2.3 二维离散型随机变量及其分布律
合集下载
32二维离散型随机变量的分布律及性质
P { X x , Y y }p i j ij P { X x Y y } ,i 1 , 2 , (2.4) i j P { Y y } p j j
易知,上述条件概率满足概率分布的性质
(1) P { X x y } 0 , i 1 , 2 , iY j
(2)
p 1 j p 1 i j p p i 1 p 1 j j i j
p i j
P { X x } 0 同理,设 p ,则可得到在 X xi i i 时随机变量 Y的条件概率分布为:
P { X x , Y y } p i j i j P { Y y X x } ,j 1 , 2 ,( 2 . 5 ) j i P { X x } p i i
{ X x , Y y } P { X x } P { Y y } 即P (2.7) i j i j
例4
X ,Y
相互独立,填如下表3-8空白处的值
解:
例5 设 X 表示把硬币掷三次时头两次掷出正面的 Y 表示这三次投掷中出现正面的总次数那么, 次数, 二维随机变量 ( X ,Y ) 概率分布如表3-9所示.问随机 变量 X与Y 是不是相互独立?
且
(1) P { Y y x } 0 ,j 1 , 2 , jX i
(2)
p 1 i p 1 ij p p i i i i j 1p 1 p ij
i 1 , 2 , ,
例3 设二维离散形随机变量 ( X ,Y ) 的概率分布如表3-7, 1时关于 X 的条件概率分布及 X 0 时关于 Y 的 求 Y 条件概率分布。
解:
四、 独立性
易知,上述条件概率满足概率分布的性质
(1) P { X x y } 0 , i 1 , 2 , iY j
(2)
p 1 j p 1 i j p p i 1 p 1 j j i j
p i j
P { X x } 0 同理,设 p ,则可得到在 X xi i i 时随机变量 Y的条件概率分布为:
P { X x , Y y } p i j i j P { Y y X x } ,j 1 , 2 ,( 2 . 5 ) j i P { X x } p i i
{ X x , Y y } P { X x } P { Y y } 即P (2.7) i j i j
例4
X ,Y
相互独立,填如下表3-8空白处的值
解:
例5 设 X 表示把硬币掷三次时头两次掷出正面的 Y 表示这三次投掷中出现正面的总次数那么, 次数, 二维随机变量 ( X ,Y ) 概率分布如表3-9所示.问随机 变量 X与Y 是不是相互独立?
且
(1) P { Y y x } 0 ,j 1 , 2 , jX i
(2)
p 1 i p 1 ij p p i i i i j 1p 1 p ij
i 1 , 2 , ,
例3 设二维离散形随机变量 ( X ,Y ) 的概率分布如表3-7, 1时关于 X 的条件概率分布及 X 0 时关于 Y 的 求 Y 条件概率分布。
解:
四、 独立性
离散型随机变量及其分布律
路口1
路口2
P{X=0}=P(A1)=1/2,
路口3
X表示该汽车首次遇到红灯前已通过的路口的个数
路口1
路口2
路口3
P{X=1}=P( A1 A2
)
1 2
1 2
= 1/4
路口1
路口2
路口3
P{X=2}=P(A1A2 A3
)
1 2
1 2
1 2
=1/8
X表示该汽车首次遇到红灯前已通过的路口的个数
例6 “抛硬币”试验,观察正、反两面情况.
X
X (e)
0,
1,
当e 当e
正面, 反面.
随机变量 X 服从 (0—1) 分布.
其分布律为
X0 1
1
1
pk
2
2
例7 200件产品中,有190件合格品,10件不合格品, 现从中随机抽取一件,那末,若规定
X
1, 0,
取得不合格品, 取得合格品.
其中(ai a j ), (i j) ,则称 X 服从等可能分布. 例 抛掷骰子并记出现的点数为随机变量 X,
则有 X pk
12 11
66
34 11
66
56 11 66
3. 伯努利试验和二项分布 看一个试验 将一枚均匀骰子抛掷3次.
令X 表示3次中出现“4”点的次数
X的分布律是:
P{ X
在生物学、医学、工业统计、保险科学及 公用事业的排队等问题中 , 泊松分布是常见的. 例如地震、火山爆发、特大洪水、交换台的电 话呼唤次数等, 都服从泊松分布.
我们把在随机时刻相继出现的事件所形成的序列, 叫做随机事件流.
多维随机变量函数的分布
i ,k : g ( x i , y j ) = z k
∑
p ij
=pk ,
(x1,y1) (x1,y2) … p11 p12
(xi,yj) pij g(xi,yj)
…
Z=g(X,Y)
g(x1,y1) g(x1,y2)
例1 设(X,Y)的联合分布列如下所列: 试求(1)Z1=X+Y (2)Z2=X-Y (3)Z3=max{X,Y}的分布列
练习:设随机变量X与Y独立,且均服从0-1 分布,其分布律均为
X P 0 q 1 p
(1) 求W=X+Y的分布律; (2) 求V=max(X, Y)的分布律; (3) 求U=min(X, Y)的分布律。 (4)求w与V的联合分布律。
(X,Y) pij
W=X+Y
V=max(X, Y) U=min(X, Y)
−∞ 或 ∞ −∞
−∞
∫f
X
( z − y ) f Y ( y )dy = ∫ f X ( x) f Y ( z − x)dx.
例2 设X和Y相互独立,并且服从[-1,1]上的均匀分 布,求Z=X+Y的密度函数。
解:
1 f Y ( x) = 2 0
+∞
当 −1 ≤ x ≤ 1 其他
其中α>0,β>0,试分别就以上两 种联结方式写出L的寿命Z的概率 密度.
