电力电子课程设计三相可控整流电路

合集下载

电力电子技术基础课程设计-三相半波可控整流电路的设计(电阻性负载)

电力电子技术基础课程设计-三相半波可控整流电路的设计(电阻性负载)

课程设计任务书图1三相半波可控整流电路原理图对于VS1、VS2、VS3,只有在1、2、3点之后对应于该元件承受正向电压期间来触发脉冲,该晶闸管才能触发导通,1、2、3点是相邻相电压波形的交点,也是不可控整流的自然换相点。

对三相可控整流而言,控制角α就是从自然换相点算起的。

控制角0<α£2π/3,导通角0<θ£2π/3。

晶闸管承受的最大正向电压.承受的最大反向电压:2.1.2负载电压当0 ≤ α ≤ π/6时图2电路输出电压波形在一个周期内三相轮流导通,负载上得到脉动直流电压Ud,其波形是连续的。

电流波形与电压波形相似,这时,每只晶闸管导通角为120°,负载上电压平均值为:当π/6 < α ≤ 5π/6时图3电路输出电压波形2.2带阻感负载时的工作情况2.2.1原理说明电感性负载由于电感的存在使得电流始终保持连续,所以每只晶闸管导通角为2π/3,输出电压的平均值为:当α=π/2时,Ud =0,因此三相半波整流电感负载时的控制角为0~ π/2正向承受的最大电压为反向承受的最大电压为图4是电路接线图图4阻感负载接线图图5输出电压波形3.设计结果与分析3.1仿真模型根据原理图利用MATLAB/SIMULINK软件中,电力电子模块库建立相应的仿真模型如图5图6仿真模型图3.2 仿真参数设置晶闸管参数:I vt=I/√3=0.577I d=0.577×6.04=3.46AI fav=I VT/1.57=2.2A额定值一般取正向电流的1.5-2倍,所以取3.3-4.4A之间的数值。

UFM=URM=2.45U2=245V晶闸管额定电压选值一般为最大承受电压的2-3倍,所以额定电压取值为490-735V之间。

变压器参数计算Ud=100V变压器二次侧采用星形接法,所以变压器二次侧峰值为141.4V变压器一次侧采用三角形接法,因此每相接入电压峰值为380V一次侧电压接电网电压220V电压器变比则约为2.693.3仿真结果U2波形仿真图图7 U2波形仿真图U波形图vt1图8 U vt1波形图波形图Ivt1Ivt图9 I vt1波形图u波形图d图10 u d波形图i波形图d图11 i d波形图设置触发脉冲α分别为0°。

三相可控整流电路课程设计

三相可控整流电路课程设计

二.三相晶闸管全控整流电路原理说明2.1主电路原理说明晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。

编号如图示,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。

带电阻负载时的工作情况晶闸管触发角α=0o时的情况:此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。

而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。

这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。

此时电路工作波形如图所示。

α=0o时,各晶闸管均在自然换相点处换相。

由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。

从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压 ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

将波形中的一个周期等分为6段,每段为60度,如图2-18所示,每一段中导通的晶闸管及输出整流电压的情况如下表所示。

由该表可见,6个晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。

- 1 -10:39:08 PM 4/25/2022由图得:6个晶闸管的脉冲按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60o ;共阴极组和阳极组依次差120o ;同一相的上下两个桥臂脉冲相差180o 。

整流输出电压ud 一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。

在整流电路合闸启动过程中或电流断续时,为确保电路的正常工作,需保证同时导通的2个晶闸管均有触发脉冲。

电力电子课程设计 三相整流电路的设计.

电力电子课程设计 三相整流电路的设计.

湖南工程学院课程设计任务书课程名称电力电子技术题目三相整流电路的设计专业班级电气工程学生姓名学号指导老师杨青审批谢卫才任务书下达日期2014 年2 月24 日设计完成日期2014 年3月8 日目录第一章设计思路与基本原理………………1.1整流电路简介与设计思路1.2三相桥式全控整流电路的基本原理和框图第二章主电路………………………………2.1主电路设计(阻感负载)2.2主电路原理介绍第三章控制电路……………………………第四章驱动电路……………………………第五章保护电路……………………………第五章元器件的选择………………………第六章总结与体会…………………………附录参考文献第一章设计思路与基本原理1.1整流电路简介设计思路整流电路广泛应用于工业中。

它可按照以下几种方法分类:1.按组成的器件可分为不可控、半控、全控三种;2.按电路结构可分为桥式电路和零式电路;3.按交流输入相数分为单相电路和多相电路;4.按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。

一般当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。

三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路等。

其中三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。

整个设计主要分为主电路、触发电路、保护电路三个部分。

变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分。

保护电路采用RC过电压抑制电路进行过电压保护,利用快速熔断器进行过电流保护。

当接通电源时,三相桥式全控整流电路主电路通电,同时通过同步电路连接的集成触发电路也通电工作,形成触发脉冲,使主电路中晶闸管触发导通工作,经过整流后的直流电通给直流负载,使之工作。

