第4章 原子发射光谱分析基本原理
原子发射光谱分析基本原理
原子发射光谱分析基本原理原子发射光谱分析是一种常用的分析技术,用于确定物质中不同元素的存在和浓度。
基本原理是通过激发原子使其跃迁到高能级,然后原子从高能级退回到低能级时会发射出一系列特定的频率光线,这些光线就被称为发射光谱。
本文将详细介绍原子发射光谱分析的基本原理。
当原子处于高能级时,由于能量不稳定,原子会自发地退回到低能级。
在这个过程中,原子会发射出一定频率的光线。
这是因为原子的能级结构是离散的,每个能级对应不同的能量差和光频率。
各元素拥有独特的能级结构,因此每个元素会发射出特定的频率光线,形成一种独特的光谱指纹。
发射光谱的特点是谱线的亮度与元素浓度成正比。
因此,通过测量谱线的强度可以确定样品中该元素的浓度。
发射光谱分析可以在可见光、紫外光和红外光范围内进行。
原子发射光谱分析有两种主要的测量方式:线源测量和离散源测量。
线源测量是指使用等离子体火焰或火花放电等产生连续谱的激发源。
这种方法适用于多元素分析和测量大样品数量。
离散源测量是指使用电弧放电或激光脉冲等产生谱线的激发源。
这种方法适用于单元素测量和对样品数量要求不高的分析。
然而,原子发射光谱分析也存在一些局限性。
由于发射光谱需要样品激发和发射,对样品形式和形状要求较高。
此外,元素之间的相互作用和基体效应也会对分析结果产生影响,需要进行校正和修正。
总结起来,原子发射光谱分析是一种常用的化学分析技术,适用于多元素同时分析和不同浓度的测量。
通过测量发射光谱的强度可以确定元素的浓度。
然而,这项技术也有一定的局限性,需要对样品的形态和基体进行处理和修正。
尽管如此,原子发射光谱分析仍然是一种重要的化学分析方法,广泛应用于环境监测、食品检测和地质勘探等领域。
原子发射光谱分析概述、基本原理和定性定量分析方法
物镜
准直镜
反射镜 入射狭缝
光栅 转台
AES仪器略图
光源
一 、AES光源 1. 光源种类及特点
光源
经典光源 现代光源
火焰 电弧 火花
直流电弧 交流电弧
电感耦合等离子体,ICP 激光光源
直流电弧:接触引燃,二次电子发射放电
L
E 220~380V V
5~30A
G
R
d) 谱线的自吸(self-absorption)及自蚀(self-reversal); e)e) 激发温度 T; f)f) 基态原子数 N0 或浓度 c; g) 前三项由待测物原子自身的性质决定,如核电荷数 、外层电子、轨道状态等。 h) 影响谱线强度及其稳定性最重要的的因素是温度T!
5.3 AES仪器 AES仪器由光源、单色系统、检测系统三部分组成。此
上述振荡电压 10kV(变压器B2) C2击穿 高压高频振荡 引燃分析 间隙(L2-C2-G2);
G 被击穿瞬间,低压电流使 G2 放电(通过R1和电流表) 电弧; 不断引燃 电弧不灭。
5由于原子或离子的能级很多并且不同元素的结构是不同的因此对特定元素的原子或离子可产生一系不同波长的特征光谱通过识别待测元素的特征谱线存在与否进行定性分析定性原理
原子发射光谱分析 概述、基本原理和 定性定量分析方法
5.1 概述 5.2 基本原理 5.3 AES 仪器 5.4 定性定量分析方法
1)分析对象为大多数金属原子; 2)物质原子的外层电子受激发射产生特征谱线(线光谱); 3)谱线波长——定性分析;谱线强度——定量分析。
E = E2-E1 = h =hc/
高能态E2)
2. 几个概念 激发电位(Excited potential):由低能态--高能态所需要的
原子发射光谱的分析基本原理
应用案例和实验结果
元素分析
使用原子发射光谱技术对不同 样品中的元素进行分析,例如 水、土壤和金属合金。
环境监测
质量控制
检测大气中的重金属和污染物, 以实时监测环境质量。
在制药和食品行业中使用原子 发射光谱技术进行产品质量控 制和合规性检查。
选择合适的光源和谱线
1 光源选择
2 谱线选择
3 光谱范围
根据要分析的元素选择 适合的光标元素的能级结 构,选择具有明确且强 度适中的谱线。
确定测量的光谱范围, 以确保目标元素的谱线 能够完全包含在内。
标定和校准
