井底流压计算方法
石油钻井各种计算公式
钻头水利参数计算公式: 1、 钻头压降:dc QP eb 422827ρ=(MPa ) 2、 冲击力:VF Q j02.1ρ= (N)3、喷射速度:dV eQ201273=(m/s)4、钻头水功率:d c QN eb 42305.809ρ=(KW )5、比水功率:DNN b21273井比= (W/mm 2)6、上返速度:D DV Q221273杆井返=- (m/s )式中:ρ-钻井液密度 g/cm 3Q-排量 l/sc -流量系数,无因次,取0.95~0.98de -喷嘴当量直径 mmd d d de 2n 2221+⋯++= d n :每个喷嘴直径 mmD 井、D 杆 -井眼直径、钻杆直径 mm 全角变化率计算公式:()()⎪⎭⎫ ⎝⎛∂+∂+∆=-∂-∂225sin222b a b a b a L K abab ϕϕ 式中:a ∂ b ∂ -A 、B 两点井斜角;a ϕ b ϕ -A 、B 两点方位角 套管强度校核:抗拉:安全系数 m =1.80(油层);1.60~1.80(技套) 抗拉安全系数=套管最小抗拉强度/下部套管重量 ≥1.80 抗挤:安全系数:1.12510ν泥挤H P =查套管抗挤强度P c 'P c'/P挤≥1.125按双轴应力校核:Hn P ccρ10=式中:P cc -拉力为T b 时的抗拉强度(kg/cm 2) ρ -钻井液密度(g/cm 3) H -计算点深度(m ) 其中:⎪⎭⎫ ⎝⎛--=T T KPP b b ccc K 223T b :套管轴向拉力(即悬挂套管重量) kg P c :无轴向拉力时套管抗挤强度 kg/cm 2K :计算系数 kg σsAK 2=A :套管截面积 mm 2 σs:套管平均屈服极限 kg/mm 2不同套管σs如下:J 55:45.7 N 80:63.5 P 110:87.9 地层压力监测:⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛=DW NT R R d m n c 0671.0lg 282.3lg (d c 指数)100417.04895.8105⎪⎭⎫ ⎝⎛+⨯-=H cnddR d R cmcnp =(压力系数)式中:T –钻时 min/m N –钻盘转数 r/minW -钻压 KN D -钻头直径 mmR n -地层水密度 g/cm 3 R m -泥浆密度 g/cm 3压漏实验:1、地层破裂压力梯度:HPG Lmf 10008.9+=ρ KPa2、最大允许泥浆密度:HP Lm102max+=ρρ g/cm 3为安全,表层以下[]06.0max-=ρρm g/cm 3 技套以下[]12.0max-=ρρmg/cm 33、最大允许关井套压:[]8.01000'max ⨯⎪⎭⎫ ⎝⎛--=gHm R a P P ρρ式中:P L -漏失压力(MPa ) PR-破裂压力(MPa )ρm -原泥浆密度(g/cm 3) H -实验井深(m )ρ'm ax-设计最大泥浆密度(g/cm 3)10008.9mH P P L ρ+=漏10008.9HmR P P ρ+=破井控有关计算:最大允许关井套压经验公式:表层套管[Pa]=11.5%×表层套管下深(m )/10 MPa 技术套管[Pa]=18.5%×技术套管下深(m )/10 MPa地层破裂压力梯度:HPG RR 1000=KPa/m最大允许关井套压:8.000981.01000max ⨯⎪⎪⎭⎫⎝⎛-=H H G P R a 套套ρ Mpa 最大允许钻井液密度:81.9'max G R=ρ-0.06 (表层)81.9'maxGR=ρ-0.12 (技套)套管在垂直作用下的伸长量:10724854.7-⨯-=∆LmL ρ式中:ρm-钻井液密度 g/cm 3 L ∆ -自重下的伸长 mL -套管原有长度 m 套管压缩距:()ρρmL LLE L 总钢固自-⨯=∆10式中:L ∆ -下缩距 m L自-自由段套管长度 mL固-水泥封固段套管长度 m L总-套管总长 mρ钢-钢的密度 7.85g/cm 3ρm-钻井液密度 g/cm 3E -钢的弹性系数 (2.1×106kg/cm 3)泥浆有关计算公式:1、加重剂用量计算公式:()rr r r r 重加原重原加加-=-V W 式中:W 加 -所需加重剂重量 吨 V 原 -加重前的泥浆体积 米3r原、r重、r 加 -加重前、加重后、加重材料比重 g/cm 32、泥浆循环一周时间:QT V V 60柱井-=式中:T -泥浆循环一周时间 分 V 井、V 柱 -井眼容积、钻柱体积 升 Q -泥浆泵排量 升/秒 3、井底温度计算公式:1680H T T += 式中:T 、T 0 -井底、井口循环温度 o C H -井深 米 4、配制泥浆所需粘土和水量计算: 粘土量 ()rr r r r 水土水泥泥泥土-=-V W水量r土土泥水-=W VQ 式中:W 土 -所需粘土的重量 吨 V 泥 -所需泥浆量 米3r 水、r 土、r 泥 -水、土和泥浆的比重 g/cm 3 Q 水 -所需水量 米35、降低比重所需加水量: ()rr r r r 水稀水稀原原水=--V Q式中:Q 水 -所需水量 米3 V 原 -原泥浆体积 米3r 原、r 稀、r 水 -原泥浆、稀释后泥浆和水的比重 g/cm 3。
高温高压高产井DST过程中井底流压及井口回压的计算
高温高压高产井DST过程中井底流压及井口回压的计算张华卫;郑德帅;令文学【摘要】In period of DST testing,in order to complete the task of testing,some tools,which are controlled by annulus pressure and have different purpose,are added into the DST string.For high temperature,high pressure and high productivity wells,the parker fluid also has high weight because of the high formation pressure of formation which istested,however,the production fluid in the string always has lower weight and the components of the fluid is complex,so the weight of crude oil cannot simply be used as the weight of production fluid.In order to prevent the collapse of the testing string,the calculation method