混合动力汽车动力传动及其控制系统详细课件资料
混合动力汽车的电机驱动系统PPT通用课件
1、能耗制动:
制动瞬间,断开电源,励磁不变,因惯性转速不变, n不变,但电枢电流改变了方向,使T反向,电机处 于制动状态。
▪ T=CeΦIa
2、反接制动:
转速反向的反接制动:正接反转。 电机的转矩小于负载转矩,电机被负载拖动反向起
动,使电机的转速逆电磁转矩的方向旋转,n 与T反向,
电机处于制动状态。
1、电枢铁心
电枢铁心由多片互相绝缘的硅钢片叠成,借内圆 面的花键槽压装在电枢轴上,其外圆表面有槽, 用来安装电枢绕组。
2、电枢绕组
励磁绕组通电后,在磁场的作用下,产生感应 电流,产生电磁转矩,实现电能转化为机械能
3、换向器
压装在电枢轴上,作用是把电刷的直流电转变 为电枢绕组中的导体所需要的交变电流。
二、直流电动机的工作原理
(一)直流电动机的作用与基本原理
直流电动机是将电能转化为机械能的装置,其 作用是产生发动机起动时所需要的电磁转矩。
直流电动机是利用载流导体在磁场中受力运动 的原理制造的。
电刷
b
+
N
aI
d
U
–
cI
S
换向片
直流电源
电刷
线圈
换向器
电流方向:上半边向里,下半边向外。
电流方向为:蓄电池正极 →正电刷→换向片A→线 圈abcd→换向片B→负电 刷→蓄电池负极。电流方 向为a→d,由左手定则可 以确定,线圈受到逆时针 方向的转矩作用, 电枢绕 组及换向片在电磁力矩的
电磁式直流电动机按励磁绕组与电枢绕组的连接关系又 可分并励式、串励式和复励式三种
1、他励、并励式直流电动机
励磁绕组与电枢绕组联在同一电源上,若外电压 不变、励磁电阻不变,则每极磁通也基本不变, 其机械特性和永磁式基本相同,即它们具有较 “硬”的机械特性
混合动力汽车控制策略.pptx
目录
1.混合动力汽车的系统结构 2.混合动力汽车的控制策略 3.混合动力汽车的研究方向
1.混合动力汽车的系统结构
根据动力系统的结构和能量流动方式的不同,混合 动力电动汽车可分为串联式、并联式、混联式。近 年,又新出现了电动轮式混合动力电动汽车。
1.1串联式动力系统
2.1串联式混合动力汽车的控制策略
由于串联式混合动力汽车的发动机与汽车行 驶工况没有直接联系,因此控制策略的主要目 标是使发动机在最佳效率区和排放区工作。此 外,为了优化控制策略,还必须考虑合并在一 起的电池、电传动系统、发动机和发电机的总 体效率。以下介绍串联式混合动力汽车的两种 基本的控制模式。
串联式混合动力系统
1.2并联式动力系统 并联式混合动力电动汽车主要由发动机、
电动/发电机两大部件总成组成,它们可分开 工作也可以协调工作,结构具有明显的多样性, 可以根据使用要求选用。两大动力总成的功率 可以互相叠加,发动机功率和电动/发电机功 率约为电动汽车所需最大驱动功率的0.5~1倍, 因此,可以采用小功率的发动机与电动/发电 机,使得整个动力系统的装配尺寸、质量都较 小,造价也更低,行程也可以比串联式混合动 力电动汽车长一些,其特点更加趋近于内燃机 汽车。由于并联混合动力汽车有两套驱动系统, 且不同的驱动系统有不同的工作效率区间,这 就使得汽车在不同的行驶工况下,具有不同工 作模式。
2.1.1恒温器控制模式 2.1.2发动机跟踪器控制模式
上述两种控制模式可以结合起来使用,其目的