为了获得准确的分析结果,必须进行标定和校准。标定使用已知浓度的标准溶液,而校准使用一系列浓 度不同的标准溶液,以建立浓度和信号强度之间的关系。
光源和谱线选择
2
选择合适的光源和谱线,以使目标元
素能够发射明确的光谱线。
3
数据分析
4
对测量得到的光谱数据进行分析和解 释,以得出样品中元素的含量和分布。
样品制备
准备样品并将其转化为气态、溶液或 固态形式,以便于进一步的处理和测 量。
光谱测量
使用光谱仪器测量样品发射的光谱, 并记录光谱线的波长和强度。
检测大气、水体和土壤中的污染物,以保护环境和人类健康。
食品安全
检测食品中的重金属和其他有害物质,确保食品的安全和质量。
原子发射光谱的基本原理
1 激发和跃迁
通过能量输入将原子激发到高能级,然后跃迁回基态时会发射特定频率的光。
2 能级结构
每个元素都有独特的能级结构,导致它们发射特定的光谱线。
3 谱线特征
原子发射光谱的分析基本 原理
原子发射光谱是一种重要的光谱分析技术,它通过观察物质发射的光谱来获 取元素的信息。了解这个基本原理可以帮助我们在许多领域中应用它,例如 化学、材料科学和环境监测。
原子发射光谱原理
原子发射光谱原理
原子发射光谱法(AES),是利用原子或离子在一定条件下受激而发射的特征光谱来研究物质化学组成的分析方法。
根据激发机理不同,原子发射光谱有3种类型:
①原子的核外光学电子在受热能和电能激发而发射的光谱,通常所称的原子发射光谱法是指以电弧、电火花和电火焰(如ICP等)为激发光源来得到原子光谱的分析方法。
以化学火焰为激发光源来得到原子发射光谱的,专称为火焰光度法。
②原子核外光学电子受到光能激发而发射的光谱,称为原子荧光。
③原子受到X射线光子或其他微观粒子激发使内层电子电离而出现空穴,较外层的电子跃迁到空穴,同时产生次级X射线即X射线荧光。
在通常的情况下,原子处于基态。
基态原子受到激发跃迁到能量较高的激发态。
激发态原子是不稳定的,平均寿命为10-10~10-8秒。
随后激发原子就要跃迁回到低能态或基态,同时释放出多余的能量,如果以辐射的形式释放能量,该能量就是释放光子的能量。
因为原子核外电子能量是量子化的,因此伴随电子跃迁而释放的光子能量就等于电子发生跃迁的两能级的能量差。
根据谱线的特征频率和特征波长可以进行定性分析。
常用的光谱定性分析方法有铁光谱比较法和标准试样光谱比较法。
原子发射光谱的谱线强度I与试样中被测组分的浓度c成正比。
据此可以进行光谱定量分析。
光谱定量分析所依据的基本关系式是I=acb,
式中b是自吸收系数,α为比例系数。
为了补偿因实验条件波动而引起的谱线强度变化,通常用分析线和内标线强度比对元素含量的关系来进行光谱定量分析,称为内标法。
常用的定量分析方法是标准曲线法和标准加入法。
原子发射光谱分析基本原理
谱线检查:将试样与纯铁在完全相同条件下摄谱,将两 谱片在映谱器(放大器)上对齐、放大20倍,检查待测元素的 分析线是否存在,并与标准谱图对比确定。可同时进行多元 素测定。
2020/1/10
2020/1/10
3. 定性分析实验操作技术
1859年,基尔霍夫(Kirchhoff G R)、本生(Bunsen R W) 研制第一台用于光谱分析的分光镜,实现了光谱检验; 1930年以后,建立了光谱定量分析方法;
2020/1/10
原子发射光谱分析法的特点:
(1)可多元素同时检测 各元素同时发射各自的特征光谱; (2)分析速度快 试样不需处理,同时对几十种元素进行定 量分析(光电直读仪); (3)选择性高 各元素具有不同的特征光谱; (4)检出限较低 10~0.1gg-1(一般光源);ngg-1(ICP) (5)准确度较高 5%~10% (一般光源); <1% (ICP) ; (6)ICP-AES性能优越 线性范围4~6数量级,可测高、中 、低不同含量试样; 缺点:非金属元素不能检测或灵敏度低。
弧焰温度高 8000-10000K,稳定性好,精密度接近ICP, 装置简单,运行成本低; (2)电感耦合等离子体(inductively coupled plasma, ICP)
ICP的性能优越,已成为最主要的应用方式 ; (3) 微波感生等离子体(microwave induced plasma, MIP)
