(完整版)传热第二章

合集下载

第二章 传热 傅里叶定律

第二章 传热 傅里叶定律

圆筒壁传导传热时传热面积 A = 2πrl
dt
傅立叶定律写为:Φ = –λ2πrl
dr
L
积分:
r2 drl2l t2dt
r r1
t1
单层圆筒壁传 导传热公式:
Φ=
2l t1 t2 2l t1 t2
1 ln r2
1 ln d 2
l r1
l d1
因圆筒壁厚度δ = r2 – r1
l1lnrn1
n rn
2lt
1 ln dn1
ln dn
2.3 对流传热
一. 对流传热机理
热量从流体的主 体传递给器壁, 或由器壁传递给 流体主体
热流体
冷流体 间 壁
对 导对 流 热流
对比第一章流动边界层概念,边界层存在速度梯度
δ
T
热流体 壁面 冷流体
热流体 Φ
T
冷流体
w
Φ
tw
A1 A2
t
流体通过间壁的热交换经过 “对流—传导—对流”三个串联步骤。
气体的导热系数低,适用于保温隔热。 气体的导热系数,随温度升高而增大。 在相当大的压强范围内,气体的导热系数随压 强的变化甚微,可以忽略不计。只有在过高或 过低的压强(>2 105kPa或<3kPa)下,才考虑 压强的影响,此时随压强增高导热系数增大。
二. 传导传热计算
L
傅立叶定律
dt Φ = -l A
负号表示热流方向总是和温度梯度的方向相反。
3. 热导率,又称导热系数
-Φ l = dt
A dδ
1.物理意义:表征物质的导热能力,物质的热物性参数。 导热系数越大,物体的导热性能越好,即在相同的温度 梯度下传热速率越大。

《传热学》第二章热传导

《传热学》第二章热传导

第二章热传导一、名词解释1.温度场:某一瞬间物体内各点温度分布的总称。

一般来说,它是空间坐标和时间坐标的函数。

2.等温面(线):由物体内温度相同的点所连成的面(或线)。

3.温度梯度:在等温面法线方向上最大温度变化率。

4.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。

热导率是材料固有的热物理性质,表示物质导热能力的大小。

5.导温系数:材料传播温度变化能力大小的指标。

6.稳态导热:物体中各点温度不随时间而改变的导热过程。

7.非稳态导热:物体中各点温度随时间而改变的导热过程。

8.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。

9.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。

10.肋效率:肋片实际散热量与肋片最大可能散热量之比。

11.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。

12.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。

二、填空题1.导热基本定律是_____定律,可表述为。

(傅立叶,)2.非稳态导热时,物体内的_____场和热流量随_____而变化。

(温度,时间)3.导温系数的表达式为_____,单位是_____,其物理意义为_____。

(a=λ/cρ,m2/s,材料传播温度变化能力的指标)4.肋效率的定义为_______。

(肋片实际散热量与肋片最大可能散热量之比。

)5.按照导热机理,水的气、液、固三种状态中_______态下的导热系数最小。

(气)6.一般,材料的导热系数与_____和_____有关。

(种类,温度)7.保温材料是指_____的材料.(λ≤0.12 W/(m·K)(平均温度不高于350℃时))8.已知材料的导热系数与温度的关系为λ=λ0(1+bt),当材料两侧壁温分别为t1、t2时,其平均导热系数可取下的导热系数。

传热学 第2章 稳态导热

传热学 第2章 稳态导热

t t t t c Φ x x y y z z
3、常物性且稳态:
2t 2t 2t Φ a 2 2 2 0 x y z c
如果边界面上的热流密度保持为常数,则 q | w 常数 当边界上的热流密度为零时,称为绝热边界条件
t t qw 0 0 n w n w
18
(3)第三类边界条件 给出了物体在边界上与和它直接接触的流体之 间的换热状况。 根据能量守恒,有:
返回
2.1.1 各类物体的导热机理
气体:气体分子不规则热运动时相互碰撞的结果,高温的气体分子运 动的动能更大 固体:自由电子和晶格振动 对于导电固体,自由电子的运动在导热中起着重要的作用,电的良导 体也是热的良导体 对于非导电固体,导热是通过晶格结构的振动,即原子、分子在其平 衡位置附近的振动来实现的
返回
2.2.2 定解条件
导热微分方程式是能量守恒定律在导热过程中的应用,是一切导热 过程的共性,是通用表达式。 完整数学描述:导热微分方程 + 定解条件 定解条件包括初始条件和边界条件两大类,稳态问题无初始条件 初始条件:初始时刻的状态表示为: =0,t =f (x,y,z)
边界条件: 给出了物体在边界上与外界环境之间在换热上的联系或相互作用
2、推导基本方法:傅里叶定律 + 能量守恒定律 在导热体中取一微元体
进入微元体的总能量+微元体内热源产生的能量-离开微元体的总能量= 微元体内储存能的增加
11
Ein Eg Eout Es
d 时间段内:
Ein Φx Φy Φz d Eiout Φxdx Φy dy Φz dz d

《传热学讲义—第二章》

《传热学讲义—第二章》

第二章稳态导热本章重点:具备利用导热微分方程式建立不同边界条件下稳态导热问题的数学模型的能力第一节 通过平壁的导热1-1第一类边界条件研究的问题:(D 几何条件:设有一单层平■壁,厚度为a,其宽度、高度远大丁其厚度(宽度、高度 是厚度的10倍以上)。

这时可认为沿高度与宽度两个方向的温度变化率很小,温度只沿厚度 方向发生变化。

(届一维导热问题)(2) 物理条件:无内热源,材料的导热系数入为常数。

(3) 边界条件:假设平壁两侧表面分别保持均匀稳定的温度t wi 和t w2 , t wi t w2。

(为第一类边界条件,同时说明过程是稳态的)求:平■壁的温度分布及通过平■壁的热流密度值。

方法1导热微分方程:采用直角坐标系,这是一个常物性、无内热源、一维稳态导热 问题(温度只在x 方向变化)。

导热微分方程式为: 史 0 (2-1) dx 2边界条件为:t x0 t w 1 , t x t w 2(2-2)对式(2-1)连续积分两次,得其通解:t c 1x c 2t w 2 t w 1这里C 1、C 2为常数,由边界条件确定,解得:C1C 2 t w 1最后得单层平壁内的温度分布为:t t w 1 %」曳x由丁 a 、t w 1、t w 2均为定值。