αe − αx , x > 0, f X ( x) = x ≤ 0, 0,
βe − βy , y > 0, fY ( y ) = y ≤ 0, 0,
其中 α > 0, β > 0 且 α ≠ β . 试分别就以上三种联 接方式写出 L 的寿命 Z 的概率密度 .
离散型随机变量及其分布律
取值为0,1,…, n,且其分布律为
其中0<p<1,则称随机变量X服从以n, p为参数的
二项分布
记为X~B(n, p)
事件A发生 的概率
试验进行 的次数
p
事件A发生 的次数
X
n
X~B(n, p)
事件A的概率在 各次试验中相同
各次试验独立
中奖率为0.01
1
…
100
每张彩券的购买是独立的
p =0.01
解 X 所取的可能值是 1, 2, 3,.
设 Ai 表示“抽到的第 i 个产品是正品”,
P{ X k} P( A1A2 Ak1 Ak )
P( A1) P( A2 ) P( Ak1) P( Ak )
(1 p)(1 p) (1 p) p qk1 p.
( k 1)
所以 X 服从几何分布.
n=100
X: 中奖的彩券数 X~B(100, 0.01 )
P(X
k)
Ck 100
0.01k
0.99100k
k= 0,1,…, 100
X: 中奖的彩券数 X~B(100, 0.01 )
P(X
k)
Ck 100
0.01k
0.99100k
P( X 0) 0.99100=P (没有彩券中奖)
P (有彩券中奖)=1-P (没有彩券中奖)
C2 1000
0.00022
0.9998998
n:购买的彩票数,n=?
购
A:事件——彩票中奖
买
彩 票
p:中奖率,p=0.01
X:随机变量——中奖的彩票数
P( X 1) 99%
n λ
p
P( X 1)
p
其中0<p<1,则称随机变量X服从以n, p为参数的
二项分布
记为X~B(n, p)
事件A发生 的概率
试验进行 的次数
p
事件A发生 的次数
X
n
X~B(n, p)
事件A的概率在 各次试验中相同
各次试验独立
中奖率为0.01
1
…
100
每张彩券的购买是独立的
p =0.01
解 X 所取的可能值是 1, 2, 3,.
设 Ai 表示“抽到的第 i 个产品是正品”,
P{ X k} P( A1A2 Ak1 Ak )
P( A1) P( A2 ) P( Ak1) P( Ak )
(1 p)(1 p) (1 p) p qk1 p.
( k 1)
所以 X 服从几何分布.
n=100
X: 中奖的彩券数 X~B(100, 0.01 )
P(X
k)
Ck 100
0.01k
0.99100k
k= 0,1,…, 100
X: 中奖的彩券数 X~B(100, 0.01 )
P(X
k)
Ck 100
0.01k
0.99100k
P( X 0) 0.99100=P (没有彩券中奖)
P (有彩券中奖)=1-P (没有彩券中奖)
C2 1000
0.00022
0.9998998
n:购买的彩票数,n=?
购
A:事件——彩票中奖
买
彩 票
p:中奖率,p=0.01
X:随机变量——中奖的彩票数
P( X 1) 99%
n λ
p
P( X 1)
p
二维离散型随机变量及其分布
P{ X xi } P{ X xi , } P{ X xi , (Y y j )}
j 1
P{ ( X xi , Y y j )} P{ X xi , Y y j } pij
j 1 j 1 j 1
Two-dimension Discrete Random Variable and Distribution
所以,关于X的边缘分布律为:
X
pi.
x1
x2 …
xi …
pi. …
p1. p2. …
关于Y的边缘分布律为:
Y p.j y1 p.1 y2 … yj …
p.2 … p.j …
Two-dimension Discrete Random Variable and Distribution
[例2]见例1,试求(X,Y)关于X和关于Y的边缘 分布律。
1 2/5
Two-dimension Discrete Random Variable and Distribution
联合分布律 边缘分布律
Two-dimension Discrete Random Variable and Distribution
1、统计学中有两种抽样:不放回抽样和有放 回抽样。将例1中“不放回地取两次球”改为 “有放回地取两次球”,试求(X,Y)的联合分 布律、(X,Y)分别关于X,Y的边缘分布律及判断 X,Y是否相互独立? 2、上述我们解决了:已知二维离散型随机变 量(X,Y)的联合分布律,如何求(X,Y)关于X 或关于Y的边缘分布律的问题。那么,已知X,Y的 边缘分布律,能否求(X,Y)的联合分布律呢?
0, Y 1,
表示第二次取红球 表示第二次取白球
j 1
P{ ( X xi , Y y j )} P{ X xi , Y y j } pij
j 1 j 1 j 1
Two-dimension Discrete Random Variable and Distribution
所以,关于X的边缘分布律为:
X
pi.
x1
x2 …
xi …
pi. …
p1. p2. …
关于Y的边缘分布律为:
Y p.j y1 p.1 y2 … yj …
p.2 … p.j …
Two-dimension Discrete Random Variable and Distribution
[例2]见例1,试求(X,Y)关于X和关于Y的边缘 分布律。
1 2/5
Two-dimension Discrete Random Variable and Distribution
联合分布律 边缘分布律
Two-dimension Discrete Random Variable and Distribution
1、统计学中有两种抽样:不放回抽样和有放 回抽样。将例1中“不放回地取两次球”改为 “有放回地取两次球”,试求(X,Y)的联合分 布律、(X,Y)分别关于X,Y的边缘分布律及判断 X,Y是否相互独立? 2、上述我们解决了:已知二维离散型随机变 量(X,Y)的联合分布律,如何求(X,Y)关于X 或关于Y的边缘分布律的问题。那么,已知X,Y的 边缘分布律,能否求(X,Y)的联合分布律呢?
