高三二轮复习函数与导数
二轮复习函数与导数微重点2 函数的嵌套与旋转、对称问题
二轮复习函数与导数微重点2 函数的嵌套与旋转、对称问题1.(2022·山东省实验中学检测)已知函数f (x )=⎩⎪⎨⎪⎧ln x -1x ,x >0,x 2+2x ,x ≤0,则函数y =f (f (x )+1)的零点个数是( )A .2B .3C .4D .5 2.若函数f (x )=(1-x 2)(x 2+ax +b )的图象关于直线x =2对称,则实数a 的值为( )A .-15B .8C .-8D .43.将函数y =-x 2+x (x ∈[0,1])的图象绕点(1,0)顺时针旋转θ角⎝⎛⎭⎫0<θ<π2得到曲线C ,若曲线C 仍是一个函数的图象,则θ的最大值为( )A.π6B.π4C.π3D.5π124.(2022·安阳模拟)已知函数f (x )=|2|x |-2|-1,则关于x 的方程f 2(x )+mf (x )+n =0有7个不同实数解,则实数m ,n 满足( )A .m >0且n >0B .m <0且n >0C .0<m <1且n =0D .-1<m <0且n =05.(多选)(2022·徐州质检)若f (x )和g (x )都是定义在R 上的函数,且方程f [g (x )]=x 有实数解,则下列式子中可以为g [f (x )]的是( )A .x 2+2xB .x +1C .e cos xD .ln(|x |+1)6.(多选)(2022·广东联考)已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥0,-x 2-4x ,x <0,方程f 2(x )-t ·f (x )=0有四个实数根x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,下列说法正确的是( )A .x 1x 4∈(-6ln 2,0]B .x 1+x 2+x 3+x 4的取值范围为[-8,-8+2ln 2)C.t的取值范围为[1,4)D.x2x3的最大值为47.(2022·青岛质检)对于函数f(x),若在其图象上存在两点关于原点对称,则称f(x)为“倒戈函数”,设函数f(x)=3x+sin x-m+1(m∈R)是定义在[-1,1]上的“倒戈函数”,则实数m 的取值范围是______________.8.(2022·安徽师大附中联考)已知函数f(x)=xln x,若关于x的方程[f(x)]2+af(x)+a-1=0仅有一个实数解,则实数a的取值范围为________.。
2024高三数学二轮专题复习11-导数中的同构问题
函数与导数—导数中的同构问题专题综述同构法在近几年的模考中频繁出现,把等式或不等式变形为两个形式上一样的函数,利用函数的单调性转化成比较大小,或者解恒成立,求最值等问题.同构法在使用时,考验“眼力”,面对复杂的结构,仔细观察灵活变形,使式子两则的结构一致.构造函数,判断函数单调性,进一步求参数或证明不等式.专题探究探究1:指对跨阶型解决指对混合不等式时,常规的方法计算复杂,则将不等式变形为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦的结构,()f x 即为外层函数,其单调性易于研究.常见变形方式:①ln xx xxe e+=;②ln x x x e e x-=;③ln x x x x e e -=;④()ln ln x x x xe +=;⑤ln ln x e x x x -=.答题思路:1.直接变形:(1)积型:b b ae aln ≤⇒()ln ln abx a e b ef x xe ⋅≤⋅⇒=(同左);ln ln a a e e b b ⇒⋅≤⋅()ln f x x x ⇒=(同右);⇒()ln ln ln ln a a b b +≤+⇒()ln f x x x =+(取对数).说明:取对数是最快捷的,而且同构出的函数,其单调性一看便知.(2)商型:b b a e a ln <⇒ln ln a b e e a b <()xe f x x⇒=(同左);ln ln a a e b e b ⇒<⇒xxx f ln )(=(同右);⇒)ln(ln ln ln b b a a -<-⇒x x x f ln )(-=(取对数).(3)和差型:b b a e aln ±>±⇒ln ln abe a eb ±>±⇒x e x f x ±=)((同左);ln ln a a e e b b ⇒±>+⇒x x x f ln )(±=(同右).2.先凑再变形:若式子无法直接进行变形同构,往往需要凑常数、凑参数或凑变量,如两边同乘以x ,同加上x 等,再用上述方式变形.常见的有:①x ae axln >ln ax axe x x ⇒>;②[]ln 1ln()ln (1)1ln ln(1)1x xx a e a ax a a e a x e a x a->--⇒>--⇒->--ln ln(1)ln ln(1)1ln(1)x a x e x a x x e x --⇒+->-+-=+-;③ln ln ln log (ln )ln ln xx ax a a xa x ex a e x x a>⇒>⇒>;(2021重庆市市辖区模拟)若关于x 的不等式ln x a e x a -≥+对一切正实数x 恒成立,则实数a 的取值范围是()A.1,e ⎛⎫-∞ ⎪⎝⎭B.(],e -∞ C.(],1-∞ D.(],2-∞【审题视点】不等式中有指、对数结构,不等式两侧都加上x ,即能出现同构法中的“和差型”.【思维引导】由不等式的结构判断,通过将不等式变形为ln x a e x a x x -+-≥+,符合同构法中的指对同阶模型,或者直接构造含参函数,分类讨论.【规范解析】解:ln x aex a -+ ,ln x a e x a x x -∴+-+ ,ln ln x a x e x a e x-∴+-+ 指对数结构同时存在,若选择直接含参讨论较麻烦,通过配凑,符合和差型结构,构造函数判断单调性设()tf t e t =+,则()10tf t e '=+>∴()f t 在R 上单调递增故ln ln x ax ex a e x -+-+ 即()()ln f x a f x - ,即ln x a x - 即ln x x a - 设()ln g x x x =-,则()111x g x x x-'=-=,令()0g x '>,则1x >∴()g x 在()1,+∞上单调递减,在()0,1上单调递减故()()min 11g x g ==,故1a 故选.C 【探究总结】不等式或函数中指对数结构都存在时,仔细观察结构特征,可优先考虑放缩或同构,化繁为简,降低单调性判断的难度.故要对常见不等关系的结论(专题1.3.8)及上述的常见变形方法牢记于心,能够熟练变形,构造相应函数.(2021山东省泰安市一模)已知()2ln 12a f x x x x =++.(1)若函数()()cos sin ln 1g x f x x x x x x =+---在0,2π⎛⎤⎥⎝⎦上有1个零点,求实数a 的取值范围;(2)若关于x 的方程()212x aa xef x x ax -=-+-有两个不同的实数解,求a 的取值范围.探究2:双变量型含有同等地位的两个变量12,x x 的等式或不等式,同构后使等式或不等式两侧具有一致的结构,便于构造函数解决问题.答题思路:常见的同构类型有:①[]12211121()()()()()()()()g x g x f x f x g x f x g x f x λλλ->-⇒+>+化繁为简:根据同构后的不等式,构造函数,判断单调性,转化为x a -与ln x 的恒成立问题()()()h x g x f x λ⇒=+;②12121212112212()()()()()()()f x f x k x x f x f x kx kx f x kx f x kx x x -><⇒-<-⇒-<--()()h x f x kx ⇒=-;③1212121212121221()()()()()()f x f x k x x k k k x x f x f x x x x x x x x x --<<⇒->=--1212()()k k f x f x x x ⇒+>+()()k h x f x x⇒=+.(2021江西省萍乡市联考)已知函数()()21ln011x ax f x a x e -=+>--,(1)求函数()f x 的定义域;(2)对1x ∀,21(0,)2x ∈,当21x x >时,都有212111()()11x x f x f x e e -<---成立,求实数a 的取值范围.【审题视点】第(2)问中的双变量不等式,若变量能分离且结构相同,不等式转化函数单调性问题.【思维引导】双变量的恒成立不等式,分离变量,不等式变形212111()()11x x f x f x e e -<---,构造函数()h x ,由不等式得出函数()h x 的单调性.【规范解析】解:(1)由题意得20110x ax x e -⎧>⎪-⎨⎪-≠⎩,即2()(1)00a x x ax ⎧-->⎪⎨⎪≠⎩,①当02a <<时,21a >,函数()f x 的定义域为2(,0)(0,1)(,)a-∞+∞ ;②当2a =时,21a =,函数()f x 的定义域为{|1x x ≠且0}x ≠,③当2a >时,21a <,函数()f x 的定义域为2(,0)(0,)(1,)a-∞+∞ ;(2)由题意得1x ∀,21(0,)2x ∈,当21x x >时,212111()()11x x f x f x e e -<---双变量的不等式,注意变量分离,使不等式两侧的结构一致,转化为新函数的单调性问题设()12()ln11x ax h x f x e x -=-=--,则()()21h x h x <()h x ∴在区间10,2⎛⎫⎪⎝⎭上单调递减设2(1)22()111ax a x a a u x a x x x --+--===+---,即函数()u x 在1(0,)2上是减函数,且1()02u ,2012201120a a a ->⎧⎪⎪-⎪∴⎨⎪-⎪⎪>⎩ ,解得24a < ,∴实数a 的取值范围为(2,4].【探究总结】典例2中出现的双边量问题是同构法中较为典型的情况,思路明确.针对上述类型的不等式,分离变量,构造函数得出单调性.构造的函数可能是抽象函数,也可能是具体函数,利用函数单调性,解不等式.(2021江苏省苏州市联考)已知函数21()ln 2f x x a x =+,若对任意1x ,212[2,)()x x x ∈+∞≠,存在3[1,]2a ∈,使1212()()f x f x m x x ->-成立,则实数m 的取值范围是()A.(,2]-∞ B.(,6)-∞ C.5(,]2-∞ D.11(,]4-∞探究3:同构放缩或同构换元共存型有些更复杂的指对不等式,利用常见的变形方法(探究一)先进行同构变形再换元,使构造的函数较为简单,或者本身不等式的结构不特殊,可以先结合常用不等结论(专题1.3.8)放缩,使结构特殊再同构,但要注意取等号的条件等.常见的放缩模型:(1)利用1xe x ≥+放缩:①ln ln 1xx xxe ex x +=≥++;②ln ln 1xx x e e x x x-=≥-+;③ln ln 1n x x n x x e e x n x +=≥++对于函数单调性的判断,可以利用单调性性质、复合函数单调性、导数,解题时要灵活选择方法(2)利用x e ex ≥放缩:①ln (ln )x x xxe ee x x +=≥+;②ln ln 1x x x xe x x e-=≥-+;③ln (ln )n x x n x x e e e x n x +=≥+.(3)利用ln 1x x ≤-放缩:①ln ln()1xxx x xe xe +=≤-;②ln ln()1n x n x x n x x e x e +=≤-.(4)利用ln x x e≤放缩:①1ln ln()x x x x xe xe -+=≤;②1ln ln()n x n x x n x x e x e -+=≤.(2021河北省石家庄市联考)已知函数()()1ax f x x ea R -=⋅∈.(1)讨论函数()f x 的单调性;(2)若函数()f x 的图象经过点(1,1),求证:0x >时,1ln ()0.xf x x e +⋅ 【审题视点】待证明的不等式中有x xe ,ln x x +,容易联系到指对同阶的常见变形,将不等式同构.【思维引导】第(2)问,求出1a =,显化不等式()1ln 0xf x xe +≥,进行指对变形,换元简化函数.【规范解析】解:(1)由题意知,函数()f x 的定义域为.R 当0a =时,()exf x =,函数()f x 在(,)-∞+∞上单调递增.当0a ≠时,1111()e e e ()ax ax ax f x ax a x a---'=+=+,令()0f x '>,即1()0a x a +>①当0a <时,1x a <-∴()f x 在区间1(,)a -∞-上单调递增;在区间1(,)a -+∞上单调递减.②当0a >时,1x a >-∴()f x 在区间1(,)a -∞-上单调递减,在区间1(,)a-+∞上单调递增.(2)若函数()f x 的图象经过点(1,1),则1(1)1a f e -==,得1a =,则111ln ()ln 1ln 1e e ex x x x f x x x xe x x x +=++-=+-, 1.利用常见的同构变形结论,对待证不等式进行变形,换元使构造的函数较为简单;2.方法不唯一,也可直接构造函数()1ln 1x g x x x xe=++-,判断单调性,涉及隐零点问题(专题1.3.9)设xt xe =,则当0x >时,()0,t ∈+∞设()1ln 1g t t t =+-,则()22111t g t t t t-'=-+=令()0g t '>,则1t >∴()g x 在区间()0,1上单调递减,在区间()1,+∞上单调递增∴()()()min 10g x g x g ≥==∴当0x >时,1ln ()0xf x xe + 恒成立.【探究总结】同构法让复杂的函数式在指对结构上呈现“一致性”,再换元,大大降函数研究的难度.但这类问题,方法不唯一,也可利用其他方法,比如不等式证明问题,直接构造函数求最值,或着变形为()()f x g x >的结构,比较最值.(2021江苏省南京市模拟)已知函数()ln f x x ax =-.(1)讨论()f x 的单调性;(2)设1()()x g x exf x -=+,若()0g x 恒成立,求a 的取值范围.专题升华同构思想不仅仅应用于导数部分,整个高中数学中,在方程、不等式、解析几何、数列部分都有体现,本质上是变形,使结构一致,转化为其它知识点求解.①方程中的应用:()()0f a f b ==⎧⎨⎩⇒两式结构相同,转化为,a b 为方程()0f x =的两根;如:若函数()1f x x m =-在区间[],a b 上的值域为(),122a b b a ⎡⎤>≥⎢⎣⎦,则实数m 的取值范围是.思路:由()f x 单调递增⇒()()22a f a bf b ==⎧⎪⎪⎨⎪⎪⎩⇒,a b 为方程()2x f x =的两个根.②不等式中的应用:不等式两侧化为相同结构,利用函数单调性,比较大小,或解不等式;不等式的证明问题转化为构造函数求函数最值问题如:若()[)5533cos sin 7cos sin ,0,2θθθθθπ-<-∈,则θ的取值范围是.思路:()55335353cos sin7cos sin cos 7cos sin7sin θθθθθθθθ-<-⇒-<-,构造函数()537f x x x =-研究单调性.③解析几何中的应用:如点()()1122,,,A x y B x y 的坐标满足相同的关系式,即01102211y y mx y y mx =-⎧⎨=-⎩则直线AB 的方程为01y y mx =-,或得出两点在同一条曲线上;④数列中的应用:将递推公式变形为关于(),n a n 与()1,1n a n --的同构式,如()113121311n n n n a a a a n n n n ++⎛⎫⎛⎫=++⇒+=+ ⎪ ⎪+⎝⎭⎝⎭,可以构造辅助数列1n a n ⎧⎫+⎨⎬⎩⎭解题.