1.2三相桥式全控整流电路的基本原理和框图三相桥式全控整流电路应用最为广泛,其电路简图1如下:图1 三相桥式全控整流电路如图1所示,其中一组三相半波整流电路为共阴极连接,一组为共阳极连接。

三相可控整流技术课程设计

三相可控整流技术课程设计

一设计方案1.1设计任务及要求采用三相可控整流电路(三相全控桥、三相半控桥或三相半波整流电路),电阻-电感性(大电感)负载,R=2.5Ω,额定负载Id=20A,电流最大负载电流Idmax=25A。

保证电流连续的最小电流为Idmin=5A。

并完成三相可控主电路设计及参数计算,计算整流变压器参数,选择整流元件的定额,触发电路设计,讨论晶闸管电路对电网的影响及其功率因数。

1.2方案论证1.2.1 主电路方案一:采用三相半波可控整流,三相半波整流电路的变压器二次侧必须接成星形,而一次侧只能接成三角形,避免三次谐波流入电网,其主电路采用三个晶闸管分别接三相电源,三相半波可控整流电路的主要缺点在于其二次电流中含有直流分量,使得铁芯容易磁化,一般比较少用。

方案二:采用三相桥式全控整流电路,三相全控桥相当于两个三相半波整流的串联,是运用最广泛的整流电路,其主电路有六个晶闸管,习惯分为共阴极组和共阳极组,由于需要保证同时有两个晶闸管导通,一般采用双脉冲触发。

方案三:三相半控桥式整流,在中等容量的整流装置或要求不可逆的电力拖动中,可采用比三相全控整流电路更简单、经济的三相桥式半控整流电路,它相当余把三相全控桥的共阴极的晶闸管换为二极管,但是其缺相时容易发生故障。

桥式整流电路中的晶闸管可以用全控型器件IGBT替代,但虽然IGBT控制更加灵活和准确,但是其成本比较高,且控制电路要求高,所以一般对于不需要逆变的整流电路多采用晶闸管。

通过综合考虑,在本设计中采用三相全控桥式整流电路。

1.2.2 触发电路方案一:可以依据触发电路的原理,自己用基本元件设计,但是这种电路的可靠性不高,工作不稳定且原理设计复杂。

方案二:采用专门的集成芯片,用于产生各种电力电子器件触发脉冲的集成芯片有很多,而且工作稳定,性价比高,且电路简单便于使用,常用的用于产生晶闸管触发脉冲的芯片有KC041、KC04、TC785、TC787等,TC787和TC785是新一代产品,更便于控制和使用。

电力电子技术第3章 三相可控整流电路

电力电子技术第3章 三相可控整流电路
19
第二节 时
三相全控桥式整流电路
整流电压为三相半波时的两倍,在大电感负载
20
图 3.9 三相桥式全控整流电路
21
图 3.10 三相全控桥大电感负载 α =0°时的波形
22
图 3.11 三相全控桥大电感负载 α =30°时的电压波形
23
图 3.12 三相全控桥大电感负载 α =60°时的电压波形
3
图 3.2是 α =30°时的波形。设 VT3 已导通, 当经过自然换流点 ωt0 时,因为 VT1的触发脉冲 ug1还没来到,因而不能导通,而 uc 仍大于零,所 以 VT3 不能关断,直到ωt1 所处时刻 ug1触发 VT1 导通,VT3 承受反压关断,负载电流从 c相换到 a 相。
4
图 3.2 三相半波电路电阻负载 α =30°时的波形
32
一、双反星形中点带平衡电抗器的可控整流电路 在低电压大电流直流供电系统中,如果要采用 三相半波可控整流电路,每相要多个晶闸管并联, 这就带来均流、保护等一系列问题。如前所述三相 半波电路还存在直流磁化和变压器利用率不高的问 题。
33
图 3.15 带平衡电抗器双反星形可控整流电路
34
图 3.16 带平衡电抗器双反星形可控整流 ud 和 uP 波形
26
图 3.14 三相桥式半控整流电路及波形 (a)电路图 (b)α =30° (c)α =120°
27
一、电阻性负载 控制角 α =0时,电路工作情况基本与三相全 控桥 α =0时一样,输出电压 ud波形完全一样。输 出直流平均电压最大为 2.34U2Φ。
28
由图 3.14( b),通过积分运算可得Ud 的计 算公式
12
当 α >30°时,晶闸管导通角 θV=150°- α。 因为在一个周期内有 3次续流,所以续流管的导通 角 θVD=3( α -30°)。晶闸管平均电流为

三相可控整流电路(技师教案)