of flowing bottom pressure,internal and external pressure of testing string and the minimum wellhead pressure to avoid the collapse of string,which uses the different wellhead pressures and productivities of different choke,the final wellhead pressure of build-up period and the properties of production fluid,is given in this article.The method is verified by well testing data of two wells in A oilfield,the computation error can meet the requirement of site operation.%DST测试期间,为了完成测试任务,通常通过油套环空加压的方式来控制井下不同目的的测试工具.对于高温高压高产井,由于地层压力高,环空使用的液体的密度可能比较高,而测试管柱内,液体组分比较复杂不能简单的使用原油的密度进行计算.为了防止测试管柱的挤毁,文中提出了使用不同油嘴下的井口压力值,测试产量,关井压力恢复过程中的井口压力以及流体性质计算测试期间井底流压,测试管柱内外压,以及防止测试管柱被挤毁而需要施加的最小的井口回压的计算公式.通过使用A油田2口井的DST的测试数据,进行了验证,公式的精度可以满足现场作业的要求.【期刊名称】《科学技术与工程》【年(卷),期】2017(017)023【总页数】5页(P179-183)【关键词】DST测试;井口压力;井底流压;管柱挤毁【作者】张华卫;郑德帅;令文学【作者单位】中国石化石油工程技术研究院,北京100101;中国石化石油工程技术研究院,北京100101;中国石化石油工程技术研究院,北京100101【正文语种】中文【中图分类】TE272高温高压高产井在DST测试过程中,根据不同的测试目的[1,2],在测试管柱中会加入LPR-N阀、OMNI阀、RD安全循环阀、RD阀等测试工具。
第2章 井下各种压力的概念及其相互关系
第二章 井下各种压力的概念及其相互关系一 压力压力是井控工作中最主要的概念之一。
正确理解井下各种压力的概念及其相互关系对于掌握井控技术和防止井喷是非常重要的。
1、压力的定义压力也称压强,是指物体单位面积上所受的垂直力。
2、压力的数学表达式SF P 式中:P —压力,N/m 2F —作用于面积S 上的垂直力,NS —面积,m 23、压力的单位及换算压力的国际标准制单位是帕斯卡,简称帕,符号是Pa 。
1帕就是1 m 2面积上受到1N 的垂直力时形成的压力,即 1Pa = 1 N/m 2压力的单位帕是一个相对较小的单位。
为了现场应用的方便,常使用千帕(KPa)和兆帕(MPa)两个单位,即1 MPa=1000 KPa=106 Pa与过去常用的工程大气压(kgf/cm 2)的换算关系是1 MPa= 10.194 kgf/cm2 1 kgf/cm 2= 98.067 KPa粗略计算时,可认为1 kgf/cm 2 = 100 KPa = 0.1MPa另外,压力的国际工程单位是巴(bar),1bar=1.01972kgf/cm 2 英制中,压力的单位是psi 。
1psi 即1平方英寸面积上受到1磅的垂直力。
与兆帕的换算关系是 1000psi= 6.895MPa二静液压力1、静液压力的定义静液压力是由静止液体的重力产生的压力。
其大小取决于液体的密度和液体的垂直高度,与液体的断面形状无关。
2、静液压力的计算P=ρgH式中:P--静液压力,MPaρ--液体密度,g/cm3g--重力加速度,0.00981H--液柱的垂直高度,m在陆上钻井作业中,H为井眼的垂直深度,起始点自转盘面算起,液体的密度为钻井液的密度。
例1 某井钻至井深2000米处,所用钻井液密度为1.2 g/cm3,求井底处的静液压力。
解:P=ρgH = 1.2×0.00981×2000 = 23.5 MPa三地层压力1、地层压力的定义地层压力是指地下岩石孔隙内流体的压力,也称孔隙压力。
采油地质工常用计算公式
1、=储采比当年采油量上年剩余可采储量2、容积法计算地质储量公式oi N =oioi oi B S Ah ρφ1003、井组碾平有效厚度233211水h h h h H +++= 4、含油体积=含油面积×有效厚度 5、小区块体积百分比=%100⨯储量单元体积小区块体积6、小区块储量=储量单元储量×小区块体积百分比7、区块储量=第一小区块储量+第二小区块储量+…第n 小区块储量 8、采油速度=%100⨯动用地质储量年产油量9、折算年采油速度=%100365%100⨯⨯=⨯动用地质储量当月日产油水平动用地质储量折算年产油量10、采出程度=%100⨯动用地质储量累积产油量11、可采储量采出程度=%100⨯可采储量累积产油量12、采收率%100*地质储量可采储量=13、最终采收率%100⨯地质储量油田总采油量14、日产油水平当月日历天数月实际产油量=15、平均单井日产油水平()油井开井数日产油水平开发区油田=16、日产油能力=油田内所有油井(不包括暂闭和报废井)应该生产的日产油量的总和17、折算年产油量3651212365365⨯=⨯=⨯=月份的日历天数月份的月产油量该月日历天数月产油量日产油量18、月平均日产油量当月实际生产天数月实际总产油量=19、年平均日产油量全年实际生产天数全年实际总产油量=20、综合生产气油比月产油量月产气量=21、累积生产气油比累积产油量累积产气量=22、采油指数流压静压日产油量-=23、采液指数流压静压日产液量-=24、比采油指数有效厚度生产压差日产油量⨯=25、采油强度油井油层砂岩厚度油井日产油量或者也可油井油层有效厚度油井日产油量==26、输差%100⨯-=井口产油量核实产油量井口产油量27、水油比日产油量日产水量=当水油比达到49时,称为极限水油比;当含水率达到98%时称为极限含水率。