0, Y 1,
表示第二次取红球 表示第二次取白球
离散型随机变量及其分布
m>1时,X的全部取值为:m,m+1,m+2,…
P{X=m+1}=P{第m+1次试验时成功并 且在前m次试验中成功了m-1次}
7
常见的离散型随机变量的分布 (1) 0 – 1 分布
X = xk 1
0
Pk
p 1-p
0<p<1
应用场合 凡试验只有两个可能的结果,常用 0 – 1分布描述,如产品是否合格、人口性别统 计、系统是否正常、电力消耗是否超标等等.
(n 1) p 1 k (n 1) p
14
当( n + 1) p = 整数时,在 k = ( n + 1) p与 ( n + 1) p – 1 处的概率取得最大值
当( n + 1) p 整数时, 在 k = [( n + 1) p ]
处的概率取得最大值
对固定的 n、p, P ( X = k) 的取值呈不 对称分布 固定 p, 随着 n 的增大,其取值的分布 趋于对称
场 ⑤ 放射性物质发出的 粒子数;
合 ⑥ 一匹布上的疵点个数;
⑦ 一个容器中的细菌数;
⑧ 一本书一页中的印刷错误数;
23
都可以看作是源源不断出现的随机 质点流 , 若它们满足一定的条件, 则称为 Poisson 流, 在 长为 t 的时间内出现的质
点数可X见t ~泊P松( 分t )布的应用是相当广泛的,
而且由下面定理可以看到二项分布与泊松
分布有着密切的联系。
泊松定理 在二项分布 B(n, pn ) 中,如果
lim npn ( 0 是常数),则成立
lim
n
Cnk
pnk
(1
P{X=m+1}=P{第m+1次试验时成功并 且在前m次试验中成功了m-1次}
7
常见的离散型随机变量的分布 (1) 0 – 1 分布
X = xk 1
0
Pk
p 1-p
0<p<1
应用场合 凡试验只有两个可能的结果,常用 0 – 1分布描述,如产品是否合格、人口性别统 计、系统是否正常、电力消耗是否超标等等.
(n 1) p 1 k (n 1) p
14
当( n + 1) p = 整数时,在 k = ( n + 1) p与 ( n + 1) p – 1 处的概率取得最大值
当( n + 1) p 整数时, 在 k = [( n + 1) p ]
处的概率取得最大值
对固定的 n、p, P ( X = k) 的取值呈不 对称分布 固定 p, 随着 n 的增大,其取值的分布 趋于对称
场 ⑤ 放射性物质发出的 粒子数;
合 ⑥ 一匹布上的疵点个数;
⑦ 一个容器中的细菌数;
⑧ 一本书一页中的印刷错误数;
23
都可以看作是源源不断出现的随机 质点流 , 若它们满足一定的条件, 则称为 Poisson 流, 在 长为 t 的时间内出现的质
点数可X见t ~泊P松( 分t )布的应用是相当广泛的,
而且由下面定理可以看到二项分布与泊松
分布有着密切的联系。
泊松定理 在二项分布 B(n, pn ) 中,如果
lim npn ( 0 是常数),则成立
lim
n
Cnk
pnk
(1
二维离散型随机变量
F
(
x,
y)
1 3
,
1 x 2, y 2, 或 x 2,1 y 2,
1, x 2, y 2.
说明 离散型随机变量 ( X ,Y ) 的分布函数归纳为
F ( x, y) pij ,
xi x y j y
其中和式是对一切满足xi x, y j y 的i, j求和.
注意 联合分布
pij 1.
i1 j1
二维随机变量 ( X,Y ) 的分布律也可表示为
X Y
y1 y2
yj
x1
x2 xi
p11 p21
p12 p22
pi1
pi 2
p1 j p2 j pij
3、离散型随机变量的边缘分布律
定义设二维离散型随机变量( X ,Y )的联合分布
律为
P{X xi ,Y y j } pij , i, j 1, 2, .
3 7
pj (Y ) P{Y yj}
4
7 3
7
1
例2 设随机变量 X 在 1,2,3,4四个整数中等可能地 取值, 另一个随机变量Y 在 1 ~ X 中等可能地取一 整数值.试求 ( X ,Y ) 的分布律.
解 { X i,Y j}的取值情况是 : i 1,2,3,4,
j取不大于i的正整数. 且由乘法公式得
记
pi ( X ) pij P{X xi }, i 1, 2, ,
j 1
p j (Y ) pij P{Y y j }, j 1, 2, , i 1
分别称 pi ( X ) (i 1, 2, ) 和 p j (Y ) ( j 1, 2, ) 为 ( X ,Y )
关于 X 和关于 Y 的边缘分布律.