三相可控整流电路(技师教案)
流过每个晶闸管的平均电流ITAV为:
ITAV=Id/3
流过每个晶闸管载并接了续流二极管,由于此续流二极管的作用,使电路中的晶闸管能够得到及时关断,从而使整流输出电压Ud的波形不再出现负值,因此这种电路输出电压Ud的计算将与电阻负载时相同。
3、三相桥式全控整流电路对触发脉冲的要求
1、纯电阻负载图六为三相桥式全控电阻负载整流电路。它是由三相半波晶闸管共阴极接线和三相半波晶闸管共阳极接线组成的。为使6只晶闸管按V1-V2-V3-V4-V5-V6的顺序触发导通,晶闸管的编号顺序为V1和V4接U相V3和V6接V相V5和V2接W相。其中V1、V3、V5组成共阴极电路,V2、V4、V6组成共阳极电路
即ITAV=Id/3
每个晶闸管可能承受的最高正反向电压为三相交流电线电压UTm的峰值,即 UTm= =
2、电感性负载(p.87)
三相桥式全控整流电路在大电感负载时,电压、电流的数量关系为:
整流输出电压平均值Ud为:
Ud=2.34U2Φcosα(0°≤α≤90°
流过负载的直流电流平均值Id为:
Id=2.34U2Φcosα/Rd(0°≤α≤90°)
右图是α=30°时的负载电压Ud的波形。流过负载的电流id波形对纯电阻来说,显然与Ud波形一致,就不重复画了。α=60°、α=90°时的负载电压Ud的波形读者可自行分析画出
共阳极接线,按照对共阴极电路的分析方法,可以发现,其自然换相点应该是三相电压波形在负半周的交点处。α=30°α=60°、α=90°时的Ud波形读者可自行分析画出。
-90°,且在整个移相范围内ud波形连续。
授课主要内容或板书设计
输出电压、电流的计算公式为:
Ud=1.17U2Φ0<α≤90°
Id=Ud/Rd

电力电子技术课程设计--三相可控整流技术的工程应用

电力电子技术课程设计--三相可控整流技术的工程应用

课程设计报告题目三相可控整流技术的工程应用学院名称电气信息学院专业班级 xxxxxxxxxxxxxxx学号 xxxxxxxxxx学生姓名 xxxxx指导教师 xxxxxxx2012年1月12日摘要电力电子技术在电力系统中有着非常广泛的应用。

据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。

电力系统在通向现代化的进程中,电力电子技术是关键技术之一。

可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。

整流电路技术在工业生产上应用极广。

如调压调速直流电源、电解及电镀的直流电源等。

整流电路就是把交流电能转换为直流电能的电路。

大多数整流电路由变压器、整流主电路和滤波器等组成。

它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。

整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路,不仅应用于一般工业,也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域。

因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用。

关键词:电力电子三相桥式可控电路整流AbstractPower electronics technology has a very wide range of applications in the power system. It is estimated that in developed countries more than 60% of the electrical energy at least through the end-use of electricity, more than once device processing power electronic converters. Power system in the process leading to the modern power electronics technology is one of the key technologies. It is no exaggeration to say that, if you leave power electronics technology, the modernization of the electric power system is unthinkable.Rectifier circuit technology has very wide application in industrial production. Such as voltage variable speed DC power supply, electrolysis and electroplating DC power. The rectifying circuit is the AC power is converted to DC power circuit. Most of the rectifier circuit by the transformer, rectifier circuit, and filters. It has been widely used in the field of DC motor speed control, generator excitation regulator, electrolysis, electroplating.Rectifier circuit, especially the three-phase bridge controlled rectifier circuit is the most important and the most widely used application circuit in the power electronics technology is not only used in general industrial, is also widely used in the transportation, electric power systems, communication systems, energy systems and other fields. Comparative analysis and study of the three-phase bridge controlled rectifier circuit parameters and the different nature of the work load has great practical significance, this is not only an important part of the learning power electronic circuit theory and engineering practice The practical application of predictive and guiding role.Key words:Power electronic Three-phase bridge controlled circuit Rectifier目录摘要 (2)一.设计任务书 (5)二.设计说明 (6)2.1设计目的 (6)2.2作用 (6)2.3技术指标 (6)三.设计方案的选择 (7)3.1三相桥式可控整流电路原理 (7)3.2三相桥式可控整流电路原理图 (7)3.3三相桥式可控整流电路工作波形 (8)3.4总设计框图 (10)四.触发电路的设计 (11)五.保护电路的设计 (12)5.1过电压保护 (12)5.2过电流保护 (13)六.参数的计算 (14)七.器件选择清单 (15)八.三相桥式可控整流电路的工程应用 (16)九.心得体会 (16)参考文献 (17)一.设计任务书院系:xxxxxxxxx年级:xxxxxx专业班级:xxxxxxxxxx二.设计说明2.1设计目的合理运用所学知识,进行电力电子电路和系统设计的能力,理解和掌握常用的电力电子电路及系统的主电路、控制电路和保护电路的设计方法,掌握元器件的选择计算方法。

