多元函数微分学的几何应用

合集下载

数二考多元函数微分学的几何应用

数二考多元函数微分学的几何应用

数二考多元函数微分学的几何应用微分学是数学中的一个重要分支,它研究的是函数的变化规律。

而多元函数微分学则是微分学的一个延伸,研究的是多个变量的函数的变化规律。

在实际应用中,多元函数微分学有着广泛的应用,尤其在几何学中,可以帮助我们揭示图形的性质和变化规律。

我们来看一个简单的例子。

假设有一个平面上的曲线,我们想要研究它的切线方程。

通过多元函数微分学,我们可以求出曲线上任意一点的切线方程。

具体的方法是,首先求出曲线的导数,然后将导数代入切线方程的一般式中,即可得到切线方程。

这样,我们就可以通过切线方程来描述曲线的变化情况了。

接下来,我们来看一个更复杂的例子。

假设有一个三维空间中的曲面,我们想要研究它的切平面方程。

通过多元函数微分学,我们可以求出曲面上任意一点的切平面方程。

具体的方法是,首先求出曲面的偏导数,然后将偏导数代入切平面方程的一般式中,即可得到切平面方程。

这样,我们就可以通过切平面方程来描述曲面的变化情况了。

除了切线方程和切平面方程,多元函数微分学还可以帮助我们研究曲线和曲面的曲率。

曲率是描述曲线弯曲程度的一个重要指标,可以帮助我们了解曲线的形状和性质。

在多元函数微分学中,曲率可以通过求曲线的二阶导数来计算。

具体的方法是,首先求出曲线的一阶导数和二阶导数,然后将导数代入曲率公式中,即可得到曲线的曲率。

通过研究曲线的曲率,我们可以揭示曲线的弯曲情况和变化规律。

同样地,多元函数微分学还可以帮助我们研究曲面的曲率。

曲面的曲率是描述曲面弯曲程度的一个重要指标,可以帮助我们了解曲面的形状和性质。

在多元函数微分学中,曲面的曲率可以通过求曲面的二阶偏导数来计算。

具体的方法是,首先求出曲面的一阶偏导数和二阶偏导数,然后将偏导数代入曲率公式中,即可得到曲面的曲率。

通过研究曲面的曲率,我们可以揭示曲面的弯曲情况和变化规律。

除了切线方程、切平面方程和曲率,多元函数微分学还可以帮助我们研究曲线和曲面的极值。

极值是描述函数在某个区间内取得最大值或最小值的点,可以帮助我们了解函数的最优解。

8.6 向量值函数及多元函数微分学的几何应用

8.6 向量值函数及多元函数微分学的几何应用
M
z z0 (F , G) ( x , y )
M
法平面方程
(F , G) ( x x0 ) ( z , x) M (F , G) ( x , y )
M
( y y0 ) ( z z0 ) 0
M
§ 8.6 向量值函数及多元函数微分学的几何应用 法平面方程
(F , G) (F , G) ( x x0 ) ( y y0 ) ( y, z ) M ( z , x) M (F , G) ( z z0 ) 0 ( x , y) M
§ 8.6 向量值函数及多元函数微分学的几何应用 例4. 求曲线 x t , y t 2 , z t 3 在点 M (1, 1, 1) 处的切线 方程与法平面方程. 解: x 1, y 2 t , z 3t 2 , 点(1, 1, 1) 对应于 思考: 光滑曲线 y ( x) 因此所求切线方程为 : z ( x) x 1 y 1 z 1 的切向量有何特点? 2 3 1 xx 法平面方程为 答: : y ( x ) ( x 1) 2 ( y 1) 3( z 1) 0 z ( x) 即 x 2 y 3z 6 切向量 T (1, , ) 故点M 处的切向量为 T (1, 2, 3)
T

M

利用
点向式可建立曲线的切线方程 点法式可建立曲线的法平面方程
§ 8.6 向量值函数及多元函数微分学的几何应用 1. 曲线方程为参数方程的情况 给定光滑曲线
设 上的点 M ( x0 , y0 , z0 ) 对应 t t0 , (t0 ), (t0 ), (t0 )不全
为0, 则 在点M 的导向量为

第二章 多元函数微分法及其应用 第四节 多元函数微分法在几何上的应用

第二章 多元函数微分法及其应用 第四节 多元函数微分法在几何上的应用


Fz ( x0 , y0 , z0 ) ( t0 ) 0
- 15 -
第四节
多元函数微分在几何上的应用
令 T { ( t0 ) , ( t0 ) , ( t0 )}
第 八 章 切向量 T n 多 元 函 数 微 分 法 及 其 应 用
n { Fx ( x0 , y0 , z0 ) , Fy ( x0 , y0 , z0 ) , Fz ( x0 , y0 , z0 )}
第四节
多元函数微分在几何上的应用
切平面方程
第 八 章
Fx ( x0 , y0 , z0 ) ( x x0 ) Fy ( x0 , y0 , z0 ) ( y y0 )
Fz ( x0 , y0 , z0 )( z z0 ) 0
多 元 通过点 M ( x 0 , y 0 , z 0 ) 而垂直于切平面的直线称为曲 函 数 面在该点的法线.法线方程 微 分 x x0 y y0 z z0 法 Fx ( x0 , y0 , z0 ) Fz ( x0 , y0 , z0 ) Fy ( x0 , y0 , z0 ) 及 其 应 用
第 八 章

解: 由于
M 0 (0 , R , k ) 2 z
多 对应的切向量为 T ( R , 0 , k ) , 故 元 函 yR zk x 2 切线方程 数 微 0 R k 分 法 k x Rz R k 0 2 即 及 其 yR0 应 用 法平面方程 R x k ( z k ) 0 2
- 17 -
第四节
多元函数微分在几何上的应用
垂直于曲面上切平面的向量称为曲面的法向量. 曲面在M 处的法向量即
第 八 章 多 元 函 数 微 分 法 及 其 应 用