所以温度分布成线性关系,即温度分布曲线的斜率是常数(温度梯度),虫―宜const(2-6)dx0—1I~Dfl ——单屋平惬(2-3)(2-4)(2-5)热流密度为:q 史—(t W l t w2) W /m2(2-7)dx若表面积为A,在此条件下,通过平壁的导热热流量则为:qA A— t W考虑导热系数随温度变化的情况:通过平壁的导热热流密度为:dt dtq 0(1 bt) —dx dx竺一1 ]bt t 0 1 2 b t W1 t W21式中,0 1 2bt W1 t W21 22 m则q —(t W1 t W2)从上式可以看出,如果以平壁的平均温度t m虹上来计算导热系数,则平壁的热流密2度仍可用导热系数为常数时的热流密度计算式:(2-8)对丁导热系数随温度线形变化,即0(1 bt),此时导热微分方程为: d dt °0 dx dx解这个方程,最后得:t2bt2bt 2 Wi W2t W2)t W1(t W it、W 一t W2说明:壁内温度不再是直线规律, 而是按曲线变化。

第二章 传热

第二章 传热

1-2 稳定传热与不稳定传热
换热器中,传热面各点的温度仅随位 置而变并不随时间而改变的传热过程 叫定态传热
换热器中,传热面各点的温度既随位 置而变又随时间而改变的传热过程叫 非定态传热
1-3热量传递的三种方式
热传导, 对流, 热辐射
1.3.1. 热传导: 物体内部或两个紧密接触 的物体之间存在温度差时,能量会由高 温区向低温区转移。 固体:原子运动,晶格波动 导体:自由电子迁移 特点:物体各部分不发生宏观的相对位 移。
2L (T1 T2 ) 2L(T1 T2 ) r2 1 r2 In In r1 r1
这种情况下,热阻
3-9
In(r2 / r1 ) R 2L
通过圆筒壁的导热量取决于内、外径之比而 与圆筒壁厚度的绝对值无关。
式3-9可写成与平面壁热传导速率方程类 似的形式,即:
2.4多层圆筒壁的热传导

2L (T1 T2 ) 2L(T1 T2 ) r2 1 r2 In In r1 r1
推导出:
2L(T1 T4 ) r3 1 r4 1 r2 1 In In In 1 r1 2 r2 3 r3
每米管长热损失为:
L,1 L,2
4.1.2有相变时热负荷的计算
热负荷:流体温度的变化而吸收或放出的热 量。以ΦL表示。 若忽略热损失 Φ放= Φ吸 热量恒算式 根据工艺特点,热负荷的计算分两种情况: 无相变时热负荷的计算 有相变时热负荷的计算
4.1.1无相变时热负荷的计算
L ,1 qmCpT qmCp( T2 T1 )
L, 2 qmCpT qmCp(T2 ' T1' )
3-1对流传热分析

传热学课件第二章导热基础理论

传热学课件第二章导热基础理论

也称导温系数,
单位为m2/s。
其大小反映物体被瞬态加热或冷却时温度变化的快慢。
导热微分方程式的简化
(1) 物体无内热源:V = 0 t a2t
(2) 稳态导热: t 0 a2t V 0 c
(3)稳态导热、无内热源:
2t 2t 2t 2t = 0,即 x2 y2 z2 0
(4)热流密度
q d
dA
nt dA
热流密度的大小和方向可 以用热流密度矢量q 表示
q
d
q d n
dA
热流密度矢量的方向指向温度降低的方向。
在直角坐标系中,热流密度矢量可表示为
q qxi qy j qzk
qx、qy、qz分别表示q在三个坐标方向的分量的大小。
2. 2 导热的基本定律—傅里叶定律
第二章 导热基础理论
例内重基 题容点本 赏精难要 析粹点求
基本要求
1. 理解温度场、等温面(线)、温度梯 度、热流密度等概念。
2. 掌握傅立叶定律及其应用。 3. 掌握热导率和热扩散率的定义、意
义、影响因素和确定方法。 4. 能写出典型简单几何形状物体导热问
题的数学描述表达式。
重点与难点
重点: 1. 傅里叶定律与热导率。 2. 导热微分方程及单值性条件。 难点: 1. 傅里叶定律的矢量表达式。 2. 导热微分方程及单值性条件。
标量形式的付里叶定律表达式为
q t
n
对于各向同性材料, 各方向上的导热系数相等,
q qxi qy j qzk
gradt t i t j t k x y z
q




t x

传热学第二章

传热学第二章

习题平板2-1 用平底锅烧开水,与水相接触的锅底温度为111℃,热流密度为424002/m W 。

使用一段时间后,锅底结了一层平均厚度为3mm 的水垢。

假设此时与水相接触的水垢的表面温度及热流密度分别等于原来的值,试计算水垢与金属锅底接触面的温度。

水垢的导热系数取为1W/(m.K)。

解:由题意得424001003.0111=-=w t q =w/m 2所以t=238.2℃2-2 一冷藏室的墙由钢皮矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm.,152mm 及9.5mm ,导热系数分别为45)./(K m W ,0. 07)./(K m W 及0.1)./(K m W 。

冷藏室的有效换热面积为37.22m ,室内外气温分别为-2℃及30℃,室内外壁面的表面传热系数可分别按1.5)./(2K m W 及2.5)./(2K m W 计算。