解题时,针对除变量外完全相同的结构式,要灵活的利用其同构的特点,寻求与问题的某种内在联系,从而找到解决问题的思路方法.同构法体现了发现、类比、化归等思想,是一种富有创造性的解决问题的方法.同构法为解题提供了突破口,从同构式中挖掘隐含条件,能让数学难题豁然开朗.【答案详解】变式训练1【解答】解:(1)由题意得2()cos sin 2a g x x x x x =+-,(0x ∈,2π,则()(sin )g x x a x '=-,①当1a 时,sin 0a x - ,()0g x '>∴所以()g x 在(0,]2π单调递增,(0)0g =,故()g x 在(0,]2π上无零点;②当01a <<时,0(0,2x π∃∈,使得0sin x a =,∴()g x 在0(x ,2π上单调递减,在0(0,)x 上单调递增,又(0)0g =,2()128a g ππ=-故()()000g x g >=∴()g x 在区间()00,x 上无零点i )当21028a g ππ⎛⎫=-> ⎪⎝⎭即28a π>时,()g x 在(0,]2π上无零点,ii )当21028a g ππ⎛⎫=-≤ ⎪⎝⎭即280a π< 时,()g x 在(0,]2π上有一个零点,③当0a 时,sin 0a x -<,()0g x '<∴()g x 在(0,]2π上单调递减,()g x 在(0,]2π上无零点,综上所述:当280a π<时,()g x 在(0,2π上有一个零点;(2)由2()1(0)2x a a xe f x x ax x -=-+->得x a xe xlnx ax -=+,即x a e lnx a -=+,则有()ln x a x a e e x lnx --+=+,令()h x x lnx =+,0x >,1()10h x x'=+>,∴函数()h x 在(0,)+∞上递增,∴方程()()x a h e h x -=即为方程x a e x -=即ln a x x =-有2个不同的正实根设()x x lnx ϕ=-,则11()1x x x xϕ-'=-=,当01x <<时,()0x ϕ'<,当1x >时,()0x ϕ'>,所以函数()x x lnx ϕ=-在(0,1)上递减,在(1,)+∞上递增,所以()min x ϕϕ=(1)1=,当0x →时,()x ϕ→+∞,当x →+∞时,()x ϕ→+∞,∴当1a >时,方程ln a x x =-有2个不同的正实根综上所述:()1,a ∈+∞.变式训练2【解析】解:令21()()ln 2g x f x mx x a x mx =-=+-,由1212()()f x f x m x x ->-得()1212()0g x g x x x ->-∴()g x 在[2,)+∞递增,[)()2,,0a x g x x m x '∴∀∈+∞=+-≥,即am x x+ 恒成立,设()a h x x x =+,[)2,x ∈+∞,3[1,]2a ∈,则()ah x x x=+在[2,)+∞上单调递增,∴min ()(2)22a h x h ==+,故有22am + ,3[1,]2a ∃∈ ,使得22am + 成立,故(2max 2a m + ,即11.4m 故选:D .变式训练3【解析】解:(1)由题意得1().f x a x'=-①当0a 时,()0f x '>,则()f x 在(0,)+∞上单调递增;②当0a >时,令()0f x '=得到1x a=,当10x a <<时,()0f x '>,()f x 单调递增;当1x a>时,()0f x '<,()f x 单调递减;综上:当0a 时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在1(0,)a上单调递增,在1(,)a+∞上单调递减;(2)12()ln x g x ex x ax -=+-,令1x =,则(1)10g a =- ,故1a ,当1a 时,()l 2n 1211()ln 1ln ln 1x x x x g x ex x ax e x x x e x x x ----⎡⎤=--=+--⎦-+⎣- ,设()ln 1h x x x =--,则()111x h x x x-'=-=令()0h x '>,则1x >∴()h x 在()0,1上单调递减,在()1,+∞上单调递增()()()min 10h x h x h ∴≥==设()[)1,0,x t x e x x =--+∞,则()10x t x e '=-≥∴()t x 在[)0,+∞上单调递增()()00t x t ∴≥=故()ln 1ln 110x x e x x ------≥,即()ln 1ln 110x x x e x x --⎡⎤----≥⎣⎦综上所述:当1a 时,()0g x ≥.。
高考数学二轮复习考点知识与题型专题讲解3---导数的几何意义及函数的单调性
高考数学二轮复习考点知识与题型专题讲解第3讲导数的几何意义及函数的单调性[考情分析] 1.导数的几何意义和计算是导数应用的基础,是高考的热点,多以选择题、填空题的形式考查,难度较小.2.应用导数研究函数的单调性,是导数应用的重点内容,也是高考的常见题型,以选择题、填空题的形式考查,或为导数解答题第一问,难度中等偏上,属综合性问题.考点一导数的几何意义与计算核心提炼1.导数的几何意义(1)函数在某点的导数即曲线在该点处的切线的斜率.(2)曲线在某点的切线与曲线过某点的切线不同.(3)切点既在切线上,又在曲线上.2.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y′x=y′u·u′x.例1(1)(2022·焦作模拟)函数f(x)=(2e x-x)·cos x的图象在x=0处的切线方程为()A.x-2y+1=0 B.x-y+2=0C.x+2=0 D.2x-y+1=0答案 B解析由题意,函数f(x)=(2e x-x)·cos x,可得f′(x)=(2e x-1)·cos x-(2e x-x)·sin x,所以f′(0)=(2e0-1)·cos 0-(2e0-0)·sin 0=1,f(0)=(2e0-0)·cos 0=2,所以f(x)在x=0处的切线方程为y-2=x-0,即x-y+2=0.(2)(2022·新高考全国Ⅰ)若曲线y =(x +a )e x 有两条过坐标原点的切线,则a 的取值范围是________. 答案 (-∞,-4)∪(0,+∞)解析 因为y =(x +a )e x ,所以y ′=(x +a +1)e x .设切点为A (x 0,(x 0+a )0e x),O 为坐标原点,依题意得,切线斜率k OA =0=|x x y'=(x 0+a +1)0e x =000e x x a x (+),化简,得x 20+ax 0-a =0.因为曲线y =(x +a )e x 有两条过坐标原点的切线,所以关于x 0的方程x 20+ax 0-a =0有两个不同的根,所以Δ=a 2+4a >0,解得a <-4或a >0,所以a 的取值范围是(-∞,-4)∪(0,+∞).易错提醒 求曲线的切线方程要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点. 跟踪演练1 (1)(2022·新高考全国Ⅱ)曲线y =ln|x |过坐标原点的两条切线的方程为__________,____________.答案 y =1e xy =-1ex 解析 先求当x >0时,曲线y =ln x 过原点的切线方程,设切点为(x 0,y 0),则由y ′=1x ,得切线斜率为1x 0, 又切线的斜率为y 0x 0,所以1x 0=y 0x 0, 解得y 0=1,代入y =ln x ,得x 0=e ,所以切线斜率为1e ,切线方程为y =1ex . 同理可求得当x <0时的切线方程为y =-1ex . 综上可知,两条切线方程为y =1e x ,y =-1ex . (2)(2022·保定联考)已知函数f (x )=a ln x ,g (x )=b e x ,若直线y =kx (k >0)与函数f (x ),g (x )的图象都相切,则a +1b的最小值为( ) A .2 B .2eC .e 2D. e答案 B解析 设直线y =kx 与函数f (x ),g (x )的图象相切的切点分别为A (m ,km ),B (n ,kn ).由f ′(x )=a x ,有⎩⎪⎨⎪⎧ km =a ln m ,a m =k ,解得m =e ,a =e k .又由g ′(x )=b e x ,有⎩⎪⎨⎪⎧kn =b e n ,b e n =k , 解得n =1,b =k e, 可得a +1b =e k +e k≥2e 2=2e , 当且仅当a =e ,b =1e时取“=”.考点二 利用导数研究函数的单调性 核心提炼利用导数研究函数单调性的步骤(1)求函数y =f (x )的定义域.(2)求f (x )的导数f ′(x ).(3)求出f ′(x )的零点,划分单调区间.(4)判断f ′(x )在各个单调区间内的符号.例2(2022·哈师大附中模拟)已知函数f (x )=ax e x -(x +1)2(a ∈R ,e 为自然对数的底数).(1)若f (x )在x =0处的切线与直线y =ax 垂直,求a 的值;(2)讨论函数f (x )的单调性.解 (1)f ′(x )=(x +1)(a e x -2),则f ′(0)=a -2,由已知得(a -2)a =-1,解得a =1.(2)f ′(x )=(x +1)(a e x -2),①当a ≤0时,a e x -2<0,所以f ′(x )>0⇒x <-1,f ′(x )<0⇒x >-1,则f (x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减;②当a >0时,令a e x -2=0,得x =ln 2a, (ⅰ)当0<a <2e 时,ln 2a>-1, 所以f ′(x )>0⇒x <-1或x >ln 2a, f ′(x )<0⇒-1<x <ln 2a, 则f (x )在(-∞,-1)上单调递增,在⎝⎛⎭⎫-1,ln 2a 上单调递减,在⎝⎛⎭⎫ln 2a ,+∞上单调递增; (ⅱ)当a =2e 时,f ′(x )=2(x +1)(e x +1-1)≥0, 则f (x )在(-∞,+∞)上单调递增;(ⅲ)当a >2e 时,ln 2a<-1, 所以f ′(x )>0⇒x <ln 2a或x >-1, f ′(x )<0⇒ln 2a<x <-1, 则f (x )在⎝⎛⎭⎫-∞,ln 2a 上单调递增,在⎝⎛⎭⎫ln 2a ,-1上单调递减,在(-1,+∞)上单调递增. 综上,当a ≤0时,f (x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减;当0<a <2e 时,f (x )在(-∞,-1)上单调递增,在⎝⎛⎭⎫-1,ln 2a 上单调递减,在⎝⎛⎭⎫ln 2a ,+∞上单调递增; 当a =2e 时,f (x )在(-∞,+∞)上单调递增;当a >2e 时,f (x )在⎝⎛⎭⎫-∞,ln 2a 上单调递增,在⎝⎛⎭⎫ln 2a ,-1上单调递减,在(-1,+∞)上单调递增. 规律方法 (1)讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制;(2)在能够通过因式分解求出不等式对应方程的根时,依据根的大小进行分类讨论;(3)在不能通过因式分解求出根的情况时,根据不等式对应方程的判别式进行分类讨论.跟踪演练2 (2022·北京模拟)已知函数f (x )=ln x -ln t x -t. (1)当t =2时,求f (x )在x =1处的切线方程;(2)求f (x )的单调区间.解 (1)∵t =2,∴f (x )=ln x -ln 2x -2, ∴f ′(x )=x -2x -ln x +ln 2(x -2)2, ∴f ′(1)=ln 2-1,又f (1)=ln 2,∴切线方程为y -ln 2=(ln 2-1)(x -1),即y =(ln 2-1)x +1.(2)f (x )=ln x -ln t x -t, ∴f (x )的定义域为(0,t )∪(t ,+∞),且t >0,f ′(x )=1-t x -ln x +ln t (x -t )2, 令φ(x )=1-t x-ln x +ln t ,x >0且x ≠t , φ′(x )=t x 2-1x =t -x x 2, ∴当x ∈(0,t )时,φ′(x )>0,当x ∈(t ,+∞)时,φ′(x )<0,∴φ(x )在(0,t )上单调递增,在(t ,+∞)上单调递减,∴φ(x )<φ(t )=0,∴f ′(x )<0,∴f (x )在(0,t ),(t ,+∞)上单调递减.即f (x )的单调递减区间为(0,t ),(t ,+∞),无单调递增区间.考点三 单调性的简单应用 核心提炼1.函数f (x )在区间D 上单调递增(或递减),可转化为f ′(x )≥0(或f ′(x )≤0)在x ∈D 上恒成立.2.函数f (x )在区间D 上存在单调递增(或递减)区间,可转化为f ′(x )>0(或f ′(x )<0)在x ∈D 上有解.例3 (1)若函数f (x )=e x (cos x -a )在区间⎝⎛⎭⎫-π2,π2上单调递减,则实数a 的取值范围是( ) A .(-2,+∞) B .(1,+∞)C .[1,+∞)D .[2,+∞)答案 D解析 f ′(x )=e x (cos x -a )+e x (-sin x )=e x (cos x -sin x -a ),∵f (x )在区间⎝⎛⎭⎫-π2,π2上单调递减,∴f ′(x )≤0在区间⎝⎛⎭⎫-π2,π2上恒成立,即cos x -sin x -a ≤0恒成立,即a ≥cos x -sin x =2cos ⎝⎛⎭⎫x +π4恒成立,∵-π2<x <π2,∴-π4<x +π4<3π4,∴-1<2cos ⎝⎛⎭⎫x +π4≤2,∴a ≥ 2.(2)(2022·新高考全国Ⅰ)设a =0.1e 0.1,b =19,c =-ln 0.9,则( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b答案 C解析 设u (x )=x e x (0<x ≤0.1),v (x )=x 1-x(0<x ≤0.1), w (x )=-ln(1-x )(0<x ≤0.1).则当0<x ≤0.1时,u (x )>0,v (x )>0,w (x )>0.①设f (x )=ln[u (x )]-ln[v (x )]=ln x +x -[ln x -ln(1-x )]=x +ln(1-x )(0<x ≤0.1),则f ′(x )=1-11-x =x x -1<0在(0,0.1]上恒成立, 所以f (x )在(0,0.1]上单调递减,所以f (0.1)<f (0)=0+ln(1-0)=0,即ln[u (0.1)]-ln[v (0.1)]<0,所以ln[u (0.1)]<ln[v (0.1)].又函数y =ln x 在(0,+∞)上单调递增,所以u (0.1)<v (0.1),即0.1e 0.1<19,所以a <b . ②设g (x )=u (x )-w (x )=x e x +ln(1-x )(0<x ≤0.1),则g ′(x )=(x +1)e x -11-x=(1-x 2)e x -11-x(0<x ≤0.1). 设h (x )=(1-x 2)e x -1(0<x ≤0.1),则h ′(x )=(1-2x -x 2)e x >0在(0,0.1]上恒成立,所以h (x )在(0,0.1]上单调递增,所以h (x )>h (0)=(1-02)·e 0-1=0,即g ′(x )>0在(0,0.1]上恒成立,所以g (x )在(0,0.1]上单调递增,所以g (0.1)>g (0)=0·e 0+ln(1-0)=0,即g (0.1)=u (0.1)-w (0.1)>0,所以0.1e 0.1>-ln 0.9,即a >c .综上,c <a <b ,故选C.规律方法 利用导数比较大小或解不等式的策略利用导数比较大小或解不等式,常常要构造新函数,把比较大小或求解不等式的问题,转化为利用导数研究函数单调性问题,再由单调性比较大小或解不等式.