多元函数微分学的几何应用

多元函数微分学的几何应用

多元函数微分学的几何应用一、多元函数微分学多元函数微分学是微积分的一个分支,研究的是多个自变量的函数的导数、微分和全微分等概念。

与一元函数微分学不同的是,多元函数在求导时需要通过偏导数来计算,而全微分可以看做多元函数在某一点上的线性近似。

多元函数微分学在实际生活中有着广泛的应用,尤其是在几何学方面。

二、几何应用1. 向量场和梯度向量场是一个函数与向量的映射关系,在几何学中经常用于描述速度场、磁场等。

其中,梯度是向量场的一个重要概念。

梯度表示在某一点上函数变化增加最快的方向。

例如,在平面上的某一点上,一个函数的梯度表示了函数值增加最快的方向及增加的速率。

2. 方向导数和梯度的应用方向导数表示函数在某一点上沿着某一给定方向上的导数。

在平面几何中,方向导数可以用来求解曲面的切平面方程。

具体来说,可以通过梯度和方向向量的点积计算出方向导数,从而得到曲面上某一点的切平面方程。

3. 曲面积分曲面积分是对曲面上的函数进行积分,类似于线积分。

在计算曲面积分时,需要用到曲面的面积元素,这里面积元素的计算需要用到微积分中的偏微分。

具体来说,可以通过将曲面分成小的面元,计算每个面元的面积和函数值,然后将它们累加起来,从而得到曲面上的积分值。

4. 极值和拐点在多元函数中,类似于一元函数中的极值和拐点的概念。

在平面几何中,可以将这些概念应用于曲线的局部特征的分析中。

通过极值和拐点的计算,可以得到曲线上的最大和最小值,以及拐点的位置和拐点的类型等信息。

总之,多元函数微分学在几何学中有着广泛的应用。

通过对向量场、梯度、方向导数、曲面积分、极值和拐点等概念的研究,可以深入分析曲线、曲面的本质特征和局部特征,从而为实际问题的求解提供了精确的数学工具。

§8.6微分学几何应用

§8.6微分学几何应用
3. 空间曲线方程为
r Fy Fz 切向量为: 切向量为 T = , G y Gz M0
切线方程为: 切线方程为
F( x, y, z) = 0 的情形: 的情形 G( x, y, z) = 0
x − x0 y − y0 z − z0 , = = Fy Fz Fx Fy Fz Fx Gy Gz M Gz Gx M0 Gx Gy M
Fz′ |(1, 2 , 0 ) = 1 − e z |(1, 2 , 0 ) = 0,
4( x − 1) + 2( y − 2) + 0 ⋅ ( z − 0) = 0, 2 x + y − 4 = 0, 即 x −1 y − 2 z − 0 . = = 法线方程为: 法线方程为 2 1 0 例5: 求曲面 x2+2y2+3z2=21平行于平面 x+4y+6z=0 平行于平面 的切平面方程. 的切平面方程 )为曲面上的切点 为曲面上的切点, 解: 设(x0, y0, z0)为曲面上的切点, 曲面在该点处的 r 法向量为: 法向量为 n = ( 2 x0 , 4 y0 , 6 z0 ), 切平面方程为: 切平面方程为 2 x 0 ( x − x 0 ) + 4 y0 ( y − y0 ) + 6 z 0 ( z − z 0 ) = 0
§8.6 多元函数微分学的几何应用
一、空间曲线的切线和法平面
定义: 是空间曲线L上的一个定点 是 上 上的一个定点, 定义 设M0是空间曲线 上的一个定点 M是L上 割线M 的极限 的一个动点, 沿曲线L趋于 的一个动点 当M沿曲线 趋于 0时, 割线 0M的极限 沿曲线 趋于M 位置MT0(如果极限存在 称为曲线 在M0处的切线 如果极限存在)称为曲线L在 处的切线. 位置 如果极限存在 称为曲线 z M L 下面导出空间曲线的切线方程. 下面导出空间曲线的切线方程 1. 空间曲线方程为参数方程的情形 空间曲线方程为参数方程的情形: T M x = ϕ(t ) L: y =ψ (t ) (1) o y z = ω(t ) x (1)式中的三个函数均可导 且导数不同时为零 式中的三个函数均可导. 式中的三个函数均可导 且导数不同时为零. 设M0(x0, y0, zo)对应参数 t=t0, M(x0+∆x, y0+∆y, zo+∆z) 对应参数 则割线M 的方程为 的方程为: 对应参数 t=t0+∆t. 则割线 0M的方程为

(完整word版)多元函数微分学及其应用归纳总结,推荐文档

(完整word版)多元函数微分学及其应用归纳总结,推荐文档

第八章 多元函数微分法及其应用一、多元函数的基本概念1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念2、多元函数的极限✧00(,)(,)lim (,)x y x y f x y A →=(或0lim (,)P P f x y A →=)的εδ-定义✧ 掌握判定多元函数极限不存在的方法:(1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言函数极限不存在;(2)找两种不同趋近方式,若00(,)(,)lim (,)x y x y f x y →存在,但两者不相等,此时也可断言极限不存在。

✧ 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商,等价无穷小替换,夹逼法则等)与一元类似:例1.用εδ-定义证明2222(,)(0,0)1lim ()sin0x y x y x y →+=+例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数222222()+++-x y x y x y 的极限是否存在?证明你的结论。

例3 设222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩ ,讨论(,)(0,0)lim (,)x y f x y →是否存在?例4(07年期末考试 一、2,3分)设2222422,0(,)0,0⎧+≠⎪+=⎨⎪+=⎩xy x y x y f x y x y ,讨论(,)(0,0)lim (,)→x y f x y 是否存在?例5.求222(,)(0,0)sin()lim x y x y x y →+3、多元函数的连续性0000(,)(,)lim(,)(,)x y x y f x y f x y →⇔=✧ 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含在定义域内的区域或闭区域。

✧ 在定义区域内的连续点求极限可用“代入法”例1. 讨论函数33222222,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩ 在(0,0)处的连续性。