离散型随机变量及其分布律
λ
n! k n− k P{ X = k } = ( pn ) (1 − pn ) k!( n − k )!
n! λ 1 λ o(1) n− k k [ + o(1)] [1 − − ) = k ! ( n − k )! n n n n
[λ + o(1)]k λ o(1) n n( n − 1)⋯ ( n − k + 1) [1 − − ] = λ o(1) k k! n n k n [1 − − ] n n
的分布函数. 求随机变量 X 的分布函数 解
1 p{ X = 1} = p{ X = 0} = , 2
•
•
当x < 0时, 时
0
1
x
F ( x ) = P{ X ≤ x < 0} = P (φ ) = 0
•
•
0
当0 ≤ x < 1时,
1
x
1 F ( x ) = P { X ≤ x } = P { X = 0} = ; 2 当x ≥ 1时, 0, x < 0, F ( x ) = P{ X ≤ x } 1 = P{ X = 0}+ P{ X = 1} 得 F ( x ) = , 0 ≤ x < 1, 2 1 1 1, x ≥ 1. = + = 1. 2 2
( k −1 )
服从几何分布. 所以 X 服从几何分布
( k = 1,2,⋯)
首次成功” 说明 几何分布可作为描述某个试验 “首次成功” 的概率模型. 的概率模型
7.超几何分布 超几何分布
设X的分布律为 的分布律为
m n C M C N−−m M P{ X = m } = n CN
( m = 0,1,2,⋯ , min{ M , n})
二维离散型随机变量及其分布律
则(ξ ,η )的可能取值为(0,0),(0,1),(1,0),(1,1), 故 (ξ ,η )为二维离散型随机变量。
1
2. 联合分布律
定义: 设二维随机变量(ξ ,η )的所有可能取的值是 (xi ,yj ),i,j=1,2, ,若{ξ = xi ,η = yj }的概率 L pij = p{ξ = xi ,η = yj} (1) (2) pij ≥ 0 i,j=1,2, L i,j=1,2, L
第2-3节 二维离散型随机变量及其分布律
1.二维离散型随机变量的定义
定义: 若二维随机变量(ξ ,η )的所有可能取的值是 有限对或可列多对, (ξ ,η )=(xi ,yj ),i,j=1,2, L 则称(ξ ,η )为二维离散型随机变量。
例:抛掷两枚硬币一次,观察出现正反的情况,令
⎧0 ξ=⎨ ⎩1 ⎧0 ,η= ⎨ A币出现正面 ⎩1 A币出现反面 B币出现反面 B币出现正面
称之为随机变量η 在ξ = xi条件下的条件分布律。
4
5. 随机变量的独立性
定义: 设二维随机变量(ξ ,η )联合分布律为 pij = p{ξ = xi ,η = yj} i,j=1,2, L 若对于任意的i, j,恒有pij ≡ pi. p. j,即 p{ξ = xi ,η = yj} = p{ξ = xi} p{η = yj} 则称为随机变量ξ 与η 独立。
ij
∑∑ p
i =1 j =1
∞
∞
=1 L i,j=1,2, 为二维离散
则称为pij = p{ξ = xi ,η = yj}
型随机变量(ξ ,η )的联合分布律。
2
3. 边缘ห้องสมุดไป่ตู้布律
定义: 设二维随机变量(ξ ,η )的联合分布律为:pij = p{ξ = xi ,η = yj} i,j=1,2, 则称为pξ(xi ) = p{ξ = xi ,η < +∞} = pi. L 为(ξ ,η )关于分量ξ的边缘分布律。 类似,(ξ ,η )关于分量η的边缘分布律为: pη(η = yj ) = p{ξ < +∞,η = yj} = p.j j=1,2, L i,=1,2, L
离散型随机变量的分布律
(2-2)
+
其中, 0 p 1,
q 1 p ,
k 0 ,,
1 2, ,
n ,显然
P{ k}
n
n
k 0
k 0
0,
且 P{ k} Ckn p k q n k ( p q)n 1 ,
则称 服从参数为 n ,p 的二项分布,记作 ~ B (n ,p) 。
3
3
10
3
7
1
1 0.260 。
3
随机变量及其分布
离散型随机变量的分布律
1.2 常见的离散型随机变量分布
3. 泊松(Poisson)分布
若随机变量 的概率为
P{ k}
k e
k!
,(2-3)
其中,k 0 ,,
则称 服从参
1 2 , , 0是常数,
率可能会很大。
于是
P{
2} 1 (e8 8e8 ) 1 9e8 1 0.003 0.997 。
提示
概率论与数理统计
解 设每分钟接到的呼叫次数为 ,则 ~ P( ) , 5 。
(1)每分钟恰好接到 7 次呼叫的概率为
57 e5
P{ 7}
0.104 44 。
7!
(2)每分钟接到的呼叫次数大于 4 的概率为
P{ 4} 1 P{
4}
1 P{ 0} P{ 1} P{ 2} P{ 3} P{ 4}
如果用 表示 n 重伯努利试验中事
件 A 发生的次数,
那么 服从二项分布。
特别地,当 n 1 时,式(2-2)化为
P{ i} p k q1 k (k 0 ,
二维随机变量函数的分布
V min{X1 ,X2 , ,Xn} 的分布函数分别为
Fmax (u) FX1 (u)FX2 (u) FXn (u) ,
(3-34)
Fmin (v) 1 [1 FX1 (v)][1 FX2 (v)] [1 FXn (v)] .
(3-35)
特别地,当 X1 ,X2 , ,Xn 相互独立且有相同的分布函数 F(x) 时,有
0
0dt
z 1
z
1dt
z
;
0
当1
z 2 时, fZ (z)
z
z1 fX (t)dt
1
1dt
z 1
z 0dt 2 z ;
1
当 z
2 时, fZ (z)
z
z1 f X (t)dt
z 0dt 0 .
z 1
综上所述,随机变量 Z X Y 的概率密度为
z , 0 z 1, fZ (z) 2 z , 1 z 2 ,
二维随机变量函数的分布
1.1 二维离散型随机变量函数的分布
因此, X Y 的分布律如表 3-13 所示.
表 3-13
X Y
0
1
2
3
3
7
5
1
P
16
16
16
16
(2)同理, XY 的分布律如表 3-14 所示.