跟踪演练3 (1)(2022·全国甲卷)已知9m =10,a =10m -11,b =8m -9,则( )A .a >0>bB .a >b >0C .b >a >0D .b >0>a答案 A解析 ∵9m =10,∴m ∈(1,2),令f (x )=x m -(x +1),x ∈(1,+∞),∴f ′(x )=mx m -1-1, ∵x >1且1<m <2,∴x m -1>1,∴f ′(x )>0, ∴f (x )在(1,+∞)上单调递增,又9m =10,∴9m -10=0,即f (9)=0,又a =f (10),b =f (8),∴f (8)<f (9)<f (10),即b <0<a .(2)已知变量x 1,x 2∈(0,m )(m >0),且x 1<x 2,若2112x x x x 恒成立,则m 的最大值为(e =2.718 28…为自然对数的底数)( )A .e B. e C.1eD .1 答案 A解析 ∵2112x x x x ⇒x 2ln x 1<x 1ln x 2,x 1,x 2∈(0,m ),m >0,∴ln x 1x 1<ln x 2x 2恒成立, 设函数f (x )=ln x x ,∵x 1<x 2,f (x 1)<f (x 2),∴f (x )在(0,m )上单调递增,又f ′(x )=1-ln xx 2,则f ′(x )>0⇒0<x <e ,即函数f (x )的单调递增区间是(0,e),则m 的最大值为e.专题强化练一、单项选择题1.(2022·张家口模拟)已知函数f (x )=1x -2x +ln x ,则函数f (x )在点(1,f (1))处的切线方程为() A .2x +y -2=0 B .2x -y -1=0C .2x +y -1=0D .2x -y +1=0答案 C解析 因为f ′(x )=-1x 2-2+1x ,所以f ′(1)=-2,又f (1)=-1,故函数f (x )在点(1,f (1))处的切线方程为y -(-1)=-2(x -1),化简得2x +y -1=0.2.已知函数f (x )=x 2+f (0)·x -f ′(0)·cos x +2,其导函数为f ′(x ),则f ′(0)等于( )A .-1B .0C .1D .2答案 C解析 因为f (x )=x 2+f (0)·x -f ′(0)·cos x +2,所以f (0)=2-f ′(0).因为f ′(x )=2x +f (0)+f ′(0)·sin x ,所以f ′(0)=f (0).故f ′(0)=f (0)=1.3.(2022·重庆检测)函数f (x )=e -x cos x (x ∈(0,π))的单调递增区间为( ) A.⎝⎛⎭⎫0,π2B.⎝⎛⎭⎫π2,π C.⎝⎛⎭⎫0,3π4 D.⎝⎛⎭⎫3π4,π 答案 D解析 f ′(x )=-e -x cos x -e -x sin x =-e -x (cos x +sin x )=-2e -x sin ⎝⎛⎭⎫x +π4, 当x ∈⎝⎛⎭⎫0,3π4时, e -x >0,sin ⎝⎛⎭⎫x +π4>0,则f ′(x )<0; 当x ∈⎝⎛⎭⎫3π4,π时,e -x >0,sin ⎝⎛⎭⎫x +π4<0,则f ′(x )>0. ∴f (x )在(0,π)上的单调递增区间为⎝⎛⎭⎫3π4,π.4.(2022·厦门模拟)已知函数f (x )=(x -1)e x -mx 在区间x ∈[1,2]上存在单调递增区间,则m 的取值范围为( )A .(0,e)B .(-∞,e)C .(0,2e 2)D .(-∞,2e 2)答案 D解析 ∵f (x )=(x -1)e x -mx ,∴f ′(x )=x e x -m ,∵f (x )在区间[1,2]上存在单调递增区间,∴存在x ∈[1,2],使得f ′(x )>0,即m <x e x ,令g (x )=x e x ,x ∈[1,2],则g ′(x )=(x +1)e x >0恒成立,∴g (x )=x e x 在[1,2]上单调递增,∴g (x )max =g (2)=2e 2,∴m <2e 2,故实数m 的取值范围为(-∞,2e 2).5.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( )A .e b <aB .e a <bC .0<a <e bD .0<b <e a答案 D解析 (用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .6.已知a =e 0.3,b =ln 1.52+1,c = 1.5,则它们的大小关系正确的是( ) A .a >b >c B .a >c >bC .b >a >cD .c >b >a答案 B解析 由b =ln 1.52+1=ln 1.5+1,令f (x )=ln x +1-x ,则f ′(x )=1x -1,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0;所以f (x )=ln x +1-x 在(0,1)上单调递增,在(1,+∞)上单调递减,且f (1)=0,则f ( 1.5)<0,因此ln 1.5+1- 1.5<0,所以b <c ,又因为c = 1.5<1.3,所以ln 1.5+1< 1.5<1.3,得ln 1.5<0.3=ln e 0.3, 故 1.5<e 0.3,所以a >c .综上,a >c >b .二、多项选择题7.若曲线f (x )=ax 2-x +ln x 存在垂直于y 轴的切线,则a 的取值可以是() A .-12 B .0 C.18 D.14答案 ABC解析 依题意,f (x )存在垂直于y 轴的切线,即存在切线斜率k =0的切线,又k =f ′(x )=2ax +1x -1,x >0,∴2ax +1x -1=0有正根,即-2a =⎝⎛⎭⎫1x 2-1x 有正根,即函数y =-2a 与函数y =⎝⎛⎭⎫1x 2-1x ,x >0的图象有交点,令1x =t >0,则g (t )=t 2-t =⎝⎛⎭⎫t -122-14,∴g (t )≥g ⎝⎛⎭⎫12=-14,∴-2a ≥-14,即a ≤18.8.已知函数f (x )=ln x ,x 1>x 2>e ,则下列结论正确的是() A .(x 1-x 2)[f (x 1)-f (x 2)]<0B.12[f (x 1)+f (x 2)]<f ⎝⎛⎭⎫x 1+x22C .x 1f (x 2)-x 2f (x 1)>0D .e[f (x 1)-f (x 2)]<x 1-x 2答案 BCD解析 ∵f (x )=ln x 是增函数,∴(x 1-x 2)[f (x 1)-f (x 2)]>0,A 错误;12[f (x 1)+f (x 2)]=12(ln x 1+ln x 2)=12ln(x 1x 2)=ln x 1x 2,f ⎝⎛⎭⎫x 1+x 22=ln x 1+x 22,由x 1>x 2>e ,得x 1+x 22>x 1x 2,又f (x )=ln x 单调递增,∴12[f (x 1)+f (x 2)]<f ⎝⎛⎭⎫x1+x 22,B 正确;令h (x )=f (x )x ,则h ′(x )=1-ln x x 2, 当x >e 时,h ′(x )<0,h (x )单调递减,∴h (x 1)<h (x 2),即 f (x 1)x 1< f (x 2)x 2⇒x 1f (x 2)-x 2f (x 1)>0, C 正确;令g (x )=e f (x )-x ,则g ′(x )=e x-1, 当x >e 时,g ′(x )<0,g (x )单调递减,∴g (x 1)<g (x 2),即e f (x 1)-x 1<e f (x 2)-x 2⇒e[f (x 1)-f (x 2)]<x 1-x 2,D 正确.三、填空题9.(2022·保定模拟)若函数f (x )=ln x -2x+m 在(1,f (1))处的切线过点(0,2),则实数m =______. 答案 6解析 由题意,函数f (x )=ln x -2x +m , 可得f ′(x )=1x +321x , 可得f ′(1)=2,且f (1)=m -2,所以m -2-21-0=2,解得m =6. 10.已知函数f (x )=x 2-cos x ,则不等式f (2x -1)<f (x +1)的解集为________.答案 (0,2)解析 f (x )的定义域为R ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),∴f (x )为偶函数.当x >0时,f ′(x )=2x +sin x ,令g (x )=2x +sin x ,则g ′(x )=2+cos x >0,∴f ′(x )在(0,+∞)上单调递增,∴f ′(x )>f ′(0)=0,∴f (x )在(0,+∞)上单调递增,又f (x )为偶函数,∴原不等式化为|2x -1|<|x +1|,解得0<x <2,∴原不等式的解集为(0,2).11.(2022·伊春模拟)过点P (1,2)作曲线C :y =4x的两条切线,切点分别为A ,B ,则直线AB 的方程为________.答案 2x +y -8=0解析 设A (x 1,y 1),B (x 2,y 2),y ′=-4x 2, 所以曲线C 在A 点处的切线方程为y -y 1=-4x 21(x -x 1), 将P (1,2)代入得2-y 1=-4x 21(1-x 1), 因为y 1=4x 1,化简得2x 1+y 1-8=0, 同理可得2x 2+y 2-8=0,所以直线AB 的方程为2x +y -8=0.12.已知函数f (x )=12x 2-ax +ln x ,对于任意不同的x 1,x 2∈(0,+∞),有f (x 1)-f (x 2)x 1-x 2>3,则实数a 的取值范围是________.答案a ≤-1解析 对于任意不同的x 1,x 2∈(0,+∞),有 f (x 1)-f (x 2)x 1-x 2>3. 不妨设x 1<x 2,则f (x 1)-f (x 2)<3(x 1-x 2),即f (x 1)-3x 1<f (x 2)-3x 2,设F (x )=f (x )-3x ,则F (x 1)<F (x 2),又x 1<x 2,所以F (x )单调递增,F ′(x )≥0恒成立.F (x )=f (x )-3x =12x 2-(a +3)x +ln x . 所以F ′(x )=x -(3+a )+1x =x 2-(3+a )x +1x, 令g (x )=x 2-(3+a )x +1,要使F ′(x )≥0在(0,+∞)上恒成立,只需g (x )=x 2-(3+a )x +1≥0恒成立,即3+a ≤x +1x 恒成立,x +1x ≥2x ·1x=2, 当且仅当x =1x,即x =1时等号成立, 所以3+a ≤2,即a ≤-1.四、解答题13.(2022·滁州模拟)已知函数f (x )=x 2-2x +a ln x (a ∈R ).(1)若函数在x =1处的切线与直线x -4y -2=0垂直,求实数a 的值;(2)当a >0时,讨论函数的单调性.解 函数定义域为(0,+∞),求导得f ′(x )=2x -2+a x. (1)由已知得f ′(1)=2×1-2+a =-4,得a =-4.(2)f ′(x )=2x -2+a x =2x 2-2x +a x(x >0), 对于方程2x 2-2x +a =0,记Δ=4-8a .①当Δ≤0,即a ≥12时,f ′(x )≥0,函数f (x )在(0,+∞)上单调递增; ②当Δ>0,即0<a <12时,令f ′(x )=0, 解得x 1=1-1-2a 2,x 2=1+1-2a 2. 又a >0,故x 2>x 1>0.当x ∈(0,x 1)∪(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增,当x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减.综上所述,当a ≥12时,函数f (x )在(0,+∞)上单调递增; 当0<a <12时,函数f (x )在⎝ ⎛⎭⎪⎫0,1-1-2a 2, ⎝ ⎛⎭⎪⎫1+1-2a 2,+∞上单调递增, 在⎝ ⎛⎭⎪⎫1-1-2a 2,1+1-2a 2上单调递减. 14.(2022·湖北八市联考)设函数f (x )=e x -(ax -1)ln(ax -1)+(a +1)x .(e =2.718 28…为自然对数的底数)(1)当a =1时,求F (x )=e x -f (x )的单调区间;(2)若f (x )在区间⎣⎡⎦⎤1e ,1上单调递增,求实数a 的取值范围.解 (1)当a =1时,F (x )=e x -f (x )=(x -1)ln(x -1)-2x ,定义域为(1,+∞),F ′(x )=ln(x -1)-1,令F ′(x )>0,解得x >e +1,令F ′(x )<0,解得1<x <e +1,故F (x )的单调递增区间为(e +1,+∞),单调递减区间为(1,e +1).(2)f (x )在区间⎣⎡⎦⎤1e ,1上有意义,故ax -1>0在⎣⎡⎦⎤1e ,1上恒成立,可得a >e ,依题意可得f ′(x )=e x -a ln(ax -1)+1≥0在⎣⎡⎦⎤1e ,1上恒成立,设g (x )=f ′(x )=e x -a ln(ax -1)+1,g ′(x )=e x-a 2ax -1, 易知g ′(x )在⎣⎡⎦⎤1e ,1上单调递增,故g ′(x )≤g ′(1)=e -a 2a -1<0, 故g (x )=f ′(x )=e x -a ln(ax -1)+1在⎣⎡⎦⎤1e ,1上单调递减,最小值为g (1),故只需g (1)=e -a ln(a -1)+1≥0,设h (a )=e -a ln(a -1)+1,其中a >e ,由h ′(a )=-ln(a -1)-a a -1<0可得, h (a )=e -a ln(a -1)+1在(e ,+∞)上单调递减,又h (e +1)=0,故a ≤e +1.综上所述,a 的取值范围为(e ,e +1].。
新高考新教材高考数学二轮复习专题检测6函数与导数pptx课件
却,经过10 min物体的温度为50 ℃,则若使物体的温度为20 ℃,需要冷却
( C )
A.17.5 min
B.25.5 min
C.30 min
D.32.5 min
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
解析 由题意得 50=10+(90-10)e
( D )
2.(2023 北京,4)下列函数中,在区间(0,+∞)上单调递增的是( C )
A.f(x)=-ln x
1
C.f(x)=
1
B.f(x)=2
D.f(x)=3|x-1|
解析 因为 y=ln x 在(0,+∞)上单调递增,所以 f(x)=-ln x 在(0,+∞)上单调递减,
故 A 错误;
3
3 +2
g(x)= ,则函数
3 +2
x≠0,所以-a=
.
设
f(x)存在 3 个零点等价于函数
y=-a 有三个不同的交点.
2(3 -1)
g'(x)= 2 .当
3 +2
g(x)= 的图象与直线
x>1 时,g'(x)>0,
函数 g(x)在(1,+∞)内单调递增,
当 x<1 且 x≠0 时,g'(x)<0,
专题检测六
函数与导数
单项选择题
lg, > 0,
1.(2023 广东高三学业考试)已知函数 f(x)=
若 a=f
2 , < 0,
A.-2
解析 a=f
B.-1
高中总复习二轮数学精品课件 专题一 函数与导数 素养提升微专题(二) 导数应用中的函数构造技巧
()
(2)对于 f'(x)-f(x)>0(或<0),构造函数 F(x)= e .
(3)对于 f'(x)+2f(x)>0(或<0),构造函数 F(x)=e2xf(x).
()
(4)对于 f'(x)-2f(x)>0(或<0),构造函数 F(x)= 2 .
,因为函数
e2
f(x)满足 f'(x)-
2f(x)>0,所以 F'(x)>0,即 F(x)在 R 上单调递增.
又因为 f(0)=1,则 F(0)=1,所以 f(x)>e ⇔
2x
不等式的解集为{x|x>0}.