为维持冷藏室温度恒定,试确定冷藏室内的冷却排管每小时需带走的热量。

解:由题意得332211212111λδλδλδ++++-⨯=Φh h t t A =2.371.00095.007.0152.045000794.05.215.11)2(30⨯++++--=357.14W357.14×3600=1285.6KJ2-3有一厚为20mm 的平板墙,导热系数为1.3)./(K m W 。

为使每平方米墙的热损失不超过1500W,在外表面上覆盖了一层导热系数为0.12)./(K m W 的保温材料。

已知复合壁两侧的温度分别为750℃及55℃,试确定此时保温层的厚度。

解:依据题意,有150012.03.1020.0557502221121≤+-=+-=δλδλδt t q ,解得:m 05375.02≥δ 2-4 一烘箱的炉门由两种保温材料A 及B 组成,且B A δδ2=(见附图)。

已知)./(1.0K m W A =λ,)./(06.0K m W B =λ,烘箱内空气温度4001=f t ℃,内壁面的总表面传热系数)./(501K m W h =。

传热学第二章--稳态导热精选全文

传热学第二章--稳态导热精选全文

t
无内热源,λ为常数,并已知平 t1
壁的壁厚为,两个表面温度分别 维持均匀而恒定的温度t1和t2
t2
c t ( t ) Φ x x
d 2t dx2
0
o
x 0,
x ,
t t
t1 t2
x
直接积分,得:
dt dx
c1
t c1x c2
2024/11/6
35
带入边界条件:
c1
t2
t1
c t
1 r2
r 2
r
t r
1
r 2 sin
sin
t
r2
1
sin 2
t
Φ
2024/11/6
26
6 定解条件 导热微分方程式的理论基础:傅里叶定律+能 量守恒。 它描写物体的温度随时间和空间变化的关系; 没有涉及具体、特定的导热过程。通用表达式。
完整数学描述:导热微分方程 + 单值性条件
4
2 等温面与等温线
①定义
等温面:温度场中同一瞬间同温度各点连成的 面。 等温线:在二维情况下等温面为一等温曲线。
t+Δt t
t-Δt
2024/11/6
5
②特点
t+Δt t
t-Δt
a) 温度不同的等温面或等温线彼此不能相交
b)在连续的温度场中,等温面或等温线不会中
止,它们或者是物体中完全封闭的曲面(曲
它反映了物质微观粒子传递热量的特性。
不同物质的导热性能不同:
固体 液体 气体
金属 非金属
金属 12~418 W (m C) 非金属 0.025 ~ 3W/(mC)
合金 纯金属

传热学(第二章)

传热学(第二章)

⒉ 通过圆筒壁的导热 由导热微分方程式(2—12)
边界条件:r=r1时,t=t1;r=r2时,t=t2 对(2-25)式积分两次,得其通解: t = c1 ln r + c2 将边界条件代入通解,确定积分常数
t2 − t1 t −t c2 = t1 − ln r 2 1 ln( r2 / r ) ln( r2 / r ) 1 1 t −t t = t1 + 2 1 ln( r / r ) (2-26) 1 ln( r2 / r ) 1 dt λ t1 − t2 q = −λ = (2-27) dr r ln( r2 / r ) 1 c1 =
2 1
λ1
第二章
导热基本定律及稳态导热
2-3 通过平壁、圆筒壁、球壳和其他变截面物体的导热 通过平壁、圆筒壁、
• 1∂ ∂T 1 ∂ ∂T ∂ ∂T ∂T (λr + 2 (λ ) + (λ ) + Φ = ρcp ∂τ r ∂r ∂r) r ∂ϕ ∂ϕ ∂z ∂z d dt 简化变为 dr (r dr ) = 0 (2-25)
⒉ 通过圆筒壁的导热 根据热阻的定义,通过整个圆筒壁的导热热阻为 (2-29) 29) 与分析多层平壁—样,运用串联热阻叠加的原则,可得通过图2-9所示的多层圆筒壁的 导热热流量 2πl(t1 − t4 ) Φ= (2-30) ln( d2 / d1) / λ1 + ln( d3 / d2 ) / λ2 + ln( d4 / d3) / λ3 ⒊ 通过球壳的导热 导热系数为常数,无内热源的空心球壁。内、外半径为r1、r2,其内外表面均匀 恒定温度为t1、t2,球壁内的温度仅沿半径变化,等温面是同心球面。 由傅立叶定律得: dt 各同心球面上的热流率q不相等,而热流量Φ相等。 Φ = −4πr2λ dr dr ⇒Φ 2 = −4πλdt r

传热学第二章

传热学第二章

△n
Δn0 Δn n
温度梯度和热流密度
•温度梯度是向量,垂直于等温面, 正向朝着温度增加的方向;
•温度梯度的方向是温度变化率最大的方向。
t t n m
温度梯度的解析定义:
温度场 t f (x, y, z) 中点(x, y, z) 处的温度梯度:
gradt t i t j t k x y z
温度梯度垂直于等温面吗?
设等温面方程: t f (x, y, z) c 在点 (x, y, z)处,等温面的法线向量n n ( t , t , t ) x y z gradt 平行于 n
梯度方向垂直于等温面。
两个定义一致,解析定义便于计算
(4) 热流密度
热流密度是指单位时间经过单位面积所传递的热量,用 q 表示,单位为 W / m2。
根据上面的条件可得:
x
(
t ) x
y
(
t ) y
z
(
t z
)
qv
(cp t)
d 2t dx2
0
第一类边界条件:
x 0,t t1
x ,t t2
直接积分:
dt dx
c1
带入边界条件:
t c1x c2
c1
t2
t1
c2 t1
t
t2
t1
x
t1
dt t2 t1
dx
带入傅里叶定律得
t y
qz
t z
对于一维导热问题:
q dt
dx
3 导热系数
导热系数的定义式可由傅立叶定律的表达式得出
q t n
n
(1)物理意义:
表示了物质导热能力的大小,是在单位温度梯度作用下 的热流密度。工程计算采用的各种物质的导热系数值都是由 专门实验测定出来的。