第3章 多元函数微分学的应用

第3章 多元函数微分学的应用

第3章多元函数微分学的应用第3章多元函数微分学应用§11 空间曲线的切线和法平面过点M 与切线垂直的平面称为曲线在该点的法平面.空间的一条光滑曲线在点M 处的切线,定义为此点处曲线割线的极限位置.ΓTMπ第3章多元函数微分学应用1. 曲线方程为参数方程ΓTX 0Xt =t 0:X 0=(x (t 0), y (t 0), z (t 0))t =t 0+∆t :X =(x (t 0 +∆t ), y (t 0 +∆t ), z (t 0 +∆t ))⎪⎭⎫⎝⎛∆-∆+∆-∆+∆-∆+t t z t t z t t y t t y t t x t t x )()(,)()(,)()(000000为X 0X 的一个方向向量,令∆t →0 (X →X 0),得())(),(),(000t z t y t x '''s =称为曲线Γ在点X 0的一个切向量.这里不全为0,且s 指向曲线Γ的参数t 增加的方向.)(,)(,)(000t z t y t x '''★ :x =x (t ), y =y (t ), z =z (t )第3章多元函数微分学应用◆曲线Γ在点X 0的切线方程为)()()()()()(000000t z t z z t y t y y t x t x x '-='-='-或:X -X 0= λ⋅s (-∞<λ<+∞)◆曲线Γ在点X 0的法平面方程为))()(())()(())()((000000=-'+-'+-'t z z t z t y y t y t x x t x 或:s ⋅(X -X 0)= 0例1 求曲线x =t , y =t 2, z =t 3 在点(1,1,1)处的切线和法平面.第3章多元函数微分学的应用2. 曲线方程为一般方程★ :y =y (x ), z =z (x )视为参数方程x =x ,y =y (x ), z =z (x )当y =y (x ), z =z (x )可导,则得到 在点X 0(x 0, y (x 0), z(x 0))的切向量())(),(,100x z x y ''=s 于是切线的方程为)()(100000x z z z x y y y x x '-='-=-法平面方程)(0x x -)()(00y y x y -'+0))((00=-'+z z x z第3章多元函数微分学的应用当F , G ∈C 1,且,则在U (X 0)内确定函数y =y (x ), z =z (x ),且★ :F (x , y , z ) =0, G (x , y , z ) =00),(),(0≠∂∂=Xz y G F J 0),(),(1)(0X x z G F J x y ∂∂='0),(),(1)(0Xy x G F J x z ∂∂='于是得到 在点X 0(x 0, y (x 0), z(x 0))的切向量⎪⎪⎭⎫ ⎝⎛∂∂∂∂=00),(),(1,),(),(1,1X X y x G F J x z G F J s 或⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂=000),(),(,),(),(,),(),(X X X y x G F x z G F z y G F s第3章多元函数微分学的应用例2.求曲线0,6222=++=++z y x z y x 在点M ( 1,–2, 1) 处的切线和法平面.第3章多元函数微分学的应用§22 曲面的切平面和法线1. 曲面的切平面和法线设X 0=(x 0, y 0, z 0)为∑上一点,F (x,y,z )=0 在X 0可微,且JF (X 0) ≠0 .设t =t 0对应点为X 0 且不全为0,)(,)(,)(000t z t y t x '''则Γ在X 0 有切向量))(),(),((000t z t y t x '''=s •X 0s★曲面∑:F (x , y , z ) = 0若在∑上过点X 0任意做一条完全在曲面上的曲线Γ:x =x (t ),y =y (t ),z =z (t ),第3章多元函数微分学应用又Γ在∑上,故F (x (t ),y (t ),z (t )) ≡0.上式微分得0d d 0==t t tF 即0)()()()()()(000000=''+''+''t z X F t y X F t x X F z y x 也即0))(),(),(())(),(),((000000='''⋅'''t z t y t x X F X F X F z y x 或JF (X 0) ⋅s = 0•X 0sJF (X 0)由Γ的任意性,知任一过X 0的曲线之切线均与JF (X 0) 垂直,因此这些切线确定一个平面.该平面称为曲面∑在X 0的切平面. JF (X 0) 是其法向量.第3章多元函数微分学应用JF (X 0)亦称曲面∑在X 0的一个法向量,X 0称为切点.•X 0sJF (X 0)记n =JF (X 0) =))(),(),((000X F X F X F z y x '''则切平面方程为n ⋅(X -X 0)=0或0))(())(())((000000=-'+-'+-'z z X F y y X F x x X F z y x 过点X 0与切平面垂直的直线称为曲面∑在X 0的法线:)()()(000000X F z z X F y y X F x x z y x '-='-='-或X -X 0=λ⋅n (-∞< λ<+∞)第3章多元函数微分学的应用★曲面 :z =f (x , y )取F (x ,y ,z )≡z -f (x ,y )=0,则有1,,=''-=''-='z y y x x F f F f F 故有)1),,(),,((0000y x f y x f y x '-'-=n 显然n 的方向朝“上”,即它与z 轴正向间的夹角为锐角.例1.求椭球面上点(x 0,y 0,z 0)处的切平面和法线.1222222=++c z b y a x 例2.求曲面z =x 2+y 2-1在点(2,1,4) 的切平面和法线.第3章多元函数微分学应用2. 二元函数全微分的几何意义切平面方程其中z 0=f (x 0, y 0),记,则00,y y y x x x -=∆-=∆yy x f x y x f z z y x ∆'+∆'=-),(),(00000当z =f (x , y )在点(x 0, y 0)可微时,曲面∑在点(x 0, y 0, z 0) 有)(),()(),(0000000y y y x f x x y x f z z y x -'+-'=-上式右边为d z ,左边对应于PQ ,则∆z ≈d z 表明|∆x | 和|∆y | 很小时,PR 可用PQ 近似代替.P O z xy X 0+∆X X 0Q z=f (x,y )∆x ∆y R点X 0称为极大值点(极小值点); 极大值和极小值统称为极值.第3章多元函数微分学应用§33 多元函数的极值定义1 设函数z =f (X ) 在U (X 0)⊂R n 内有定义,若∀X ∈Û(X 0) 有 f (X ) ≤f (X 0) ( f (X ) ≥f (X 0))则称函数在点X 0 取得极大值(极小值).1. 多元函数的极值函数在点(0,0) 有极小值;2243y x z +=221y x z --=函数在点(0,0) 有极大值;第3章多元函数微分学应用zx y定理1(必要条件) 设u=f (X)在点X取得极值,且Jf(X0)存在,则必有Jf(X0)=0.使得Jf(X)=0成立的点X0称为f (X) 的驻点.可偏导的函数其极值点一定是驻点. 但驻点不一定是极值点.函数z=xy在点(0,0),是驻点但不是极值点.第3章多元函数微分学应用二元函数取得极值的一个充分条件:定理2设z =f (X )= f (x ,y )∈C 2(U (X 0)),且Jf (X 0)=0,其中X 0=(x 0, y 0).记, , ,则f (X ))(0X f A xx ''=)(0X f B xy ''=)(0X f C yy ''=△= AC -B 2> 0 A < 0,取极大值f (X 0) ;A > 0,取极小值f (X 0) ;△= AC -B 2< 0,在点X 0 不取极值.例1 求f (x ,y )=x 3-y 3+3x 2+3y 2-9x 的极值.第3章多元函数微分学应用◇f (X )在其偏导数不存在的点处也可能取极值.例如函数在点(0,0)取极小值.22y x z +=◇定理中的△=AC -B 2= 0,则不能判定f (X )在点X 0 是否取极值.例如函数和在点(0,0)均有△=AC -B 2= 0,但显然前者不取极值,而后者取得最小值.33y x z +=222)(y x z +=第3章多元函数微分学应用2. 最大值和最小值极值是局部(邻域内)的概念,最值是全局范围(区域) 上的概念.ΩΩ若f (X)在有界闭域上连续,则f (X)在上必有最值.此时最值或者在Ω内部达到,或者在∂Ω上达到. 若最值在Ω内达到,而f (X)在Ω内只有有限个极值点,则最值必是某个极值;若在∂Ω上达到,则最值也必是f (X)在∂Ω上的最值.第3章多元函数微分学应用例2 求f (x ,y )=sin x +sin y -sin(x +y ) 在由x 轴、y 轴及直线x +y =2π所围成的区域D 上的最大值和最小值.例3求的最大值和最小值.122+++=y x y x z xyO 2第3章多元函数微分学应用Rz xyO 例4 若用钢板制造一个容积为2m 3的有盖长方体水箱, 问当长、宽、高各为多少时,能使所用钢板材料最省?例5 在半径为R 的半球内求一个体积为最大的内接长方体.第3章多元函数微分学应用3. 条件极值定义2 设区域Ω⊂R n ,L ={X | X ∈Ω;ϕ1(X )=0, ϕ2(X )=0, ⋯,ϕm (X )=0, m <n },若X 0∈L ,且∀X ∈L ∩Û(X 0) ,有f (X ) ≤f (X 0) ( f (X ) ≥f (X 0))则称f (X 0)为函数f (X )在约束条件ϕ1(X )=0, ϕ2(X )=0, ⋯, ϕm (X )=0下的条件极大值(条件极小值).● LX 0统称条件极值. 类似定义条件最值.这里给出的约束条件是等式约束.第3章多元函数微分学应用求解条件极值问题:将其转化为无约束极值问题.1) 代入法.求函数z =f (x,y) 在条件ϕ(x,y)=0 下的极值:从约束条件解出y=ψ(x) 代入z =f (x,ψ(x)) 求无约束极值.例6 若用钢板制造一个容积为2m3的有盖长方体水箱, 问当长、宽、高各为多少时,能使所用钢板材料最省?设水箱长x、宽y、高z,则此问题便是求表面积S=2( xy+ yz+ xz)在约束条件xyz=2下的极小值.第3章多元函数微分学应用2) Lagrange 乘数法.讨论函数z =f (x ,y ) 在条件ϕ(x ,y )=0下的极值.构造Lagrange 函数F (x ,y ,λ)= f (x ,y ) + λϕ(x ,y )其中λ为待定参数,称为Lagrange 乘数.问题便化为求F (x ,y ,λ) 的无约束极值.一般地,求u =f (X ) 在约束条件ϕ1(X )=0, ϕ2(X )=0, ⋯, ϕm (X )=0 (m <n )下的极值,则构造Lagrange 函数∑=+=mi i i m X X f X F 121)()(),,,;(ϕλλλλ第3章多元函数微分学应用例6 若用钢板制造一个容积为2m 3的有盖长方体水箱, 问当长、宽、高各为多少时,能使所用钢板材料最省?例7 在旋转抛物面z =x 2+y 2和平面x +y +z =1的交线上,求到坐标原点的最长和最短距离.z y x O (x,y,z )条件极值问题更一般地发展成为数学规划问题。

高等数学第9章多元函数微分学及其应用(全)