()
>1⇔F(x)>F(0),所以
2
e
x>0,故所求
名师点析利用f(x)与ex(enx)构造函数的技巧
f'(x)cos x-f(x)sin x>0,所以 F'(x)>0,即函数
由于
f
π
6
f
π
6
π
0<
6
<
π
4
π
π
cos6<f 4
<
π
3
3
3
<
π
3
<
π
π
cos4<f 3
π
F(x)在区间(0,2)
π
4
<F
π
cos3,因此可得
π
6
π
,所以
高三数学二轮复习专题讲解14 函数与导数
高三数学二轮复习专题讲解 第14讲 易错点-函数与导数专题综述函数与导数是高考中的重点和难点,各种题型都有考查,也有一定的计算量!但我们要必拿选择填空的中等题分数,主要考查的知识点有函数的概念(函数的定义域、解析式、值域)、性质(单调性、奇偶性、对称性)、图象,导数的概念及其几何意义;对这些知识理解不到位或把握不全面或对题意理解不准确,就容易造成会而不对、对而不全的结果专题探究探究1:函数性质掌握不牢致错函数的单调性、奇偶性、周期性等在考题中不限制于以课本的定义给出,我们要关注它们等价变形形式和相关结论,如单调性的等价变形形式有: (1)若[]12,,x x a b ∀∈,12x x ≠,()()()12120x x f x f x -->⎡⎤⎣⎦()()12120f x f x x x -⇔>-()f x ⇔在[],a b 上是增函数;()()()12120x x f x f x --<⎡⎤⎣⎦()()12120f x f x x x -⇔<-()f x ⇔在[],a b 上是减函数.(2) 若12x x ≠,且()()1212f x f x k x x ->-,则()y f x kx =-是增函数.奇偶性的相关结论有:(1)()f x 是偶函数⇔()()()()()()0f x f x f x f x f x f x =-⇔=⇔--=; (2)()f x 是奇函数⇔()()()()0f x f x f x f x -=-⇔+-=; (3)若函数()f x 在0x =处有意义,则()00f =;(4)()f x a +是偶函数,则()()f x a f x a +=-+,()f x 是偶函数,则()()f x a f x a +=-+. 利用函数的对称性与奇偶性会推导函数的周期性:(1)函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =;若()f x 为偶函数,则其周期为2T a =.(2)函数()y f x =()x ∈R 的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;函数()y f x =()x ∈R 的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数.(2022江苏联考)已知函数(1)y f x =-的图象关于直线1x =-对称,且对x R ∀∈有()() 4.f x f x +-=当(0,2]x ∈时,() 2.f x x =+则下列说法正确的是(). ()f x 的最小正周期是8 . ()f x 的最大值为5 . (2022)0f = . (2)f x +为偶函数 【规范解析】解:.A 因为(1)y f x =-的图象关于直线1x =-对称,所以()f x 关于直线2x =-对称;即有()(4)f x f x =--,()(4)f x f x -=-,又()()4f xf x +-=,所以(4)(4)4f x f x --++=,即()(4)4f x f x ++=,所以()4(f x f x =-+,又()4f x f x=--,()(4)(4)f x f x f x -=+=-,所以()(8)f x f x =+,所以()f x 的周期8T =,故 正确; .由 知(2022)(20228)f f =-(202288)(6)(2)4(2)440f f f f =--===-=-=-=,故 正确; .由 知()(4)f x f x -=+所以(2)(2)f x f x +=-+,则(2)f x +为偶函数,故 正确; .当(0,2]x ∈时,()2f x x =+,结合以上知函数图象大致为则()f x 的最大值为4,故 错误.故答案选:.ACD(2022福建联考)已知定义在 上的函数()f x ,对任意实数x 有(4)()f x f x +=-,函数(1)f x +的图象关于直线1x =-对称,若当(0,1]x ∈时()f x x =,则()A. ()f x 为偶函数B. ()f x 为周期函数C. (2023)1f =-D. 当[3,4)x ∈时,()f x =探究2:函数图象识别时不细致致错函数图象是函数性质的直观反映,由函数表达式识别函数图象时由于我们平时形成的一些错误的认识,还有惯性思维,不做深入的研究,导致得出错误的结论.我们在辨别图象时可从奇偶性、单调性、特殊值等方面来排除不合适的,从而得到正确答案.(2022福建联考)函数31()cos (66)31x x f x x x -=-+剟的图象大致为()A. B. C. D.【规范解析】解:函数31()cos (66)31x x f x x x -=-+剟,满足3113()cos()cos ()3113x xx x f x x x f x -----=-==-++,()f x ∴为奇函数,()f x 的图象关于原点对称,排除 ,.B 当x π=时,13()013f πππ-=<+,排除.C 故选.D (2022福建省福州市期中)我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来研究函数图象的特征.观察以下四个图象的特征,试判断与函数()1sin ,(,0)f x x x x x x ππ⎛⎫=--≠ ⎪⎝⎭剟相对应的图象是()A. B. C.D.探究3:比较大小时没有选对方法致错在比较数与式的大小时常利用指数函数、幂函数及对数函数单调性比较大小.若比较指数式与对数式的大小,或同是指数式(对数式)但底数不相同,这些情况下常利用中间量比较大小,常用的中间量是0,1,1-,有时也可借助13,2,22等中间量来比较大小.若两个式子结构比较复杂,但结构类似,这种情况下常利用式子的结构构造函数,然后利用函数单调性比较大小.(2022江苏联考)如果01a <<,那么下列不等式中正确的是()A. 1132(1)(1)a a ->- B. (1)log (1)0a a -+>C. 32(1)(1)a a ->+D. 1(1)1a a +->【规范解析】解:由题意 01a <<,所以()()10,1a -∈,()()11,2a +∈,得()1xy a =-为R 上的减函数,又1123>,所以()()113211a a ->-,10(1)(1=)1a a a +-<-而(1)log a y x -=单调递减,(1)(1)log (1)log 1=0a a a --+<, 32(1)1(1)a a -<<+,故选:.A(2022安徽省池州市单元测试)已知函数(2)y f x =-的图象关于直线2x =对称,在(0,)x ∈+∞时,()f x 单调递增.若ln3(4)a f =,(2)eb f -=,1(ln)(c f π=其中e 为自然对数的底数,π为圆周率),则a ,b ,c 的大小关系为()A. a c b >>B. a b c >>C. c a b >>D. c b a >>探究4:混淆两类切线致错求曲线的切线方程一定要注意区分“过点A 的切线方程”与“在点A 处的切线方程”的不同.虽只有一字之差,意义完全不同,“在”说明这点就是切点,“过”只说明切线过这个点,这个点不一定是切点,求曲线过某点的切线方程一般先设切点把问题转化为在某点处的切线,求过某点的切线条数一般也是先设切点,把问题转化为关于切点横坐标的方程实根个数问题.(2022山东模拟)已知直线y kx =是曲线x y e =的切线,也是曲线ln y x m =+的切线,则实数k =__________,实数m =__________. 【规范解析】解:设y kx =与x y e =和ln y x m =+的切点分别为11(,)x x e ,22(,ln )x x m +,x y e =的导数xy e '=,1x e k ∴=,且11x k x e=,解得11x =,k e ∴=;ln y x m =+的导数1y x'=,21k e x ∴==,21x e ∴=,又22ln kx x m =+,11ln 2.m e e e∴=⨯-=故答案为 ;2.(2022河南信阳月考)若曲线2y x =与ln()y x a =-有一条斜率为2的公切线,则()a =A. 1ln 22- B. 1ln 22C. ln 2-D. ln 2探究5:混淆导数与单调性的关系致错研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零.若研究函数的单调性可转化为解不等式()()()()1200a x x x x x --><>或0,首先根据a 的符号进行讨论,当a 的符号确定后,再根据12,x x 是否在定义域内讨论,当12,x x 都在定义域内时在根据12,x x 的大小进行讨论.(2022福建省福州市期中)已知函数()ln nx f x x mx xe =+-(1)当0n =时,讨论函数()f x 在区间(0,3)的单调性【规范解析】解:(1)当0n =时,函数()ln (03)f x x mx x x =+-<<,1(1)1()1m x f x m x x-+'=+-=当1m …时,(0,3)x ∈,()0f x '>,()f x ∴在(0,3)上单调递增, 当1m <时,令1()0,1f x x m'==-, ①当131m <-时,即23m <时, 由()0f x '>得:101x m <<-,由()0f x '<得:131x m<<-, ∴当23m <时,函数()f x 在1(0,)1m -上单调递增,在1(,3)1m-上单调递减. ②当131m-…时,即213m <…时,由03,()0x f x <<'>得03x <<,∴当213m <…时,函数()f x 在(0,3)上单调递增,综上所述:当23m …时,函数()f x 在(0,3)上单调递增;当23m <时,函数()f x 在1(0,)1m -上单调递增,在1(,3)1m -上单调递减.(2022河北联考)已知函数()ln sin f x a x x x =-+,其中a 为非零常数.(1)若函数()f x 在(0,)+∞上单调递增,求a 的取值范围;探究6:混淆导数与极值的关系致错对于可导函数f (x ):x 0是极值点的充要条件是在x 0点两侧导数异号,且0()0f x '=,即0()0f x '=是x 0为极值点的必要而不充分条件.对于给出函数极大(小)值的条件,一定要既考虑0()0f x '=,又考虑检验“左正右负”或“左负右正”,防止产生增根.(2022河北省张家口市期中)已知函数()f x 的导函数()f x '的图象如图,则下列叙述正确的是()A. 函数()f x 只有一个极值点B. 函数()f x 满足(4)(1)f f -<-,且在4x =-处取得极小值C. 函数()f x 在2x =处取得极大值D. 函数()f x 在(),4-∞-内单调递减【规范解析】解:由导函数的图象可得,当2x <时,()0f x '≥,函数()f x 单调递增;当2x >时,()0f x '<,函数()f x 单调递减.所以函数()f x 的单调递减区间为()2,+∞, 只有当2x =时函数取得极大值,无极小值. 故选:.AC(2022湖南联考)已知函数()(3)2.x f x x e x -=++(1)证明:()f x 恰有两个极值点;探究7:函数零点与方程的根不会转化致错确定函数零点所在区间、零点个数或已知函数零点情况求参数,常通过数形结合转化为两个函数图象的交点个数问题,所以研究函数与方程问题不要得“意”忘“形”.(2022河北期中)已知函数,()e ,x xx a f x x x a⎧⎪=⎨⎪<⎩…,若存在不相等的1x ,2x ,3x ,满足123()()()f x f x f x ==,则实数a 的取值范围是__________.【规范解析】解:由题意可知,对于()xx f x e=,则1().x xf x e -'=当1x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减,当1x =时,函数()f x 取得最大值为1(1)f e =,如图,分别画出函数x xy e =和y x =在 上的图象,用一条平行于x 轴的直线y m =截图象,有3个交点时,即存在1x ,2x ,3x ,使得123()()()f x f x f x m ===,当(1,)a ∈+∞或(,0]a ∈-∞时,最多有2个交点,所以不成立;当(0,1)a ∈时,存在3个交点,所以a 的取值范围是(0,1). 故答案为:(0,1)(2022福建月考)函数()ln (),0()(2),(0)x x f x x x x ⎧-<=⎨-⎩…,若关于x 的方程22()()10f x af x -+=有6个不相等的实数根,则a 的取值范围是__________.专题升华函数的定义域是研究函数图象与性质的第一要素,性质是函数的基本属性,图象是其性质的外在表现;把握各性质的定义和等价表达式是根本;导数是研究函数性质的的根本工具,遇到参数时要紧记“分类讨论”;导函数图象与原函数图象的关系不能混淆!复合函数要会分解,定义域先行,内层函数的值域是外层函数的定义域,要清醒对待两者的身份!【答案详解】变式训练1【答案】.ABD【解析】由函数(1)f x +的图象关于直线1x =-对称可知,函数()f x 的图象关于 轴对称, 故()f x 为偶函数.选项 正确;由(4)()f x f x +=-,得(44)(4)()f x f x f x ++=-+=,()f x ∴是周期8T =的偶函数,(2023)(25381)(1)(1) 1.f f f f ∴=⨯-=-==选项 正确,选项 错误;设[3,4)x ∈,则4[1,0),4(0,1],x x -∈--∈()f x 为偶函数,(4)(4)f x f x ∴-=-,由(0,1]x ∈时,()f x =,得(4)(4.f x f x -=--又(4)()f x f x +=-,()(4)f x f x ∴=--=选项 正确.故选:.ABD变式训练2【答案】【解析】因为()1sin ,(,0)f x x x x x x ππ⎛⎫=--≠ ⎪⎝⎭剟,所以()()1sin f x x x f x x ⎛⎫-=-+=- ⎪⎝⎭,所以()f x 为奇函数,其图象关于原点中心对称,故排除 、 选项; 又0x π<<时,()10f =,令6x π=,则6sin 0666f ππππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭,故排除 选项.故选:.D变式训练3【答案】【解析】根据题意,函数(2)y f x =-的图象关于直线2x =对称,则函数()f x 的图象关于 轴对称,即函数()f x 为偶函数,满足()()f x f x -=,则1(l n )(l n )c f f ππ==,ln31444ln ln 120e e π->=>>=>>, 又由(0,)x ∈+∞时,()f x 单调递增,则有a c b >>;故选:.A变式训练4【答案】【解析】由2y x =得2y x '=,令22y x '==,解得1x =,由点斜式得切线方程:12(1)y x -=-,即21y x =-,由l n ()y x a =-,得1y x a '=-,令12y x a '==-,解得12x a =+,代入ln()y x a =-得:ln 2y =-,将1(,ln 2)2a +-代入21y x =-,得:11ln 22()1ln 222a a -=+-⇒=-,故选:.A变式训练5【解析】(1)由题知()cos 1(0)af x x x x'=-+>,若0a >,因为0x >,1cos 0x -…,则()0f x '>,所以()f x 在(0,)+∞上单调递增,若0a <,则当0,2a x ⎛⎫∈- ⎪⎝⎭时,2a x <-,从而11 / 11 ()2cos 1(1cos )0f x x x '<--+=-+…,所以()f x 在0,2a ⎛⎫- ⎪⎝⎭上单调递减,不满足题意,综上分析,a的取值范围是(0,).+∞变式训练6【解析】(1)证明:依题意()f x 的定义域为 ,()(2)2x f x x e -'=-++,令()(2)2x m x x e -=-++,()(1).x m x x e -'=+当(1,)x ∈-+∞时,()0m x '>,所以()f x '在(1,)-+∞单调递增;当(,1)x ∈-∞-时,()0m x '<,所以()f x '在(),1-∞-单调递减.又因为(1)20f e '-=-<,(0)0f '=,(2)20f '-=>,所以()f x '在(),1-∞-恰有1个零点0x ,在()1,-+∞恰有1个零点0,且当0(,)x x ∈-∞时,()0f x '>,当0(,0)x x ∈时,()0f x '<,当(0,)x ∈+∞时,()0.f x '>所以()f x 在0(,)x -∞单调递增,在0(,0)x 单调递减,在(0,)+∞单调递增.所以()f x 恰有一个极大值点0x 和一个极小值点0,即()f x 恰有两个极值点.变式训练7【解析】函数()f x 的图象如图所示,令()t f x =,结合图象可知,若关于x 的方程22()()10f x af x -+=有6个不等的实数根,则关于 的方程2210t at -+=在[0,1)有两个不等实数根,因为221y t at =-+的图象过点(0,1),则280014210a a a ⎧∆=->⎪⎪<<⎨⎪-+>⎪⎩,解得3.a <<故答案为:。
高考总复习二轮数学精品课件 专题1 函数与导数 第2讲 基本初等函数、函数的应用
3.函数的零点问题
(1)函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与
函数y=g(x)的图象交点的横坐标.
(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③
数形结合,利用两个函数图象的交点求解.
温馨提示函数的零点是一个实数,而不是几何图形.
质与相关函数的性质之间的关系进行判断.
对点练2
9 0.1
(1)(2023·广东湛江一模)已知 a=(11) ,b=log910,c=lg
A.b>c>a
B.c>b>a
C.b>a>c
D.c>a>b
11,则( A )
解析 根据指数函数和对数函数的性质,
可得
9 0.1
9 0
a=(11) < 11 =1,b=log910>log99=1,c=lg
1 1
B. - 2 , 2
1
C. 0, 2
1
1
D. - 2 ,0 ∪ 0, 2
(3)换底公式:logaN= log (a,b>0,且 a,b≠1,N>0).
(4)对数值符号规律:已知a>0,且a≠1,b>0,则logab>0⇔(a-1)(b-1)>0,
logab<0⇔(a-1)(b-1)<0.
1
温馨提示对数的倒数法则:logab= log
(a,b>0,且a,b≠1).