是充分利用发动机和电池的高效率区,使其达到 整体效率最高。发动机在荷电状态值较低或负载 功率较大时均会起动;当负载功率较小且荷电状 态值高于预设的上限值时,发动机被关闭;在发 动机关和开之间设定了一定范围的状态保持区域, 这样可以避免发动机的频繁起停。发动机一旦起 动便在相对经济的区域内对电动机的负载功率进 行跟踪,当负载功率大于或小于发动机经济区域 所能输出的功率时,电池组可以通过充放电对该 功率差进行缓冲和补偿,采用该控制策略可以减 少电能的循环损耗,避免电池大电流放电和发动 机的频繁起动,降低了油耗,提高了排放性能。
混动汽车构造与工作原理PPT课件
第混二合章动力混汽合车动力构汽造车与构工造作与原工理作原理
4. 串联式混合动力驱动系统的优点与缺点 (2)串联式混合动力驱动系统的缺点
1)发动机输出的能量利用率比较低。串联混合动力系统的发动机能 保持在最佳工作区域内稳定运行,这一特点的优越性主要表现在低速、加速 等工况,而在汽车中、高速行驶时,由于其电传动效率较低,抵消了发动机 效率高的优点。
混合动力
第混二合章动力混汽合车动力构汽造车与构工造作与原工理作原理
(3)在车辆行驶过程中,当车载电池组电量过低时, 发动机在驱动车辆行驶的同时向电池补充充电 。
向蓄电池充电
第混二合章动力混汽合车动力构汽造车与构工造作与原工理作原理
(4)车辆减速及制动时,电机以发电机模式工作, 回收车辆制动能量向电池充电
第混二合章动力混汽合车动力构汽造车与构工造作与原工理作原理
4. 日产风雅混合动力汽车混合动力系统 (1)混合动力系统结构
日产风雅混合动力系统的结构 1-离合器2 2-电子控制式7挡自动变速器 3-电机 4-离合器1 5-发动机
6-逆变器 7-锂离子蓄电池
第混二合章动力混汽合车动力构汽造车与构工造作与原工理作原理
2)电动机的功率要足够大。 3)电动机和动力蓄电池的体积和重量都较大,使得整车重量较大。 串联式混合动力电动汽车更适用于经常在市内低速运行的工况,而不 适合高速公路行驶工况。
第混二合章动力混汽合车动力构汽造车与构工造作与原工理作原理 二、并联式混合动力汽车
1. 基本结构
并联式混合动力系统 1-发动机 2-变速器 3-动力蓄电池 4-变压器 5-电动机/电动机 6-驱动轮 7-减速器
第混二合章动力混汽合车动力构汽造车与构工造作与原工理作原理
3. 并联式混合动力驱动系统两种基本控制模式
混合动力原理图
混合动力原理图
以下是混合动力原理图,不含标题:
一、汽车主动喷射技术
1. 汽油机喷射系统:
- 高压燃油泵将汽油从燃油箱送至喷油器
- 喷油器通过高压喷射将汽油雾化
- 雾化的汽油进入汽缸燃烧与空气混合产生爆炸动力
2. 电动机喷射系统:
- 电力系统将电能转化为动力
- 电流通过电动机产生旋转运动
- 电动机转轴通过传动装置连接车轮产生推进动力
- 驱动车轮带动汽车运动
二、动力转换和储能系统
1. 能量转换:
- 发动机将燃料燃烧转化为机械能
- 电动机将电能转化为机械能
2. 储能系统:
- 高能量密度电池用于储存电能
- 发动机在运行时通过发电机将部分功率转化为电能储存于电池中
- 制动能量回收系统将制动时产生的能量转化为电能储存于电池中
三、动力控制系统
1. 动力分配系统:
- 控制系统根据驾驶员的需求决定汽车使用发动机或电动机 - 在起步和加速时使用电动机提供高扭矩和高能效
- 在高速行驶时使用发动机提供更长的续航里程
2. 能量管理系统:
- 控制系统监测储能系统的电量
- 根据电量情况决定是否充电或释放电能
- 在电量充足时将发动机停止运行以提高能效
四、辅助系统
1. 制动能量回收系统:
- 利用制动过程中的动能转换为电能储存于电池中
- 减少能量损失,提高动力利用率
2. 启动发电机:
- 发动机启动过程中,由发电机提供电能供给汽车电器系统 - 减少对电池的依赖,延长电池寿命