表 3-14
XY
0
1
2
13
1
1
P
16
8
16
多维随机变量及其分布
二维随机变量函数的分布
1.1 二维离散型随机变量函数的分布
多维随机变量及其分布
二维随机变量函数的分布
1.2 二维连续型随机变量函数的分布
离散型随机变量及其分布
(0-1)分布的分布律用表格表示为:
X0 1
P 1-p p
0
易求得其分布函数为: F (x) 1 p
1
x0 0 x 1
x 1
2.二项分布(binomial distribution): 定义:若离散型随机变量X的分布律为
PX k Cnk pkqnk k 0,1,L , n
其中0<p<1,q=1-p,则称X服从参数为n,p的二项
下面我们看一个应用的例子.
例7 为保证设备正常工作,需要配备适量的 维修人员 . 设共有300台设备,每台独立工作, 且发生故障的概率都是0.01。若在通常的情况 下,一台设备的故障可由一人来处理 , 问至 少应配备多少维修人员,才能保证当设备发生 故障时不能及时维修的概率小于0.01?
我们先对题目进行分析:
§2.2 离散型随机变量及其分布
一、离散型随机变量及其分布律
1.离散型随机变量的定义 设X为一随机变量,如X的全部可能取到的值
是有限个或可列无限多个,则称随机变量X为离 散型随机变量(discrete random variable)。
设X是一个离散型随机变量,它可能取的值 是 x1, x2 , … .为了描述随机变量 X ,我们不仅 需要知道随机变量X的取值,而且还应知道X取 每个值的概率.
定义1 :设xk(k=1,2, …)是离散型随机变 量X所取的一切可能值,称等式
P(X xk) pk, k=1,2,… …
为离散型随机变量X的概率函数或分布律, 也称概率分布.
其中 pk (k=1,2, …) 满足:
(1) pk 0,
(2) pk1
k
k=1,2, …
用这两条性质判断 一个函数是否是
X0 1
P 1-p p
0
易求得其分布函数为: F (x) 1 p
1
x0 0 x 1
x 1
2.二项分布(binomial distribution): 定义:若离散型随机变量X的分布律为
PX k Cnk pkqnk k 0,1,L , n
其中0<p<1,q=1-p,则称X服从参数为n,p的二项
下面我们看一个应用的例子.
例7 为保证设备正常工作,需要配备适量的 维修人员 . 设共有300台设备,每台独立工作, 且发生故障的概率都是0.01。若在通常的情况 下,一台设备的故障可由一人来处理 , 问至 少应配备多少维修人员,才能保证当设备发生 故障时不能及时维修的概率小于0.01?
我们先对题目进行分析:
§2.2 离散型随机变量及其分布
一、离散型随机变量及其分布律
1.离散型随机变量的定义 设X为一随机变量,如X的全部可能取到的值
是有限个或可列无限多个,则称随机变量X为离 散型随机变量(discrete random variable)。
设X是一个离散型随机变量,它可能取的值 是 x1, x2 , … .为了描述随机变量 X ,我们不仅 需要知道随机变量X的取值,而且还应知道X取 每个值的概率.
定义1 :设xk(k=1,2, …)是离散型随机变 量X所取的一切可能值,称等式
P(X xk) pk, k=1,2,… …
为离散型随机变量X的概率函数或分布律, 也称概率分布.
其中 pk (k=1,2, …) 满足:
(1) pk 0,
(2) pk1
k
k=1,2, …
用这两条性质判断 一个函数是否是
2.2离散型随机变量及其分布律
当1≤x<2时, {X≤x}={X=0}∪{X=1} X 0 1x 2
又{X=0}与{X=1}互不相容 得: F(x)=P{X≤x}=P{X=0}+P{X=1}
=0.6+0.3=0.9
当x≥2时, {X≤x}为必然事件
X
0 1 2x
8
得: F(x)=P{X≤x}=1
0, x 0
F
(
x)
0.6, 0.9,
P{X k} C5k pk (1 p)5k
k 0,1,..., 5 18
例.用步枪向某一目标射击,每次击中目标
的概率为0.001,今射击6000次,试求至少有
两弹击中目标的概率.
解:.设X为击中目标的次数.
X : B6000,0.001
P X 2 1 P X 2 1 PX 0 PX 1
0 1
x x
1 2
1 0.9
1, x 2 0.6
注: 左闭右开
0 1 2x
9
0, x 0
F(x)
0.6, 0.9,
0 1
x1 x2
1, x 2
(3)
P(X
1 2
)
F
(
1 2
)
0.6
P
(
1 2
X
3 2
)
F
(
3 2
)
F
(
1 2
)
0.9
0.6
0.3
P(1≤X≤2)=P({X=1}∪{1<X≤2})
P
X k
Ck41 C150
(k 5, 6, 7, 8, 9,10)
具体写出,即可得 X 的分布律:
X 5 6 7 8 9 10
概率论与数理统计-第3章-第2讲-二维离散型随机变量及其分布
求分布律方法:先定值再求概率
Y
X
0
1
2
3
0
0
0
1
0
2
0
取4只球 P{X 0,Y 0} P{X 0,Y 1} P{X 1,Y 0} P{X 3,Y 2} 0
14
03 二维离散型随机变量的边缘分布律
例 盒子里装有3只黑球, 2只红球, 2只白球, 在其中任取4只球, 以 X 表示取 到黑球的只数, 以 Y 表示取到红球的只数, 求(X, Y)的联合分布律.