第二章 传热

第二章  传热
第四章
传 热
第一节 传热的基本概念和理论
一、传热的基本方式
根据传热机理的不同,传热有热传导、热对流和热辐射。
1.热传导
物体内部或者物体之间温度差的存在,热 量自动地由高
温处向低温处的传递过程称为热传导,简称导热。导热的实 质是依靠分子的振动或者自由电子的扩散运动,高温物体分 子剧烈地振动并碰撞相邻的低温物体分子,从而将热量传递 给低温物体,直至整个系统的温度均匀一致。 特点:静止物质内;无物质的宏观位移
上述两式是对流传热速率方程,又称牛顿冷却定律。式中 冷、热流体的平均温度和壁面温度都是流体流经某一指定截 面上流体的平均温度和壁面温度,所以,式中对流体系数α 也只是代表这一指定截面积上的数值,是局部对流传热系数。 在整个换热器中,流体温度和壁温都随流体流动方向而改 变,所以局部对流传热系数也沿流体流动方向而变化。工程 上,为了方便起见,在设计换热器时,都按流体和壁面的平 均温度计算,而对流体传热系数也用平均温度下的平均对流 传热系数的数值,牛顿冷却定律可以表示为:
式中 i 、 o—换热器管内侧和外侧流体对流传热系 数, W/(m2· ℃) So 、 Si —换热器的管内表面积和管外表面积,m2
牛顿冷却定律是将复杂的对流传热过程的传热速 率与推动力和热阻的关系用一简单的关系式表达出 来。但如何求得各具体条件下的对流传热系数,成 为解决对流传热问题的关键。
λ0 --- 0 0C时 则 t 0C时的: λ= λ0 (1+ a t)
a-温度系数,对于大多数金属材料a >0;对于大多数 非金属材料a <0
液体可分为金属液体和非金属液体。金属液体的导热系数 比一般液体的要高,大多数液态金属的导热系数随温度的升 高而降低。在非金属液体中,水的导热系数最大。除水和甘 油外,绝大多数液体的导热系数随温度的升高而减小,一般 地,纯液体的导热系数比其溶液大 气体的导热系数很小,对导热不利,但有利于绝热、保温。 工业上利用软木、玻璃棉孔隙中的气体的导热系数较小这一 特点,作为绝热、保温材料。气体的导热系数随温度升高而 增大,但随压强的变化很小,可以忽略不计。 在热传导过程中,因物质各截面上温度不同,导热系数也 就不同。所以在工程计算中,应取最高温度t1下的λ1与最低 温度t2下的λ2的算术平均值,即λm=( λ1+λ2)/2,或 用算术平均温度tm=(t1+t2)/2查取平均导热系数λm。

传热学 第二章 对流换热

传热学  第二章  对流换热

δtt
tw
第一节 对流换热分析及牛顿冷却定律 一、边界层概念
在层流边界层中, 在层流边界层中,热量的传递只能依靠流体层与层间的 导热作用,此时对流换热较弱。在紊流边界层中, 导热作用,此时对流换热较弱。在紊流边界层中,层流底 层的热量传递方式仍是导热, 层的热量传递方式仍是导热,但在层流底层以外存在着对 因而对流换热较强。 流,因而对流换热较强。所以对流换热实际上是包括流体 层流的导热和层流以外的对流共同作用的综合传热过程。 层流的导热和层流以外的对流共同作用的综合传热过程。 若同一流体在相同的温度下流过同一壁面时, 若同一流体在相同的温度下流过同一壁面时,则层流底层 越薄,对流换热越强烈。 越薄,对流换热越强烈。
第一节 对流换热分析及牛顿冷却定律 一、边界层概念
(一)速度边界层 当粘性流体流过固体壁面时, 当粘性流体流过固体壁面时,若用仪器测出沿壁面法线方 方向不同点的速度u,将得到如图所示的速度分布图。 向Y方向不同点的速度 ,将得到如图所示的速度分布图。 方向不同点的速度 它表明从y=0处u=0开始,速度u随着 方向离壁面的距离 它表明从 处 开始,速度 随着y方向离壁面的距离 开始 随着 的增加而迅速增大,经过厚度为δ的薄层 的薄层, 接近达到主流 的增加而迅速增大,经过厚度为 的薄层,u接近达到主流 速度u ,这个y= 的薄层即为速度边界层 的薄层即为速度边界层, 为边界层厚 速度 ∞,这个 δ的薄层即为速度边界层, δ为边界层厚 度。边界层厚度理论上应等于由壁面到流体达到主流速度 点之间的距离,但这个点的位置难于准确确定, 点之间的距离,但这个点的位置难于准确确定,故通常把 u/ u∞=0.99处离壁面的垂直距离定义为边界层厚度。实验 处离壁面的垂直距离定义为边界层厚度。 处离壁面的垂直距离定义为边界层厚度 表明δ与壁面尺寸 相比是一个极小的量。 与壁面尺寸L相比是一个极小的量 表明 与壁面尺寸 相比是一个极小的量。

传热学-第2章

传热学-第2章
第二章 稳态热传导 12
在导热体中取一微元体 热力学第一定律:
Q U W
W 0, Q U
d 时间内微元体中: [导入与导出净热量]+ [内热源发热量] = [热力学能的增加]
1、导入与导出微元体的净热量 d 时间内、沿 x 轴方向、经 x 表面导入的热量:
dQx qx dydz d
t t1
n i
x

i 1
t tn1
t1 t2 t3 t4
热阻:
r1
1 , , rn n 1 n
第二章 稳态热传导
三层平壁的稳态导热
30
q
t1 t n 1
由热阻分析法:
ri
i 1
n