以上即为混合动力原理图,文中无与标题相同的文字。
混合动力汽车概述课件
工作流程
在并联式混合动力系统中,内燃 机和电动机都直接连接到车辆的 驱动轴上。在车辆行驶时,内燃 机和电动机都可以为驱动轴提供 动力。这种系统的优点是可以根 据需要使用内燃机或电动机。
特点
并联式混合动力系统的内燃机和 电动机之间有机械连接,因此它 们不能独立地运行。这种系统的 优点是电池组不需要大量的空间 ,并且其重量也较小。
帕萨特混合动力汽车 的技术特点
该车采用了并联式混合动力系统,主 要由发动机、电动机、电池等组成。 在城市行驶时,车辆主要依靠电动机 进行驱动,减少燃油消耗;而在高速 行驶时,发动机则起到主要的驱动作 用。此外,帕萨特混合动力汽车还具 有能量回收系统,可以将制动能量转 化为电能储存。
帕萨特混合动力汽车 的市场前景
CHAPTER 02
混合动力汽车的基本构造
发动机系统
发动机的类型
包括汽油发动机、柴油发动机和混动发动机等。
发动机的性能参数
如排量、功率、扭矩等。
发动机的运转模式
包括正常模式、节能模式和运动模式等。
电池系统
电池的类型
包括镍氢电池、锂离子电池和铅酸电池等。
电池的能量密度
衡量电池储存能量的能力。
电池的管理系统
由于电动机的介入,混合动力汽车可以在低速时实现更强的动力输出, 改善加速性能。
03
使用成本降低
内燃机的介入可以减少电动机的使用频率和时间,从而降低维护成本。
混合动力汽车的历史与发展
历史
混合动力汽车最早于20世纪90年代初开始研发,经过几十年的发展,技术逐渐成 熟并得到广泛应用。
发展方向
随着环保意识的增强和技术的不断进步,混合动力汽车将逐渐成为未来汽车市场 的重要发展方向之一。未来,混合动力汽车将更加注重能效和环保性能的提升, 同时拓展应用领域,如城市公交、物流运输、出租车等。
混合动力汽车PPT
HEV车型
2015款530Le 插电式混合动力
8
HEV车型
2015款保时捷卡宴S E-hybrid 外观方面Cayenne S Hybrid的特点主要在于配色,除了在前翼子板侧面增加了一个
“e-hybrid”之外,车型标识的字体背景以及刹车卡钳都采用了青柠绿配色。这个 配色被用于所有有插电式混合动力的保时捷车型上,包括918 Spyder。
17
按照动力系统结构形式
并联式混合动力汽车的驱动方式
① 驱动力合成式;② 转矩合成式(双轴式和单轴式);③ 转速合成式
串并混 联联联 式式式
E-发动机;M-电动机;B-蓄电池
18
并联式代表
串并混 联联联 式式式
19
串并混
联联联
按照动力系统结构形式
式式式
混联式结构图 混联式动力流程图
特点:混联式驱动系统充分发挥了串
统,其中发动机的最大输出功率99马力,电动机最大输出功率72马力。官方 公布该车的百公里综合油耗为4.2L/100km。
5
HEV车型
2015款Accord Hybrid 搭载于雅阁车型上这套i-MMD系统由四大主要部分组成:2.0L DOHC i-
VTEC发动机、电动CVT系统、PCU功率控制单元和高功率锂离子电池组。搭 载i-MMD系统的雅阁Hybrid 0-60km的加速时间为3.9秒,在日本JC08工况 下的油耗测试值最低为30km/L,即大约3.3L/100km。
1902,法国人H.Krieger(采用两个独立的直流电动机驱动前轮) 1903,法国人Camille Jenatzy(6hp的汽油发动机和14hp的电动机相组合)
1903,Lohner. Porsche(发电制动) 1975,Victor Wouk博士(Buick Skylark型并联式混合动力电动汽车)