28、产量递减幅度%100⨯=上阶段产量本阶段产量29、递减百分数%100⨯-=上阶段产量本阶段产量上阶段产量30、综合递减率%100)(1211⨯⨯--⨯=Tq Q Q T q o o31、自然递减率%100)(13211⨯⨯---⨯=Tq Q Q Q T q o o预测下一年的未措施产量N 未=(1-D 自)N 去预测下一年措施增量N 措=N 去×(1-D 综)-N 去(1-D 自) 32、单井含水率%100⨯=油样的重量油样中水的重量33、平均综合含水率%100%100⨯=⨯=产液量之和产水量之和液量含水及不含水井的总产各含水油井产水量之和34、综合含水率%100⨯=月产液量月产水量35、月含水上升速度=当月综合含水率-上月综合含水率36、年含水上升速度=当年12月综合含水率-上年12月综合含水率 37、年平均月含水上升速度()()月年含水率上升值12%=38、含水上升率%100⨯--=阶段初采出程度阶段末采出程度阶段初含水率阶段末含水率率%100%100⨯=⨯-=年采油速度年含水上升值采油速度阶段初含水率阶段末含水率39、注水强度水井油层砂岩厚度日注水量或者也可水井油层有效厚度日注水量==40、吸水指数压力差两种工作制度井底注水量之差两种注水压力下日注水注水井静压注水井流压日注水量=-=41、视吸水指数井口压力日注水量=42、注采比油井产水体积原油相对密度原油体积系数采油量注水井溢流量注水量+⨯-=43、原油的换算系数原油相对密度原油体积系数=44、累积注采比累积产水体积原油换算系数累积采油量累积注水量+⨯=45、四点法面积注水井网注采比 1)以注水井为中心的注采比IPR 61613131∑∑==⨯+⨯⨯=i i W Oi AQ M Q Q2)以采油井为中心的注采比IPR ()WOi C B A Q M Q Q Q Q +⨯++⨯=6146、五点法面积注水井网注采比 1)以注水井为中心的注采比IPR ∑∑==⨯+⨯⨯=41414141i W i Oi AQ M Q Q2)以采油井为中心的注采比IPR ()Woi D C B A Q M Q Q Q Q Q +⨯+++⨯=4147、反九点法面积注水井注采比 1)以注水井为中心的注采比 IPR ∑∑∑∑====⨯+⨯⨯+⨯+⨯⨯=8282828241412121i i i i W oi W oi AQ M Q Q M Q Q2)以边井为中心的注采比IPR ()woi B A Q M Q Q Q +⨯+=613)以角井为中心的注采比IPR ()Woi D C B A Q M Q Q Q Q Q +⨯+++=12148、七点法面积注水井注采比1)注水井为中心注采比IPR ∑∑==⨯+⨯⨯=31316161i i w oi AQ M Q Q2)以采油井为中心注采比IPR woi i Q M Q Q +⨯=∑=613149、混合液密度()W W W W f f ρρρ⨯-+⨯=1液50、水驱控制程度%100⨯=油井总有效厚度油井有效厚度与水井有效厚度连通的或者也可用砂岩厚度来计算%100⨯=油井总砂岩厚度通的砂岩厚度与水井砂岩厚度连通连以采油井为中心的水驱控制程度为一个方向、两个方向和多个方向的水驱控制程度 51、累积亏空体积⎪⎭⎫⎝⎛+⨯-=累积产出水体积原油相对密度原油体积系数累积产油量累积注入体积52、注水利用率(存水率) 存水率%100⨯-=累积注水量累积产水量累积注水量53、水驱指数累积产油量累积产水量累积注水量-=54、关于压力方面的计算总压差=目前地层压力-原始地层压力 地饱压差=地层压力-饱和压力 流饱压差=流压饱和压力生产压差=目前地层压力-流动压力注采压差=注水井井底压力(流压)-采油井井底压力(流压) 注水压差=注水井井底压力-地层压力55、工程指标计算抽油泵理论排量=液ρπ144042SN D抽油泵泵效=%100⨯理论实Q Q抽油机实际扭矩M=30S+0.236S(P 大-P 小) 扭矩利用率%100⨯最大实M M电机功率φcos 3UI = 功率利用率%100⨯名牌最大功率实际功率56、聚合物指标计算 1)注入速度油层总孔隙体积年注入聚合物溶液量=2)注入孔隙体积倍数(注入程度)油层总孔隙体积累积注入聚合物溶液量=3)聚合物用量入浓度聚合物溶液累积平均注油层总孔隙体积累积注入聚合物溶液量⨯=4)聚合物溶液注入浓度聚合物注入溶液量聚合物注入干粉量=单位换算:1m 3=103L ,1t=109mg聚合物干粉量m 3×mg/L=103L ×10-9t/L=10-6t 5)吨聚合物增油量量层累积注入聚合物干粉区块内聚合物驱油目的层累积增油量区块内聚合物驱油目的=6)区块内聚合物驱油目的层阶段采收率提高值%100⨯=区块内目的层地质储量层累计增油量区块内聚合物驱油目的7)累积节约用水量=注入孔隙体积倍数-实际注入孔隙体积倍数8)油层总孔隙体积()()()油层有效孔隙度区块油层有效厚度区块面积φh S 210= 9)地质储量区块油层有效厚度区块面积单储系数⨯⨯=。
油田开发动态分析主要技术指标及计算方法
指标及计算方法1.井网密度油田(或区块)单位面积已投入开发的总井数即为井网密度。
f=n/A02.注采井数比注采井数比是指水驱开发油田(或区块)注水井总数和采油井总数之比。
3.水驱控制程度注水井注水能够影响到的油层储量占油层总储量的百分数。
水驱控制程度=注水井联通的厚度/油层的总厚度*100%由于面积注水井网的生产井往往受多口注水井的影响,因此,在统计井网对油层的水驱控制程度时还要考虑联通方向。
不同注水方式,其注采井数比不同,因而注水井对油层的水驱控制程度也不同。
一些分布不稳定,形态不规则,呈透镜状分布的油层,在选择注水方式时,应选择注水井数比较大的注水方式,以取得较高的水驱储量控制程度。
该指标的大小,直接影响着采油速度,含水上升率,最终采收率。
中高渗透油藏(空气渗透率大于50*10-3 um2)一般要达到80%,特高含水期达到90%以上;低渗透油藏(空气渗透率小于50*10-3 um2)达到70%以上;断块油藏达到60%以上。
4.平均单井有效厚度油田(或区块、或某类井)内属同一开发层系的油水井有效厚度之和与油水井总井数的比值为平均单井有效厚度。
5.平均单井射开厚度油田(或区块、或某类井)内属同一开发层系的油水井射孔总厚度与油水井总井数的比值为平均单井射开厚度。
6.核实产油量核实产油量由中转站、联合站、油库对管辖范围内的总日产油量进行计量,由此获得的产油量数据为核实产油量。
7.输差输差是指井口产油量和核实产油量之差与井口产油量之比。
K=(q ow-q or)/q ow8.核实产水量核实产水量用井口产水量和输差计算。
q wr=q ww(1-K)9.综合含水油田(或区块)的综合含水是指采出液体中水所占的质量百分数。
f w=(100*q wr)/(q wr+q or)-1- 低含水期(0<含水率<20%):该阶段是注水受效、主力油层充分发挥作用、油田上产阶段。
要根据油层发育状况,开展早期分层注水,保持油层能量开采。
气井油套合采时井底流压的计算方法
表 1 不同产量下两种方法计算结果对比表
日产气量 / m3
迭代法
qr 计算结果 近似法
误差 / %
迭代法
p w f 计算结果 / M Pa
近似法
误差 /%
50000 100000 200000 500000
1. 604 1. 605 1. 605 1. 606
1. 715 1. 715 1. 715 1. 715
6. 920 6. 854 6. 854 6. 787
17. 575 17. 597 17. 690 18. 348
17. 574 17. 595 17. 681 18. 235