电力电子技术 三相可控整流电路

电力电子技术 三相可控整流电路

2
相控整流电路
2.2
u2 b) O
三相相控整流电路
=0 t1
ua ub uc
R
id
t2
t3
t
c)
uG O ud
O
1
t
■电阻负载 ☞为得到零线,变压器二次侧必须接成星形, 而一次侧接成三角形,避免3次谐波流入电 网。 ☞三个晶闸管按共阴极接法连接,这种接法 触发电路有公共端,连线方便。 ☞自然换相点 √在相电压的交点t1、t2、t3处,均出现 了二极管换相,称这些交点为自然换相点。 √将其作为的起点,即=0。
d) i VT e) O f)
1
t
t
t
u VT O u ab u ac

2
相控整流电路
2.2
u2
三相相控整流电路
ub uc
=30° ua
☞=0(波形见上页) O √三个晶闸管轮流导通120 , ud波形为三个相电压在正半周期 uG 的包络线。 O ud √晶闸管电压由一段管压降和两 段线电压组成,随着增大,晶闸 管承受的电压中正的部分逐渐增多。 i O VT 1 ☞=30 √负载电流处于连续和断续的临 O u VT u 界状态,各相仍导电120。 1 ac
2
相控整流电路
2.2
三相相控整流电路
◆基本数量关系 ☞电阻负载时角的移相范围为150。 ☞整流电压平均值 √≤30时,负载电流连续,有
1 Ud 2 3

5 6
2U 2 sintd (t )
6
3 6 U 2 cos 1.17U 2 cos 2
当=0时,Ud最大,为Ud=Ud0=1.17U2。 √>30时,负载电流断续,晶闸管导通角减小,此时有

电力电子课程设计---三相桥式全控整流电路的设计

电力电子课程设计---三相桥式全控整流电路的设计

电力电子课程设计---三相桥式全控整流电路的设计
三相桥式全控整流电路是一种广泛应用于电力电子转换过程中的组件。

该组件在全控式电力电子系统的发展过程中发挥着重要作用。

与传统的环形整流电路相比,它能够更好地改善电力电子系统的功率因素及全控功能,以及减少噪声等。

因此,三相桥式全控整流电路在电力电子课程设计中十分重要。

首先,三相桥式全控整流电路必须更加规范地搭建电路,其搭建基本框架为三相桥式全控二极管共阴极电路,其中必要的电路元件包括导通控制器、IGBT三极管、晶闸管、电容器、三端电感等。

其次,三相桥式全控整流电路必须有一个良好的输出电压控制反馈电路,可以快速稳定地调节输出电压,从而实现电力电子转换设备的最佳状态。

此外,还需要采用丰富的调节方法来改善三相桥式全控整流电路的功率因数、波形特性及性能。

这些调节方法一般包含多相等距调节、多快调节和自适应控制。

在设计时,优化三相桥式全控整流电路的功率因数,给定输出电压条件下,需要选择恰当的IGBT数量、晶闸管的抗击穿电流、串联可控硅的电流截止比对及电容量,以及相关结构的参数等,以保证电路工作的稳定性及经济性,但其最大的难点在于如何综合应用这些调节方法,改善三相桥式全控整流电路的功率因数以及波形特性。

总之,三相桥式全控整流电路设计是一个非常复杂的过程,必须综合考虑各种参数对电路运行性能的影响,同时结合调节方法,以最大程度地改善三相桥式全控整流电路的性能,才能实现电力电子转换设备最佳状态。