混合动力汽车分类-PPT
串联式混合动力汽车的结构如图所示
串联式混合动力汽车的工作原理
串联式混合动力系统一般由发动机直接带动发 电机发电,电能通过控制器输送到电池或电动 机,由电动机通过变速机构驱动汽车。小负荷 时由电池驱动电动机驱动车轮,大负荷时由发 动机带动发电机发电驱动电动机。当车辆处于 启动、加速、爬坡工况时,则由电池组驱动电 动机,当电池组缺电时则由发动机-发电机组 向电池组充电。
2.并联式混合动力汽车的结构如图所示
它由发动机与电动/发电机或驱动电动机两大 动力总成组成。它们采用“并联”的方式组成并 联式混合动力汽车的驱动系统。电动机的动力 要与车辆驱动系统相结合,可以:
(1)在发动机输出轴处进行组合;
(2)在变速器处进行组合;
(3)在驱动桥处进行组合。
并联式混合动力汽车的工作原理
由整车控制器完成运行控制策略。电池组可由地 面充电桩或车载充电器充电,发动机可采用燃油 型或燃气型。整车运行模式可根据需要工作于纯 电动模式、增程模式或混合动力模式(HEV)。
当工作于增程模式时,节油率随电池组容量增大 无限接近纯电动汽车,是纯电动汽车的平稳过渡 车型。由于低速扭矩大,高速运行平稳,刹车能 量回收效率高,结构简单易维修,是一种特别适 用于城市公交的纯电动客车和骑行路途较远的电 动自行车用户。实用性强。
ቤተ መጻሕፍቲ ባይዱ
在电池电量充足时,动力电池驱动电机,提供 整车驱动功率需求,此时发动机不参与工作。 当电池电量消耗到一定程度时,发动机启动, 发动机为电池提供能量对动力电池进行充电。 当电池电量充足时,发动机又停止工作,由电 池驱动电机,提供整车驱动。
1、可纯电动模式运行,所需电池容量小,造价低且不会发生 缺电抛锚现象。
混合动力汽车的分类
混动汽车动力控制系统
辅助充电计
• 牵引电机逆变器的运行状态可通过组合仪表 中的辅助充电计进行查看。
• HCPM 通过 CAN 通信将辅助充电信号发送至 组合仪表。组合仪表在接收到信号后激活 辅助充电显示屏并显示牵引电机的状态。
混合动力控制系统电路图1
混合动力控制系统电路图2
混合动力控制系统电路图3
二、制动系统合作控制
系统说明
系统说明 • 凭借再生制动,牵引电机在减速期间充当交流发电机,
来自车轮的减速能量转换为电能用于对锂离子充电。 再生制动控制 • 如果在驾驶期间踩下制动踏板,ABS 执行器和电气单元
( 控制单元 ) 通过 CAN 通信将制动力和合作再生可用扭 矩信号发送至 HPCM。 HPCM 根据这些信号计算再生制动
和锂离子蓄电池的状态。
当发动机冷却且锂离子电池电量低时,为了预热发动机或对锂子 电池充电,使离合器 1 啮合并使用牵引电子输出起动发动机。
注: • 即使发动机预热或锂离子电池充满电后,发动机在某些情况下由
于其他原因可能没法起动。 • 在极低温度下,可使用起动机电机起动发动机。
不同模式的控制:发动机启动
的范围内选择所需车速。 • HPCM 控制发动机和牵引电机输出并调节车速使其与设
定车速匹配。此外,HPCM 向组合仪表发送ASCD 状态信 号,信息显示屏显示工作状态。 • 如果 ASCD 控制期间检测到非标准状态, ASCD 控制将自 动取消。
CANCEL 的操作
CANCEL 的操作 • 当存在下面任一条件时,巡航操作都会被取消。 • 按下 CANCEL 开关 • 按下 ASCD 主开关 ( 设定车速被清除 ) • 同时按下两个以上的 ASCD 方向盘开关 ( 将清除