2. 炬管与雾化器
三层同心石英玻璃 炬管置于高频感应线圈 中,等离子体工作气体 从管内通过,试样在雾 化器中雾化后,由中心 管进入火焰;
外层Ar从切线方向 进入,保护石英管不被 烧熔,中层Ar用来点燃 等离子体;
第四章 光谱分析法
1.3 光分析法分类
非光谱法:利用物质与电磁辐射的相互作用测定电磁辐 射的反射、折射、干涉、衍射和偏振等基本性质变化的 分析方法。 光谱法与非光谱法的区别:
光谱法:内部能级发生变化 原子吸收/发射光谱法:原子外层电子能级跃迁 分子吸收/发射光谱法:分子外层电子能级跃迁 非光谱法:内部能级不发生变化,仅测定电磁辐射 性质改变
第四章 光谱分析法
第四章 光谱分析法 Spectrometric method
1 2
3 光分析基础 原子发射光谱分析的基本原理 AES 原子发射光谱分析仪器 发射光谱定性和定量分析 原子发射光谱法的特点和应用
4 5
1 光分析基础 Fundamental of Optical
Analysis
1.1 电磁辐射和电磁波谱 1.1.1电磁辐射(电磁波,光) 以巨大速度通过空间、不需要任何物质作为传播媒介的一 种能量形式,它是检测物质内在微观信息的最佳信使。
a
d
2.平面光栅衍射的性能指标 色散率 分辨率 聚光本领 色散方程: nλ = d(sinφ±sinφ´) A 色散率 角色散率:dφ ´/dλ = n/d cosφ ´
当φ ´=00~80时,cosφ ´=1~0.99:
线色散率:
dφ ´/dλ ≈n/d
dλ
dl d f d d sin dl nf nf d d cos s in d
hc /( λ 电 子 λ 振 动 λ 转动 λ 平 动 )
分子发射光谱
hi
I
半宽度20~100nm
E1
A(T)
波长/nm
半宽度20~100nm
分子吸收光谱
E0
波长/nm
原子发射光谱法原理及利用
原子发射光谱法原理及利用原子发射光谱法(Atomic Emission Spectrometry,AES)是一种常用的材料分析方法,其主要通过对样品中元素产生的光子特征进行检测和分析,进而实现对样品中元素的定性和定量分析。
本文将主要介绍原子发射光谱法在元素分析、化学态分析、表面分析、合金分析和质量检测等方面的原理及应用。
1.元素分析原子发射光谱法在元素分析方面的应用主要体现在对样品中元素的种类进行识别和定量测定。
其基本原理是每种元素都具有独特的原子结构,因此会在特定的能量条件下发射出具有特征波长的光子。
通过对这些光子的检测和分析,可以确定样品中含有的元素种类。
在具体实践中,原子发射光谱法通常与火花、电弧或激光等激发源配合使用,以产生足够的光子用于检测。
该方法可以同时检测多种元素,且具有较高的灵敏度和准确性。
例如,在地质学领域,原子发射光谱法常用于测定岩石、矿物等样品中的常量、微量和痕量元素。
2.化学态分析原子发射光谱法在化学态分析方面的应用主要是通过对元素产生的化学键合状态进行分析,以了解元素的化合物组成和结构等信息。
不同化学态的同一种元素在原子发射光谱法中可能会表现出不同的特征波长,这是因为不同的化学键合状态会导致元素的原子结构发生变化。
例如,在环境科学领域,原子发射光谱法可用于分析水样或土壤样品中的重金属元素及其化学形态,以了解这些元素对环境的污染程度和生物毒性的影响。
3.表面分析原子发射光谱法在表面分析方面的应用主要是通过对样品表面的元素组成和化学状态进行分析,以了解样品的表面形貌、表面化学成分和结构等信息。
原子发射光谱法可以应用于各种材料的表面分析,如金属、合金、陶瓷、高分子材料等。
在具体实践中,原子发射光谱法通常与离子束铣削、等离子体刻蚀等手段结合使用,以制备干净的表面样品并进行深入的分析。
例如,在材料科学领域,原子发射光谱法可用于研究材料的表面氧化、腐蚀等行为,以及表面涂层的质量检测和评估。
原子发射光谱分析基本原理
原子发射光谱分析基本原理原子发射光谱分析(Atomic Emission Spectroscopy,简称AES)基本原理是利用原子在受激光、电弧等能量源作用下,从低能级跃迁到高能级,再由高能级返回低能级时发射光线的特性,来研究和分析各元素的组成和含量。