11>lg 10=1,
又由 2=lg 100>lg 99=lg 9+lg 11>2 lg9 × lg11,所以 1>lg
高考总复习二轮理科数学精品课件 专题6 函数与导数 培优拓展15 函数的隐零点问题与极值点偏移问题
(1)若 f(x)是 R 上的减函数,求实数 a 的取值范围;
(2)若 f(x)有两个极值点 x1,x2,其中
2
x1<x2,求证:x2-x1> +2.
e
(1)解 由题意
+2
f'(x)=a+ e ≤0
在 R 上恒成立,
+2
∴-a≥ e 恒成立,
令
+2
g(x)= ,x∈R,则-a≥g(x)max,
个交点.
(方法二)由(1)知,f(x)=x3-3x2+x+2,设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4,由题
设知1-k>0.
当x≤0时,g'(x)=3x2-6x+1-k>0,g(x)单调递增,
g(-1)=k-1<0,g(0)=4,所以g(x)=0在(-∞,0]有唯一实根.
当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).
0
1
x0= +x0≥2,由 x0∈(0,1),所以等号不成立,
0
所以 ex-ln x>2 恒成立.
规律方法已知不含参函数f(x),导函数方程f'(x)=0的根存在,却无法求出,设
方程f'(x)=0的根为x0,要注意确定x0的合适范围,以及f'(x0)=0成立得出一关
系式,利用该关系式进行等价转化.
0
由 g'(x0)=0 得e =x0+3,所以
0 (0 +3)+2
g(x0)=
=x0+1,由于
2023年高考数学二轮复习讲练测专题16 函数与导数常见经典压轴小题全归类(原卷版)
专题16函数与导数常见经典压轴小题全归类【命题规律】1、导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2、应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题.【核心考点目录】核心考点一:函数零点问题之分段分析法模型核心考点二:函数嵌套问题核心考点三:函数整数解问题核心考点四:唯一零点求值问题核心考点五:等高线问题核心考点六:分段函数零点问题核心考点七:函数对称问题核心考点八:零点嵌套问题核心考点九:函数零点问题之三变量问题核心考点十:倍值函数核心考点十一:函数不动点问题核心考点十二:函数的旋转问题核心考点十三:构造函数解不等式核心考点十四:导数中的距离问题核心考点十五:导数的同构思想核心考点十六:不等式恒成立之分离参数、分离函数、放缩法核心考点十七:三次函数问题核心考点十八:切线问题核心考点十九:任意存在性问题核心考点二十:双参数最值问题核心考点二十一:切线斜率与割线斜率核心考点二十二:最大值的最小值问题(平口单峰函数、铅锤距离)核心考点二十三:两边夹问题和零点相同问题核心考点二十四:函数的伸缩变换问题【真题回归】1.(2022·全国·统考高考真题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1-B .12-C .12D .12.(2022·全国·统考高考真题)函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-, C .ππ222-+,D .3ππ222-+, 3.(多选题)(2022·全国·统考高考真题)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线4.(2022·天津·统考高考真题)设a ∈R ,对任意实数x ,记(){}2min 2,35f x x x ax a =--+-.若()f x 至少有3个零点,则实数a 的取值范围为______.5.(2022·全国·统考高考真题)已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.6.(2022·全国·统考高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.7.(2022·浙江·统考高考真题)已知函数()22,1,11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是_________.8.(2022·全国·统考高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 9.(2022·北京·统考高考真题)设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为________;a 的最大值为___________.【方法技巧与总结】1、求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现()()f f a 的形式时,应从内到外依次求值;当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2、含有抽象函数的分段函数,在处理时首先要明确目标,即让自变量向有具体解析式的部分靠拢,其次要理解抽象函数的含义和作用(或者对函数图象的影响).3、含分段函数的不等式在处理上通常有两种方法:一种是利用代数手段,通过对x 进行分类讨论将不等式转变为具体的不等式求解;另一种是通过作出分段函数的图象,数形结合,利用图象的特点解不等式.4、分段函数零点的求解与判断方法:(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.5、动态二次函数中静态的值:解决这类问题主要考虑二次函数的有关性质及式子变形,注意二次函数的系数、图象的开口、对称轴是否存在不变的性质,二次函数的图象是否过定点,从而简化解题.6、动态二次函数零点个数和分布问题:通常转化为相应二次函数的图象与x 轴交点的个数问题,结合二次函数的图象,通过对称轴,根的判别式,相应区间端点函数值等来考虑.7、求二次函数最值问题,应结合二次函数的图象求解,有三种常见类型: (1)对称轴变动,区间固定; (2)对称轴固定,区间变动; (3)对称轴变动,区间也变动.这时要讨论对称轴何时在区间之内,何时在区间之外.讨论的目的是确定对称轴和区间的关系,明确函数的单调情况,从而确定函数的最值.8、由于三次函数的导函数为我们最熟悉的二次函数,所以基本的研究思路是:借助导函数的图象来研究原函数的图象.如借助导函数的正负研究原函数的单调性;借助导函数的(变号)零点研究原函数的极值点(最值点);综合借助导函数的图象画出原函数的图象并研究原函数的零点…具体来说,对于三次函数()()32 0f x ax bx cx d a =+++>,其导函数为()()232 0f x ax bx c a '=++>,根的判别式()243b ac ∆=-.增区间:(), x -∞,0∆≤恒成立,三次函数()f x 在R 上为增函数,没有极值点,有且只有一个零点;(2)当0∆≥时,()0f x '=有两根1x ,2x ,不妨设12x x <,则1223b x x a+=-,可得三次函数()f x 在()1, x -∞,()2, x +∞上为增函数,在()12, x x 上为减函数,则1x ,2x 分别为三次函数()32f x ax bx cx d=+++的两个不相等的极值点,那么:① 若()()120f x f x ⋅>,则()f x 有且只有1个零点; ② 若()()120f x f x ⋅<,则()f x 有3个零点; ③ 若()()120f x f x ⋅=,则()f x 有2个零点.特别地,若三次函数()()32 0f x ax bx cx d a =+++>存在极值点0x ,且()00f x =,则()f x 地解析式为()()()20f x a x x x m =--.同理,对于三次函数()()32 0f x ax bx cx d a =+++<,其性质也可类比得到.9、由于三次函数()()32 0f x ax bx cx d a =+++≠的导函数()232f x ax bx c '=++为二次函数,其图象变化规律具有对称性,所以三次函数图象也应当具有对称性,其图象对称中心应当为点, 33bb faa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,此结论可以由对称性的定义加以证明.事实上,该图象对称中心的横坐标正是三次函数导函数的极值点.10、对于三次函数图象的切线问题,和一般函数的研究方法相同.导数的几何意义就是求图象在该店处切线的斜率,利用导数研究函数的切线问题,要区分“在”与“过”的不同,如果是过某一点,一定要设切点坐标,然后根据具体的条件得到方程,然后解出参数即可.11、恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.12、如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值.13、当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数图象之间的关系,得出答案或列出条件,求出参数的范围.14、两类零点问题的不同处理方法利用零点存在性定理的条件为函数图象在区间[a ,b ]上是连续不断的曲线,且()()0f a f b ⋅<..①直接法:判断-一个零点时,若函数为单调函数,则只需取值证明()()0f a f b ⋅<.②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明()()0f a f b ⋅<.15、利用导数研究方程根(函数零点)的技巧(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等. (2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现. 16、已知函数零点个数求参数的常用方法(1)分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.【核心考点】核心考点一:函数零点问题之分段分析法模型 【典型例题】例1.(2023·浙江奉化·高二期末)若函数322ln ()x ex mx xf x x -+-=至少存在一个零点,则m 的取值范围为( ) A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎡⎫++∞⎪⎢⎣⎭C .1,e e ⎛⎤-∞+ ⎥⎝⎦D .1,e e ⎡⎫++∞⎪⎢⎣⎭例2.(2023·天津·耀华中学高二期中)设函数()322ln f x x ex mx x =-+-,记()()f xg x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是 A .21,e e ⎛⎤-∞+ ⎥⎝⎦B .210,e e ⎛⎤+ ⎥⎝⎦C .21e ,e ⎛⎫++∞ ⎪⎝⎭D .2211e ,e e e ⎛⎤--+ ⎥⎝⎦例3.(2023·湖南·长沙一中高三月考(文))设函数()22x xf x x x a e=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是( ) A .1(0,1]e+B .1(0,]e e +C .1[,)e e ++∞D .1(,1]e-∞+核心考点二:函数嵌套问题 【典型例题】例4.(2023·全国·高三专题练习)已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e-=∈有n 个不同的实数解,则n 的所有可能的值为A .3B .1或3C .4或6D .3或4或6例5.(2023·全国·高三专题练习(文))已知函数()||12x f x e =-,()()11,021ln ,0x x g x x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()0g f x m -=有四个不同的解,则实数m 的取值集合为( ) A .ln 20,2⎛⎫ ⎪⎝⎭B .ln 2,12⎛⎫⎪⎝⎭C .ln 22⎧⎫⎨⎬⎩⎭D .()0,1例6.(2023·河南·高三月考(文))已知函数()ln x f x x=,若关于x 的方程()()210f x af x a ++-=⎡⎤⎣⎦有且仅有三个不同的实数解,则实数a 的取值范围是( ) A .()2e,1e --B .()1e,0-C .(),1e -∞-D .()1e,2e -核心考点三:函数整数解问题 【典型例题】例7.(2023·福建宁德·高三)当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的最大值为( ) A .2-B .1-C .0D .1例8.(2023·江苏·苏州大学附属中学高三月考)已知a Z ∈,关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13B .21C .26D .30例9.(2023·江苏宿迁·高一月考)用符号[x ]表示不超过x 的最大整数(称为x 的整数部分),如[﹣1.2]=﹣2,[0.2]=0,[1]=1,设函数f (x )=(1﹣ln x )(ln x ﹣ax )有三个不同的零点x 1,x 2,x 3,若[x 1]+[x 2]+[x 3]=6,则实数a 的取值范围是( ) A .10,e ⎛⎫⎪⎝⎭B .ln 31,3e ⎛⎫⎪⎝⎭ C .ln 21,2e ⎡⎫⎪⎢⎣⎭ D .ln 2ln 3,23⎡⎫⎪⎢⎣⎭ 核心考点四:唯一零点求值问题 【典型例题】例10.(2023·安徽蚌埠·模拟预测(理))已知函数()()()2ln 1ln f x x x a x =-+--有唯一零点,则a =( )A .0B .12-C .1D .2例11.(2023·辽宁沈阳·模拟预测)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()x g x h x e x +=+,若函数()()12216x f x g x λλ-=+--有唯一零点,则正实数λ的值为( )A .12B .13C .2D .3例12.(2023·新疆·莎车县第一中学高三期中)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin xg x h e x x x ++=-,若函数()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为 A .1-或12B .1或12-C .1-或2D .2-或1核心考点五:等高线问题 【典型例题】例13.(2023·陕西·千阳县中学模拟预测(理))已知函数2()log 1f x x =-,若方程()f x a =(0)a >的4个不同实根从小到大依次为1x ,2x ,3x ,4x ,有以下三个结论:①142x x +=且232x x +=;②当1a =时,12111x x +=且34111x x +=;③21340x x x x +=.其中正确的结论个数为( ) A .0 B .1 C .2 D .3例14.(2023·江苏省天一中学高三月考)已知函数2()(2)x f x x x e =-,若方程()f x a =有3个不同的实根()123123x x x x x x <<,,,则22ax -的取值范围为( ) A .10e⎡⎫-⎪⎢⎣⎭,B.1e⎡-⎢⎣⎭C.()D.(例15.(2023·浙江·高一单元测试)已知函数(){}2max ,32f x x x =-,其中{},max ,,p p q p q q p q ≥⎧=⎨<⎩,若方程()()302f x ax a =+>有四个不同的实根1x 、2x 、3x 、()41234x x x x x <<<,则1423x x x x ++的取值范围是( )A .93,102⎫⎛-- ⎪⎝⎭B .193,102⎫⎛-- ⎪⎝⎭C .39,210⎫⎛- ⎪⎝⎭D .319,210⎫⎛- ⎪⎝⎭核心考点六:分段函数零点问题 【典型例题】例16.(2023·山东青岛·高三期末)已知函数2|ln(1),1()(2),1x x f x x x ⎧+-=⎨+≤-⎩,若方程()0f x m -=有4个不相同的解,则实数m 的取值范围为( ) A .(0,1]B .[0,1)C .(0,1)D .[0,1]例17.(2023·全国·高三专题练习)已知函数2log ,1()11,14x x f x x x >⎧⎪=⎨+≤⎪⎩,()()g x f x kx =-,若函数()g x 有两个零点,则k 的取值范围是( ) A .10,4⎛⎤⎥⎝⎦B .10,ln 2e ⎛⎫ ⎪⎝⎭C .10,e ⎡⎫⎪⎢⎣⎭D .11,42eln ⎡⎫⎪⎢⎣⎭例18.(2023·江苏·高三专题练习)已知函数22,0()log ,0x x f x x x ⎧≤=⎨>⎩,函数()()g x f x x m =++,若()g x 有两个零点,则m 的取值范围是( ). A .[1,)-+∞B .(,1]-∞-C .[0,)+∞D .[1,0)-核心考点七:函数对称问题 【典型例题】例19.(2023·安徽省滁州中学高三月考(文))已知函数()22ln ,03,02x x x x f x x x x ->⎧⎪=⎨--≤⎪⎩的图象上有且仅有四个不同的点关于直线1y =的对称点在10kx y +-=的图象上,则实数k 的取值范围是A .1,12⎛⎫⎪⎝⎭B .13,24⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭例20.(2023·全国·高一课时练习)若直角坐标平面内的两点P ,Q 满足条件:①P ,Q 都在函数()f x 的图象上;②P ,Q 关于原点对称,则称点对[],P Q 是函数()f x 的一个“友好点对”(注:点对[],P Q 与[],Q P 看作同一个“友好点对”).已知函数()22log ,04,0x x f x x x x >⎧=⎨--≤⎩,则此函数的“友好点对”有( )A .0个B .1个C .2个D .3个例21.(2023·福建·厦门一中高一竞赛)若函数y =f (x )图象上存在不同的两点A ,B 关于y 轴对称,则称点对[A ,B ]是函数y =f (x )的一对“黄金点对”(注:点对[A ,B ]与[B ,A ]可看作同一对“黄金点对”)已知函数2229,0()4,041232,4x x f x x x x x x x +<⎧⎪=-+≤≤⎨⎪-+>⎩,则此函数的“黄金点对”有( )A .0对B .1对C .2对D .3对核心考点八:零点嵌套问题 【典型例题】例22.