ቤተ መጻሕፍቲ ባይዱ机逆变器 ( 牵引电机 ) 和 DC/DC 转换器。 冷却风扇控制 HPCM 通过 CAN 通信根据 ECM 的请求信号和高压冷却液温
混合动力汽车传动系统的建模与控制
混合动力汽车传动系统的建模与控制混合动力汽车(Hybrid Electric Vehicle,HEV)作为一种将传统内燃机与电动机相结合的新型汽车,具有很高的能源效率和环境友好性。
混合动力汽车传动系统的建模与控制是实现其优化性能的关键技术之一。
本文将从建模和控制两个方面,介绍混合动力汽车传动系统的相关技术。
一、混合动力汽车传动系统的建模混合动力汽车传动系统主要由内燃机、电动机和能量存储装置(电池组)组成。
其基本原理是通过内燃机和电动机的协同工作,实现能量的最优分配和利用。
1. 内燃机建模内燃机是混合动力汽车传动系统的核心部件之一。
其建模主要包括燃烧过程和机械动力传递两个方面。
燃烧过程建模主要是通过分析内燃机的燃料供给、进气、压缩、燃烧和排气等过程,建立数学模型描述其功率输出和燃料消耗。
常用的方法包括基于物理原理的热力学模型和基于神经网络的经验模型等。
机械动力传递建模主要是通过分析内燃机的转速、扭矩和输出功率等参数,建立数学模型描述其输出特性。
常用的方法包括基于物理原理的机械模型和基于曲线拟合的经验模型等。
2. 电动机建模电动机是混合动力汽车传动系统的另一个关键部件。
其建模主要包括电机特性和电机控制两个方面。
电机特性建模主要是通过分析电机的电流、电压、转速和扭矩等特性参数,建立数学模型描述其输出特性。
常用的方法包括基于物理原理的电磁模型和基于神经网络的经验模型等。
电机控制建模主要是通过分析电机的控制策略和调节器等组成部分,建立数学模型描述其控制方式和性能。
常用的方法包括基于PID控制器的经典控制模型和基于模糊控制器的智能控制模型等。
3. 能量存储装置建模能量存储装置即电池组是混合动力汽车传动系统的储能装置。
其建模主要包括电池特性和能量管理两个方面。
电池特性建模主要是通过分析电池的电荷状态和能量输出等特性参数,建立数学模型描述其输出特性。
常用的方法包括基于物理原理的电化学模型和基于统计学的经验模型等。
混合动力汽车动力传动及其控制系统-详细课件
AMT应用于混合动力汽车
• 能量管理策略 • 混合动力汽车的能量管理策略包括发动机 和电机的转矩分配策略以及变速系统的换 档策略两方面内容转矩分配策略。
AMT应用于混合动力汽车
• 混合动力汽车能量管理策略研究多集中于转矩分配策略方 面,转矩分配策略的目的是通过调整发动机和电机的转矩 提高车辆综合效率。在一般的并联式混合动力汽车中,发 动机是主驱动装置,电机是辅助驱动装置。由于发动机工 作效率较低,尤其在发动机转速和负荷率较低时,其燃油 经济性极差,为避免发动机工作在低效区,在满足驾驶员 转矩需求的基础上,转矩分配策略通过调整电机转矩使发 动机工作在高效区或关闭发动机并由电机单独驱动车辆。 在发动机工作效率较高时,可以由发动机直接驱动车辆, 此时通过调整电机电动或发电的转矩使发动机工作在高效 区,电机发电生成的电能存储在动力电池中以供电动时使 用,为保证电池充放电时的效率,转矩分配策略还要尽量 维持电池的电量平衡。
混合动力汽车自动变速系统
• 按照实现自动变速的原理,自动变速器可 分为三类:一类是液力变矩器和行星齿轮变 速箱组成的液力自动变速器(Automatic Transmission简称AT);一类是无级变速器 (Continuously Variable Transmission,简 称CVT);另一类是由传统固定轴式变速箱和 干式离合器以及相应的电液控制系统组成 的机械式自动变速器(Automatic Mechanical Transmission,简称AMT)