下面将详细介绍AES的基本原理。
1.激发和激光源:激发是令原子从基态跃迁到激发态所受到的能量刺激,常见的激发方式有电弧、火焰和激光。
其中,激光是最常用的激发源,其具有单色性、高亮度和空间一性等优点,可以选择激发特定的原子或分子。
2.激发态原子:原子经过能量激发后,电子由低能级跃迁到高能级。
高能级的原子是不稳定的,会通过退激发(即从高能级发射光子返回低能级)的方式来重新恢复到基态。
这个时间通常很短,大约在纳秒级别。
3.跃迁和能级:原子从一个能级跃迁到另一个能级时,会发射或吸收一定频率的光子。
这些能级间的跃迁是由原子的电子转移引起的,每个原子有特定的能级结构。
不同元素具有不同的能级结构,因此会发射出不同波长的光谱线。
4.光谱仪:光谱仪是用来观测和测量原子发射光谱的仪器。
光谱仪包括光源、衍射装置和检测器。
当原子发射光谱经过衍射装置时,会发生衍射现象,使得不同波长的光线发生偏折,最终通过检测器进行测量和记录。
5.光谱线特性:每个元素在发射光谱中都有特定的光谱线,即特定波长的光线。
这些光谱线的强度和波长与元素的组成和含量有关。
通过测量光谱线的强度,可以计算出样品中元素的相对含量。
总而言之,原子发射光谱分析是利用原子在激发态和基态之间跃迁所发射的特定波长光线,通过测量光谱线的强度和波长,来研究和分析样品中不同元素的组成和含量。
这在材料科学、地球科学和生命科学等领域具有广泛的应用。
《原子发射光谱分析》课件
食品安全
原子发射光谱分析可用于食 品中微元素的检测,确保 食品安全和质量。
发展历程和趋势
历史
原子发射光谱分析起源于19世纪,经过多年的发展 和改进,成为现代化的分析技术。
未来
随着技术的进步,原子发射光谱分析将在元素分析 领域发挥更重要的作用,实现更高的灵敏度和准确 性。
总结和结束语
通过本课件的学习,您了解了《原子发射光谱分析》的重要性和原理,以及 其在化学分析、环境监测和食品安全等领域的应用。随着技术的不断发展, 原子发射光谱分析将在未来产生更大的应用前景。
3
样品进样
将样品注入原子发射光谱仪中,加热或
光谱分析
4
电离样品以激发原子。
测量样品发射的特定波长光线,并根据 光谱曲线确定元素含量。
技术应用场景和优势
化学分析
原子发射光谱分析被广泛应 用于化学分析领域,用于分 析金属元素的含量。
环境监测
该技术可用于检测土壤、水 体和大气中的污染物,为环 境保护提供重要数据。
《原子发射光谱分析》 PPT课件
本课件将介绍《原子发射光谱分析》的重要性、原理和实验过程,并展示该 技术的应用场景、优势以及发展历程和趋势,最后进行总结和结束。
什么是原子发射光谱分析?
原子发射光谱分析是一种用于分析物质元素组成的重要技术。通过激发样品 中的原子,测量其发射的特定波长光线,可以确定样品中各种元素的含量。
原理和原理说明
原子发射光谱分析基于原子在能级跃迁时释放特定的光线的原理。通过将样品加热或电离,使其原子激发到高 能级并发射光线,测量光线的波长和强度来分析元素含量。
实验过程和图示
1
样品准备
将待测样品制备成适合分析的形式,如
光谱仪设置
原子发射光谱定性和定量分析
【实验题目】原子发射光谱定性和定量分析【实验目的】1、把握光谱定性分析的一样原理和方式。
2、把握光谱定量分析的一样原理和方式。
3、了解电感耦合等离子体原子发射光谱仪的利用方式。
【实验原理】但当原子受到能量(如热能、电能等)的作历时,原子由于与高速运动的气态粒子和电子彼此碰撞而取得了能量,使原子中外层的电子从基态跃迁到激发态,处于激发态的原子是十分不稳固的,在极短的时刻内便跃迁至基态或其它较低的能级上。
当原子从较高能级跃迁到基态或其它较低的能级的进程中,将释放出多余的能量,这种能量是以必然波长的电磁波的形式辐射出去的,其辐射的能量可用下式表示:△E=E2-E1=hv谱线波长:λ=c/v每一种元素因其原子结构不同,受激发后都能够产生自己的特点光谱,每一种元素的特点光谱通常包括有很多谱线,谱线的强度各不相同。
一个试样如含有假设干种元素,谱线上就有这假设干种元素的特点光谱,特点光谱的条数多少与各元素含量高低有关。
当某元素含量降低时,其光谱中的弱线接踵消失,而不被检出。