高等数学第9章多元函数微分学及其应用(全)

f ( x, y ) A 或 f x, y A( x x0,y y0 ).
31
二、二元函数的极限
定义 9.3
设二元函数z f ( P) f ( x, y ) 的定义域为D ,P0 ( x0 , y0 )
是D 的一个聚点,A 为常数.若对任给的正数 ,总存在 0 ,当
0 当 P( x, y) D 且 0 P0 P ( x x0 )2 ( y y0 ) 2 总有
f ( P) A , 则称A为 P P0 时的(二重)极限.
4
01
极限与连续
注意 只有当 P 以任何方式趋近于 P0 相应的 f ( P )
都趋近于同一常数A时才称A为 f ( P ) P P0 时的极限
P为E 的内点,如图9.2所示.
②边界点:如果在点P的任何邻域内,既有属于E 的点,也有不
属于E的点,则称点P 为E 的边界点.E 的边界点的集合称为E 的边
界,如图9.3所示.
P
E
图 9.2
P
E
图 9.3
16
一、多元函数的概念
③开集:如果点集E 的每一点都是E 的内点,则称E 为开集.
④连通集:设E 是平面点集,如果对于E 中的任何两点,都可用
高等数学(下册)(慕课版)
第九章 多元函数微分学及其应用
导学
主讲教师 | 张天德 教授
第九章
多元函数微分学及其应用
在自然科学、工程技术和社会生活中很多实际问题的解决需要引进多元
函数. 本章将在一元函数微分学的基础上讨论多元函数微分学及其应用.
本章主要内容包括:
多元函数的基本概念
偏导数与全微分
多元复合函数和隐函数求偏导

多元函数微分学的几何应用.ppt

多元函数微分学的几何应用.ppt
x1 y 1 z 1 , 123 法平面方程为
(x1)2(y1)3(z1)0ቤተ መጻሕፍቲ ባይዱ 即x2y3z6
首页
上页
返回
下页
结束

曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量 为T((t0), (t0), (t0))
讨论:
1 若曲线的方程为y(x), z(x), 则切向量T?
2 若曲线的方程为F(x, y, z)0, G(x, y, z)0, 则切向量T? 提示:
(t0)(xx0)(t0)(yy0)(t0)(zz0)0
首页
上页
返回
下页
结束

曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量 为T((t0), (t0), (t0))
例1 求曲线xt, yt2, zt3在点(1, 1, 1)处的切线及法平面 方程
解 点(1, 1, 1)所对应的参数t1 因为 xt1, yt2t, zt3t2, 所以切向量为T(1, 2, 3) 于是, 切线方程为
2dyddyxdzddxz11 dx dx
(x1)0(y2)(z1)0, 即 xz0
首页
上页
返回
下页
结束

二、曲面的切平面与法线
设M0(x0, y0, z0)是曲面: F(x, y, z)0上的一点, 是曲面 上过点M0的任意一条曲线, 其参数方程为
x(t), y(t), z(t),
tt0对应于点M0(x0, y0, z0) 因为曲线在曲面上, 所以有
F[(t),(t),(t)]0
等式的两边在tt0点求全导数得
Fx(x0, y0, z0)(t0)Fy(x0, y0, z0)(t0)Fz(x0, y0, z0)(t0)0

2.7多元微分学的几何应用.

2.7多元微分学的几何应用.