0. 039 0. 07 0. 335 3. 375
注: 相对误差是指井底流压的绝对误差与井筒压降之百分比
运用流体力学原理将气井油套台采简化假设成并联管路流动基于油管生产和油套环空生产时井底流压的计算睿式椎导了油套告采时油管和油套环空的产量分配公式通过分析公式中各项的权重得出油管和油套环空产量分配的简化式从而将油套台采对井底鹿压计算转化成油管生产或油套环空生产时井底流压的计算
第 23 卷 第 5 期 2001 年 10 月
摘要: 气井井底流压是分析气井生产动 态的重 要参数之 一, 目前国内 外很少 报道油 套合采 时井底 流压 的计算 方法。
运用流体 力学原理, 将气井油套合采简化假设成 并联管 路流动, 基于 油管生 产和油 套环空 生产时 井底流压 的计算 公
式, 推导了油套合采时油管和油套环空的产量分配公 式, 通过分析公式中 各项的权重, 得出 油管和油套 环空产量 分配
油管内径 / 英寸
油管外径 / 英寸
煤层气井两层合采气水同产井底流压计算方法
第44卷第4期新疆石油地质Vol.44,No.42023年8月XINJIANG PETROLEUM GEOLOGY Aug.2023文章编号:1001-3873(2023)04-0497-13DOI :10.7657/XJPG20230415煤层气井两层合采气水同产井底流压计算方法张鹏1,曾星航2,郑力会1,张吉辉3,王相春1,彭小军1(1.中国石油大学(北京)石油工程学院,北京102249;2.中国石化石油工程技术研究院有限公司,北京102206;3.中国石油新疆油田分公司勘探开发研究院,新疆克拉玛依834000)摘要:井底流压是确定煤层气井合理工作制度,进而实现长期稳产的关键影响因素。
针对定质量模型不考虑储集层段加速度压降和不同井段质量变化导致不符合两层合采特性,以及采用下部储集层井底流压作为2个储集层井底流压来调节生产制度导致不符合上部储集层调节需求的问题,对加速度压降表达式进行了分解和推导,建立了其与单位长度径向流量的关系式,推导了含径向流入的储集层段压降公式;将储集层分成多个微元段,建立了每个微元段的压降计算方法;根据各井段气水流量,推导了相应的气相和水相速度计算方程;将上述方程结合,建立了变质量模型。
将生产数据分别代入变质量模型和定质量模型,气水同产时,变质量模型的误差为2.96%~6.67%,定质量模型的误差为7.33%~15.10%,变质量模型更加准确。
2个储集层的井底流压相差较大,最大相差47.3%,因此需要根据各自的井底流压调节生产制度。
变质量模型能够准确给出合采各层的井底流压,更符合现场实际,同时也避免了采用相同井底流压导致无法精准调节2个储集层生产制度的问题,从而为制定最优化排采制度、实现高产稳产提供技术支撑。
关键词:煤层气井;两层合采;井底流压;定质量模型;变质量模型;加速度压降;变流量速度公式中图分类号:TE37文献标识码:A©2018Xinjiang Petroleum Geology.Creative Commons Attribution-NonCommercial 4.0International License收稿日期:2022-09-20修订日期:2022-10-21基金项目:国家科技重大专项(2016ZX05066-002-001)第一作者:张鹏(1980-),男,陕西渭南人,博士研究生,煤层气开发,(Tel )183****1053(E-mail )********************A Calculation Method of Bottomhole Flowing Pressure in Coalbed Methane Wells With Double⁃Layer Commingled Production in Gas⁃Water Co⁃Production StageZHANG Peng 1,ZENG Xinghang 2,ZHENG Lihui 1,ZHANG Jihui 3,WANG Xiangchun 1,PENG Xiaojun 1(1.School of Petroleum Engineering,China University of Petroleum,Beijing 102249,China;2.Petroleum Engineering Technology Research Institute Co.,Ltd.,Sinopec,Beijing 102206,China;3.Research Institute of Exploration and Development,Xinjiang Oilfield Company,PetroChina,Karamay,Xinjiang 834000,China )Abstract :Bottomhole flowing pressure (BHFP)is a key factor determining the rational production system of coalbed methane (CBM)wells for purpose of long⁃term stable production.The constant mass model (CMM)is not applicable to the wells with double⁃layer commingled production,since it does not consider the acceleration pressure drop (APD)in the reservoir interval and the mass variation in well sections.Additionally,the BHFP in the lower reservoir is taken as a control parameter for the two intervals,which does not meet the adjustment re⁃quirements of the upper reservoirs.In this paper,the APD expression was decomposed and derived,the relationship between APD and the radial flow rate per unit length was established,and the pressure drop formula for the reservoir interval with radial inflow was derived.The reservoir was divided into multiple intervals,and the pressure drop calculation method for each