母,化为整式方程③解整式方程;④)验根.(3)分式方程的应用: 以工程问题为例,能将此类问题中的相等关系用分式方程表示;建立数学模型,会解含字母系数的分式方程.重点难点本节的重点是:分式方程的概念,,解分式方程和列分式方程解应用题.教学重点的解决方法:分式方程是一种有效描述现实世界的模型,把分式方程转化为整式方程来解分式方程,把未知化已知,从而渗透数学转化思想.本节内容的难点是:分式方程产生增根的原因和列分式方程解应用题教学难点的解决方法:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验.教法导引(1)注重渗透化归思想,实际问题紧紧扣住等量关系解分式方程注意转化的思想,而实际问题由于背景的多变性,其数量关系也是动态多变,难以把握,只能以不变应万变,紧紧扣住“等量关系”这一主线,有意识的培养学生对例题、习题的阅读理解能力.教给学生一些避免产生增根的方法,例:解方程: 22+-x x - 4162-x = 1 解:移项,得22+-x x - )2)(2(16-+x x - 1 = 0整理,得 )2)(2()2(4-+-x x x = 0 ① 化简,得24+x = 0 ② 因为 24+x ≠ 0 所以 原方程无解.(2)注重启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法与应用,避免负迁移.....分式方程的解法理论中,我们一直采用了在分式方程两边同乘以最简公分母从而转化为整式方程的解法.这种方法充分体现了转化思想的理论精髓,而转化思想恰好是整个方程解法理论的核心思想,使各种方程(组)最终转化为一元一次方程,让人们看到一个和谐统一的体系,生动的数学展现于眼前.不过这种变形不属于方程的同解变形原理,它的恶果之一是产生增根的现象.增根并不是方程的根,它跟随非同解变形进来之后,还要用检验的方式把它清除出去,这是一种迂回的,有点费力的处理方法.是一个容易引发讨论和思考的知识点.分式方程两边同乘以最简公分母从而转化为整式方程的解法,在实践中经常对分式的四则运算产生强烈的负迁移...,如化简2222x y x y x y x y+-+++时经常有学生这样运算:22222x y x y x y x y x x y x y+-+=++-=++这肯定是受分式方程解法的影响所致,而且有时这种影响极其顽固,很难改正.分式的四则运算不能支持分式方程的解决,分式方程的解决又影响分式的四则运算,这种内耗和对抗大大削弱了分式理论的和谐性.学法建议分式方程的重点是解分式方程和列分式方程解应用题,难点是分式方程产生增根的原因和列分式方程解决实际问题.因而在学习中应注意:(1)分母中含有字母的方程不一定是分式方程,当且仅当字母中有未知数时,才是分式方程,如解关于x 的方程:13x a +=,22m n x m n n-=-等都是整式方程,究其原因在于限定未知数是x ,则字母a 、 m 、 n 是已知数,不满足分式方程定义. (通过观察,从中感知分式方程的特征)(2)严格遵循解分式方程的步骤:化、解、验.在解分式方程应用题时,切不可忘记检验.(3)认真审题,可借助表格、图表来分析题意,找出适合题意的相等关系,建立方程. 例:为改善居住环境,小康村拟在村后荒山上种植720棵树,由于共青团员的支持,实际每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x 棵,根据题意得方程______ __.题目设原计划每天种植x 棵,那么可用来列方程的相等关系是实际比原计划提前4天完成任务.由题意,原计划植树720x 天,而实际每天植树(20)x +棵,实际植树天数为72020x +天,所以根据相等关系可列方程720720420x x -=+. (易错点是:已知量不会用未知数表示,找不到等量关系)(4)进行一题多解、一题多问及一题多变的训练,提高思维的敏捷性、解题方法的灵活性.(5)类比整式方程的解法和应用,使所学知识系统化,进而形成技能、技巧,巩固双基. 例 解方程:x 5 = 27-x 解:移项,得 x 5 -27-x = 0 通分,得)2(7)2(5---x x x x = 0 整理,得 )2()5(2-+x x x = 0 ① 分子取0,得 x + 5 = 0 ②即 x = -5说明:从①式到②式是此解法的关键.①式中,如分子与分母没有含未知数的公因式,那就能够做到分子取0时保证分母不得0;然后根据分式值为0的条件,把分式..等于0的式子改写为分子..等于0的式子,即完成了分式方程向整式方程的转化,而且符合方程的同解变形原理的精神,不会有增根或丢根的现象发生.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。