高等数学AⅠ吉林大学数学学院金今姬第二章多元函数的微分学及其应用一、偏导数二、全微分三、复合函数的微分法四、隐函数微分法五、方向导数与梯度六、多元微分学的几何应用七、多元函数的Taylor公式与极值问题§7 多元微分学的几何应用7.1空间曲线的切线与法平面7.2曲面的切平面与法线复习: 平面曲线的切线与法线已知平面光滑曲线(x f y =,(00y x 切线方程0y y −法线方程0y y −若平面光滑曲线方程为,0,(=y x F ,(,(d d y x F y x F x y y x −=故在点,(00y x 切线方程法线方程(0y y −,(00y x F y +(,(000x x y x F x −0=((00x x x f −′=((100x x x f −′−=在点有有因 0(,(000=−−y y y x F x ,(00y x F y (0x x −7.1 空间曲线的切线与法平面过点 M 与切线垂直的平面称为曲线在该点的法位置.ΓT M π空间光滑曲线在点 M 处的切线为此点处割线的极限平面.1. 曲线方程为参数方程的情况(,(,(:t z t y t x ωψϕ===Γzz z y y y x x x ∆−=∆−=∆−000,t ∆上述方程之分母同除以得令,0→∆t 切线方程000z z y y x x −=−=−,,(0000z y x M t t 对应设=,,(0000z z y y x x M t t t ∆+∆+∆+′∆+=对应(0t ϕ′(0t ψ′(0t ω′T M ΓM ′:的方程割线M M ′((00x x t −′ϕ此处要求(,(,(000t t t ωψϕ′′′也是法平面的法向量,切线的方向向量:称为曲线的切向量.((00y y t −′+ψ0((00=−′+z z t ω如个别为0, 则理解为分子为0 .πΓM 不全为0,(,(,((000t t t T ωψϕ′′′=T 因此得法平面方程 o (t r T 切线方程000z z y y x x−=−=−(0t ϕ′(0t ψ′(0t ω′例7.1 求曲线32,,t z t y t x ===在点(1,1,1处的切线与法平面方程.解:(((((,3,2,1,,2'''t t t z t y t x =点(1,1,1对应于参数t =1,故曲线在点(1,1,1处的切向量(((((.3,2,11,1,1'''==z y x s 所求切线方程为,312111−=−=−z y x 法平面方程为(((,013121=−+−+−z y x 即.0632=−++z y x2. 曲线为一般式的情况((,,:x z z x y y ==Γ光滑曲线取x 为参数,((,,,:x z z x y y x x ===Γ根据上述情形的结论,在点M 处的切向量为(((,,,10'0'x z x y s =切线方程为((,10'00'00x z z z x y y y x x −=−=−法平面方程为(((((.000' 00'0=−+−+−z z x z y y x y x x光滑曲线⎩⎨⎧==Γ0,,(0,,(:z y x G z y x F 当0,(,(≠∂∂=z y G F J ⎩⎨⎧==((x z x y ψϕ=x y d d 曲线上一点,,(000z y x M x y z, 且有=x z d d ,,(,(1x z G F J ∂∂,,(,(1y x G F J ∂∂时, Γ 可表示为处的切向量为⎭⎬⎫⎩⎨⎧∂∂∂∂=M M y x G F J x z G F J ,(,(1,,(,(1,1{}(,(,100x x T ψϕ′′=3. 空间曲线的情况000z z y y x x −=−=−Mz y G F,(,(∂∂则在点,,(000z y x M 切线方程法平面方程有Mz y G F ,(,(∂∂Mx z G F,(,(∂∂My x G F ,(,(∂∂(0x x −My x G F,(,(∂∂+Mx z G F ,(,(∂∂+(0y y −0(0=−z z 或⎭⎬⎫⎩⎨⎧∂∂∂∂∂∂=M MM y x G F x z G F z y G F T ,(,(,,(,(,,(,(为了便于记忆,用行列式记为⎭⎬⎫⎩⎨⎧∂∂∂∂∂∂=M MM y x G F x z G F z y G F T ,(,(,,(,(,,(,(Mzy x z y xG G G F F F k j i T =((((((000=−−−M G M G M G M F M F M F z z y y x x z y x z y x 也可表为(,(,((,(,(00y y Mx z G F x x M z y G F −∂∂+−∂∂法平面方程0(,(,(0=−∂∂+z z M y x G F例7.2 求曲线0,102222=++=++z y x z y x 在点M ( 1,–2, 1 处的切线方程与法平面方程. 切线方程110211−−=+=−z y x 解法1 令,,102222z y x G z y x F ++=−++=则即⎩⎨⎧=+=−+0202y z x M z yx z y xG G G F F F k j i T =Mz y x k j i 111242=111282−=kj i (.1,0,110−−=法平面方程01(2(01(=−−+⋅+−z y x 即0=−z x x xz z x y y −=+d d d d 2解法2. 方程组两边对 x 求导, 得1d d d d −=+x zx y 112112d d z y xy xz −−=112d d z y x y =曲线在点 M (1,–2, 1 处有:切向量解得11−−z x ,2z y x z −−=z y y x −−=221,0,1(−=⎟⎠⎞⎜⎝⎛=M M x z x y T d d ,d d ,1切线方程121−=+=−z y x 即⎩⎨⎧=+=−+0202y z x 法平面方程01(1(2(01(1=−⋅−++⋅+−⋅z y x 即0=−z x 点 M (1,–2, 1 处的切向量01−11,0,1(−=T当空间曲线(((t z z t y y t x x ===Γ,,:给出时,若(((t z t y t x ''',,连续且不同时为零,则曲线上每一点处都有切线,并且切线随着切点的移动而连续地变动,称为光滑曲线.当空间曲线((x z z x y y ==Γ,:给出时,若((x z x y '',连续,则此曲线是光滑曲线.当空间曲线⎩⎨⎧==Γ0,,(0,,(:z y x G z y x F 给出时,若F ,G 是类函数且Jacobi 行列式不同时为零时,则此曲线是光滑曲线.((((((y x G F x z G F z y G F ,,,,,,,,∂∂∂∂∂∂(1C,,(:=Σz y x F 1.设有光滑曲面通过其上定点,,(000z y x M 0t t =设对应点M ,(,(,(000t t t ωψϕ′′′切线方程为(((000000t z z t y y t x x ωψϕ′−=′−=′−不全为0 . 则Γ 在,(,(,(:t z t y t x ωψϕ===Γ且点 M 的切向量为任意引一条光滑曲线M ΓT 下面证明:此平面称为∑ 在该点的切平面.∑ 上过点 M 的任何曲线在该点的切线都在同一平面上.(,(,((000t t t T ωψϕ′′′=7.2 曲面的切平面与法线M ΓT 证:在∑ 上,(,(,(:t z t y t x ωψϕ===Γ∵0(,(,((≡∴t t t F ωψϕ,0处求导两边在t t =,0M t t 对应点注意=(0t ω′0=,,(000z y x F x ,,(000z y x F y +,,(000z y x F z +(0t ϕ′(0t ψ′得(,(,((000t t t T ωψϕ′′′=,,(,,,(,,,((000000000z y x F z y x F z y x F n z y x =令nT ⊥切向量由于曲线Γ 的任意性 , 表明这些切线都在以为法向量n 的平面上 ,从而切平面存在 .n(,,(0000x x z y x F x −曲面∑ 在点 M 的法向量法线方程000z z y y x x −=−=−(,,(0000y y z y x F y −+0(,,(0000=−+z z z y x F z 切平面方程,,(000z y x F x ,,(000z y x F y,,(000z y x F z M ΓT n,,(,,,(,,,((,,(000000000000z y x F z y x F z y x F z y x F n z y x =∇=(,(000x x y x f x −曲面时, ,(y x f z =zy x f z y x F −=,(,,(则在点,,,(z y x 故当函数 ,(y x f ,(00y x 1,(,(0000000−−=−=−z z y x f y y y x f x x y x 法线方程,y y f F =1−=z F 令有在点,,(000z y x Σ2.当光滑曲面∑ 的方程为显式在点有连续偏导数时, (,(000y y y x f y −+=−0z z ,x x f F =切平面方程γβα,,法向量用2211cos y x f f ++=γ将,(,,(0000y x f y x f y x ,,y x f f 法向量的方向余弦:表示法向量的方向角,并假定法向量方向.为锐角则γ分别记为则,1cos ,1cos 2222y x y y x x f f f f f f ++−=++−=βα向上,1,,(,,((0000y x f y x f n y x −−=例7.4 求椭圆抛物面222y x z +=在点M (1,-1,3处的切平面方程和法线方程.解:因((1,1''1,,−−=y x z z n (,1,4,2−−=故所求切平面方程为(((,031412=−−+−−z y x 即.0342=−−−z y x 法线方程为.134121−−=−+=−z y x3.设曲面∑ 的参数方程为(((,,,,,,v u z z v u y y v u x x ===记((0,,P v u z y A ∂∂=((0,,P v u x z B ∂∂=((0,,P v u y x C ∂∂=不妨设由隐函数存在定理,方程组x=x (u,v ,y=y (u,v 在点(x 0,y 0,u 0,v 0的某一邻域唯一确定一组隐函数u=u (x,y ,v=v (x,y ,并且在(x 0,y 0处,.0≠C .,,,C x v C x u C y v C y u u y v y u x v x =−=−==将u=u (x,y , v=v (x,y ,代入z=z (u,v 得z=z (u (x,y ,,v (x,y .z=z (u (x,y ,,v (x,y .在(x 0,y 0处对x,y 求偏导,由连锁规则,有(,1C A y z y z C v z u z z u v v u x v x u x −=−=⋅+⋅=(.1C B x z x z C v z u z z u v v u y v y u y −=+−=⋅+⋅=曲面∑ 在点M 0的法向量为 (,1,,1,,⎟⎠⎞⎜⎝⎛−−−=−C B C A z z y x (.,,C B A n =或0P v v v u u uz y x z y x k j in =切平面方程为 (((,0000=−+−+−z z C y y B x x A 法线方程为.000Cz z B y y A x x −=−=−0P vv v u u uz y x z y x k j i n =例7.5 求曲面3322,,v u z v u y v u x +=+=+=在对应于u =1,v =-1的点处的切平面方程.解:曲面上对应于u =1,v =-1的点为M (0,2,0,在该点故所求切平面方程为(,0203=−−⋅+z y x 即.03=−z x (1,1''''''−vv v u u u z y x z y x k j i (1,122321321−=vv uu kj i 321321−=k j i (,4,0,12−=当曲面(0,,:=∑z y x F 给出时,若''',,zyxFF F 连续且不同时为零,则曲面上每一点处都有切平面和法线,并且法线随着切点的移动而连续地变动,称为光滑曲面.zyxo1.求圆柱螺旋线ϕϕϕk z R y R x ===,sin ,cos 2πϕ=对应点处的切线方程和法平面方程. ,2时当πϕ=切线方程=−R x法平面方程x R −022=+−k z k x R π即⎩⎨⎧=−=−+02R y k R z R x k π即解: 由于,sin ϕR x −=′0R y −kk z 2π−=,cos ϕR y =′,k z =′,,0(20k R M π对应的切向量为0(2=−+k z k π在,0,(k R T −=, 故2. 确定正数σ 使曲面σ=z y x 222z y x ++在点,,(000z y x M 解: 二曲面在 M 点的法向量分别为二曲面在点 M 相切, 故000000000z y x y z x x z y ==0x 22020z y x ==∴又点 M 在球面上,32202020a z y x ===故于是有000z y x =σ2a=相切.333a =与球面,,,(0000001y x z x z y n =,,(0002z y x n =21//n n , 因此有20y 20z 23. 如果平面01633=+−+z y x λ与椭球面相切,提示: 设切点为,,,(000z y x M 则223y x +.λ求000226z y x ==3λ3−01633000=+−+z y x λ163202020=++z y x 2±=λ162=+z (二法向量平行 (切点在平面上(切点在椭球面上证明曲面(x y f x z =上任一点处的切平面都通过原点.提示: 在曲面上任意取一点,,,(000z y x M 则通过此=−0z z (0x x x z M −∂∂(0y y y z M −∂∂+4. 设 f ( u 可微,证明原点坐标满足上述方程 .点的切平面为5. 证明曲面0,(=−−y n z y m x F 与定直线平行,.,(可微其中v u F 证: 曲面上任一点的法向量,1F ′,((21n F m F −⋅′+−⋅′2F ′取定直线的方向向量为,m ,1n 则(定向量故结论成立 .的所有切平面恒(=n (=l ,0=⋅n l6. 求曲线⎩⎨⎧=−+−=−++0453203222z y x x z y x 解: 点 (1,1,1 处两曲面的法向量为2,2,1(−=因此切线的方向向量为1,9,16(−=由此得切线:111−=−=−z y x 1691−法平面:01(1(91(16=−−−+−z y x 024916=−−+z y x 即与法平面.1,1,1(12,2,32(z y x n −=5,3,2(2−=n 21n n l ×=在点(1,1,1 的切线作业:习题2.6(A1 (1(4, 3 (1,5;(B2.。