最后消失的几条谱线叫“灵敏线”定性分析一样只需找出某元素的灵敏线即可确信该元素的存在。
光谱分析依照这些元素的特点光谱就能够够准确无误的辨别元素的存在(定性分析),而这些光谱线的强度又与试样中该元素的含量有关,因此又可利用这些谱线的强度来测定元素的含量(定量分析)。
当温度一按时,光谱线的强度与试样中该元素的浓度之间的关系符合以下体会公式:I=a C blgI=blgc+lga【实验仪器与试剂】(1)仪器:IRIS INTREPIDⅡ XSP 高频电感耦合等离子直读仪。
(2)试剂:氩气;未知样品;钙、镁保准储蓄液:100ug/mL;蒸馏水。
【实验内容与步骤】1、定性分析按仪器操作规程,设置仪器参数,点燃等离子体,运行全谱命令,对未知样品进行分析。
仪器要紧参数:高频功率,1150W;冷却气流量,15L/min;辅助气流量,/min;载气压力,25psi;蠕动泵转速,120r/min;溶液提升量,min。
环境仪器分析(张宝贵) 第4章 原子荧光光谱法
4.2 氢化物发生体系
共价氢化物的生成,归纳起来,有三种还原体系
金属---酸还原体系 硼氢化钾(钠)---酸还原体系 电解法还原体系
三种还原体系
反应原理 金属体系:
Zn + 2HCl
+
Em +
ZnCl2 + 2H*
EHn + H2
Em 表示发生还原反应的正离子 H* 表示初生态
硼氢化钾(钠)---还原体系
原子荧光方法中,最主要,最有应用价值的是
氢化物原子荧光法,它具有检出限低,仪器便 宜,该方法最适宜测定的元素如As,Pb,Hg, Ca,Se等,恰恰是环保,临床医药,半导体 工业最常测定的元素。因此,原子荧光是重要 的无机痕量分析方法之一。
原子发射、吸收和荧光光谱
(1)发射与吸收光谱--线状光谱
NaBH4 + 3H2O + HCl 8H*
Em
+
H3BO3 + NaCl + 8H*
EHn + H2
优缺点比较
金属---酸
还原能力差、少数元素能 生成 EHn,AsH3, SnH2,SeH2 还原能力强,已知有10种 元素可生成共价氢化物: As,Sb,Bi,Pb,Se,Te,Ge,Sn, Zn,Cd
大气及大气颗粒物
原子荧光光谱法用于测定大气及颗粒物中某些元
素的测定,为了解大气的污染情况提供信息。用 双道原子荧光光度计测定空气中的铅、硒的含量, 检出限分别达到1 µg/L和4.72×10-5 mg/m3。用 冷原子荧光光谱法测定大气中痕量气态总汞、汞 矿区冶炼车间空气中的二价汞、垃圾卫生填埋场 排气筒中的气态总汞及排气筒中单甲基汞和二甲 基汞的含量。经消解后,采用原子荧光光谱法可 对大气颗粒物中铅、汞、砷和锑等重金属元素的 分布进行分析。
原子荧光光谱法的基本原理
原子荧光光谱法的基本原理
该方法的基本原理如下:
1.荧光发射:当原子受到能量激发时,其外层电子会向更高能级跃迁。
在跃迁回基态的过程中,会释放出能量并发射光子,即发出荧光。
荧光的
能量与原子的能级差相关,不同的元素有不同的能级差,因此它们发出的
荧光具有特定的波长和能量。
2.荧光激发:为了使原子发出荧光,需要将其能级激发到较高的能态。
一种常用的方法是使用光源来照射待测物质,光源的能量可以与物质中的
电子能级相匹配。
当光源照射到物质中时,一部分光子能量会被物质吸收,使得物质中的电子跃迁到激发态。
3.能级跃迁:激发态的原子在短暂的时间内会停留在激发态,然后通
过辐射跃迁、非辐射跃迁或共振能量传递的方式回到基态。
这过程中发出
的荧光具有特定的波长和能量。
4.荧光检测:荧光的波长和强度可以通过光谱仪来测量。
光谱仪通常
包括一个入射光源、一个分光装置和一个荧光检测器。
它的工作原理是将
不同波长的荧光光子分离并检测。
通过测量荧光的波长和强度,可以确定
物质中的元素种类和含量。
1. 灵敏度高:原子荧光光谱法可以检测到微量的元素,灵敏度比其
他分析方法高,可以达到ppb(十亿分之一)至ppt(万亿分之一)级别。
2.特异性强:每种元素所发射的荧光光谱具有特定的波长和能量,因
此可以对物质中的不同元素进行准确的定性和定量分析。
3.成分宽泛:原子荧光光谱法适用于多种不同的样品类型,包括液体、固体和气体。
4.分析速度快:原子荧光光谱法对样品处理的要求较低,操作简便,