(2023·湖北武汉·高三月考)已知函数2()()(1)()1x x f x xe a xe a =+-+-有三个不同的零点123,,x x x .其中123x x x <<,则3122123(1)(1)(1)x x x x e x e x e ---的值为( )A .1B .2(1)a -C .1-D .1a -例23.(2023·全国·模拟预测(理))已知函数2()e e x x x ax f x a ⎛⎫=+- ⎪⎝⎭有三个不同的零点123,,x x x (其中123x x x <<),则3122312111e e ex x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为 A .1B .1-C .aD .a -例24.(2023·浙江省杭州第二中学高三开学考试)已知函数()()()2ln ln f x ax x x x x =+--,有三个不同的零点,(其中123x x x <<),则2312123ln ln ln 111x x x x x x ⎛⎫⎛⎫⎛⎫---⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为 A .1a - B .1a - C .-1 D .1核心考点九:函数零点问题之三变量问题 【典型例题】例25.(2023·全国·高三)若存在两个正实数x 、y ,使得等式3(24)(ln ln )0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是( ).A .()0-∞,B .3(0)[)2e-∞⋃+∞,, C .3(0]2e,D .3[)2e+∞, 例26.(2023·山东枣庄·高二期末)对于任意的实数[1,e]x ∈,总存在三个不同的实数y ,使得ln 0ye xy x ay y--=成立,其中e 为自然对数的底数,则实数a 的取值范围是A .2(,)4e -∞-B .2(,0)4e -C .2[,)4e -+∞D .2(,)4e -+∞例27.(2023·四川省新津中学高三月考(理))若存在两个正实数,x y ,使得等式330yx x e ay -=成立,其中e 为自然对数的底数,则实数a 的取值范围为A .2[,)8e +∞B .3(0,]27eC .3[,)27e +∞D .2(0,]8e核心考点十:倍值函数 【典型例题】例28.(河南省郑州市第一中学2022-2023学年高三上学期期中考试数学(理)试题)对于函数()y f x =,若存在区间[],a b ,当[],x a b ∈时的值域为[](),0ka kb k >,则称()y f x =为k 倍值函数.若()2xf x e x =+是k倍值函数,则实数k 的取值范围是( ) A .()1,e ++∞B .()2,e ++∞C .1,e e ⎛⎫++∞ ⎪⎝⎭D .,e e 2⎛⎫++∞ ⎪⎝⎭例29.(2023·四川·内江市教育科学研究所高二期末(文))对于函数()y f x =,若存在区间,a b ,当[],x a b ∈时,()f x 的值域为[],ka kb ,则称()y f x =为k 倍值函数.若()xf x e =是k 倍值函数,则k 的取值范围为( )A .10,e ⎛⎫⎪⎝⎭B .()1,eC .(),e +∞D .1,e ⎛⎫+∞ ⎪⎝⎭例30.(2023·吉林·长春十一高高二期中(理))对于函数()y f x =,若存在区间[],a b ,当[],x a b ∈时,()f x 的值域为[],ka kb ,则称()y f x =为k 倍值函数.若()ln f x x x =+是k 倍值函数,则k 的取值范围为( ) A .10,e ⎛⎫ ⎪⎝⎭B .1,e ⎛⎫+∞ ⎪⎝⎭C .11,1e ⎛⎫+ ⎪⎝⎭D .11,e ⎛⎫++∞ ⎪⎝⎭核心考点十一:函数不动点问题 【典型例题】例31.(2023·广东海珠·高三期末)设函数()f x a R e ∈,为自然对数的底数),若曲线y x x =上存在点00()x y ,使得00()f y y =,则a 的取值范围是( ) A .1e[1]e-, B .1e[e 1]e-+, C .[1e 1]+, D .[1,e]例32.(2023·山西省榆社中学高三月考(理))若存在一个实数t ,使得()F t t =成立,则称t 为函数()F x 的一个不动点.设函数()1(xg x e x a =+-(a R ∈,e 为自然对数的底数),定义在R 上的连续函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.若存在01|()(1)2x x f x f x x ⎧⎫∈+-+⎨⎬⎩⎭,且0x 为函数()g x 的一个不动点,则实数a 的取值范围为( )A .⎛⎫-∞ ⎪ ⎪⎝⎭ B .⎡⎫+∞⎪⎢⎪⎣⎭ C .⎛⎤⎥ ⎝⎦ D .⎛⎫+∞⎪ ⎪⎝⎭例33.(2023·四川自贡·高二期末(文))设函数()()1ln 2=+-∈f x x x a a R ,若存在[]1,b e ∈(e 为自然对数的底数),使得()()f f b b =,则实数a 的取值范围是( ) A .1,122⎡⎤--⎢⎥⎣⎦eB .e 1,ln 212⎡⎤--⎢⎥⎣⎦C .1,ln 212⎡⎤--⎢⎥⎣⎦D .1,02⎡⎤-⎢⎥⎣⎦核心考点十二:函数的旋转问题 【典型例题】例34.(2023·上海市建平中学高三期末)双曲线2213x y -=绕坐标原点O 旋转适当角度可以成为函数f (x )的图象,关于此函数f (x )有如下四个命题,其中真命题的个数为( ) ①f (x )是奇函数;②f (x )的图象过点32⎫⎪⎪⎝⎭或32⎫-⎪⎪⎝⎭; ③f (x )的值域是33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;④函数y =f (x )-x 有两个零点. A .4个B .3个C .2个D .1个例35.(2023·山东青岛·高三开学考试)将函数2([3,3])y x =∈-的图象绕点(3,0)-逆时针旋转(0)ααθ≤≤,得到曲线C ,对于每一个旋转角α,曲线C 都是一个函数的图象,则θ最大时的正切值为( )A .32B .23C .1D 例36.(2023·浙江·高三期末)将函数π2sin 0,22x y x ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的图像绕着原点逆时针旋转角α得到曲线T ,当(]0,αθ∈时都能使T 成为某个函数的图像,则θ的最大值是( )A .π6B .π4C .3π4D .2π3核心考点十三:构造函数解不等式 【典型例题】例37.(2023·江西赣州·高三期中(文))已知函数()()f x x R ∈满足(1)1f =,且()f x 的导数1()2f x '>,则不等式||1(||)22x f x <+的解集为( ) A .(,1)-∞-B .(1,)+∞C .(1,1)-D .(,1][1,)-∞-+∞例38.(2023·全国·高二课时练习)设定义在R 上的函数()f x 的导函数为()'f x ,若()()'2f x f x +<,()02021f =,则不等式()22019x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A .()0+∞,B .()2019+∞,C .()0-∞,D .()()02019-∞+∞,,例39.(2023·全国·高二课时练习)已知()f x 的定义域为0,,()'f x 为()f x 的导函数,且满足()()f x xf x '<-,则不等式()()()2111f x x f x +>--的解集是( )A .0,1B .2,C .1,2D .1,核心考点十四:导数中的距离问题 【典型例题】例40.(2023春•荔湾区期末)设函数22()()(22)f x x a lnx a =-+-,其中0x >,a R ∈,存在0x 使得04()5f x 成立,则实数a 的值是( ) A .15B .25C .12D .1例41.(2023•龙岩模拟)若对任意的正实数t ,函数33()()()3f x x t x lnt ax =-+--在R 上都是增函数,则实数a 的取值范围是( )A .1(,]2-∞B .(-∞C .(-∞D .(-∞,2]例42.(2023•淮北一模)若存在实数x 使得关于x 的不等式2221()22x e a x ax a -+-+成立,则实数a 的取值范围是( ) A .1{}2B .1{}4C .1[2,)+∞D .1[4,)+∞核心考点十五:导数的同构思想 【典型例题】例43.(2023·全国·高三专题练习)已知关于x 的不等式ln ln(1)0x e mx x m ---+≥在(0,)+∞恒成立,则m 的取值范围是( ) A .(]1,1-B .(]1,1e --C .(]1,1e -D .(]1,e例44.(2023·安徽·合肥一中高三月考(理))设实数0m >,若对任意的()1,x ∈+∞,不等式2ln 20mxxe m-≥恒成立,则实数m 的取值范围是( ) A .1,2e ⎡⎫+∞⎪⎢⎣⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .[)1,+∞D .[),e +∞例45.(2023·宁夏·石嘴山市第一中学高二月考(理))若对任意()0,x ∈+∞,不等式ln 0ax ae x ->恒成立,则实数a 的取值范围为( )A .1,e e ⎛⎫- ⎪⎝⎭B .1,e⎛⎫+∞ ⎪⎝⎭C .1e e ⎛⎫ ⎪⎝⎭,D .(),e +∞核心考点十六:不等式恒成立之分离参数、分离函数、放缩法 【典型例题】例46.(2023·浙江·高三月考)已知函数2()1x f x xe =-,不等式()ln f x mx x ≥+对任意(0,)x ∈+∞恒成立,则实数m 的取值范围是( ) A .(,2]-∞B .[0,2]C .(2,e 1⎤-∞-⎦D .20,1e ⎡⎤-⎣⎦例47.(2023·四川省资中县第二中学高二月考(理))关于x 的不等式()32ln 113x x a x xe x+++-≥对任意0x >恒成立,则a 的取值范围是( ). A .(],1-∞-B .(){},1e -∞⋃C .[],1e --D .(],0-∞例48.(2023·全国·高三专题练习)已知,a b ∈R ,若关于x 的不等式2ln 0x a x a b -+-≥恒成立,则ab 的最大值为_______.核心考点十七:三次函数问题 【典型例题】例49.(2023·全国·高三课时练习)设函数()y f x ''=是()y f x '=的导数,经过探究发现,任意一个三次函数()()320ax bx d a f x cx =+++≠的图象都有对称中心()()00,x f x ,其中0x 满足()00f x ''=,已知函数()3272392f x x x x =-+-,则12320212022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2021 B .20212C .2022D .40212例50.(2023·安徽·东至县第二中学高三月考(理))人们在研究学习过程中,发现:三次整式函数()f x 都有对称中心,其对称中心为00(,())x f x (其中0''()0f x =).已知函数32()345f x x x x =-++.若()4,()10f m f n ==,则m n +=( ) A .1B .32C .2D .3例51.(2023·全国·高三月考(文))已知m ,n ,p ∈R ,若三次函数()32f x x mx nx p =+++有三个零点a ,b ,c ,且满足()()3112f f -=<,()()022f f =>,则111a b c ++的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .11,43⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭核心考点十八:切线问题 【典型例题】例52.(2023·云南红河·高三月考(理))下列关于三次函数32()(0)()f x ax bx cx d a x R =+++≠∈叙述正确的是( )①函数()f x 的图象一定是中心对称图形; ②函数()f x 可能只有一个极值点; ③当03bx a≠-时,()f x 在0x x =处的切线与函数()y f x =的图象有且仅有两个交点; ④当03bx a≠-时,则过点()()00,x f x 的切线可能有一条或者三条. A .①③B .②③C .①④D .②④例53.(2023·江西·南昌二中高三月考(文))若函数2()1f x x =+的图象与曲线C:()21(0)x g x a e a =⋅+>存在公共切线,则实数a 的取值范围为 A .220,e ⎛⎤ ⎥⎝⎦B .240,e ⎛⎤ ⎥⎝⎦C .21,e ⎡⎫+∞⎪⎢⎣⎭D .23,e ⎡⎫+∞⎪⎢⎣⎭例54.(2023·全国·高二单元测试)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a <B .e b a >C .0e b a <<D .0e a b <<核心考点十九:任意存在性问题 【典型例题】例55.(2023·河南·郑州外国语中学高三月考(理))若不等式()()()221212log 1log 3,,13x xa x x ++-≥-∈-∞恒成立,则实数a 的范围是( ) A .[0,)+∞B .[1,)+∞C .(,0]-∞D .(,1]-∞.例56.(2023·全国·高三专题练习)已知函数2()=++f x x px q 对,∀∈p q R ,总有0[1,5]∃∈x ,使()0f x m≥成立,则m 的范围是( ) A .5,2⎛⎤-∞ ⎥⎝⎦B .(,2]-∞C .(,3]-∞D .(,4]-∞例57.(2023·全国·高二课时练习)已知()()1ln f x x x =+,若k ∈Z ,且()()2k x f x -<对任意2x >恒成立,则k 的最大值为( ) A .3B .4C .5D .6核心考点二十:双参数最值问题 【典型例题】例58.(2023·浙江·宁波市北仑中学高三开学考试)已知,a b ∈R ,且0ab ≠,对任意0x >均有()()(ln )0x a b x a x b ----≥,则( ) A .0,0a b <<B .0,0a b <>C .0,0a b ><D .0,0a b >>例59.(2023·山西运城·高三期中(理))已知在函数()()0,0f x ax b a b =+>>,()()ln 2g x x =+,若对2x ∀>-,()()f x g x ≥恒成立,则实数ba的取值范围为( )A .[)0,+∞B .[)1,+∞C .[)2,+∞D .[),e +∞例60.(2023·黑龙江·鹤岗一中高三月考(理))当(1,)x ∈+∞时,不等式ln(1)230(x ax b a --+,b R ∈,0)a ≠恒成立,则ba 的最大值为( )A .1eB .2C .43D .2e核心考点二十一:切线斜率与割线斜率 【典型例题】例61.(2023·广东·佛山一中高三月考)已知函数2()ln (1)1h x a x a x =+-+(0)a < ,在函数()h x 图象上任取两点,A B ,若直线AB 的斜率的绝对值都不小于5,则实数a 的取值范围是( )A .(,0)-∞B .⎛-∞ ⎝⎦C .,⎛-∞ ⎝⎦D .⎫⎪⎪⎝⎭例62.(2023·山西大同·高一期中)已知函数(),()f x g x 是定义在R 上的函数,且()f x 是奇函数,()g x 是偶函数,()()f x g x +=2x ax +,记2()()()g x h x xf x x =+,若对于任意的1212x x <<<,都有()()12120h x h x x x -<-,则实数a 的取值范围为( ) A .1,02⎡⎫-⎪⎢⎣⎭B .(0,)+∞C .(,1]-∞-D .(0,2]例63.(2023·全国·高一课时练习)已知函数(),142,12x a x f x a x x ⎧≥⎪=⎨⎛⎫-+< ⎪⎪⎝⎭⎩,若对任意的1x ,2x ,且12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围是( )A .()1,+∞B .[)1,8C .()4,8D .[)4,8核心考点二十二:最大值的最小值问题(平口单峰函数、铅锤距离) 【典型例题】例64.设二次函数2()(2)32f x a x ax =-++在R 上有最大值,最大值为m (a ),当m (a )取最小值时,(a =) A .0B .1C .12D例65.(2023春•绍兴期末)已知函数2()||||f x x a x b =+++,[0x ∈,1],设()f x 的最大值为M ,若M 的最小值为1时,则a 的值可以是( ) AB .0 CD .1例66.(2023•济南模拟)已知函数2()||2x f x ax b x -=--+,若对任意的实数a ,b ,总存在0[1x ∈-,2],使得0()f x m 成立,则实数m 的取值范围是( ) A .1(,]4-∞B .(-∞,1]2C .(-∞,2]3D .(-∞,1]核心考点二十三:两边夹问题和零点相同问题 【典型例题】例67.(2023春•湖州期末)若存在正实数x ,y 使得不等式22414lnx x lny ln y -++-成立,则(xy += ) ABCD 例68.(2023•上饶二模)已知实数x ,y 满足2(436)326x y ln x y e x y +-+--+-,则x y +的值为( ) A .2B .1C .0D .1-例69.(2023•崇明区期末)若不等式(||)sin()06x a b x ππ--+对[1x ∈-,1]恒成立,则a b +的值等于() A .23B .56C .1D .2核心考点二十四:函数的伸缩变换问题 【典型例题】例70.(2023·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是( ) A .[]2,3 B .[]1,3 C .[]1,4D .[]2,4例71.(2023·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18≥-f x t t恒成立,则实数t 的取值范围是( ) A .(](],10,3-∞-B.((,0,3⎤-∞⎦C .