t1 t n 1
i i 1 i
n
问:现在已经知道了q,如何计算其中第 i 层的右侧壁温?
第一章复习
(1) 导热
傅里叶定律:
(2) 对流换热 牛顿冷却公式: (3) 热辐射
斯忒藩-玻耳兹曼定律 :
dt Φ A dx
Aht
A T 4
(4) 传热过程
(t f 1 t f 2 ) (t f 1 t f 2 ) Φ 1 1 Rh1 R Rh 2 Ah1 A Ah2
多层、第三类边条
tf1
q
tf1 tf 2 1 n i 1 h1 i 1 i h2
h1 t2 t3
h2 tf2
W 单位: 2 m
传热系数? tf1

t1 t2 t3 t2
? tf2
32
三层平壁的稳态导热
第二章 稳态热传导
一台锅炉的炉墙由三层材料叠合而成.最里面的是耐火黏土砖,厚 115MM;中间是B级硅藻土砖,厚125MM;最外层为石棉板,厚 70MM.已知炉墙内外表面温度分别为485℃ 和60 ℃ , 试求每平方 米炉墙的热损失及耐火黏土砖和硅藻土砖分界面上的温度。 解:各层的导热系数可根据估计的平均温度从手册中查出。第一 次估计的平均温度不一定正确,待算得分界面温度时,如发现不 对,可重新假定每层的平均温度。经几次试算,逐步逼近,可得 合理的数值。这里列出的是几次试算后的结果: W 3 0.116 /(m K ) W 1 1.12W /(m K ) 2 0.116 /(m K )

(完整版)第二章建筑传热的基本原理

(完整版)第二章建筑传热的基本原理

第二章 建筑传热的基本原理2.1 传热方式传热是指物体内部或者物体与物体之间热能转移的现象。

凡是一个物体的各个部分或都物体与物体之间存在着温度差,就必然有热能的仁慈转移现象发生。

建筑物内外热流的传递状况是随发热体(热源)的种类、受热体(房屋)部位、及其媒介(介质)围护结构的不同情况而变化的。

热流的传递称为传热。

根据传热机理的不同,传热的基本方式分为导热、对流和辐射3种。

1、导热(1)导热的机理导热是指物体内部的热量由一高温物体直接向另一低温物体转移的现象。

这种传热现象是两直接接触的物体质点的热运动所引起的热能传递。

一般来说,密实的重质材料,导热性能好,而保温性能差;反之,疏散的轻质材料,导热性能差,而保温性能好。

材料的导热性能以热导率表示。

热导率是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为l 开(K)或1摄氏度(℃),在1h 内;通过1㎡面积传递的热量,单位为瓦/(米·开)[W/(m·K )],或[瓦/(米·℃)W /(m·℃) ]。

热导率与材料的组成结构、密度、含水率、温度等因素有关。

通常把热导率较低的材料称为保温材料,把热导率在0.05W /(m·K)以下的材料称为高效保温材料。

普通混凝土的热导率为1.75W /(m·K),粘土砖砌体为0.81W /(m·K),玻璃棉、岩棉和聚苯乙烯的为0.04~0.05W/(m·K )。

1)杆的导热若一根密实固体的棒,除两端外周围用理想的绝缘材料包裹,其两端的温度分别为1T 和2T ,如图2-1所示。

如1T 大于2T ,则有热量Q 通过截面F 以导热方式由1T 端向2T 端传递。

依据实验可知:Q = F l T T 21-λ (2-1) 式中 Q ——棒的导热量(W); F ——-棒的截面积(㎡);1T ,2T ——分别为棒两端的温度(K);l ——棒长(m);λ——导热系数(W /(m·K))。

第二章 传热

第二章 传热

Q2为冷流体吸收的热量,W;
Q3为热损失,W。

如果换热器保温良好,热损失不计时,则有:
Q1 = Q2

冷热流体传递热量的计算方法

假定1:流体无相变化,流体的比热视为常数或取进出口 温度算术平均值下的比热容,则热流量计算式为:
Q1 qm1c p1 (T1 T2 ) Q2 qm 2 c p 2 (t 2 t1 )
主要内容

传热速率方程和热量衡算 单层、多层平壁,圆筒壁热传导速率方程及应用; 对流传热系数的影响因素; 传热过程计算

热力学第二定律:只要存在温度差,热量会自发从高温传
递向低温,直至温度相等。
传热方向: 高温→低温 传热极限: 温度相等 传热推动力: 温度差

传热应用:科研、生产、生活
定,物性已知。对此传热过程如何解决下列问题:
1) 2) 3)
如何根据上述要求设计并选择合适的换热器? 使用一段时间后,换热效果能否达到要求? 冷却水流量和液体产品对换热效果有和影响?
4)
季节变化对换热效果有何影响?
2.2 传热机理

热量传递方式,根据传热机理不同可分为:热传导、对流 传热和辐射传热。
(2) 对流给热

对流给热:是指流体质点发生宏观位移而引起的热量传递。

对流给热仅仅发生于流体中。
(3) 辐射传热

辐射传热:是指物体以电磁波的形式向外界辐射的能量和
其从外界吸收的辐射能不相等时,该物体与外界就产生热量 的传递。

实际传热过程往往不是单独以某种传热形式传递热量,而
是两种或三种传热方式的组合。
4) 导热系数λ与材料的组成、结构、温度、湿度以及聚集体状

传热学-第二章导热基本定律及稳态传热

传热学-第二章导热基本定律及稳态传热
1、导入微元体的净热量
d 时间X方向流入与流出微元体的热流量
dQx
- dQxdx
- qx x
dxdydz d
( t ) dxdydz d
x x
d 时间Y方向流入与流出微元体的热流量
dQy
- dQydy
- q y y
dy dxdz d
y
( t ) dxdydz d
y
2.4 导热微分方程及定解条件
影响热导率的因素:物质的种类、材料成分、温度、压力及 密度等。
2.3 导热系数
2.3.1 气体导热系数
气体导热——由于分子的无规则热运动以及分子间 的相互碰撞
1 3
vlcv
v 3RT M
V 气体分子运动的均方根 m/s L 气体分子两次碰撞之间的平均自由程 m
Cv气体的定容比热 J/kg·℃
2.3 导热系数
2.4 导热微分方程及定解条件
建立数学模型的目的:
求解温度场 t f x, y, z,
步骤: 1)根据物体的形状选择坐标系, 选取物体中的 微元体作为研究对象; 2)根据能量守恒, 建立微元体的热平衡方程式; 3)根据傅里叶定律及已知条件, 对热平衡方程式 进行归纳、整理,最后得出导热微分方程式。
通过某一微元面积dA的热流:
dA q
d
q dA
t
n
dA
t
dydz
t
dxdz
t
பைடு நூலகம்
dxdy
n
x
y
z
2.2导热的基本定律
例:判断各边界面的热流方向
2.3 导热系数
由傅里叶定律可得,导热系数数学定义的具体形式为:
q t n