三相全控整流电路课程设计

三相全控整流电路课程设计

三相全控整流电路课程设计一、课程目标知识目标:1. 学生能够理解三相全控整流电路的基本原理和组成。

2. 学生能够掌握三相全控整流电路的电路图及其工作过程。

3. 学生能够解释三相全控整流电路中各元件的作用及其相互关系。

技能目标:1. 学生能够运用所学知识,正确绘制并分析三相全控整流电路。

2. 学生能够通过实验操作,验证三相全控整流电路的输出波形及其特点。

3. 学生能够解决实际应用中与三相全控整流电路相关的问题,具备一定的电路分析与设计能力。

情感态度价值观目标:1. 培养学生对电力电子技术领域的兴趣,激发他们的求知欲和探索精神。

2. 培养学生严谨的科学态度,注重实验操作的安全性和准确性。

3. 培养学生的团队协作精神,学会与他人共同分析问题、解决问题。

课程性质:本课程为电子技术专业课程,以理论教学和实践操作相结合的方式进行。

学生特点:学生已具备一定的电子技术基础,具有较强的逻辑思维能力和动手能力。

教学要求:结合课程性质、学生特点,本课程要求学生在掌握理论知识的基础上,注重实践操作,培养实际应用能力。

通过课程学习,使学生在知识、技能和情感态度价值观方面均取得具体的学习成果。

后续教学设计和评估将围绕这些具体学习成果展开。

二、教学内容本课程教学内容主要包括以下三个方面:1. 三相全控整流电路基本原理- 介绍三相交流电源及其特点- 三相全控整流电路的工作原理- 三相全控整流电路的组成及各元件功能教学内容关联教材章节:第三章第三节“三相全控整流电路”2. 三相全控整流电路分析与设计- 电路图绘制及电路参数计算- 输出电压和电流波形的分析- 三相全控整流电路的触发角度与输出电压关系教学内容关联教材章节:第三章第四节“三相全控整流电路的分析与设计”3. 实践操作与实验- 三相全控整流电路的搭建与调试- 观察不同触发角度下的输出波形- 分析实验数据,验证理论分析结果教学内容关联教材章节:第三章实验“三相全控整流电路实验”教学进度安排:第一周:基本原理学习,电路组成和元件功能介绍第二周:电路分析与设计,触发角度与输出电压关系探讨第三周:实践操作与实验,观察与分析实验现象,总结实验结果三、教学方法为了提高教学质量,充分调动学生的学习兴趣和主动性,本章节将采用以下多样化的教学方法:1. 讲授法:- 对于三相全控整流电路的基本原理、组成和元件功能等理论知识点,采用讲授法进行教学。

电力电子三相桥式全控整流电路的设计

电力电子三相桥式全控整流电路的设计

电力电子三相桥式全控整流电路的设计一、设计原理三相桥式全控整流电路由六个可控硅器件组成,分别连接在电源的三个相线和负载之间。

通过对六个可控硅器件的控制,可以实现对电源电压的全波整流,并将交流电转换为直流电供给负载。

由于可控硅器件具有可控导通和关断的特性,因此可以实现对整流电路的控制。

二、工作方式三相桥式全控整流电路的工作方式主要分为两个阶段:正半周期和负半周期。

在正半周期中,当Uab > Ubc > Uca时,可控硅器件S1和S2导通,S3和S4关断,S5和S6的导通与关断由控制信号决定。

在负半周期中,当Uab < Ubc < Uca时,可控硅器件S1和S2关断,S3和S4导通,S5和S6的导通与关断由控制信号决定。

通过不断调整控制信号,可以实现对整流电路的输出电压的控制。

三、电路参数计算1.电源电压:根据实际应用需求,确定电源电压的额定值,通常为220V或380V。

2.负载电流:根据负载的功率需求和额定电压,计算负载电流的额定值。

3.可控硅器件参数:选取合适的可控硅器件,根据其额定电流和额定电压,确定器件的参数。

4.电感参数:根据负载电流的频率和电感的自感系数,计算电感的参数。

5.电容参数:根据负载电流的频率和电容的容量,计算电容的参数。

四、性能指标1.效率:计算整流电路的输入功率和输出功率的比值,即效率。

2.谐波失真:通过谐波分析,计算整流电路输出电压的谐波含量,衡量电路输出电压的质量。

3.稳定性:通过控制信号的调整,使得整流电路输出电压的波动尽可能小,保证电路的稳定性。

4.抗干扰能力:通过合理的电路设计和控制策略,提高电路的抗干扰能力,减少外部干扰对电路的影响。

五、总结三相桥式全控整流电路是一种常见的电能变换电路,广泛应用于工业和电力系统中。

本文详细介绍了该电路的设计原理、工作方式、电路参数计算以及相关的性能指标。

在实际应用中,需要根据具体的需求和要求进行电路设计,并通过实验和测试来验证电路的性能。

电力电子技术三相可控整流电路

电力电子技术三相可控整流电路
整流电路
2. 2 三相可控整流电路
电力电子技术
虽然单相可控整流电路具有线路简单,维护、调试方便等优点,但
输出整流电压脉动大,又会影响三相交流电网的平衡。因此,当负载容 量较大(一般指4KW以上),要求的直流电压脉动较小时,通常采用 三相可控整流电路。
先重点介绍三相半波可控整流电路不同负载时的组成、工作原理 、波形分析、电路各电量的计算等,然后再介绍三相桥式全控整流电 路。
电力电子技术
整流电路
电力电子技术
三相半波可控整流电路小结:
不论是共阴极还是共阳极接法的电路,都只用了三只晶闸管,所以接线都 较简单,相对单相输出脉动小,基波150Hz。 变压器绕组利用率较低,每相的二次侧绕组一周期最多工作120°。 变压器绕组中的电流(波形与相连的晶闸管的电流波形一样)是单方向 的,因此也会存在铁心的直流磁化现象。
电力电子技术
导通时间比整 流 电 路 α=0°时推迟了 不同α角时的输出波形 30°
电力电子技术
ud波形出现了 零点,是一临
界情况
正负各120°的 对称的波形。
VT1 导通
电阻性负载,只 要α≤60° , ud和id 的波形就
是连续的。
VT4导 通
30 °
VT1 导通
整流电路
当α>60°时ud
的波形就出现断 续 了,每个线电 压输出小于60°
u2过零时,VT1不关断,直到VT3的脉冲到来,才换流,由VT3导 通向负载供电,同时向VT1施加反压使其关断——ud波形中出现 负的部分
➢ 阻感负载时的移相范围为90
三. 反电动势负载
整流电路
四. 共阳极三相半波可控整流电路
对于螺栓式的晶闸管来说,可以将晶 闸管的阳极固定在同一块大散热器上 ,散热效果好,安装方便。此电路的 触发电路不能再像共阴极电路的触发 电路那样,引出公共的一条接阴极的 线,而且输出脉冲变压器二次侧绕组 也不能有公共线,这就给调试和使用 带来了不便。