[)[)1,03,-+∞D .))3,⎡⎡+∞⎣⎣例72.(2023届山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为( ) A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤【新题速递】一、单选题1.(2023·广西南宁·南宁二中校考一模)已知函数()2,01,011x x f x x x x ⎧≤⎪=-≤<⎨≥,若函数()()()22231g x m f x mf x =-+,存在5个零点,则m =( ) A .1B .12C .1或12D .1-2.(2023春·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( )A .1B .3C .4D .53.(2023·江西景德镇·统考模拟预测)已知函数()11,041,0x xf x x x ⎧+<⎪⎪=⎨⎪->⎪⎩,若()()12f x f x =,则12x x -的最小值为( ) A .4B .92C .143D .54.(2023春·内蒙古赤峰·高三统考阶段练习)已知实数0a >,0b >,1a b +=,则下列说法中,正确的是( ). A .114a b+≤B .存在a ,b ,使得223a b +≥C .22log log 1a b ⋅≤D .存在a ,b ,使得直线10ax by 与圆224x y +=相切5.(2023·全国·高三专题练习)已知()0,2A ,()(),00B t t <,动点C 在曲线T :()2401y x x =≤≤上,若△ABC 面积的最小值为1,则t 不可能为( ) A .4-B .3-C .2-D .1-6.(2023·浙江温州·统考模拟预测)已知P 为直线=1y x --上一动点,过点P 作抛物线2:2C x y =的两条切线,切点记为A ,B ,则原点到直线AB 距离的最大值为( ) A .1BCD .27.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知0a >,0b >,直线2e y x b -=+与曲线ln y x a =-相切,则11a b+的最小值是( ) A .16B .12C .8D .48.(2023春·江苏苏州·高三苏州中学校考阶段练习)若关于x 的不等式(41ln )ln 3k x x x x --<-+对于任意(1,)x ∈+∞恒成立,则整数k 的最大值为( ) A .-2 B .-1 C .0 D .1二、多选题9.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()e xf x x =-,()lng x x x =-,则下列说法正确的是( )A .()e xg 在()0,∞+上是增函数B .1x ∀>,不等式()()2ln f ax f x ≥恒成立,则正实数a 的最小值为2eC .若()f x t =有两个零点12,x x ,则120x x +>D .若()()()122f x g x t t ==>,且210x x >>,则21ln t x x -的最大值为1e10.(2023春·重庆·高三统考阶段练习)已知函数32()e 3xf x ax =-有三个不同的极值点1x ,2x ,3x ,且123x x x <<,则下列结论正确的是( )A .2e 8a >B .11x <-C .2x 为函数()f x 的极大值点D .()23e 3f x <11.(2023春·福建宁德·高三校考阶段练习)已知函数()3f x x ax b =++,其中a ,b 为实数,则下列条件能使函数()f x 仅有一个零点的是( ) A .3a =-,3b =-B .3a =-,2b =C .0a =,3b =-D .1a =,2b =12.(2023春·山东潍坊·高三统考期中)定义在R 上的函数()f x 的导函数为()f x ',对于任意实数x ,都有2()e ()x f x f x -=,且满足22()()21e x f x f x x -'+=+-,则( )A .函数()e ()x F x f x =为偶函数B .(0)0f =C .不等式e ()e e x xxf x +<的解集为(1,)+∞ D .若方程2()()0f x x a x--=有两个根12,x x ,则122x x a +> 13.(2023·浙江温州·统考模拟预测)若函数()y f x =的图象上存在两个不同的点P ,Q ,使得()f x 在这两点处的切线重合,则称函数()y f x =为“切线重合函数”,下列函数中是“切线重合函数”的是( ) A .sin cos y x x =+ B .(sin c s )o y x = C .sin y x x =+D .2sin y x x =+14.(2023春·江苏南京·高三统考阶段练习)已知双曲线C :224x y -=,曲线E :2y ax x b =++,记两条曲线过点()1,0的切线分别为1l ,2l ,且斜率均为正数,则( ) A .若=0a ,1b =,则C 与E 有一个交点 B .若=1a ,=0b ,则C 与E 有一个交点C .若0a b ,则1l 与E 夹角的正切值为7-D .若==1a b ,则1l 与2l 三、填空题15.(2023·河南郑州·高三阶段练习)正实数a ,b 满足1e 4a a +=+,()ln 3b b +=,则b a -的值为____________. 16.(2023·全国·高三校联考阶段练习)已知函数()234202312342023x x x x f x x =+-+-++,()234202312342023x x x x g x x =-+-+--,设()()()53F x f x g x =+⋅-,且函数()F x 的零点均在区间[](a b a b <,,a ,)b Z ∈内,则b a -的最小值为__________.17.(2023春·广东广州·高三统考阶段练习)方程e 0x ax a -+=有唯一的实数解,实数a 的取值范围为__________.18.(2023春·山东·高三山东省实验中学校考阶段练习)已知函数()()23e ,? 0e ,? 0x x xf x x a x ⎧->=⎨-≤⎩,若()()12f x f x =,且12x x -的最大值为4,则实数a 的值为_______.19.(2023·全国·高三专题练习)若存在0a >,0b >,满足(2e )ln (2e )ln a t b a b t b a a +-=-,其中e 为自然对数的底数,则实数t 的取值范围是___________.20.(2023·四川资阳·统考模拟预测)若2224ln x ax a x ->,则a 的取值范围是______.。
高考总复习二轮理科数学精品课件 专题6 函数与导数 增分2 利用导数证明不等式
由题意可得 f(1)=2,f'(1)=e.故 a=1,b=2.
x
(2)证明 (方法一)要证明 e ln
只需证明 ln
2
x+e
设函数 g(x)=ln
只需证明
>
2e-1
x+ >1(x>0),
1
(x>0),即证明
e
ln
2
1
x+e − e >0,
2
1
x+ − (x>0),
2
1
0<a≤ 时,f(x)≥ ax+
e
2
+ 1.
1e0 -0
1 x
1 0
(1)解 由题意 f'(x)= e .设切点为 A(x0,y0),切线的斜率 k= e =
,
解得
e
e
x0=1,∴A(1,),k=,
∴切线的方程为
e
y-
=
e
(x-1),即
e
y=x.
(2)证明 (方法一)①当 a=1 时,要证
x
x
x-1
1
e-1
1
(x>0),∴只需证明
则下面证明
eln
2
x+
>
ห้องสมุดไป่ตู้
1
(x>0),设
e-1
g(x)min>0,g'(x)= 2 .
g(x)=eln
2
1
x+ − =eln
高考总复习二轮数学精品课件 专题6 函数与导数 培优拓展(十二) 洛必达法则速求参数范围
→ 0
定理 2:若函数 f(x)和 g(x)满足条件:
(1)f(x)和 g(x)在 x0 的某个去心邻域内可导,且 g'(x)≠0.
(2) lim f(x)= lim g(x)=∞.
→ 0
→ 0
'()
()
(3) lim
=a,则有 lim
→ 0 '()
一般先通过转换,化成
0 ∞
,
0 ∞
型求极限.
本 课 结 束
1
xx
ln
ln
由洛必达法则知lim
=
= lim 1 = lim 1 = lim x=0,
→0 x-1
→0 1→0
→0
x→0 -1
2
∴φ(x)>0,故 a≤0.
综上,实数 a 的取值范围是(-∞,0].
增分技巧对于不常见的类型0·∞,1∞,∞0,00,∞-∞等,利用洛必达法则求极限,
→1 -1
→1
2 ln
1
所以由 a≤ 2 恒成立,得 a≤ .
2
-1
1
综上,a 的取值范围是 -∞, .
2
=
1
.
2
增分技巧对函数不等式恒成立求参数取值范围时,采用分类讨论、假设反
证法.若采取参变分离的方法,在求分离后函数的最值(值域)时会有些麻烦,
如最值、极值在无意义点处,或趋于无穷,此时,利用洛必达法则即可求解.
定理 1:若函数 f(x)和 g(x)满足条件:
(1)f(x)和 g(x)在 x0 的某个去心邻域内可导,且 g'(x)≠0.
(2) f(x)= lim g(x)=0.
二轮复习函数与导数第1讲 函数的图象与性质
二轮复习函数与导数第1讲 函数的图象与性质一、单项选择题1.列既是奇函数,又在(0,+∞)上单调递增的是( )A .y =sin xB .y =ln xC .y =tan xD .y =-1x2.(2022·西安模拟)设f (x )=⎩⎪⎨⎪⎧ 2x +1-1,x ≤3,log 2(x 2-1),x >3,若f (x )=3,则x 的值为() A .3 B .1C .-3D .1或33.(2022·常德模拟)函数f (x )=sin (πx )e x +e -x 的图象大致是( )4.(2022·张家口检测)已知函数f (x )=e x -1e x +1,则( )A .函数f (x )是奇函数,在区间(0,+∞)上单调递增B .函数f (x )是奇函数,在区间(-∞,0)上单调递减C .函数f (x )是偶函数,在区间(0,+∞)上单调递减D .函数f (x )非奇非偶,在区间(-∞,0)上单调递增5.(2021·全国乙卷)设函数f (x )=1-x1+x ,则下列函数中为奇函数的是( )A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+16.设定义在R 上的函数f (x )满足f (x )·f (x +2)=13,若f (1)=2,则f (99)等于( )A .1B .2C .0 D.1327.已知函数f (x )是定义在(-∞,0)∪(0,+∞)上的偶函数,且当x >0时,f (x )=⎩⎪⎨⎪⎧(x -2)2,0<x ≤4,12f (x -4),x >4,则方程f (x )=1的解的个数为( ) A .4B .6C .8D .10 8.(2022·河北联考)若函数f (2x +1)(x ∈R )是周期为2的奇函数,则下列结论不正确的是( )A .函数f (x )的周期为4B .函数f (x )的图象关于点(1,0)对称C .f (2 021)=0D .f (2 022)=0二、多项选择题9.下列函数中,定义域与值域相同的是( )A .y =1xB .y =ln xC .y =13x -1D .y =x +1x -110.(2022·淄博检测)函数D (x )=⎩⎪⎨⎪⎧1,x ∈Q ,0,x ∉Q 被称为狄利克雷函数,则下列结论成立的是( )A .函数D (x )的值域为[0,1]B .若D (x 0)=1,则D (x 0+1)=1C .若D (x 1)-D (x 2)=0,则x 1-x 2∈QD .∃x ∈R ,D (x +2)=111.下列可能是函数f (x )=ax +b (x +c )2(其中a ,b ,c ∈{-1,0,1})的图象的是( )12.已知函数y =f (x -1)的图象关于直线x =-1对称,且对∀x ∈R ,有f (x )+f (-x )=4.当x ∈(0,2]时,f (x )=x +2,则下列说法正确的是( )A .8是f (x )的周期B .f (x )的最大值为5C .f (2 023)=1D .f (x +2)为偶函数三、填空题13.(2022·泸州模拟)写出一个具有下列性质①②③的函数f (x )=____________.①定义域为R ;②函数f (x )是奇函数;③f (x +π)=f (x ).14.已知函数f (x )=ln(x 2+1-x )+1,则f (ln 5)+f ⎝⎛⎭⎫ln 15=________. 15.已知函数f (x )=⎩⎪⎨⎪⎧ (x -a )2,x ≤0,x +1x+a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为________. 16.(2022·济宁模拟)已知函数f (x )=e |x -1|-sin ⎝⎛⎭⎫π2x ,则使得f (x )>f (2x )成立的x 的取值范围是____________.。
2023年高考数学二轮复习第二篇经典专题突破专题六函数与导数第1讲函数的图象与性质
第二篇 专题六 第1讲一、选择题1.(2021·全国甲卷)设f (x )是定义域为R 的奇函数,且f (1+x )=f (-x ).若f ⎝⎛⎭⎫-13=13,则f ⎝⎛⎭⎫53=( C )A .-53B .-13C .13D .53【解析】 方法一:由题意得f (-x )=-f (x ), 又f (1+x )=f (-x )=-f (x ), 所以f (2+x )=f (x ),又f ⎝⎛⎭⎫-13=13, 则f ⎝⎛⎭⎫53=f ⎝⎛⎭⎫2-13=f ⎝⎛⎭⎫-13=13.故选C.方法二:由f (1+x )=f (-x )知函数f (x )的图象关于直线x =12对称,又f (x )为奇函数,所以f (x )是周期函数,且T =4⎪⎪⎪⎪0-12=2, 则f ⎝⎛⎭⎫53=f ⎝⎛⎭⎫53-2=f ⎝⎛⎭⎫-13=13,故选C.2.设函数f (x )=⎩⎪⎨⎪⎧log 2(1-x ),x <0,22x -1,x ≥0,则f (-3)+f (log 2 3)等于( B )A .112B .132C .152D .10【解析】依题意f (-3)+f (log 2 3)=log 2 4+22log 2 3-1=2+2log 2 92=2+92=132.3.设函数f (x )=4x 23|x |,则函数f (x )的图象大致为( A )【解析】观察函数解析式发现,x 是以平方、绝对值的形式出现的,所以f (x )为偶函数,排除B ;当x >0时,f (x )=4x 23x ,当x →+∞时,f (x )→0,排除C ;因为f (2)=4×2232=169<2,选项D 中f (2)>2,所以D 不符合题意.4.(2022·济宁模拟)函数y =f (x )是定义域为R 的奇函数,且对于任意的x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<1成立.如果f (m )>m ,则实数m 的取值集合是( C )A .{0}B .{m |m >0}C .{m |m <0}D .R【解析】令g (x )=f (x )-x , 因为f (x )为奇函数,所以g (x )为R 上的奇函数,不妨设x 1<x 2, 由f (x 1)-f (x 2)x 1-x 2<1成立可得f (x 1)-f (x 2)>x 1-x 2,即f (x 1)-x 1>f (x 2)-x 2,所以g (x 1)>g (x 2),即g (x )在R 上单调递减, 由f (m )>m 得g (m )>0=g (0), 所以m <0.故选C.5.定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[-1,0]时,f (x )=-x -2,则( B ) A .f ⎝⎛⎭⎫sin π6>f ⎝⎛⎭⎫cos π6 B .f (sin 3)<f (cos 3) C .f ⎝⎛⎭⎫sin 4π3<f ⎝⎛⎭⎫cos 4π3 D .f (2 020)>f (2 019)【解析】由f (x +2)=f (x ),得f (x )是周期函数且周期为2,根据f (x )在x ∈[-1,0]上的图象和f (x )是偶函数可得f (x )在[0,1]上是增函数.对于A ,0<sin π6<cos π6<1,∴f ⎝⎛⎭⎫sin π6<f ⎝⎛⎭⎫cos π6,A 错误; 对于B ,0<sin 3<-cos 3<1,∴f (sin 3)<f (-cos 3)=f (cos 3),B 正确; 对于C ,0<-cos4π3<-sin 4π3<1, ∴f ⎝⎛⎭⎫cos 4π3<f ⎝⎛⎭⎫sin 4π3,C 错误; 对于D ,f (2 020)=f (0)<f (2 019)=f (1),D 错误.6.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值为( C )A .-1B .1C .6D .12【解析】当-2≤x ≤1时,f (x )=x -2; 当1<x ≤2时,f (x )=x 3-2.又∵y =x -2,y =x 3-2在R 上都为增函数,且f (x )在x =1处连续, ∴f (x )的最大值为f (2)=23-2=6.7.(2020·全国Ⅱ)设函数f (x )=ln |2x +1|-ln |2x -1|,则f (x )( D ) A .是偶函数,且在⎝⎛⎭⎫12,+∞单调递增 B .是奇函数,且在⎝⎛⎭⎫-12,12单调递减 C .是偶函数,且在⎝⎛⎭⎫-∞,-12单调递增 D .是奇函数,且在⎝⎛⎭⎫-∞,-12单调递减 【解析】f (x )=ln |2x +1|-ln |2x -1|的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠±12. 又f (-x )=ln |-2x +1|-ln |-2x -1| =ln |2x -1|-ln |2x +1| =-f (x ),∴f (x )为奇函数,故排除A ,C. 当x ∈⎝⎛⎭⎫-12,12时, f (x )=ln (2x +1)-ln (1-2x )=ln 2x +11-2x =ln ⎝⎛⎭⎫-1+21-2x . ∵y =-1+21-2x 在⎝⎛⎭⎫-12,12单调递增, ∴由复合函数的单调性可得f (x )在⎝⎛⎭⎫-12,12上单调递增.故排除B. 