interval was established.Based on the gas/water flow rates in each well section,the corresponding equations for calculating gas/water phase velocities were bining the above equations,a variable mass model (VMM)was established.The production data were input into the VMM and CMM for comparative verification.The results show that when gas and water are co⁃produced,the error of the VMM is 2.75%-6.58%,while the error of the CMM is 7.15%-15.18%,indicating that the VMM is more accurate.The BHFP differs significantly in the two reservoir intervals,with the maxi⁃mum difference of 47.3%.Therefore,it is necessary to adjust the production system depending upon the respective BHFP of the two reser⁃voirs.The VMM can accurately provide BHFP for each commingled interval,so it agrees more with the field conditions.It also avoids the problem of using the same BHFP for both intervals,which hinders precise adjustment of the production system.Thus,the new model pro⁃vides a technical support for developing optimal production strategies and achieving high and stable production.Keywords :coalbed methane well;double⁃layer commingled production;BHFP;constant mass model;variable mass model;accelerationpressure drop;variable flow rate formula全球已发现的煤层气储量占天然气总储量的30%以上,中国的煤层气资源总量约占天然气资源总量的41%[1-3]。
第2章 井下各种压力的概念及相互关系
第二章井下各种压力的概念及相互关系压力是井控的最主要的基本概念之一,正确理解压力及压力之间的相互关系,对于掌握井控技术和防止井喷事故的发生是非常重要的。
一、压力所谓压力是指:物体单位面积上所受的在垂直力。
压力的国际单位是帕,符号是(Pa),1Pa是1m2面积上受到1N 的垂直力时形成的压力。
即:1 Pa = 1 N / m2根据需要,工程上常用千帕(kPa)和兆帕(MPa)表示。
它们的换算关系是: 1 kPa=1⨯103 Pa1 MPa =1⨯106 Pa1 MPa =1⨯103 kPa1 bar=1⨯105 Pa粗略计算时,可认为1kgf/cm2 =10kPa=0.1Mpa,其误差约为2%。
压力的英制单位为psi,1psi是每平方英寸面积上承受1磅的力时所形成的压力。
1 psi = 6.895 kPa1 MPa = 145 psi二、静液压力静液压力是由静止液体重力产生的压力。
由于流体具有特殊的性质,允许我们使用更随便的计算式。
静液压力是液柱密度和垂直高度的函数,其大小取决于液柱密度和垂直高度。
即Р=ρgH (2—1)式中Р ——静液压力。
kPa;g ——重力加速度,9.81m/s2;ρ——液体密度,g/cm3;H ——液柱高度,m 。
三、压力梯度为了讨论问题和应用的方便,油田上普遍使用压力梯度的概念。
压力梯度指的是;每增加单位垂直深度压力的变化量,即每米垂直井深压力的变化值或每10m垂直井深压力的变化值。
其计算公式为G=P/H=gρ (3——2)中式G ——压力梯度,kPa/m;P——压力,kPa或MPa;H——垂直深度,m或km。
用这个压力梯度的定义,静液压力公式也可以写成:静液压力=压力梯度×垂直深度压力梯度按定义为每米井深的压力增量。
以水为例,井眼每加垂深1m,静液压力就增加9.81 kPa,垂深每增加10m,静液压力就增加98.1kPa。
四、压力的表示法这里有必要把我国钻井现场有关压力的表示方法加以说明。
油藏工程常用计算公式
g gi
g
ZiT
气体的偏差系数由下式计算
3.52 p 0.274 p2
Ζ =1−
pr +
pr
10 10 T 0.9813 pr
T 0.8157 pr
p p = gi
p pr pc
=T
T pr T pc
注意,在上面公式中,压力的单位为 psi,温度单位为°R
(460+℉) 或(273+℃)
对于干气和凝析气的拟临界压力和拟临界温度,可分别由下列的相关经验公式计算: 干气为:
GEw
=V
=
nRTsc p sc
=
350.5 ×1.00 × 10.73× 520
18
14.7
= 7390 标准呎 3/地面桶
迈尔卡斯、鲍伊德和瑞德的研究指出,在普通地层温度和普通原始地层压力下,地层气中每 百万标准呎 3 气体蒸汽含量仅为几分之一桶,在 4000psi 和 220℉时,每百万标准立方呎的 含水量为 1.00 桶,而在 1500psi 和 220℉下,水含量接近 2.00 桶。从墨西哥湾北岸的气藏 生产数据来看,每采出 100 万标准立方英尺气体时采出 0.64 桶水,而根据上述三人的数据, 地层水的含量约为 1.00 桶/百万立方英尺,这个差值可能就是在分离器压力和温度条件下的 蒸汽相中的含水量。这种水大部分只能在脱气时才能去掉。当地层压力递减时,这种水的含 量将增加到每百万立方英尺 3 桶。由于所增量是从束缚水的蒸发而来,似乎可以认为,凡超 过原始淡水量采出的淡水都应看做是产出水,当然,如果水是含盐的,那就真正是采出的水 了;然而它仍包含了一部分(每百万标准呎 3 气体蒸汽含量仅为几分之一桶)来源于气相的 水量。
V V = f
一种计算油井井底流压的新方法