分析速度相对较快。
原子发射光谱原理
原子发射光谱原理
原子发射光谱是物理学研究中的一个重要分支,它通过研究原子在受激激发后发射出的光谱来了解原子的结构和性质。
原子发射光谱的实验基于以下几个原理:
1. 原子能级:原子中的电子存在不同能级,当电子从一个能级跃迁到另一个能级时,会吸收或者发射能量。
原子发射光谱通过研究不同能级间的跃迁来确定原子的能级结构。
2. 激发和激发源:为了使原子跃迁到较高能级,我们需要提供足够的能量来激发原子。
常用的激发源包括高温、高压和电磁辐射等。
例如,将气体放电产生等离子体,通过碰撞激发气体中的原子使其跃迁到激发态。
3. 光的发射:当原子从激发态退回到低能级时,会发射出能量等于跃迁能级差的光子。
这些发射的光子组成了原子发射光谱。
4. 光谱分析:经过准确的测量和分析,我们可以获得原子发射光谱中的特征谱线。
这些谱线的波长或频率与原子的能级差密切相关,因此可以用来确定原子的结构和特性。
原子发射光谱广泛应用于化学、物理、天文学等领域。
通过分析光谱,我们可以研究原子的能级结构、同位素的分离和测量、元素的定性分析以及识别天体中的化学成分等。
此外,原子发射光谱也是化学分析和材料研究中常用的分析工具,可以检测和分析样品中的各种元素及其含量。
它不仅具有高灵敏度和高选择性,而且具有非破坏性和快速分析的特点。
总而言之,原子发射光谱是通过研究原子在激发态与基态之间跃迁发射出的光谱来了解原子的能级结构和性质的一门科学。
通过对原子发射光谱的研究,我们可以深入了解物质的微观结构,促进科学技术的发展和应用。
原子发射光谱的原理和应用
原子发射光谱的原理和应用1. 原理原子发射光谱是一种利用原子在高温或高压下被激发而产生的光线进行分析的方法。
该方法利用原子被加热或激发后产生的特定频率的光谱线来确定样品中存在的元素及其浓度。
原子发射光谱的原理基于原子的激发和跃迁过程。
1.1 原子的激发和跃迁在原子发射光谱中,原子首先被加热或激发,使其内部能级上的电子跃迁到更高的能级。
这些跃迁会产生特定频率或波长的电磁辐射,也就是光谱线。
原子跃迁的能级差决定了产生的光谱线的频率或波长。
1.2 光谱仪的原理原子发射光谱实验中使用的光谱仪是通过将原子发射的光线分解为不同频率或波长的组成部分。
常见的光谱仪包括单色仪、光栅光谱仪和干涉仪。
单色仪是一种使用光栅或棱镜分离光束的光学仪器。
它通过调整入射光线的角度或光栅的间距,将不同波长的光线分散,形成可观测到的光谱线。
光栅光谱仪通过使用光栅的光栅片或光纤间隔和替代的相位差,使光线发生干涉,将光线分散为不同的频率或波长。
干涉仪是一种利用光的干涉现象进行测量的仪器。
它通过将光束分为两条,经过不同的路径后再合并,从而产生干涉。
通过调整干涉仪的结构,可以观察到不同频率或波长的干涉条纹。
2. 应用原子发射光谱广泛应用于材料分析、环境监测、食品安全和医学诊断等领域。
2.1 材料分析原子发射光谱可以用来确定材料中的元素组成和浓度。
例如,在金属矿石和合金中,原子发射光谱可以用来分析元素的含量,并确定材料的质量和纯度。
2.2 环境监测原子发射光谱在环境监测中起着重要作用。
它可以用于分析水和土壤中的污染物并确定其浓度。
原子发射光谱还可以用于检测大气中的有害物质,监测空气质量。
2.3 食品安全原子发射光谱可用于食品安全检测,例如检测食品中的重金属、农药残留物和其他有害物质。
通过分析食品样品中的元素含量,可以评估食品的安全性。
2.4 医学诊断原子发射光谱在医学诊断中有许多应用。
例如,原子发射光谱可以用于分析血液、尿液和组织样品中的元素含量,从而帮助诊断疾病、监测药物治疗和评估病情。
仪器分析教案第四章原子发射光谱1
21:01:57
(4)投影系统:感光板或光电倍增管。
作用:使经过色散后不同波长的单色平行光束聚焦 在感光板上,形成按波长顺序排列的狭缝像——光 谱,或变成电信号进行记录。
21:01:57
三、检测器 按接受光辐射的方式分类,常用的检测方法有: 目视法、摄谱法和光电法 A.目视法→看谱仪;可见光谱区,钢铁及冶金现 场分析。 B.摄谱法 →摄谱仪;感光板作检测器。
The rationale of Atomic emission spectrum