• 传统汽车AMT的控制即为整车控制,如图3所示, 控制系统根据驾驶员对车辆的操纵(加速踏板、制 动踏板、操纵手柄等)和车辆状态(车速、档位、 发动机转速等)选择当前行车需要的最佳档位,如 果需要换档或离合器操作,则借助相应的自动操 纵机构对车辆的动力和传动系统进行控制,因此, 传统汽车AMT控制主要指换档策略和动力、传动 系统控制两个方面的内容区别于传统汽车,由于 混合动力汽车中电驱动系统的存在,AMT控制在 这两个方面的问题与传统汽车有较大不同,混合 动力汽车整车控制包括能量管理策略和能量管理 策略的实现两方面的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混合动力汽车自动变速系统
• 与传统内燃机汽车类似,由于发动机和电 机的转速工作范围与车速范围不一致,需 要将混合动力汽车动力源的动力变速变矩 地传递至驱动车轮,同时混合动力汽车变 速传动系统还要完成发动机和电机动力的 分配和藕合。
混合动力汽车自动变速系统
• 混合动力汽车可以选用专门针对混合动力 系统设计的变速传动系统,也可是使用传 统变速系统实现所要功能。现在常见的混 合动力轿车有:Prius ( Toyota ) ,Estima ( Toyota ) , Tino ( Nissan ) , Civic ( Honda)和Insight (Honda),其选用的变速 传动系统如表1所示。
无级变速器(CVI)
• CVT技术的发展,已经有了一百多年的历史。德国奔驰公司是在汽车 上来用CVT技术的鼻祖,早在1886年就将V型橡胶带式CVT安装在该 公司生产的汽油机汽车上,但由于橡胶带式CVI存在一系列的缺陷, 没有被汽车行业普遍接受随着新技术逐步克服原有技术的缺陷,研制 出了性能更优良的CVT。进入20世纪90年代,汽车界对CVT技术的研 究开发日益重视,特别是在微型车中,CVT被认为是关键技术。 • CVT的结构和工作原理如图2所示,主要包括主动轮组、从动轮组、 金属带和液压泵等基本部件。CVI结构简单、体积小,既没有手动变 速器的众多齿轮组,也没有AT中复杂的液力变矩器和行星齿轮组。理 论上CVT可使发动机始终在经济工况区运行从而较大幅度地改善车辆 燃油经济性,但由于CVT是摩擦传动,传动效率较低,且传动带很容 易损坏,不能承受较大的载荷,因此其只能用于在低功率和低转矩汽 车,随着技术的不断进步,现在CVT已经开始在中等排量的汽车中得 到应用。
传统汽车AMT基本控制原理
• 图3
传统汽车AMT基本控制原理
AMT应用于混合动力汽车
• 使用AMT作为混合动力汽车的动力藕合和 变速传动装置比较适合我国的国情。由于 混合动力汽车的动力源与传统汽车不同, AMT应用于混合动力汽车时,其功能和控 制也与传统汽车情况有很大的不同。
AMT应用于混合动力汽车
无级变速器(CVI)
• 图2无级变速器结构图
机械式自动变速器(AMT)
• 传统手动变速器是通过驾驶员控制离合器、变速箱来接合 发动机动力和改变传动系统档位,通过在手动变速器基础 上加装换档、离合器执行机构和相应的自动控制单元实现 上述的自动控制即为机械式自动变速器。 • 国外对AMT的研究和开发始于二十世纪七十年代中期,较 为典型的有瑞典Scandia的CAG系统、德国Daimler Benz 的EPS系统、美国Eaton的SAMT系统,这些系统使换档 操纵实现了自动化,换档时仍由驾驶员踩离合器踏板来配 合换档。世界上第一台全自动的电控机械式自动变速器是 日本五十铃公司在1984年推出的NAVI-5,不久德国波尔 舍的C arrera轿车也装用Tip Tropic,同时期出现的还有: 日本Nissan, Hino及美国Eaton的全自动变速系统。