多元函数微分学的几何应用

多元函数微分学的几何应用

f (x, y) −z = 0
令 F(x, y, z) = f (x, y) − z 则 曲 ∑ 方 为 F(x, y, z) = 0 面 的 程 :
∴n = F (x0, y0, z0), Fy(x0, y0, z0), F (x0, y0, z0) ) ( x z
= ( fx (x0, y0) , f y(x0, y0) ,−1 ) 即 n =( fx(x0, y0), f y(x0, y0),−1 )

dz dy y dx + z dx = −x dy dz + = −1 dx dx
解得
−x z dy −1 1 = y z dx 1 1
y −x
z −x = y−z
dz 1 −1 = y z dx 1 1
x− x− y = y−z
dz , dx )
∴T =
=
(1 ,
dy dx
|(1 −2,1) ,
切平面及法线方程. 解: 令 (x, y, z) = x2 + y2 + z2 −14 F
F = 2x , y = 2y ,F = 2z F x z r ∴ n = (Fx, Fy, Fz ) = (2x,2y,2z) r ∴ n (1,2,3) =(2,4,6)
∴在 (1,2,3)处球 的 平 方 为 点 , 面 切 面 程
F (x0, y0, z0) Fy(x0, y0, z0) F (x0, y0, z0) x z
曲 Σ在 M 切 面 法 量 为 面 点 的 平 的 向 称 曲 Σ在 M 法 量 面 点 的 向 .
2. 面 的 程 : z = f (x, y) , M(x0, y0, z0)∈Σ 曲 ∑ 方 为

多元函数微分学的几何应用

多元函数微分学的几何应用
目录 上页 下页 返回 结束
特别, 特别 当光滑曲面∑ 的方程为显式
时, 令
F(x, y, z) = f (x, y) − z 则在点 (x, y, z),
故当函数 在点 ( x0 , y0 ) 有连续偏导数时, 曲面
Σ 在点( x0 , y0 , z0 ) 有
法向量
n = ( f x (x0 , y0 ), f y (x0 , y0 ), −1)
x = x Γ : y = ϕ(x) z =ψ (x)
x − x0
1
y − y0 z − z0 = = ϕ′( x0 ) ψ ′( x0 )
( x − x0 ) + ϕ′ ( x0 )( y − y0 ) +ψ ′ ( x0 )(z − z0 ) = 0
目录 上页 下页 返回 结束
y x 例:求曲线 = x2 , z = x3上与平面 + 2 y + z = 4平行的 切线方程。 切线方程。 v ′ , z′ ) = (1,2x,3x2 ) T 切线的方向向量 = (1, yx x 解: v 因为切线与平面平行, 因为切线与平面平行, 且平面的法向量 n = (1,2,1) r r 所以, 所以,T ⋅ n = 0 即 ×1 + 2x × 2 + 3x2 ×1 = 0 1 1 2 解得, 解得,x1 = − , x2 = −1 即3x + 4x + 1 = 0 3 1 1 1 1 ( 当x1 = − 时,切点为− , ,− ) 3 3 9 27 3x + 1 9 y − 1 27z + 1 切线方程为 = = 1 3 −2 ( 当x1 = −1时,切点为−1,1,−1) x +1 y −1 z +1 切线方程为 = = 1 3 −2

高等数学第九章第六节多元函数微分学的几何应用课件.ppt

高等数学第九章第六节多元函数微分学的几何应用课件.ppt

当J (F,G) 0时, 可表示为 (y, z)
, 且有
dy 1 (F,G) , dz 1 (F,G) , dx J (z, x) dx J (x, y) 曲线上一点 M (x0 , y0 , z0 ) 处的切向量为
T 1, (x0 ), (x0 )
1 ,
1 J
(F,G) (z , x)
一、一元向量值函数及其导数
(一)向量值函数的概念 (二)向量值函数的极限和连续 (三)向量值函数的导数 (四)举例
一、一元向量值函数及其导数
(一)向量值函数的概念 (二)向量值函数的极限和连续 (三)向量值函数的导数 (四)举例
➢定义
设向量值函数 f (t )在点 t0的某一邻域内有定义, 如果
x x0 Fx (x0 , y0 , z0 )
y y0 Fy (x0 , y0 , z0 )
z z0 Fz (x0 , y0 , z0 )
T
M
特别, 当光滑曲面 的方程为显式
F(x, y, z) f (x, y) z
时, 令
则在点 (x, y, z),
故当函数
在点 ( x0, y0 ) 有连续偏导数时, 曲面
f (t)的三个分量函数 f1(t), f2(t), f3(t)都在 t0 可导.
当f (t)在 t0 可导时, f (t) f1(t)i f2(t) j f3(t)k.
➢运算法则
设u(t), v(t),(t)可导, C是常向量, c是任一常数,则
(1) d C 0 dt
(2) d [cu(t)] cu(t) dt
例1. 求圆柱螺旋线

对应点处的切线方程和法平面方程.
解: 由于
对应的切向量为 T (R , 0, k), 故

微积分第八章

微积分第八章
或f(x0,y0). 同一元函数一样,函数的定义域和对应法则是二元函数的两个 要素.对于以解析式表示的二元函数,其定义域就是使该式子有意义 的自变量的变化范围.对于实际问题,在求定义域时,除使该式子有 意义外,还要符合具体问题的实际意义. 二元函数的定义域比较复杂,可以是全平面,可以是一条曲线, 也可以是由曲线围成的部分平面等. 二元函数的定义域的求法同一元函数,可用不等式组或集合的 形式表示.
利用函数全增量的概念,连续定义可用另一种形式表述.
三、 二元函数的连续性
函数z=f(x,y)在点(x0,y0)的某邻域内有定义, 当自变量x,y分别由x0变到x0+Δx,y0变到y0+Δy时, 函数z=f(x,y)有增量
f(x0+Δx,y0+Δy)-f(x0,y0) 称其为函数z=f(x,y)在点(x0,y0)的全增量,记 为Δz,即
P0(x0,y0)处连续.
如果函数z=f(x,y)在区域D内各点都连续,则称函数
z=f(x,y)在区域D内连续.
三、 二元函数的连续性
对于闭区域上的连续函数z=f(x,y),则要求
函数z=f(x,y)在区域D内和边界上都连续.当点
P0(x0,y0)
D
中的P→P0是指P在区域D内所取的路线趋近于点
P0(x0,y0),极限中满足0<(x-x0)2+(y-y0)2<δ
图 8-7
一、多元函数的概念
定义域D就是曲面在xOy面上的投影区域. 例如,函数z=a2-x2-y2(a>0)的图形是球心在原点、 半径为a的上半球面(见图8-8).
图 8-8
二、 二元函数的极限
与一元函数情况类似,对于二元函数z=f(x,y),我们 需要考察当自变量x,y无限趋近于常数x0,y0时,即当点 P(x,y)无限逼近于点P0(x0,y0)时,对应的函数值的变化趋 势,这就是二元函数的极限问题.