《传热学》第2章_稳态热传导

《传热学》第2章_稳态热传导

三三
三三三三三三三三三 三三
三三 三三
三三三三三三三
三三
三三三三三三三三
三三
三三三三三三三三三三三
18
第2章 稳态热传导
2.1 典型一维稳态导热问题的分析解
2.3.1 通过平壁的导热:
一维、稳态、常物性、无内热源情况,考察平板的导热情况。
c t


x
t x
t x
n
中,gradt表示空间某点的温度梯度,
n表示通过该点的等温线上的法向单位矢量,温度升高的方向。
利用等温线和热流线来定量且形 象地表述一个导热过程: 等温线表示热流梯度,而热流线 是与等温线处处垂直的一组曲线, 通过平面上任一点的热流线与该 点的热流密度相切。 相邻两条热流线之间所传递的热 流量处处相等,相当于构成了一 个热流通道。 该方法用于现代工程软件应用。
2.类似于非导电固体;(倾向于此观点)
2
第2章 稳态热传导
等温场(temperature field):
温度场:物体中存在温度的场。 温度分布:各时刻物体中各点温度所组成的集合
分类:
稳态温度场:物体中各点温度不随时间而变。 t f x, y, z 瞬态温度场:物体中各点温度随时间变化。 t f x, y, z,
几何条件: 说明导热体的几何形状(平壁或圆筒壁)和大小(厚度、直径等)
物理条件:
说明导热体的物理特征如:物性参数λ、c 和 r 的数值,是否 随温度变化;有无内热源、大小和分布;是否各向同性 初始(时间)条件: 说明在时间上导热过程进行的特点 稳态导热过程不需要时间条件 — 与时间无关 对非稳态导热过程应给出过程开始时刻导热体内的温度分布
疏密可直观反映出不同区域温度热流密度的相对大小。

传热学第二章

传热学第二章

刘彦丰华北电力大学工程应用的两个基本目的:•能准确地预测所研究系统中的温度分布;•能准确地计算所研究问题中传递的热流。

要解决的问题:温度分布如何描述和表示?温度分布和导热的热流存在什么关系?如何得到导热体内部的温度分布?第二章导热基本定律及稳态导热刘彦丰华北电力大学本章内容简介2-1 导热基本定律2-2 导热微分方程式及定解条件2-3 通过平壁、圆筒壁、球壳和其它变截面物体的导热(一维稳态导热)2-4 通过肋片的导热分析2-5 具有内热源的导热及多维导热回答问题1和2回答问题3具体的稳态导热问题刘彦丰传热学Heat Transfer 华北电力大学一、温度分布的描述和表示像重力场、速度场等一样,物体中的温度分布称为温度场。

1、温度分布的文字描述和数学表示,如:在直角坐标系中非稳态温度场),,,(τz y x f t =稳态温度场),,(z y x f t =一维温度场二维温度场三维温度场)(x f t =),(τx f t =),(y x f t =),,(τy x f t =),,(z y x f t =),,,(τz y x f t =2-1 导热基本定律刘彦丰传热学Heat Transfer华北电力大学2、温度分布的图示法传热学Heat Transfer 2、温度分布的图示法等温线传热学Heat Transfer二、导热基本定律(傅立叶定律)1822年,法国数学家傅里叶(Fourier )在实验研究基础上,发现导热基本规律——傅里叶定律.法国数学家Fourier: 法国拿破仑时代的高级官员。

曾于1798-1801追随拿破仑去埃及。

后期致力于传热理论,1807年提交了234页的论文,但直到1822年才出版。

刘彦丰华北电力大学在导热现象中,单位时间内通过给定截面的热量,正比于垂直于该截面方向上的温度梯度和截面面积,方向与温度梯度相反。

1、导热基本定律的文字表达:nntgradt q ∂∂−=−=λλ2、导热基本定律的数学表达:t+Δt tt-Δt刘彦丰华北电力大学3、意义已知物体内部的温度分布后,则由该定律求得各点的热流密度或热流量。

传热学-第二章

传热学-第二章

气体分子运动理论:常温常压下气体热导率可表示为: u :气体分子运动的均方根速度 1 u lcv l :气体分子在两次碰撞间平均自由行程
3

:气体的密度; cv :气体的定容比热
气体的压力升高时:气体的密度增大、平均自由行程 减小、而两者的乘积保持不变。 除非压力很低或很高,在2.67*10-3MPa ~ 2.0*103MPa范围内, 气体的热导率基本不随压力变化 气体的温度升高时:气体分子运动速度和定容比热随 T升高 而增大。 气体的热导率随温度升高而增大 混合气体热导率不能用部分求和的方法求;只能靠实验测定
t t t q x ; q y ; q z x y z
注:傅里叶定律只适用于各向同性材料 各向同性材料:热导率在各个方向是相同的
有些天然和人造材料,如:石英、木材、叠层塑料板、叠层 金属板,其导热系数随方向而变化 —— 各向异性材料
各向异性材料中:
t t t qx xx xy xz x y z t t t q y yx yy yz x y z t t t qz zx zy zz x y z
球坐标系 (r, ,)
t r 1 t q r 1 t q r sin qr
x r sin cos ; y sin r sin ; z cos r