电力电子技术课程设计-- 三相可控整流技术的工程应用

电力电子技术课程设计-- 三相可控整流技术的工程应用

电力电子技术课程设计-- 三相可控整流技术的工程应用课程设计报告题目三相可控整流技术的工程应用学院名称电气信息学院专业班级 xxxxxxxxxxxxxxx学号 xxxxxxxxxx学生姓名 xxxxx指导教师 xxxxxxx2012年1月12日摘要电力电子技术在电力系统中有着非常广泛的应用。

据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。

电力系统在通向现代化的进程中,电力电子技术是关键技术之一。

可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。

整流电路技术在工业生产上应用极广。

如调压调速直流电源、电解及电镀的直流电源等。

整流电路就是把交流电能转换为直流电能的电路。

大多数整流电路由变压器、整流主电路和滤波器等组成。

它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。

整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路,不仅应用于一般工业,也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域。

因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用。

关键词:电力电子三相桥式可控电路整流AbstractPower electronics technology has a very wide range of applications in the power system. It is estimated that in developed countries more than 60% of the electrical energy at least through the end-use of electricity, more than once device processing power electronic converters. Power system in the process leading to the modern power electronics technology is one of the key technologies. It is no exaggeration to say that, if you leave power electronics technology, the modernization of the electric power system is unthinkable.Rectifier circuit technology has very wide application in industrial production. Such as voltage variable speed DC power supply, electrolysis and electroplating DC power. The rectifying circuit is the AC power is converted to DC power circuit. Most of the rectifier circuit by the transformer, rectifier circuit, and filters. It has been widely used in the field of DC motor speed control, generator excitation regulator, electrolysis, electroplating.Rectifier circuit, especially the three-phase bridge controlled rectifier circuit is the most important and the most widely used application circuit in the power electronics technology is not only used in general industrial, is also widely used in the transportation, electric power systems, communication systems, energy systems and other fields. Comparative analysis and study of the three-phase bridge controlled rectifier circuit parameters and the different nature of the work load has great practical significance, this is not only an important part of the learning power electronic circuit theory and engineering practice The practical application of predictive and guiding role.Key words:Power electronic Three-phase bridge controlled circuit Rectifier目录摘要 (2)一.设计任务书 (5)二.设计说明 (6)2.1设计目的 (6)2.2作用 (6)2.3技术指标 (6)三.设计方案的选择 (7)3.1三相桥式可控整流电路原理 (7)3.2三相桥式可控整流电路原理图 (7)3.3三相桥式可控整流电路工作波形 (8)3.4总设计框图 (10)四.触发电路的设计 (11)五.保护电路的设计 (12)5.1过电压保护 (12)5.2过电流保护 (13)六.参数的计算.............................. 错误!未定义书签。

三相可控整流电路

三相可控整流电路

O u f) VT 1
wt
O
wt
uα b
uα c
图3 三相半波可控整流电路
α =0时的波形
(2)α =30时,波形如图4所示
α ≤30时的波形:负载电流连续,晶闸管导通角等于120 。(α =30时负载 电流连续和断续之间的临界状态)
u2 =30u°a
ub
uc
O
uG O ud
O iVT1
wt1
O uVT1 uac
二、三相桥式全控整流电路
➢ 1.工作原理
共阴极组——阴 极连接在一起的3 个晶闸管(VT1, VT3,VT5)
阳极电压最大的导通
导通过程: ① VT1 、VT2、VT6导通 ② VT3、VT4、VT2导通 ③ VT5、VT6、VT4导通
阴极电压最低的导通 图11 三相桥式全控整流电路原理图
共阳极组——阳极 连接在一起的3个 晶闸管(VT4,VT6, VT2)
二极管,由于续流管的作用 形已不出现负值,与电阻性 波形相同。
负,载udu波d
接入VD
图7 三相半波可控整流电路,阻感负载(接 图8 三相半波可控整流电路,阻感负载(不接续
续流管)时的波形
流管)时的波形
三相半波可控整流电路
大电感负载接续流二极管
➢ 在0°≤α≤30°区间,电源电压 均不起为作正用值;,ud波形连续,续流管
也依次差120。 - 同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相
差180。
二、三相桥式全控整流电路
(3)ud一周期脉动6次,每次脉动的波形都一样,
故该电路为6脉波整流电路。 (4)需保证同时导通的2个晶闸管均有脉冲
- 可采用两种方法:单宽脉冲触发、双窄脉冲触发
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第1章概述 (2)第2章方案确定 (3)2.1原始数据 (3)2.2设计任务 (3)2.3设计要求 (3)2.4方案分析 (3)2.5方案选择 (4)第3章电路设计 (5)3.1主电路 (5)3.2触发电路 (9)3.3保护电路 (10)3.4控制电路 (13)第4章主电路元件计算及选择 (14)4.1变压器参数计算 (14)4.2电力电子器件电压、电流等定额计算 (15)4.3平波电抗器电感值的计算 (16)4.4电容滤波的电容计算 (16)第5章设计总结与体会 (18)参考文献 (19)附录 (20)第1章概述目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。