多元函数微分学的几何应用数二考不考

多元函数微分学的几何应用数二考不考

多元函数微分学的几何应用1. 引言多元函数微分学是微积分学中的重要分支,其研究对象是多元函数及其相关的概念、性质和应用。

在微积分的学习中,我们已经学习了一元函数微分学的基本概念和应用,而多元函数微分学则将这些概念和应用推广到了多个变量的情况下。

多元函数微分学的几何应用是其中重要的一部分,它与平面曲线、空间曲面以及曲线与曲面的相互关系密切相关。

本文将围绕多元函数微分学的几何应用展开讨论,探讨平面曲线的切线和法平面、空间曲面的切平面和法线以及曲线与曲面之间的关系。

2. 平面曲线的切线与法平面2.1 平面曲线的切线在一元函数微分学中,我们学习了曲线的切线是曲线上某一点处切线方向的极限,即曲线在该点附近的线性近似。

对于一元函数而言,切线是直线,但对于多元函数而言,切线则是切线面。

切线的定义可以用向量的方法来表示。

设曲线C的参数方程为x=x(t), y=y(t),则曲线上点P(x0, y0)处的切向量为在切点处的切线与该点的切向量平行。

2.2 平面曲线的法平面曲线的法平面是与曲线的切线垂直的平面,其法向量与切向量正交。

根据向量的内积为零的性质,曲线的法平面法向量为3. 空间曲面的切平面与法线3.1 空间曲面的切平面在空间中,我们常常会遇到曲面,例如球面、柱面、抛物面等。

与平面曲线类似,空间曲面也有切平面和法线的概念。

空间曲面上一点处的切平面是与该点处的切向量正交的平面。

设曲面S的参数方程为x=x(u,v), y=y(u,v), z=z(u,v),则曲面上点P(x0, y0, z0)处的两个切向量为在切点处的切平面由切向量和的线性组合生成。

3.2 空间曲面的法线空间曲面上一点处的法向量是与该点处的切平面垂直的向量。

类似于平面曲线的法向量的计算方法,空间曲面上切平面的法向量由两个切向量的叉积得到:4. 曲线与曲面的关系曲线与曲面之间存在着紧密的联系,通过研究曲线在曲面上的投影、曲线与曲面的交线等问题,我们可以更深入地理解曲线与曲面之间的几何关系。

多元函数微分学的几何应用

多元函数微分学的几何应用
0000000001limt定义设向量函数在点的某一去心邻域内有ft定义如果存在一个常向量对于任意给定的正数总存在正数使得当满足0时对应的函数值都满足不等式?那么常向量就叫做向量函数当时的r极限记作或ttr?ttftr?ftttftr?ftrt?t???????向量值函数极限存在连续可导的充分必要条件向量值函数当时的极限存在的充分必要条件是
t t0
向量值函数极限存在、连续、可导 的充分必要条件
向量值函数f ( t )当t t0时的极限存在的充分必要条件是: 在函数f ( t )当t t0时的极限存在时,其极限 lim f ( t ) lim f 1 ( t ), lim f 2 ( t ), lim f 3 ( t )
t t0 t t0 t t0 t t0
f ( t )的三个分量函数f1 ( t ),f 2 ( t ),f 3 ( t )当t t 0时的极限存在;


(5 )
向量值函数f ( t )在点t0的某一邻域内有定义,若 lim f ( t ) f ( t0 )
t t0
则称向量值函数f ( t )在点t0 连续.
二、空间曲线的切线与法平面
设空间曲线的参数方程为 x(t), y(t), z(t), 假定(t), (t), (t)都在[, ]上可导 过曲线上tt0所对应的点M0切线方 程为 x x y y zz
(t0 ) (t0 ) (t0 )
0

0

0
定义2 向量值函数f ( t )在点t 0的某一邻域内有定义,如果 f ( t 0 t ) f ( t 0 ) lim t 0 t 存在,那么就称这个极限向量为向量值函数r f ( t )在t 0处

多元函数微分学的几何应用数二考不考

多元函数微分学的几何应用数二考不考

多元函数微分学的几何应用数二考不考多元函数微分学是数学中的一个重要分支,其主要研究多元函数的导数和微分,以及这些概念在几何上的应用。

它在计算机图形学、物理学、经济学、工程学等领域都有很广泛的应用。

在这篇文章中,我们将着重介绍多元函数微分学在几何上的应用,为数学爱好者提供一些指导。

多元函数微分学中最基本的一些概念包括偏导数和全微分。

偏导数是指一个函数在某个指定的方向上的变化率,它只是函数变化率的一个组成部分,这个方向可以是$x$方向,$y$方向,$z$方向。

全微分则是指函数在一个点处的线性近似,可以看作是$\Delta x$和$\Delta y$的一个组合,其中$\Delta x$和$\Delta y$是$x$和$y$方向上的偏移量,常常用于描述某个变量的微小变化。

几何上,偏导数可以理解为函数曲面在某个方向上的斜率,而全微分可以理解为函数曲面在某个点处的切平面。

利用这些概念,我们可以计算函数曲面在某个点处的各种几何量。

例如,函数$f(x,y)=x^2+y^2$是一个二次函数,它的图像是一个平面上的圆。

在某个点$(x_0,y_0)$处,它的偏导数可以表示为$\frac{\partial f}{\partial x}=2x$和$\frac{\partialf}{\partial y}=2y$。

这些偏导数可以告诉我们在这个点处圆上的切线方向。

同时,此点的全微分可以表示为$df=2x\Delta x+2y\Deltay$,它可以告诉我们在这个点处圆上的切平面。

在三维空间中,函数$f(x,y,z)$表示的是一个三维曲面。

同样可以定义偏导数和全微分。

在某个点$(x_0,y_0,z_0)$处,偏导数可以表示为$\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z}$,而全微分可以表示为$df=\frac{\partial f}{\partial x}\Delta x+\frac{\partialf}{\partial y}\Delta y+\frac{\partial f}{\partial z}\Deltaz$。

多元函数可微的几何意义

多元函数可微的几何意义

多元函数可微的几何意义一、引言多元函数可微的几何意义是指当一个多元函数可以微分,其微分的几何意义有何作用。

本文将主要讨论多元函数可微的几何意义以及界定极值的几何意义,最后以坐标系函数的一般性的画象来总结微积分学的几何解释。

二、多元函数可微的几何意义1. 关于可微的几何意义,可以从以下几个方面来讨论:(1)对于函数的微分是求取函数在某点发生“瞬时变化”的率。

也就是说,当给定某一点的坐标时,如果我们把变量的取值按微小的步长一点点增加,函数的取值也将按着一定的规律在该点一点点发生变化。

函数的瞬时变化率就是该函数在该点处的微分,即可微函数在该点处的切线斜率。

(2)微分还可以表示函数的图像在某一点附近的倾斜程度,也就是曲线在该点附近的弯曲程度,这又等同于函数的瞬时变化率。

简而言之,函数的微分就是表示函数的变化率。

(3)函数可微的意义也可以从多元函数的角度来看,一个多元函数的函数值能够在一个点上被定义,所以它的梯度(也叫做函数可微程度)也在该点可以被定义。

在这里,梯度指的是函数在该点的切线斜率,该切线斜率是多元函数在某一点发生瞬时变化的率。

2. 界定极值的几何意义界定极值的几何意义可以分为两类:(1)在第一类情况下,函数在某一点变化率为0,这意味着函数在该点处发生的变化率比较小,也就是曲线在该点处的弯曲程度比较小,从而在该点处可能存在着极值。

(2)在第二类情况下,函数在某一点处的变化率接近于无穷大或是无穷小,这意味着函数在该点处变化率增加的速度接近于无穷大或是无穷小,也就是曲线在该点处的弯曲程度极大,从而在该点处也可能存在极值。