t 1 t 1 t q gradt t i j k r r r sin t 1 1 t 1 t 2 t c 2 ( r ) 2 ( sin ) 2 2 ( ) qv r r r r sin r sin
确定热流密度的大小,应知道物体内的温度场: t f ( x, y, z, ) 确定导热体内的温度分布是导热理论的首要任务 一、导热微分方程式 理论基础:傅里叶定律 + 热力学第一定律 化学反应 假设:(1) 所研究的物体是各向同性的连续介质 发射药熔 化过程 (2) 热导率、比热容和密度均为已知 (3) 物体内具有内热源;强度 qv [W/m3]; 内热源均匀分布;qv 表示单位体积的导热 体在单位时间内放出的热量 qV AQ0e E RT
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章思考题1 试写出导热傅里叶定律的一般形式,并说明其中各个符号的意义。

答:傅立叶定律的一般形式为:nx t gradt q∂∂-=λλ=-,其中:gradt 为空间某点的温度梯度;n是通过该点的等温线上的法向单位矢量,指向温度升高的方向;q 为该处的热流密度矢量。

2 已知导热物体中某点在x,y,z 三个方向上的热流密度分别为y x q q ,及z q ,如何获得该点的 热密度矢量? 答:k q j q i q q z y x⋅+⋅+⋅=,其中k j i ,,分别为三个方向的单位矢量量。

3 试说明得出导热微分方程所依据的基本定律。

答:导热微分方程式所依据的基本定律有:傅立叶定律和能量守恒定律。

4 试分别用数学语言将传热学术语说明导热问题三种类型的边界条件。

答:① 第一类边界条件:)(01ττf t w =>时,② 第二类边界条件:)()(02τλτf x tw =∂∂->时③ 第三类边界条件:)()(f w w t t h x t-=∂∂-λ5 试说明串联热阻叠加原则的内容及其使用条件。

答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。

使用条件是对于各个传热环节的传热面积必须相等。

7.通过圆筒壁的导热量仅与内、外半径之比有关而与半径的绝对值无关,而通过球壳的导热量计算式却与半径的绝对值有关,怎样理解? 答:因为通过圆筒壁的导热热阻仅和圆筒壁的内外半径比值有关,而通过球壳的导热热阻却和球壳的绝对直径有关,所以绝对半径不同时,导热量不一样。

6 发生在一个短圆柱中的导热问题,在下列哪些情形下可以按一维问题来处理? 答:当采用圆柱坐标系,沿半径方向的导热就可以按一维问题来处理。

8 扩展表面中的导热问题可以按一维问题来处理的条件是什么?有人认为,只要扩展表面细长,就可按一维问题来处理,你同意这种观点吗?答:只要满足等截面的直肋,就可按一维问题来处理。

不同意,因为当扩展表面的截面不均时,不同截面上的热流密度不均匀,不可看作一维问题。

9 肋片高度增加引起两种效果:肋效率下降及散热表面积增加。

因而有人认为,随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热数流量反而会下降。

试分析这一观点的正确性。

答:错误,因为当肋片高度达到一定值时,通过该处截面的热流密度为零。

通过肋片的热流已达到最大值,不会因为高度的增加而发生变化。

10 在式(2-57)所给出的分析解中,不出现导热物体的导热系数,请你提供理论依据。

答:由于式(2-57)所描述的问题为稳态导热,且物体的导热系数沿x 方向和y 方向的数值相等并为常数。

11 有人对二维矩形物体中的稳态无内热源常物性的导热问题进行了数值计算。

矩形的一个边绝热,其余三个边均与温度为f t 的流体发生对流换热。

你能预测他所得的温度场的解吗?答:能,因为在一边绝热其余三边为相同边界条件时,矩形物体内部的温度分布应为关于绝热边的中心线对称分布。

习题 平板2-1 用平底锅烧开水,与水相接触的锅底温度为111℃,热流密度为424002/m W 。

使用一段时间后,锅底结了一层平均厚度为3mm 的水垢。

假设此时与水相接触的水垢的表面温度及热流密度分别等于原来的值,试计算水垢与金属锅底接触面的温度。

水垢的导热系数取为1W/(m.K)。

解:由题意得424001003.0111=-=w t q =w/m 2所以t=238.2℃2-2 一冷藏室的墙由钢皮矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm.,152mm 及9.5mm ,导热系数分别为45)./(K m W ,0. 07)./(K m W 及0.1)./(K m W 。

冷藏室的有效换热面积为37.22m ,室内外气温分别为-2℃及30℃,室内外壁面的表面传热系数可分别按1.5)./(2K m W 及2.5)./(2K m W 计算。

为维持冷藏室温度恒定,试确定冷藏室内的冷却排管每小时需带走的热量。

解:由题意得332211212111λδλδλδ++++-⨯=Φh h t t A =2.371.00095.007.0152.045000794.05.215.11)2(30⨯++++--=357.14W357.14×3600=1285.6KJ2-3有一厚为20mm 的平板墙,导热系数为1.3)./(K m W 。

为使每平方米墙的热损失不超过1500W,在外表面上覆盖了一层导热系数为0.12)./(K m W 的保温材料。

已知复合壁两侧的温度分别为750℃及55℃,试确定此时保温层的厚度。

解:依据题意,有150012.03.1020.0557502221121≤+-=+-=δλδλδt t q ,解得:m 05375.02≥δ2-4 一烘箱的炉门由两种保温材料A 及B 组成,且B A δδ2=(见附图)。

已知)./(1.0K m W A =λ,)./(06.0K m W B =λ,烘箱内空气温度4001=f t ℃,内壁面的总表面传热系数)./(501K m W h =。