主讲教师 |
18
由此得 X , Y 的联合分布律为
X Y
0
1
0
0
0
6
1
0
35
1
6
2
35
35
2
3
3
2
35
35
12
2
35
35
3 0
35
16
第2讲 二维离散型随机变量及其分布
本节我们认识了二维离散型随机变量, 以及联合分布律和边 缘分布律, 要求理解它们概念和性质, 并且会求相应的概率.
17
概率论与数理统计
学海无涯, 祝你成功!
3
本讲内容
01 二维离散型随机变量 02 联合分布律 03 二维离散型随机变量的边缘分布律
4
02 联合分布律
2.联合分布律
设( X ,Y )的所有可能的取值为
(xi , y j ), i, j 1,2,
则称
P( X xi ,Y y j ) pij , i, j 1,2,
为二维随机变量( X ,Y ) 的联合概率分布, 简称概率分布或分布律.
7
02 联合分布律 已知联合分布律可以求概率
离散型随机变量
例4. 某人射击的命中率为0.02,他独立射击400 某人射击的命中率为0.02,他独立射击400 0.02 试求其命中次数不少于2的概率。 次,试求其命中次数不少于2的概率。
普哇松定理(p65): 设随机变量X 普哇松定理(p65): 设随机变量Xn~B(n, p), (n= 2,…), 很大, 很小, np, (n=0, 1, 2, ), 且n很大,p很小,记λ=np,则
二维离散型随机变量的分布律也可列表表示如下 二维离散型随机变量的分布律也可列表表示如下: 也可列表表示如下
X Y y1 p11 p21 pi1 ...
ij
y2 p12 p22 ... ... pi2 ...
… ... ... ... ... ... ...
yj P1j P2j Pij
… ... ... ...
3、几个常用的离散型分布
(0-1)分布 (1) (0-1)分布(p63) 若以X表示进行一次试验事件A发生的次数, 若以X表示进行一次试验事件A发生的次数,则 称X服从(0-1)分布(两点分布) 服从(0-1)分布(两点分布) (0 分布 X~P{X=k}=pk(1-p)1-k, (0<p<1) k=0,1 = , ~ = = - - 或 0 X 1
1 3
求:Y=X2的分布律 0
1 3
1
1 3
Y Pk
1
2 3
0
1 3
一般地
X Pk Y=g(X)
x1 p1
x2 xk p2 pk
g(x1) g(x2 ) g(xk )
或 Y=g(X)~P{Y=g(xk)}=pk , k=1, 2, … = ~ = = = 有相同的, (其中g(xk)有相同的,其对应概率合并。) 其中 有相同的 其对应概率合并。)
二维随机变量及其分布
§5.1 二维随机变量及分布函数
二、联合分布函数 性质 ③ F(x,y)关于x、关于y 右连续
F(x0
0,
y)
lim
xx00
F(x,
y)
F(x0
,
y)
F(x,
y0
0) lim yy00
F(x,
y)
F(x,
y0
)
整理课件
§5.1 二维随机变量及分布函数
二、联合分布函数 性质 ④ F(, ) lim F(x,y)0
2
1
x 1, y 1
整理课件
§5.3 二维连续型随机变量
一、二维连续型随机变量及联合密度函数
1.定义:设(X,Y)的分布函数为F(x,y),若存在一非负函 数f(x,y),使得对于任意的实数x,y有
yx
F(x,y) f(x,y)dydx
则称(X,Y)是连续型二维随机变量,函数 f(x,y)称为二 维随机变量(X,Y)的(联合)概率密度函数. 2.概率密度f(x,y)的性质
第五章 二维随机变量及其分布
➢ 二维随机变量及分布函数 ➢ 二维离散型随机变量 ➢ 二维连续型随机变量 ➢ 边缘分布 ➢ 随机变量的独立性 ➢ 条件分布
整理课件
§1.1 二维随机变量及分布函数
一、 二维随机变量 一般地,如果两个变量所组成的有序数组即二 维变量(X,Y),它的取值是随着实验结果而 确定的,那么称这个二维变量(X,Y)为二维 随机变量,相应地,称(X,Y)的取值规律为 二维分布
1
2
9P(X=2,Y=1)=2/9 1 1/9
2/9
P(X=2,Y=2)=4/ 2 2/9
4/9
9
整理课件
§5.2 二维离散型随机变量
二维离散型随机变量及其分布
3
0
0
0
1
0
0
0
0.25
2
0
0 0.375 0
3
0
0.25 0
0
4
0.0625 0
0
0
4
0.0625 0 0 0 0
概率论与数理统计
6
❖ 二.例题
➢ 例3.2.2 一口袋中有3个球,它们依次标有数字1, 2, 2,从
该袋中不放回地随机抽取两次,每次取一个,以X、Y表
示表示第一次、第二次取得的球上标有的数字. 求
表格形式表示(X,Y)的分布律.
Y
X
y1
y2Biblioteka …yj…x1
p11
p12
…
p1j
…
x2
p21
p22
…
p2j
…
…… … ………
xi
pi1
pi2
…
pij
…
…… … ………
概率论与数理统计
❖ 一.二维离散型随机变量及其分布
➢ 定义3.2.1 如果二维随机变量(X,Y)只取有限个或可列个 数对(xi,yj),则称(X,Y)为二维离散型随机变量,称 P( X xi ,Y y j ) pij , i, j 1, 2, 为(X,Y)的分布律,或X与Y的联合分布律,也可用如下 表格形式表示(X,Y)的分布律. ➢联合分布律有如下性质: (1) 正则性: pij 0, i, j 1,2,
P X Y P X 1,Y 1 P X 1,Y 2 P X 2,Y 2
0 1 1 2. 33 3
➢ 若本题改为放回抽样呢?