三、坐标系函数的一般性的画象在微积分学的几何解释中,坐标系函数可以用一般性的象来表示,即在每一点的函数取值与其坐标之间构成多元函数。

图形化表示函数与坐标的关系,可以让我们更加清楚地认识到多元函数可微的意义,以及其微分的曲率及其与极值的关系。

可以说,函数可微的几何意义与坐标系函数的一般性画象相辅相成,从而使微积分学更加形象地被表达出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fx
Gx
Fy
dy dx
Fz
dz dx
0
Gy
dy dx
Gz
dz dx
0
x x0 y y0 z z0 1 y( x0 ) z( x0 )
Fz Fx dy Gz Gx dx Fy Fz
Fx Fy dz Gx Gy dx Fy Fz
Gy Gz
Gy Gz
利用2.结果,
x x0 y y0 z z0yΒιβλιοθήκη (t )z (t)
t [ , ]
若记 r xi yj zk
f (t) (t)i (t) j (t)k
则Γ 方程成为: r f (t) ((t), (t),(t))
t [ , ]
9.6 多元函数微分学的几何应用
1、一元向量值函数的定义:
设数集D R,则映射f:D Rn为一元
t
存在,则称该极限向量为函数 f (t)在t0处的导数或导向量.
记作:
f
(
t
0
)或
dr dt
.
t t0
9.6 多元函数微分学的几何应用
说明 (1)向量值函数可导等价于它的分量函数
都可导,且
f (t0 ) f1(t0 ) i f2(t0 ) j f3(t0 ) k
(2)若在某个区域内每一点都可导,则称
9.6 多元函数微分学的几何应用
2. 空间曲线的方程为 两个柱面 的交线
x
设曲线直角坐标方程为
x0 y y0 z z0
y z
y( x) ,
z( x)
x(t0 ) y(t0 ) z(t0 )
x x

x为参数,
曲线的参数方程是
y
y(
x)
z z( x) 由前面得到的结果, 在M(x0, y0, z0)处,
该函数是该区域上的可导函数;
(3)向量值函数的导数与数量值函数的导 数运算法则形式相同(教材P92).
(4)向量值函数导向量的几何意义:
9.6 多元函数微分学的几何应用
设空间曲线是向量值函数r f (t), t D的终端曲线,
OM f (t0 ) ON f (t0 t)
取割线 MN的方向向量为
x(0) 1, y(0) 2, z(0) 3
切线方程 x 0 y 1 z 2
1
2
3
法平面方程 x 2( y 1) 3(z 2) 0

x 2 y 3z 8 0.
x(t0 )( x x0 ) y(t0 )( y y0 ) z(t0 )(z z0 ) 0 20
质点的加速度向量:
a (t )
d
v
r (t )
dt
小结
求向量值函数的极限:各分量取极限
求向量值函数的导数:各分量求导数
9.6 多元函数微分学的几何应用
例 设 f (t) (cost) i (sint) j t k,求lim f (t).
t
4
解: lim f (t )
t
4
lim
t 4
cos
说明:(1)向量值函数连续等价于它的分量函数 都连续;
(2)若在某个区域内每一点都连续,则称 该函数是该区域上的连续函数
9.6 多元函数微分学的几何应用
4、一元向量值函数的导数:
设向量值函数 r f (t)在点t0的某邻域内有定义,若
lim r lim f (t0 t) f (t0 )
t0 t t0
向量值函数,记作r f (t) t D
其中D叫函数的定义域,t为自变量,r 叫因变量。
说明:(1)向量值函数是数量值函数的推广 (2)在R3中,若向量值函数的三个分量依次为 f1(t)、 f2(t)、 f3(t)
则可表示为 f (t) f1(t)i f2 (t) j f3(t)k ( f1(t), f2(t), f3(t))
t
t t
18
9.6 多元函数微分学的几何应用
当M M ,即t 0时 , M ( x0 , y0 , z0 ), 对应于 t t0
x x0 y y0 z z0
lim Δx Δt0 t
limΔy Δt 0t
limΔz z Δt 0 t
• M
曲线在M处的切线方程
x x0 y y0 z z0 x(t0 ) y(t0 ) z(t0 )
切线方程为 x x0 y y0 z z0 ,
1
y( x0 ) z( x0 )
法平面方程为
1 ( x x0 ) y( x0 )( y y0 ) z( x0 )(z z0 ) 0.
21
9.6 多元函数微分学的几何应用
例 在抛物柱面 y 6x2 与 z 12x2的交线上,
求对应 x 1 的点处的切向量. 2
lim
t t0
f
(t )
(lim t t0
f1 (t ),
lim
t t0
f 2 (t ),
lim
t t0
f 3 (t ))
[ 计算方法 ]
9.6 多元函数微分学的几何应用
3、一元向量值函数的连续性:
设向量值函数 f (t)在点t0的某邻域内有定义,若
lim
tt0
f (t)
f (t0 )
则称函数 f (t)在t0连续.
1 法平面方程为
y( x0 ) z( x0 )
下面求出.
1 ( x x0 ) y( x0 )( y y0 ) z( x0 )(z z0 ) 0.
23
9.6 多元函数微分学的几何应用
F ( x, G( x,
y( x),z( x)) y( x),z( x))
0 ,
0
两边分别对
x求全导数:
•M
O
y
x
切向量 切线的方向向量称为曲线的切向量. T ( x(t0 ), y(t0 ), z(t0 )) 平面的点法式
法平面 过M点且与切线垂直的平面. 方程
x(t0 )( x x0 ) y(t0 )( y y0 ) z(t0 )(z z0 ) 0.
19
9.6
多元函数微分学的几何应用
9.6 多元函数微分学的几何应用
(3)向量值函数的图像
设向量 r 的起点在坐标原点,则终
点M随t的改变而移动,点M的轨迹 Γ
称为向量值函数 r=f(t) 的终端曲 x
线,也称为该函数的图像,记作Γ
反过来,向量值函数
z
•M
rf
(t)
o
y
r f (t) ( f1(t), f2 (t), f3 (t))
Fz Fx Gz Gx 0
Fx Fy Gx Gy 0
令 F( x, y, z) x2 y2 z2 8,
Fx
P0
2 x P0
2,
Fy
P0
2y P0
2
3, Fz P0 2z P0 4;
令G( x, y, z) x2 y2 z2,
Gx P0 2 x P0 2, Gy P0 2 y P0 2 3, Gz P0 2z P0 4,
f (2) (4,4,2), f (2) 42 42 22 6.
所求单位切向量一个是:(4,4,2) 2 , 2 , 1 6 3 3 3
另一个是: 2 , 2 , 1
其指向与t的增长方向一致
3 3 3 其指向与t的增长方向相反
9.6 多元函数微分学的几何应用
二、空间曲线的切线与法平面
2
9.6 多元函数微分学的几何应用
引言:
在一元函数微分学中,我们可以利用导数 确定曲线上某点处的切线斜率,并求出其切线 和法线方程。
在多元函数部分,我们可以利用偏导数来 确定空间曲线的切线和空间曲面的切平面。
9.6 多元函数微分学的几何应用
一、一元向量值函数及其导数
设空间曲线Γ的参数方程为
x (t)
Fz Gz
(
0
x
x0
)
Fz Gz
0.
Fx Gx
(
0
y
y0 )
Fx Gx
Fy Gy
0
(z
z0
)
25
9.6 多元函数微分学的几何应用

求曲线
x
2 x2
y
2 y2
z2 z2
8在点P0
(1,
3,2)的
切线方程和法平面方程. x x0 y y0 z z0
解 法一 直接用公式.
Fy Gy
Fz Gz 0
称为曲线Γ 的向量方程。
9.6 多元函数微分学的几何应用
2、一元向量值函数的极限:
设向量值函数f(t)在点t0的某一去心邻域内有定义,
若存在一个常向量r0对于任意正数,总存在正数,
使得当t满足0 t t0 时,不等式 f (t) r 0 总成立,
则称 r 0 为 f (t)当t t0时的极限,记作
例 求曲线 :
x y
t eu cos udu
0
2sin t cos t
z
1
e3t
x x0 y y0 z z0
在t 0处的切线与法平面方程 . x(t0 ) y(t0 ) z(t0 )
解 当t 0时, x 0, y 1, z 2
x et cos t, y 2cos t sin t, z 3e3t
9.6 多元函数微分学的几何应用
第9章 多元函数微分法 及其应用
z
z f (x, y)
•M
y
O
y
x
P
D
x
9.6 多元函数微分学的几何应用
9.6 多元函数微分学的 几何应用
一元向量值函数及其导数 空间曲线的切线与法平面 曲面的切平面与法线 全微分的几何意义 小结 思考题
相关文档
最新文档