为安全起见,希望烘箱炉门的 外表面温度不得高于50℃。

设可把炉门导热作为一维问题处理,试决定所需保温材料的厚度。

环境温度=2f t 25℃,外表面总传热系数)./(5.922K m W h =。

解:热损失为()()22111f f BBA A fwf t t h t t h t t q -+-=+-=λδλδ又50=fw t ℃;B A δδ=联立得m m B A 039.0;078.0==δδ2-5 对于无限大平板内的一维导热问题,试说明在三类边界条件中,两侧边界条件的哪些组合可以使平板中的温度场获得确定的解? 解:两侧面的第一类边界条件;一侧面的第一类边界条件和第二类边界条件;一侧面的第一类边界条件和另一侧面的第三类边界条件;一侧面的第一类边界条件和另一侧面的第三类边界条件。

平壁导热2-6一火箭发动机燃烧室是直径为130mm 的圆筒体,厚2.1mm ,导热系数为23.2W/(m ·K)。

圆筒壁外用液体冷却,外壁温度为240℃。

测得圆筒体的热流密度为 4.8×106W/㎡,其材料的最高允许温度为700℃。

试判断该燃烧室壁面是否工作于安全温度范围内? 解:2-7如附图所示的不锈钢平底锅置于电器灶具上被加热,灶具的功率为1000W ,其中85%用于加热平底锅。

锅底厚δ=3㎜,平底部分直径d=200㎜,不锈刚的导热系数λ=18W/(m ·K ),锅内汤料与锅底的对流传热表面传热系数为2500W/(㎡·K ),流体平均温度t f =95℃。

试列出锅底导热的数学描写,并计算锅底两表面的温度。

解:2-8一种用比较法测定导热系数装置的原理示于附图中。

将导热系数已知的标准材料与被测材料做成相同直径的圆柱,且标准材料的两段圆柱分别压紧置于被测材料的两端。

在三段试样上分别布置三对测定相等间距两点间温差的热电偶。

试样的四周绝热良好(图中未示出)。

已知试样两端的温度分别为t h =400℃、t c =300℃、Δt r =2.49℃,Δt t,1=3.56℃、Δt t,2=3.60℃,试确定被测材料的导热系数,并讨论哪些因素会影响Δt t,1与Δt t,2不相等? 解:2-9 双层玻璃窗系由两层厚为6mm 的玻璃及其间的空气隙所组成,空气隙厚度为8mm 。

假设面向室内的玻璃表面温度与室外的玻璃表面温度各为20℃及-20℃,试确定该双层玻璃窗的热损失。

如果采用单层玻璃窗,其他条件不变,其热损失是双层玻璃的多少倍?玻璃窗的尺寸为cm cm 6060⨯。

不考虑空气间隙中的自然对流。

玻璃的导热系数为0.78)./(K m W 。

解:332211211λδλδλδ++-=t t q =116.53W/2m mw t t q /520011212=-=λδW Aq Q 95.41==∴所以 62.4453.116520012==q q2-10某些寒冷地区采用三层玻璃的窗户,如附图所示。

已知玻璃厚δg =3㎜,空气夹层宽δair =6㎜,玻璃的导热系数λg =0.8W/(m ·K )。

玻璃面向室内的表面温度t i =15℃,面向室外的表面温度t o =-10℃,试计算通过三层玻璃窗导热的热流密度。

解:2-11提高燃气进口温度是提高航空发动机效率的有效方法。

为了是发动机的叶片能承受更高的温度而不至于损坏,叶片均用耐高温的合金制成,同时还提出了在叶片与高温燃气接触的表面上涂以陶瓷材料薄层的方法,如附图所示,叶片内部通道则由从压气机来的空气予以冷却。

陶瓷层的导热系数为1.3W/(m ·K ),耐高温合金能承受的最高温度为1250K ,其导热系数为25W/(m ·K)。

在耐高温合金与陶瓷层之间有一薄层粘结材料,其造成的接触热阻为10-4㎡·K/W 。

如果燃气的平均温度为1700K ,与陶瓷层的表面传热系数为1000W/(㎡·K),冷却空气的平均温度为400K ,与内壁间的表面传热系数为500W/(㎡·K),试分析此时耐高温合金是否可以安全地工作? 解:2-12 在某一产品的制造过程中,厚为1.0mm 的基板上紧贴了一层透明的薄膜,其厚度为0.2mm 。

薄膜表面上有一股冷却气流流过,其温度为20℃,对流换热表面传热系数为40)./(2K m W 。

同时,有一股辐射能透过薄膜投射到薄膜与基板的结合面上,如附图所示。

基板的另一面维持在温度301=t ℃。

生成工艺要求薄膜与基板结合面的温度600=t ℃,试确定辐射热流密度q 应为多大?薄膜的导热系数)./(02.0K m W f =λ,基板的导热系数)./(06.0K m W s =λ。

投射到结合面上的辐射热流全部为结合面所吸收。

薄膜对60℃的热辐射是不透明的。

解:根据公式t K q ∆=得2/1800306006.0001.03060m W q =⨯=-=()23/8.114202.0102.040112060m W q =⨯+⨯-='-2/8.2942m W q q q Z ='+= 2-13 在附图所示的平板导热系数测定装置中,试件厚度δ远小于直径d 。

由于安装制造不好,试件与冷热表面之间平均存在着一层厚为mm 1.0=∆的空气隙。

设热表面温度1801=t ℃,冷表面温度302=t ℃,空气隙的导热系数可分别按21,t t 查取。

试计算空气隙的存在给导热系数测定带来的误差。

通过空气隙的辐射换热可以略而不计。

解:查附表8得1801=t ℃,);./(1072.321K m W -⨯=λ 302=t ℃,);./(1067.222K m W -⨯=λ无空气时430180221d A t t ffπλδλδ⨯-=-=Φδλλδ32.34029315.0=∴=∴f f有空气隙时At t f'++-=Φλδλδλδ221121得δλ98.43='f所以相对误差为%1.28=-'f ff λλλ圆筒体2-14 外径为100mm 的蒸气管道,覆盖密度为203/m kg 的超细玻璃棉毡保温。

相关文档
最新文档