三、原子发射光谱分析的 一般步骤
The process of Atomic emission spectrum analysis
21:01:57
第一节
原子发射光谱的基本原理
激发态
1.原子发射光谱
定义:原子发射光谱分
析(AES)是根据原子所发射
体炬管、雾化器三部分组成。
21:01:57
高频磁场→感应线圈产生电火花触发少 量气体产生电离→带电粒子在高频交变电场 的作用下高速运动→碰撞气体原子→迅速、 大量电离→产生一股垂直于管轴方向的环形 涡电流→形成几百安的感应电流→瞬间就将 气体加热到近10000K的高温→在管口形成一 个火炬状的稳定的等离子体→试样由焰炬内 管喷射到等离子体内进行蒸发、原子化和激 发。
21:01:57
Ⅰ主要部件:四部分组成
(1)照明系统:由透镜组成。一个或三个。
作用:使光源发射的辐射均匀地照明人射狭缝,使 感光板所得的谱线每部分都很均匀。
(2)准光系统:包括入射狭缝和准直镜。 作用:把入射光变成平行光束照射到棱镜上。 (3)色散系统:由一个或多个棱镜或光栅组成。 作用:使通过的复合光,成为按一定波长顺序排列 的单色平行光束。
原子发射光谱
ICP-AES 特点
feature of ICP-AES
(1)温度高,惰性气氛,原子化条件好,有利于难熔化合
物的分解和元素激发,有很高的灵敏度和稳定性;
(2)“趋肤效应”,涡电流在外表面处密度大,使表面温 度高,轴心温度低,中心通道进样对等离子的稳定性影响小 。也有效消除自吸现象,线性范围宽(4~5个数量级); (3) ICP中电子密度大,碱金属电离造成的影响小; (4) Ar气体产生的背景干扰小; (5) 无电极放电,无电极污染; ICP焰炬外型像火焰,但不是化学燃烧火焰,气体放电; 缺点:固体进样困难,对非金属测定的灵敏度低,仪器昂贵 ,操作费用高。
1. 高频发生器 高频发生器的作用是产生高频磁 场以供给等离子体能量。 应用最广泛的是利用石英晶体压 电效应产生高频振荡的他激式高频 发生器,其频率和功率输出稳定性 高。频率多为27-50 MHz,最大输 出功率通常是2-4kW。 感应线圈一般以圆铜管或方铜管 绕成的2-5匝水冷线圈。
2. 炬管与雾化器
R 309.418 309.271 2.1 10
R KN Klb
由于 R实>R,所以可以分开两条谱线。
二、光谱仪
(1)感光板与谱线黑度 感光板主要由玻璃片基和感光层组成, 感光层又称乳剂,它是由感光物质卤化银、 明胶和增感剂等物质组成。元素发射出的光 谱使感光板感光,然后在暗室显影、定影, 感光层中金属银析出,形成黑色的光谱线。
二、光谱仪
色散率:指将不同波长的光分散开的能 力,色散率可分为线色散率和角色散率。 分辨率是指摄谱仪的光学系统能够正确 分辨出相邻两条谱线的能力。 聚光本领指摄谱仪的光学系统传递辐射 的能力。
2、光栅光谱仪的光学特性
光谱分析的基本原理是
光谱分析的基本原理是光谱分析是一种通过分析物体的光谱图来研究其物理性质和化学组成的方法。
其基本原理是利用物质与光的相互作用产生特定的光谱现象,通过对光谱的特征进行观察和分析,可以获得关于物质的重要信息。
一、原子和分子的光谱光谱分析可以对原子和分子的光谱进行研究。
原子的光谱由离散的谱线组成,称为线谱。
每个原子都具有一组特定的谱线,其位置和强度可用于确定原子的组成和性质。
分子的光谱由连续的光谱带和离散的谱线组成,称为带谱和线谱。
分子的光谱可以提供有关分子结构和振动、转动等信息。
二、光谱的类型光谱可分为连续光谱、发射光谱和吸收光谱。
连续光谱是指无缝连续的光谱带,如太阳光谱。
发射光谱是物质在受激激发后所发出的光谱,即物质吸收能量后重新发射出去的光。
吸收光谱是物质吸收特定波长的光而产生的谱线,吸收的波长取决于物质的组成和结构。
三、原子和分子光谱的形成原子和分子光谱的形成是由于物质与光的相互作用。
当物质受到能量激发时,其内部电子发生跃迁,从低能级跃迁到高能级,并吸收入射光中的特定波长。
当电子从高能级返回到低能级时,会以特定的能量差释放光子,形成特定波长的光谱线。
这些光谱线的位置和强度与物质的组成和结构有关。