概率论与数理统计
8
❖ 二.例题
➢ 例3.3.3 设X表示随机的在1~4的4个整数中取出的一个数, Y表示在1~X个整数中随机地取出的一个数, 求(X, Y)的联 合分布律及分布函数.
二维离散型随机变量
多维随机变量及其分布
二维离散型随机变量
1.2 二维离散型随机变量的边缘分布律
因此, (X ,Y) 关于 X 和关于Y 的边缘分布律如表 3-5 所示.
表 3-5X01Y01pi
2 5
3 5
pj
2 5
3 5
概率论与数理统计
多维随机变量及其分布
所以, (X ,Y) 的分布律如表 3-2 所示.
Y
0
1
X
2
4
0
15
15
4
1
1
15
3
由二维随机变量的分布函数的定义可知, (X ,Y) 的分布函数为
0 , x 0 或 y 0 ,
2
,
0
F (x ,y) 125, 0
5
x 1,0 x 1,y
y 1, 1 或 x 1,0
概率论与数理统计
多维随机变量及其分布
二维离散型随机变量
1.1 二维离散型随机变量的概念与分布律
定义 1 若二维随机变量 (X ,Y) 所有可能取的值为有限对或可列无限 多对,则称 (X ,Y) 为二维离散型随机 变量.
显然,当且仅当 X 和Y 都是离散 型随机变量时,(X ,Y) 才是二维离散 型随机变量.
p1j
j 1
p2 j
p2 j
j 1
xi
pi1
pi 2
pij
pij
j 1
P{Y yj}
pi1
pi2
pij
1
i 1
i 1
i 1
多维随机变量及其分布
二维离散型随机变量
1.2 二维离散型随机变量的边缘分布律
例 2 已知 (X ,Y) 的分布律如表 3-4 所示,求 (X ,Y) 关于 X 和关于Y 的边缘分布律.
2.3 二维离散型随机变量及其分布律.
1). 通过联合分布律,求各个分量的分布律.
定义2.5 (X ,Y ) 关于分量X的边缘分布律 pi·=P{X xi} = pij (i 1, 2,L ); j1 (X ,Y ) 关于分量Y的边缘分布律 p·j =P{Y y j} = pij ( j 1,2,L ). i1
第三节 二维离散型随机变量及其分布律
一、联合分布律与边缘分布律 1.定义.设X,Y为定义在同一样本空间Ω上的随 机变量,则称向量(X,Y )为Ω上的一个二维随 机变量。 二维随机变量(X,Y )的取值可看作平面上的点
A (x,y)
二维离散型随机变量:若二维随机变量(X,Y )的所 有可能取值只有限对或可列对,则称(X,Y )为二 维离散型随机变量。
3). P{( X ,Y ) G}
pij
( xi , y j )G
例2.10 看书
例 一个口袋中有三个球, 依次标有数字1, 2, 2, 从中任
取一个, 不放回袋中, 再任取一个, 设每次取球时, 各球被 取到的可能性相等.以X、Y分别记第一次和第二次取到的球
上标有的数字, 求(X ,Y ) 的联合分布列.
p·j 2.条件分布律是分布律(满足分布律的特征)
3.由例2.10求条件分布律
补例
三.随机变量的独立性 1.定义 随机变量的独立性
P{X xi ,Y y j} P( X xi )P{Y y j} i, j 1,2,3,...
若随机变量独立,则
P{X xi | Y y j} P(xi , y j ) / P{Y y j} P{X xi} P{Y y j | X xi} P{Y y j} 与条件无关
pi1
... 。。。
定义2.5 (X ,Y ) 关于分量X的边缘分布律 pi·=P{X xi} = pij (i 1, 2,L ); j1 (X ,Y ) 关于分量Y的边缘分布律 p·j =P{Y y j} = pij ( j 1,2,L ). i1
第三节 二维离散型随机变量及其分布律
一、联合分布律与边缘分布律 1.定义.设X,Y为定义在同一样本空间Ω上的随 机变量,则称向量(X,Y )为Ω上的一个二维随 机变量。 二维随机变量(X,Y )的取值可看作平面上的点
A (x,y)
二维离散型随机变量:若二维随机变量(X,Y )的所 有可能取值只有限对或可列对,则称(X,Y )为二 维离散型随机变量。
3). P{( X ,Y ) G}
pij
( xi , y j )G
例2.10 看书
例 一个口袋中有三个球, 依次标有数字1, 2, 2, 从中任
取一个, 不放回袋中, 再任取一个, 设每次取球时, 各球被 取到的可能性相等.以X、Y分别记第一次和第二次取到的球
上标有的数字, 求(X ,Y ) 的联合分布列.
p·j 2.条件分布律是分布律(满足分布律的特征)
3.由例2.10求条件分布律
补例
三.随机变量的独立性 1.定义 随机变量的独立性
P{X xi ,Y y j} P( X xi )P{Y y j} i, j 1,2,3,...
若随机变量独立,则
P{X xi | Y y j} P(xi , y j ) / P{Y y j} P{X xi} P{Y y j | X xi} P{Y y j} 与条件无关
pi1
... 。。。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1
边缘分布律是分布律.
由联合分布 律得到边缘 分布律
相同的边缘 分布律,不同 的联合分布 律
表2.7-2.8
联合分布律<=|=边缘分布律
补例
二 条件分布律 1.定义 P{ X xi | Y y j } P ( xi , y j ) / P{Y y j }
p·j 2.条件分布律是分布律(满足分布律的特征) pij , j 1, 2,3,...
3.由例2.10求条件分布律
补例
三.随机变量的独立性 1.定义 随机变量的独立性 P{ X xi , Y y j } P ( X xi ) P{Y y j }
i, j 1, 2,3,...