这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。

据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。

电力电子技术在电力系统中有着非常广泛的应用。

据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。

电力系统在通向现代化的进程中,电力电子技术是关键技术之一。

可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。

而电能的传输中,直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变各种电子装置一般都需要不同电压等级的直流电源供电。

通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。

大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。

在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。

因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。

近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。

第2章方案确定2.1原始数据输入交流电源:三相380V f=50Hz直流输出电压:300~500V范围内,直流输出电流额定值300A直流输出电流连续的最小值为30A2.2设计任务整流电路的选择整流变压器额定参数的计算晶闸管电流、电压额定的选择平波电抗器电感值的计算保护电路的设计触发电路的设计画出完整的主电路原理图和控制电路原理图列出主电路所用元器件的明细表2.3设计要求1. 设计思路清晰,给出整体设计框图;2. 单元电路设计,给出具体设计思路和电路;3. 分析所有单元电路与总电路的工作原理,并给出必要的波形分析;4. 绘制总电路图;写出设计报告。

2.4方案分析单相可控电路与三相可控电路相比,有结构简单,输出脉动大,脉动频率低的特点,其不适于容量要求高的情况,而三相可控整流电路有与之基本相反的特点,对于相当于反电动势负载的电动机来说,它能满足其电流容量较大,电流脉动小且连续不断的要求。

2.5方案选择三相可控整流电路的控制量可以很大,输出电压脉动较小,易滤波,控制滞后时间短,因此在工业中几乎都是采用三相可控整流电路。

在电子设备中有时也会遇到功率较大的电源,例如几百瓦甚至超过1—2kw的电源,这时为了提高变压器的利用率,减小波纹系数,也常采用三相整流电路。

另外由于三相半波可控整流电路的主要缺点在于其变压器二次侧电流中含有直流分量,为此在应用中较少。

而采用三相桥式全控整流电路,可以有效的避免直流磁化作用。

虽然三相桥式全控整流电路的晶闸管的数目比三相半波可控整流电路的少,但是三相桥式全控整流电路的输出电流波形便得平直,当电感足够大时,负载电流波形可以近似为一条水平线。

在实际应用中,特别是小功率场合,较多采用单相可控整流电路。

当功率超过4KW时,考虑到三相负载的平衡,因而采用三相桥式全控整流电路。

第3章 电路设计3.1主电路本设计中采用的三相全控桥由六个晶闸管组成,习惯将其中阴极连接在一起的三个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的三个晶闸管(VT4、VT6、VT2)称为共阳极组。

在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。

由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。

很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。

为了分析方便,使三相全控桥的六个晶闸管触发的顺序是 1-2-3-4-5-6,晶闸管是这样编号的:晶闸管 VT1 和 VT4 接 a 相,晶闸管 KP3 和 VT6 接 b 相,晶管 VT5 和 KP2 接 c 相。

晶闸管 VT1、VT3、VT5 组成共阴极组,而晶闸管 VT2、VT4、VT6 组成共阳极组。

图1是电路接线图。

图1下面对其带阻感负载时工作情况进行分析:(1)00α=时,由三相半波电路分析可知,在共阴极组的自然换相点ωt 1、ωt 3、ωt 5时刻,分别触发T 1、T 3、T 5晶闸管,而在共阳极组的自然换相点ωt2、ωt4、ωt6时刻,分别触发T2、T4、T6晶闸管,两组自然换相点对应相差60︒,电路各自在本组内换流,即T1→T3→T5→T1...,T 2→T4→T6→T2...,每个管子轮流导通120︒,为了使电流通过负载、并有输出电压,必须在共阴极和共阳极组中各有一个晶闸管同时导通。

在ωt1~ωt2期间,a相电压较正,b相电压较负,在触发脉冲作用下,T1、T6管同时导通,电流从a相经T1→负载→T6流回b相,负载上得到a、b相线电压。

ωt2开始,a相电压仍保持电位最高,但c相电压开始比b相更负,此时脉冲Ug2触发T2导通,迫使T6承受反压而关断,负载电流从T6换到T2。

依此类推。

总之,三相桥式全控整流电路中,晶闸管导通的顺序是6、1,1、2,2、3,3、4,4、5,5、6,6、1...。

这时,共阴极组输出电压波形是三相相电压正半周的包络线,共阳极组输出负半周的包络线。

三相桥式全控整流的输出电压ud为两组输出电压之和,是电压波形正负包络线之间的面积,所以ud波形为三相相电压正半周的包络线。

波形图如图2所示。

图2(2)当控制角α> 0︒时,输出电压波形发生变化。

图3、4、5分别为α=30︒、60︒、90︒时的波形。

从图中可见,当α≤ 60︒时,ud波形均为正值;当60︒<α<90︒时,由于L自感电势的作用,u d波形瞬时值出现负值,但正面积大于负面积,平均电压U d仍为正值;当α=90︒时,正负面积相等,U d=0。