• 传统汽车AMT的控制即为整车控制,如图3所示, 控制系统根据驾驶员对车辆的操纵(加速踏板、制 动踏板、操纵手柄等)和车辆状态(车速、档位、 发动机转速等)选择当前行车需要的最佳档位,如 果需要换档或离合器操作,则借助相应的自动操 纵机构对车辆的动力和传动系统进行控制,因此, 传统汽车AMT控制主要指换档策略和动力、传动 系统控制两个方面的内容区别于传统汽车,由于 混合动力汽车中电驱动系统的存在,AMT控制在 这两个方面的问题与传统汽车有较大不同,混合 动力汽车整车控制包括能量管理策略和能量管理 策略的实现两方面的内容。
液力自动变速器(AT)
• AT,在汽车上应用的历史已有60多年,是 现在传统汽车中应用范围最广的自动变速 系统,图1所示为宝马7型的6速自动变速器。
液力自动变速器(AT)
•
图1 宝马6速自动变速器
液力自动变速器(AT)
• 液力自动变速器由液力变矩器、行星齿轮和液压操纵系统 组成,液力变扭器是AT最关键的部件,由泵轮、涡轮和 导轮等构件组成,它除了起离合器的作用外,还具有在一 定范围内无级变速和变矩的能力,对负载有良好的自动调 节和适应性。因此,液力自动变速器换档平稳,操作容易, 但其缺点也较多:一是对速度变化反应较慢,没有手动变 速器灵敏,无法满足对驾驶感觉要求较高的人的需求:二 是费油不经济,传动效率低变矩范围有限,近年引入电子 控制技术一定程度上改善了这方面的问题;三是机构复杂, 设计、制造和维护困难。 • 由于AT的燃油经济性较差,而且结构复杂不容易进行结 构改变,应用于混合动力汽车时不仅影响整车燃油经济性, 而且还受到其过长的开发周期和过高的开发、使用成本的 影响。
混合动力汽车自动变速系统
• 按照实现自动变速的原理,自动变速器可 分为三类:一类是液力变矩器和行星齿轮变 速箱组成的液力自动变速器(Automatic Transmission简称AT);一类是无级变速器 (ContinuousVT);另一类是由传统固定轴式变速箱和 干式离合器以及相应的电液控制系统组成 的机械式自动变速器(Automatic Mechanical Transmission,简称AMT)
混合动力汽车自动变速系统
• 表1 混合动力汽车使用的变速传动系统
混合动力汽车自动变速系统
• 除Prius和Estima外,混合动力轿车多采用CVT, 而Toyota采用的THS ( Toyota Hybrid System )是 一种区别于传统变速系统的行星齿轮结构,其通 过协调发动机、发电机和电动机的转速,实现动 力分配和无级变速的双重功能。 • 由于受开发周期、开发成本和技术水平的限制以 及自主知识产权方面的要求,我国混合动力汽车 开发多选择传统汽车所使用的变速系统。
各种变速系统的比较
•
各种变速系统的比较
各种变速系统的比较
• 在混合动力汽车中,由于对燃油经济性以 及成本、开发周期等方面的要求较高,AT 不适合于在混合动力汽车上使用。由于世 界各大汽车公司的参与,CVT的各项技术 不断走向成熟,国外众多汽车厂商都致力 于CVT的推广应用,由于其燃油经济性较 好,因此在混合动力轿车中得到了较好的 应用。但是由于CVT应用于较大型的车辆 时还存在一些问题,因此许多混合动力汽 车中采用AMT作为变速机构。