若随机变量独立,则
P{ X xi | Y y j } P ( xi , y j ) / P{Y y j } P{ X xi } P{Y y j | X xi } P{Y y j }
2.联合分布律 1).定义2.4 pij P{xi , y j } P{ X xi , Y y j } (i 1, 2,L ; j 1, 2,L ) 表格形式(常见形式) Y y1 y2 。。。 y j X p11 p12 。。。 p1 j x
1
...
... 。。。
... 。。。
x2
..... 。。。
。。。... 。。。...
p2 j
。。。
...
... 。。。
... 。。。
xi
... 。。。
pi1 pi 2
... 。。。
... 。。。
pij
...
... 。。。
。。。...
。。。...
。。。
...
2).特征: 0 pij 1
p
解 ( X , Y ) 的可能取值为(1, 2), (2, 1), (2, 2).
P{X=1,Y=2}=(1/3) × (2/2)=1/3,
P{X=2,Y=1}=(2/3) ×(1/2)=1/3, P{X=2,Y=2}= (2/3) ×(1/2)=1/3,
Y
X
1
2
1 2
0 1/3
1/3 1/3
2.边缘分布律
与条件无关
独立的二维随机变量,边缘分布律=>联合分布律
2.补例1
练习题
第三节 二维离散型随机变量及其分布律
一、联合分布律与边缘分布律 1.定义.设X,Y为定义在同一样本空间Ω上的随 机变量,则称向量(X,Y )为Ω上的一个二维随 机变量。 二维随机变量(X,Y )的取值可看作平面上的点
A (x,y)
二维离散型随机变量:若二维随机变量(X,Y )的所 有可能取值只有限对或可列对,则称(X,Y )为二 维离散型随机变量。
i 1 j 1
ij
1
3). P{( X , Y ) G}
( xi , y j )G
pij
例2.10 看书
例
一个口袋中有三个球, 依次标有数字1, 2, 2, 从中任 取一个, 不放回袋中, 再任取一个, 设每次取球时, 各球被 取到的可能性相等.以X、Y分别记第一次和第二次取到的球 上标有的数字, 求( X , Y ) 的联合分布列.
1). 通过联合分布律,求各个分量的分布律. 定义2.5 ( X ,Y ) 关于分量X的边缘分布律
pi· P{X xi } = pij (i 1,2,L ); =
j 1
( X ,Y ) 关于分量Y的边缘分布律
p·j =P{Y y j } = pij ( j 1,2,L ).
边缘分布律是分布律.
由联合分布 律得到边缘 分布律
相同的边缘 分布律,不同 的联合分布 律
表2.7-2.8
联合分布律<=|=边缘分布律
补例
二 条件分布律 1.定义 P{ X xi | Y y j } P ( xi , y j ) / P{Y y j }
p·j 2.条件分布律是分布律(满足分布律的特征) pij , j 1, 2,3,...
3.由例2.10求条件分布律
补例
三.随机变量的独立性 1.定义 随机变量的独立性 P{ X xi , Y y j } P ( X xi ) P{Y y j }
i, j 1, 2,3,...
若随机变量独立,则
P{ X xi | Y y j } P ( xi , y j ) / P{Y y j } P{ X xi } P{Y y j | X xi } P{Y y j }
2.联合分布律 1).定义2.4 pij P{xi , y j } P{ X xi , Y y j } (i 1, 2,L ; j 1, 2,L ) 表格形式(常见形式) Y y1 y2 。。。 y j X p11 p12 。。。 p1 j x
1
...
... 。。。
... 。。。
x2
..... 。。。
。。。... 。。。...
p2 j
。。。
...
... 。。。
... 。。。
xi
... 。。。
pi1 pi 2
... 。。。
... 。。。
pij
...
... 。。。
。。。...
。。。...
。。。
...
2).特征: 0 pij 1
p
解 ( X , Y ) 的可能取值为(1, 2), (2, 1), (2, 2).
P{X=1,Y=2}=(1/3) × (2/2)=1/3,
P{X=2,Y=1}=(2/3) ×(1/2)=1/3, P{X=2,Y=2}= (2/3) ×(1/2)=1/3,
Y
X
1
2
1 2
0 1/3
1/3 1/3
2.边缘分布律
与条件无关
独立的二维随机变量,边缘分布律=>联合分布律
2.补例1
练习题
第三节 二维离散型随机变量及其分布律
一、联合分布律与边缘分布律 1.定义.设X,Y为定义在同一样本空间Ω上的随 机变量,则称向量(X,Y )为Ω上的一个二维随 机变量。 二维随机变量(X,Y )的取值可看作平面上的点
A (x,y)
二维离散型随机变量:若二维随机变量(X,Y )的所 有可能取值只有限对或可列对,则称(X,Y )为二 维离散型随机变量。
i 1 j 1
ij
1
3). P{( X , Y ) G}
( xi , y j )G
pij
例2.10 看书
例
一个口袋中有三个球, 依次标有数字1, 2, 2, 从中任 取一个, 不放回袋中, 再任取一个, 设每次取球时, 各球被 取到的可能性相等.以X、Y分别记第一次和第二次取到的球 上标有的数字, 求( X , Y ) 的联合分布列.
1). 通过联合分布律,求各个分量的分布律. 定义2.5 ( X ,Y ) 关于分量X的边缘分布律
pi· P{X xi } = pij (i 1,2,L ); =
j 1
( X ,Y ) 关于分量Y的边缘分布律
p·j =P{Y y j } = pij ( j 1,2,L ).