这表明带阻感负载时,三相桥式全控整流电路的α角移相范围为.90。

图3三相桥式全控整流电路是通过六个晶闸管和足够大的电感把电网的交流电转化为直流电而供给电机使用的,它可以通过调节触发电路的控制电压Uco改变晶闸管的控制角α,从而改变输出电压Ud和输出电流Id来对电动机进行控制。

整流电路在接入电网时由于变压器一次侧电压为380V,大于电动机的额定电压,所以选用降压变压器,为得到零线,变压器二次侧必须接成星型,而一次侧接成三角形,这样可以避免三次谐波电流流入电网,减少对电源的干扰。

图4图53.2触发电路晶闸管最重要的特性是可控的正向导通特性.当晶闸管的阳极加上正向电压后,还必须在门极与阴极之间加上一个具有一定功率的正向触发电压才能打通, 这一正向触发电压的导通是由触发电路提供的,根据具体情况这个电压可以是交流、直流或脉冲电压。

由于晶闸管被触发导通以后,门极的触发电压即失去控制作用,所以为了减少门极的触发功率,常常用脉冲触发。

触发脉冲的宽度要能维持到晶闸管彻底导通后才能撤掉,晶闸管对触发脉冲的幅值要求是:在门极上施加的触发电压或触发电流应大于产品提出的数据,但也不能太大,以防止损坏其控制极,在有晶闸管串并联的场合,触发脉冲的前沿越陡越有利于晶闸管的同时触发导通。

为了保证晶闸管电路能正常,可靠的工作,触发电路必须满足以下要求:触发脉冲应有足够的功率,触发脉冲的电压和电流应大于晶闸管要求的数值,并留有一定的裕量。

图6为TC787在六相整流电路中的应用电路,图中变压器二次侧的电压为30V,图中电容C8、C10、C12为隔直耦合电容,而C7、C9、C11为滤波电容,它与R7、R8、R11构成滤去同步电压中毛刺的环节。

另一方面随RP1~RP3三个电位器的不同调节,可实现0~60°的移相,从而适应不同主变压器接法的需要。

在同步信号为50HZ时,锯齿波充电电容建议采用1μF电容,相对误差小于5%,以锯齿波线性好,幅度大,不平顶为宜,幅度小可减小电容值,产生平顶则增大电容值。

引脚13端连接的电容Cx 容量决定着TC787输出脉冲的宽度,电容的容量越大,则脉冲宽度越宽,在同步信号为50HZ时,建议采用0.1uf电容。

脉冲经过放大和脉冲变压器相耦合以达到隔离的目的,如下图所示:图63.3保护电路电力电子装置中可能发生的过电压分为外因过电压和内因过电压两类。

外因过电压主要来自雷击和系统中的操作过程等外部原因,包括:操作过电压:由分闸,合闸等开关操作引起的过电压,电网侧的操作过电压会由供电变压器电磁感应耦合,或由变压器绕组之间的存在的分布电容静电感应耦合过来。

雷击过电压:由雷击引起的过电压。

内因过电压主要来自电力电子装置内部器件的开关过程。

换相过电压:由于晶闸管或者与全控型器件反并联的续流二极管在换相结束后不能恢复阻断能力时,因而有较大的反向电流通过,使残存的载流子恢复,而当其恢复了阻断能力时,反向电流急剧减小,这样的电流突变会因线路电感而在晶闸管阴阳极这间或与续流二极管反并联的全控型器件两端产生过电压。

关断过电压:全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而线路电感在器件两端感应出的过电压。

晶闸管的过电压保护:晶闸管的过电压能力比一般的电器元件差,当它承受超过反向击穿电压时,也会被反向击穿而损坏。

如果正向电压超过管子的正向转折电压,会造成晶闸管硬开通,不仅使电路工作失常,且多次硬开关也会损坏管子。

因此必须抑制晶闸管可能出现的过电压,常采用简单有效的过电压保护措施。

对于晶闸管的过电压保护可参考主电路的过电压保护,我们使用RCD保护,电路图如图7图7电力电子电路运行不正常或者发生故障时,可能会发生过电流现象。

过电流分载和短路两种情况。

一般电力电子均同时采用几种过电压保护措施,怪提高保护的可靠性和合理性。

在选择各种保护措施时应注意相互协调。

通常,电子电路作为第一保护措施,快速熔断器只作为短路时的部分区断的保护,直流快速断路器在电子电力动作之后实现保护,过电流继电器在过载时动作。

采用快速熔断器(简称快熔)是电力电子装置中最有效,应用最方泛的一种过电流保护措施。

相关文档
最新文档