一种计算油井井底流压的新方法叶雨晨;杨二龙;齐梦;隋殿雪【摘要】油井的井底流压是影响油田的生产能力和油田调整方案的重要参数之一,也是进行油气井动态分析的基础,直接控制井的生产能力.但实际应用中由于地层条件的复杂性,现在并没有一个系统的方法能十分准确的计算出井底流压.在液面折算法计算井底流压的基础上,将油套环形空间中流体分为气柱段、油气段、油气水段三种不同流动形态,研究不同流动形态下混合液密度与压降梯度的关系,采用分段计算模式,应用微积分方法计算油井的井底压力.现场试验结果表明,该方法计算的抽油井井底压力与压力计实测压力值平均相对误差为8.54%,可以满足现场实际需求.%Bottom-hole pressure is one of the important parameters that affect oil production capacity and the adjustment scheme of oil field.It is also the basis of dynamic analysis of oil and gas wells,and the production capacity of the well is controlled directly.However,due to the complexity of the formation conditions,there is not a systematic method to calculate the bottom hole flow pressure.Based on level conversion method,the fluid in the annular space of an oil sleeve is divided into three different flow patterns of gas column,oil and gas and oil gas water.The field test results show that the average relative error between the measured pressure value and the measured pressure value of the pumping well bottom hole pressure of the pressure gauge is 8.54%,which can meet the actual needs of the field.【期刊名称】《石油化工高等学校学报》【年(卷),期】2017(030)005【总页数】5页(P55-59)【关键词】抽油井;流压;混合液密度;程序设计【作者】叶雨晨;杨二龙;齐梦;隋殿雪【作者单位】东北石油大学石油工程学院,黑龙江大庆 163318;东北石油大学石油工程学院,黑龙江大庆 163318;东北石油大学石油工程学院,黑龙江大庆163318;大庆油田第四采油厂,黑龙江大庆 163318【正文语种】中文【中图分类】TE3191.1 气柱段压力计算目前国内大部分油田处于地层压力下降、地层亏空的状态,在环空内气量相对较大。
煤层气井底流压计算方法
煤层气井井底流压分析及计算2010-12-14杨焦生王一兵王宪花摘要:煤层气井井底流压的大小直接决定煤层气产量的大小,为了获得高产,必须清楚认识井底流压并精确计算其数值。
根据垂直气液两相环空管流理论,首先描述了煤层气的环空流动特征及井底流压的组成部分;结合现场生产测试资料,采用Hasan-Kabir解析法和陈家琅实验回归两种方法计算了井底流压值,并分析了其与气体流量的关系。
结论认为:①油套环空中流体由上而下分为纯气体段、混气液柱段(高含气泡沫段和普通液柱段),井底流压为套压、纯气柱压力及混气液柱压力三者之和;②两种方法计算的井底流压值大体相同,与实测值误差小,精度高;③井底流压与气体流量呈负相关关系,而且随着井底流压下降,压降漏斗不断扩大,井底流压下降相同的数值能产出更多的煤层气。
关键词:煤层气;井底压力;流动压力;流体流动;环形空间流动;生产制度;流量;计算在煤层气井的生产过程中,井底流压是影响产气量的独立参量,稳定的产气量的大小将实际受控于井底流压和排水量,这是制订合理的排采制度的基础。
煤层气井排水采气井井底流压由套压、油套环空纯气柱压力和混气液柱压力3部分组成,其中混气液柱的压力计算是难点。
国内外学者都对此进行了研究,在理论推导和实验模拟的基础上,建立了多种不同的计算模型和方法[1~2]。
笔者考虑到煤层气井生产的特殊性,充分分析其垂直环空管流特征的基础上,借鉴Hasan-Kabir推导的井底流压解析公式和陈家琅室内模拟实验回归结果,计算了环空混气液柱的压力梯度,进而获得了井底流压值。
在此基础上,讨论了计算方法的适用性和精度,并对计算结果进行了对比分析。
这些成果有利于深化对煤层气井生产过程的认识及控制。
1 井筒流动特征及井底流压组成煤层气井投产后,初期只产水。
随着排水降压的进行,当井底流压低于临界解吸压力时,井筒附近煤层表面的吸附气开始解吸并扩散到煤层割理、裂缝中,随着解吸气量逐渐增多,在水中形成连续气泡,气体突破形成流动相,从煤层裂隙流入井筒油套环形空间产出。
录井常用计算方法
波动压力的计算1. 概述钻具在井内钻井液中运动,引起井底压力变化,压力增加时称为“激动压力”或者“冲击压力”,压力减小时称为“抽吸压力”。
钻具上提时抽吸,钻具下降时冲击。
钻进时因钻具速度较小,这种附加的波动压力较小。
起下钻时钻具速度较大,波动压力较大,不能不加以考虑,并且引起足够重视,因为波动压力是引起井涌井漏井喷和井眼垮塌的重要原因。
2. 钻液静切力引起的波动压力钻具起动时,必须克服钻液静切力才能相对运动,根据力的平衡关系,可以推出其波动压力。
计算公式为:式中:波动压力,帕(起钻取负值,下钻取正值)钻液静切力,帕L 管柱长度,米、井眼直径、管柱外径,米3. 钻液吸附性引起的波动压力管柱移动带动钻液的流动,流速大小影响波动压力大小。
关注速度可以用现场实际值,可取最大值,也可用下式纪算,式中认为最大速度时平均速度的1.5倍。
式中:速度(起钻取负值,下钻取正值)平均速度管柱外径井眼内径管柱内径钻液黏附常数,通常为0.450.5,环空间隙较小取0.5注:划眼时:式中:流量然后计算临界流速,判定流态。
临界流速:式中:钻井液密度钻液溶性指数钻液稠度系数当为紊流,为层流。
层流波动压力:紊流波动压力:式中:临界流速,米波动压力,帕钻液密度,稠度系数,流行指数,无因次井径,米钻具外径,米L 钻具长度,米4. 惯性力引起的波动压力钻柱起动和停止时的加速度引起波动压了。
当管口堵死时:当管口开启时:式中:波动压力,帕起钻加速,取负值;起钻减速取正值;下钻加速,取正值;下钻减速取负值。
密度,L 长度,米加速度,管柱外径,米井眼内径,米管柱内径,米5. 小结波动压力的计算,要根据不同环空段分段计算,再求出总和。
三种波动压力不是发生在同一时刻,因此要分时计算,选用数值最大者加以考虑安全因素。