当x ∈⎝⎛⎭⎫-∞,-12时, f (x )=ln (-2x -1)-ln (1-2x )=ln -2x -11-2x=ln2x +12x -1=ln ⎝⎛⎭⎫1+22x -1,∵y =1+22x -1在⎝⎛⎭⎫-∞,-12上单调递减, ∴由复合函数的单调性可得f (x )在⎝⎛⎭⎫-∞,-12上单调递减. 故选D.8.对任意实数a ,b ,定义运算“⊙”:a ⊙b =⎩⎪⎨⎪⎧a ,a -b ≤2,b ,a -b >2.设f (x )=3x +1⊙(1-x ),若函数f (x )与函数g (x )=x 2-6x 在区间(m ,m +1)上均为减函数,则实数m 的取值范围是( C )A .[-1,2]B .(0,3]C .[0,2]D .[1,3]【解析】由题意得f (x )=⎩⎪⎨⎪⎧-x +1,x >0,3x +1,x ≤0,∴f (x )在(0,+∞)上单调递减,函数g (x )=(x -3)2-9在(-∞,3]上单调递减.若函数f (x )与g (x )在区间(m ,m +1)上均为减函数,则⎩⎪⎨⎪⎧m ≥0,m +1≤3,得0≤m ≤2.故选C.二、填空题9.设函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,4x ,x >0,则满足f (x )+f (x -1)≥2的x 的取值范围是__⎣⎡⎭⎫12,+∞__.【解析】∵函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,4x ,x >0,∴当x ≤0时,x -1≤-1,f (x )+f (x -1)=2x +1+2(x -1)+1=4x ≥2,无解;当⎩⎪⎨⎪⎧x >0,x -1≤0,即0<x ≤1时, f (x )+f (x -1)=4x +2(x -1)+1=4x +2x -1≥2,得12≤x ≤1;当x -1>0,即x >1时,f (x )+f (x -1)=4x +4x -1≥2,得x >1. 综上,x 的取值范围是⎣⎡⎭⎫12,+∞.10.(2021·山西太原模拟)若a >0且a ≠1,且函数f (x )=⎩⎪⎨⎪⎧a x ,x ≥1,ax +a -2,x <1,在R 上单调递增,那么a 的取值范围是__(1,2]__.【解析】 a >0且a ≠1,函数f (x )=⎩⎪⎨⎪⎧a x ,x ≥1,ax +a -2,x <1在R 上单调递增,可得⎩⎪⎨⎪⎧a >1,a ≥2a -2,解得a ∈(1,2].11.对于函数y =f (x ),若存在x 0使f (x 0)+f (-x 0)=0,则称点(x 0,f (x 0))是曲线f (x )的“优美点”.已知f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,kx +2,x ≥0,若曲线f (x )存在“优美点”,则实数k 的取值范围是__(-.【解析】当x <0时,f (x )=x 2+2x 关于原点对称的函数是y =-x 2+2x (x >0), 由题意得,y =-x 2+2x (x >0)与y =kx +2有交点, 即-x 2+2x =kx +2(x >0)有解,∴k =-x -2x +2(x >0)有解,又-x -2x +2≤-22+2,当且仅当x =2时等号成立,∴k ≤2-2 2.12.(2020·全国Ⅲ)关于函数f (x )=sin x +1sin x 有如下四个命题:①f (x )的图象关于y 轴对称; ②f (x )的图象关于原点对称; ③f (x )的图象关于直线x =π2对称;④f (x )的最小值为2.其中所有真命题的序号是__②③__. 【解析】∵f (x )=sin x +1sin x的定义域为{x |x ≠k π,k ∈Z }, f (-x )=sin (-x )+1sin (-x )=-sin x -1sin x =-f (x ),∴f (x )为奇函数,关于原点对称,故①错误,②正确. ∵f ⎝⎛⎭⎫π2-x =cos x +1cos x , f ⎝⎛⎭⎫π2+x =cos x +1cos x , ∴f ⎝⎛⎭⎫π2-x =f ⎝⎛⎭⎫π2+x ,∴f (x )的图象关于直线x =π2对称,故③正确.当x ∈⎝⎛⎭⎫-π2,0时,f (x )<0,故④错误. 三、解答题13.(2020·江苏省南京市高三联考)已知f (x )是定义在区间(-1,1)上的奇函数,当x <0时,f (x )=x (x -1).已知m 满足不等式f (1-m )+f (1-m 2)<0,求实数m 的取值范围.【解析】当x <0时,f (x )=x (x -1),可得f (x )在(-1,0)上单调递减;由f (x )是定义在区间(-1,1)上的奇函数,可得f (x )也是区间(-1,1)上的减函数. 因为f (1-m )+f (1-m 2)<0, 所以f (1-m )<f (m 2-1),可得如下不等式组:⎩⎪⎨⎪⎧-1<1-m <1,-1<m 2-1<1,1-m >m 2-1,得⎩⎪⎨⎪⎧0<m <2,0<m <2或-2<m <0,-2<m <1,解得:0<m <1.所以实数m 的取值范围为(0,1).。
高考总复习二轮数学精品课件 专题6 函数与导数 培优拓展(十三) 隐零点问题
x
x
h(x)=f'(x)=e
4
- ,x∈(1,+∞),则
h'(x)=e
所以函数h(x)在(1,+∞)上单调递增,即f'(x)在(1,+∞)上单调递增,
又f'(1)<0,f'(2)>0,
所以f(x)的导函数在(1,+∞)上零点的个数为1.
x
4
+ 2>0,
(2)证明令g(x)=ex-4xlnx-1,x∈(1,+∞),则g'(x)=ex-4lnx-4,即f(x)=g'(x),
点范围还可以适当缩小.
对点训练
(2023河南豫南名校联考三模)已知函数f(x)=ex-4lnx-4.
(1)判断f(x)的导函数在(1,+∞)上零点的个数,并说明理由;
(2)证明:当x∈(1,+∞)时,ex-4xlnx-1>0.
注:0.69<ln2<0.7.
(1)解 f'(x)=e
4
- ,x∈(1,+∞),令
由(1)可知存在x0∈(1,2),使得f'(x0)=0,
当1<x<x0时,f'(x)<0;当x>x0时,f'(x)>0,
所以f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,
又因为f(1)<0,f(2)>0,存在x1∈(1,2),使得f(x1)=0,即e1 -4ln x1-4=0,
当1<x<x1时,g'(x)<0;当x>x1时,g'(x)>0,
高考数学二轮复习必考的导数知识点总结
高考数学二轮复习必考的导数知识点总结我们从一出生到耋耄之年,一直就没有离开过数学,或者说我们全然无法离开数学,这一切有点像水之于鱼一样。
以下是查字典数学网为大伙儿整理的导数知识点总结,期望能够解决您所遇到的相关问题。
一、函数的单调性在(a,b)内可导函数f(x),f(x)在(a,b)任意子区间内都不恒等于0.f(x)f(x)在(a,b)上为增函数.f(x)f(x)在(a,b)上为减函数.二、函数的极值1、函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a邻近其它点的函数值都小,f(a)=0,而且在点x=a邻近的左侧f(x)0,右侧f(x)0,则点a叫做函数y =f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2、函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b邻近的其他点的函数值都大,f(b)=0,而且在点x=b邻近的左侧f(x)0,右侧f(x)0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.三、函数的最值1、在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.2、若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.四、求可导函数单调区间的一样步骤和方法1、确定函数f(x)的定义域;2、求f(x),令f(x)=0,求出它在定义域内的一切实数根;3、把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;4、确定f(x)在各个开区间内的符号,依照f(x)的符号判定函数f(x)在每个相应小开区间内的增减性.五、求函数极值的步骤1、确定函数的定义域;2、求方程f(x)=0的根;3、用方程f(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;4、由f(x)=0根的两侧导数的符号来判定f(x)在那个根处取极值的情形.六、求函数f(x)在[a,b]上的最大值和最小值的步骤1、求函数在(a,b)内的极值;2、求函数在区间端点的函数值f(a),f(b);3、将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.专门提醒:1、f(x)0与f(x)为增函数的关系:f(x)0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-,+)上单调递增,但f(x)0,因此f(x)0是f(x)为增函数的充分不必要条件.2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三课时函数与导数的应用1.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( )A .-1B .-2C .2D .02.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大的年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件3:由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D.34.若函数y =f (x )在R 上可导,且满足不等式xf ′(x )>-f (x )恒成立,且常数a ,b 满足a >b ,则下列不等式一定成立的是( )A .af (a )>bf (b )B .af (a )<bf (b )C .af (b )<bf (a )D .af (b )>bf (a )5:放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t 30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率...是-10ln2(太贝克/年),则M (60)=( )A .5太贝克B .75ln2太贝克C .150ln2太贝克D .150太贝克6.曲线y =2x 4上的点到直线y =-x -1的距离的最小值为_____5162___.7:已知函数f (x )是定义在R 上的奇函数,f (1)=0,2'()()0(0)xf x f x x x->>,则不等式x 2f (x )>0的解集是 (-1,0)∪(1,+∞) .8:已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间;(II )求函数)(x f 在区间],[2e e 上的最小值.解:(Ⅰ)x x x x f ln 164)(2--=,xx x x x x f )4)(2(21642)('-+=--= 2分由0)('>x f 得0)4)(2(>-+x x ,解得4>x 或2-<x 注意到0>x ,所以函数)(x f 的单调递增区间是(4,+∞) 由0)('<x f 得0)4)(2(<-+x x ,解得-2<x <4,注意到0>x ,所以函数)(x f 的单调递减区间是]4,0(.综上所述,函数)(x f 的单调增区间是(4,+∞),单调减区间是]4,0( 6分(Ⅱ)在],[2e e x ∈时,x a x x xf ln )2(4)(2-+-= 所以xa x x x a x x f -+-=-+-=242242)('2, 设a x x x g -+-=242)(2当0<a 时,有△=16+4×208)2(<=-a a ,此时0)(>x g ,所以0)('>x f ,)(x f 在],[2e e 上单调递增,所以a e e e f x f -+-==24)()(2m in 8分当0>a 时,△=08)2(2416>=-⨯-a a ,令0)('>x f ,即02422>-+-a x x ,解得221a x +>或221a x -<; 令0)('<x f ,即02422<-+-a x x ,解得221a -221ax +<<. ①若221a +≥2e ,即a ≥22)1(2-e 时,)(x f 在区间],[2e e 单调递减,所以a e e e f x f 244)()(242m in -+-==.②若2221e ae <+<,即222)1(2)1(2-<<-e a e 时间, )(x f 在区间]221,[a e +上单调递减,在区间],221[2e a +上单调递增, 所以min )(xf )221(a f +=)221ln()2(322aa a a +-+--=.③若221a +≤e ,即a <0≤22)1(-e 时,)(x f 在区间],[2e e 单调递增,所以a e e e f x f -+-==24)()(2m in综上所述,当a ≥222)1(-e 时,a e a x f 244)(24m in -+-=; 当222)1(2)1(2-<<-e a e 时,)221ln()2(322)(m in a a a a x f +-+--=;当a ≤2)1(2-e 时,a e e x f -+-=24)(2m in9.已知函数.1,ln )1(21)(2>-+-=a x a ax x x f (I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意(1))(x f 的定义域为),0(+∞,xa x x x a ax x x a a x x f )1)(1(11)('2-+-=-+-=-+-= 2分(i )若2,11==-a a 即,则 .)1()('2xx x f -= 故)(x f 在),0(+∞单调增加.(ii )若.0)(',)1,1(,21,1,11<-∈<<><-x f a x a a a 时则当故而)1,1()(,0)(',),1()1,0(->+∞∈-∈a x f x f x a x 在故时及当单调减少,在(0,a-1), ),1(+∞单调增加.(iii )若),1(),1,0(,)1,1()(,2,11+∞-->>-a a x f a a 在单调减少在同理可得即单调增加.(II )考虑函数x x f x g +=)()( .ln )1(212x x a ax x +-+-=由 .)11(1)1(121)1()('2---=---⋅≥-+--=a a xa x x a a x x g 由于单调增加在即故),0()(,0)(',5+∞><x g x g a a ,从而当021>>x x 时有 ,0)()(,0)()(212121>-+->-x x x f x f x g x g 即故1)()(2121->--x x x f x f ,当210x x <<时,有1)()()()(12122121->--=--x x x f x f x x x f x f10.设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数.(I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 解:(I )11()0ex f x e x x-'=-==,得1x e =当x 变化时,()f x '与()f x 变化情况如下表:x1(0,)e 1e1(,)e +∞()f x ' + 0 - ()f x 单调递增 极大值 单调递减 ∴当1x e =时,()f x 取得极大值1()2f e=-,没有极小值; …………(4分)(II )(方法1)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,∴21201ln 0x x xx x --= 即20211ln ()0x x x x x --=,设2211()ln ()xg x x x x x =--211211()ln ()x g x x x x x =--,1/211()ln 10x x g x x =->,1()g x 是1x 的增函数,∵12x x <,∴2122222()()ln ()0xg x g x x x x x <=--=;222211()ln ()x g x x x x x =--,2/221()ln 10x x g x x =->,2()g x 是2x 的增函数,∵12x x <,∴1211111()()ln ()0xg x g x x x x x >=--=,∴函数2211()ln()x g x x x x x =--在12(,)x x 内有零点0x , …………(10分) 又∵22111,ln 0x x x x >∴>,函数2211()ln ()xg x x x x x =--在12(,)x x 是增函数,∴函数2121()ln x x xg x x x -=-在12(,)x x 内有唯一零点0x ,命题成立…………(12分)(方法2)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-, 即020112ln ln 0x x x x x x -+-=,012(,)x x x ∈,且0x 唯一设2112()ln ln g x x x x x x x =-+-,则1121112()ln ln g x x x x x x x =-+-, 再设22()ln ln h x x x x x x x =-+-,20x x <<,∴2()ln ln 0h x x x '=-> ∴22()ln ln h x x x x x x x =-+-在20x x <<是增函数 ∴112()()()0g x h x h x =<=,同理2()0g x >∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有解 …………(10分) ∵一次函数在12(,)x x 2112()(ln ln )g x x x x x x =-+-是增函数∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有唯一解,命题成立………(12分) 注:仅用函数单调性说明,没有去证明曲线C 不存在拐点,不给分.。