有以下结论:钻具越长,环空间隙越小,波动压力越大。
n值对波动压力影响较大,n增加一点,P会增加数倍。
控制钻具速度和加速度,可以减小波动压力,增加安全因素。
利用动液面折算井底压力方法
G89-4气井:在压力20MPa左右时,气柱段压力梯度为0.21MPa/100米。 说明这时气柱压力不能忽略。
气柱压力:是气体比重、套压、深度和温度的函数。 可用图、表手段确定。 也可用经验公示计算:
公式一:(吉林油田采油二厂)
P气柱=P套*8.202*10(-5)*L
P套--------套压,MPa;L----------液面深度,米;
起出压力计 14:25 8.2 0.6 温度梯度 (℃/100m)
套压 Mpa 油压 MPa 下入深度/垂深 (m) 477.1/477.085 777.1/777.06 1077.1/1076.68 1277.1/1274.20 1477.1/1454.10 1577.1/1529.23 1677.1/1601.12 1777.1/1671.80
原油密度的温度修正(辽河钻采院经验公式)
ρ0T= ρ
20+(13.561-0.191*C1)/1000-(63.9-0.87*C1)/100000*T
1.02;
其中: ρ0T---对应温度T时托起原油密度; ρ20----20℃时地面脱气原油密度;
c1=INT[100*(ρ20-0.8001)];
0.9998 0.9999 0.9994 0.9988 0.998 0.9968 0.9955 0.9936 0.9922 0.9902 0.988 0.9857 0.9833
65 70 75 80 85 90 95 100 105 110 115 120 125 130
0.9806 0.9779 0.9749 0.9719 0.9687 0.9654 0.962 0.9584 0.9548 0.951 0.9471 0.9431 0.939 0.9348
试论油井合理井底流压计算方法
试论油井合理井底流压计算方法发布时间:2021-03-16T11:31:27.547Z 来源:《中国科技信息》2021年1月作者:郑秀娟唐子珍何玉芹[导读] 由于地层内部情况复杂,不能对井底流压进行直接测量,只能通过已知的各种经验和生产数据,经过各种计算得到井底流压的估算值。
流压与沉没具有很好的线性关系然而井底流压的大小对于反应地层能量和地层供液能力的大小、地层能量的补充情况和油气井产量是至关重要的。
影响井底流压的因素很多,现场应用中只考虑单一因素,导致判定的井底流压有一定误差,因此要寻找准确合理的井底流压计算方法,就必须把能影响井底流圧大小的所有因素河口采油厂管理七区郑秀娟唐子珍何玉芹摘要:由于地层内部情况复杂,不能对井底流压进行直接测量,只能通过已知的各种经验和生产数据,经过各种计算得到井底流压的估算值。
流压与沉没具有很好的线性关系然而井底流压的大小对于反应地层能量和地层供液能力的大小、地层能量的补充情况和油气井产量是至关重要的。
影响井底流压的因素很多,现场应用中只考虑单一因素,导致判定的井底流压有一定误差,因此要寻找准确合理的井底流压计算方法,就必须把能影响井底流圧大小的所有因素考虑清楚。
关键词:油田开发;合理流压;计算方法;优化参数经过多年的开发,油田已经进入特高含水期开发阶段,油井呈现采出程度高、含水高的特点。
通过加强注水、提高注水质量、加密井网、多次布井、调整注采系统、改变生产方式以及大面积推广驱油技术,可采储量不断增加,保持了旺盛的生产能力,取得了较好的开发效果。
随着开发条件发生重大变化,水驱含水上升控制难度加大,传统的合理流压确定方法已经不适应目前开发和现场生产需要。
1原流压计算方法在现实的油井开发过程中,每当井底的流压出现增加之时,尤其就是明显的大于了饱和压力的时候,在此时,含油层里由于受到饱和压力的影响,而使得井底中原油流动出现变化,一般都表现为单相的水油流动,而含油层中的原油则将不会受到任何影响,不会因此出现改变,这也与油气开启的线性渗流这一法则,而这一情况则也达到了达西定律基本要求。
高温高压气井关井期间井底压力计算方法
高温高压气井关井期间井底压力计算方法尹邦堂;李相方;李骞;范坤;胡爱荣【摘要】In the conventional method of bottomhole pressure prediction it is assumed that the wellhead pressure is affected by the wellbore storage at the beginning of pressure buildup and by the afterflow in the late stage because of the temperature drop. And it is also assumed that there is no fluid flow in the wellbore after shut-in. However, according to testing results of some high pressure and high temperature wells in Kela-2 Gas Field,there was a pressure drop in the wellhead pressure build-up curve which is different from the conventional pressure build-up curve. The changing characteristics of wellbore temperature, the wellbore afterflow and the fluid parameters during the pressure build-up test then were analyzed. It is believed that the wellhead pressure or bottomhole pressure would be affected by both wellbore storage and wellbore temperature simultaneously. And there was afterflow in the wellbore during the whole test. So, the bottomhole pressure needs to be calculated by the flowing pressure equation. Based on the wellbore pressure buildup theory,the bottomhole pressure calculating model is established considering the effect of wellbore afterflow, the wellbore temperature changing and the fluid parameters changing. Taking one gas well for example, the pressure buildup curve calculated by this model is normal,and it can be applied for interpretation in the deliverability test.%常规的井底压力预测方法认为,气井关井后压力恢复初期井口测压受到井筒储集效应影响,后期受温度降低引起的续流影响,并且在压力恢复期间井筒中不存在流体的流动.但是,新疆克拉2气田部分高温高压气j的实测结果表明,关井后测得的井口压力恢复曲线总体呈下降趋势,与常规方法所计算的压力曲线并不一致.对高温高压气井关井后的井筒温度特征、井筒续流特征和井筒流体参数变化特征进行了分析,认为,关井期间井口(底)压力同时受到井筒储集效应和温度变化的影响,并且在压力恢复过程中井筒内一直存在续流流动,需要进行流动气柱压力计算.为此,综合考虑井筒续流、井筒温度及井筒流体参数的变化特征,基于井筒压力恢复原理,建立了关井期间的井底压力计算模型,并对该模型进行了实例计算验证.实例验证表明,该模型计算出的压力恢复曲线正常,可用于产能试井解释.【期刊名称】《石油钻探技术》【年(卷),期】2012(040)003【总页数】5页(P87-91)【关键词】气井;高温;高压;关井;井口压力;井底压力【作者】尹邦堂;李相方;李骞;范坤;胡爱荣【作者单位】中国石油大学(北京)机械与储运工程学院,北京102249;中国石油大学(北京)机械与储运工程学院,北京102249;中国石油大学(北京)石油工程学院,北京102249;中国石油大学(北京)石油工程学院,北京102249;中国石油塔里木油田分公司勘探开发研究院,新疆库尔勒841000;北京中油瑞飞信息技术有限责任公司,北京100007【正文语种】中文【中图分类】TE353对中低产能的常规不含水气井进行测试时,一般采用井口测压再换算成井底压力的方式,具有高效低成本的优点[1-5]。
煤层气井井底流压计算方法
煤层气井井底流压计算方法孙仁远;宣英龙;任晓霞;王楚峰;胡爱梅【摘要】The bottom-hole flow pressure (BHFP) of coalbed methane (CBM) wells is very important for production strategy designing and management performance. According to the different drainage methods and production characteristics of CBM wells, the BHFP of CBM wells was calculated by different combination methods on the basis of the conventional gas wells BHFP calculation methods. A set of software was designed for the BHFP calculation of CBM wells and the results were compared with that of actual measured in CBM wells. The relationship between the BHFP and the productions in different drainage production period were analyzed by using the field CBM production data. The research shows that the pressure of pure gas column calculated by mean temperature-mean deviation coefficient method is higher than that by Cullender-Smith method. The pressure of gas-liquid mixture column calculated by "S" curve method corrected by Podio is higher than that calculated by the J.I Chen-X.A Yue method and the Hasan-Kabir analysis method. The BHFP makes negative correlation with the CBM production when the CBM supply is rich and the CBM production increases with the decrease of BHFP. The change of BHFP with CBM production is different for different CBM production stage.%煤层气井的井底流压对于煤层气井的排采方案设计与管理具有重要的意义.借鉴常规气井井底流压的计算方法,结合煤层气井的排采方式和生产特点,采用不同的方法组合计算了煤层气井的井底流压,编制了煤层气井井底流压计算软件,并将计算结果与现场实测结果进行对比.利用现场煤层气排采数据分析了煤层气排采不同阶段井底流压与煤层气产量的关系.结果表明:对于纯气段压力的计算,平均温度-平均偏差系数法的计算值比Cullender-Smith法高;对于气液混合段压力的计算,Podio修正“S”曲线法计算出的结果比陈家琅-岳湘安法和Hasan-Kabir解析方法略高;在煤层供气充足的条件下,井底流压与产气量呈负相关关系,产气量随井底流压的降低而增加;在煤层气井排采的不同阶段,井底流压随产气量呈现不同的变化规律.【期刊名称】《石油钻采工艺》【年(卷),期】2012(034)004【总页数】4页(P100-103)【关键词】煤层气;煤层气井;井底流压;两相流【作者】孙仁远;宣英龙;任晓霞;王楚峰;胡爱梅【作者单位】中国石油大学石油工程学院,北京 102249;中国石油大学石油工程学院,山东青岛 266555;中国石油大学石油工程学院,山东青岛 266555;中国石油大学石油工程学院,山东青岛 266555;中联煤层气有限责任公司,北京 100011;煤层气国家工程研究中心,北京 100095【正文语种】中文【中图分类】TE37煤层气井井底流压的大小不仅决定着煤层气井的产能,而且影响排采设备的工作状况,是进行有效举升设计和排采设备选型的重要参数[1-2]。