四、光谱分析的应用光谱分析广泛应用于物质的化学分析、物理研究和环境监测等领域。
在化学分析中,光谱分析可用于定性和定量分析。
通过比对待测样品的光谱特征和已知样品的光谱数据库,可以确定待测样品的成分。
通过测量光谱的强度和峰位,还可以确定物质的浓度和性质。
光谱分析还可以研究原子和分子的结构、反应动力学和热力学性质等。
此外,光谱分析可用于监测环境中的污染物和检测食品、药品的安全性。
五、光谱仪的基本原理光谱分析通常需要使用光谱仪来实现。
光谱仪包括入射系统、分光系统和检测系统。
入射系统用于将光引入光谱仪,分光系统则将光分散成不同波长的光谱,检测系统用于测量光谱的强度和峰位等参数。
常见的光谱仪包括分光光度计、紫外可见分光光度计、红外光谱仪等。
原子发射光谱的特点
原子发射光谱的特点原子发射光谱是一种重要的光谱学技术,用于研究原子的结构、能级和谱线等特性。
它利用原子在受激光或火焰等外界刺激下,发射出特定波长的光线,从而得到原子的光谱信息。
本文将从原子发射光谱的基本原理、实验方法和特点等方面进行介绍。
一、原子发射光谱的基本原理原子发射光谱的基本原理是原子在受到外界刺激后,会从低能级跃迁到高能级,然后再从高能级跃迁回低能级时,会发射出能量等于两个能级差的光子,即谱线。
这些谱线的波长和强度与原子的能级结构有关,因此可以通过观察谱线的波长和强度来研究原子的能级结构。
原子发射光谱的谱线可以分为两类:离散谱线和连续谱线。
离散谱线是由原子从一个确定的能级跃迁到另一个确定的能级时发射的谱线,它们的波长和强度非常精确。
连续谱线则是由原子在热力学平衡状态下发射的谱线,它们的波长和强度比较模糊,通常呈现出一条连续的光谱带。
二、原子发射光谱的实验方法原子发射光谱的实验方法可以分为两类:原子吸收光谱和原子发射光谱。
原子吸收光谱是将一束光通过待测物质的气体或溶液中,测量在不同波长下光的强度,从而得到原子吸收光谱。
原子发射光谱则是将一束激光或火焰照射到待测物质上,测量发射的光谱,从而得到原子发射光谱。
原子发射光谱的实验方法通常包括以下步骤:1. 准备样品:将待测物质转化为气态或溶液态。
2. 激发原子:用激光或火焰等方法将原子激发到高能级。
3. 收集光谱:用光谱仪或光电倍增管等设备测量发射的光谱。
4. 分析光谱:分析光谱的波长和强度,得到原子的能级结构和谱线信息。
三、原子发射光谱的特点原子发射光谱具有以下特点:1. 精确性高:离散谱线的波长和强度非常精确,可以用来确定原子的能级结构和谱线信息。
2. 灵敏度高:原子发射光谱可以检测极小量的样品,因此可以用来分析微量元素。
3. 选择性强:不同元素的原子发射光谱谱线具有独特的波长和强度,因此可以用来区分不同元素。
4. 实验方法简单:原子发射光谱的实验方法相对简单,只需要激发原子并测量发射的光谱即可。
原子发射光谱的基本原理是什么?
原子发射光谱的基本原理是什么?原子或离子受到热能、电能或光能等能量的作用时,外层电子得到一定能量后,由低能级E1跃迁至高能级芯E2这时的原子(或离子)是处于激发态,而给予原子(或离子)的能量(热能、电能或光能)即△E=E2——E1,称为激发能或激发电位,其单位以电子伏特eV表示。
处于激发态的原子(或离子)其外层电子是不稳定的,它只能在高能态的轨道上停留约10-8S,然后自发地跃迁到低能级轨道上,其能量以光的形式发射出来,形成一条谱线,其波长为:式中:c——光速,等于3*108m/hh——普朗克常数,其值为6.6262*10-34J.sE1——低能级的电子能量E2——高能级的电子能量处于高能级的电子也可经过几个中间能级跃迁回到基态能级,这时可产生几种不同波长的光,在光谱中形成几条谱线,它们组成该元素的原子光谱。
由于不同元素的电子结构不同,因而其原子光谱也不同,具有明显的特征。
然而人们观察到的各个元素的所有谱线并不是在任何条件下都会同时出现,例如镉,当它的含量为1%时,有14条谱线出现;含量为0.1%时,有10条谱线出现;含量为0.01%时,有7条谱线出现;含量为0.001%时,仅有2条谱线出现,其波长分别为226.502nm和228.802nm,这两条谱线称为镉的线,又叫灵敏线。
根据灵敏线的存在与否即可进行定性分析,判断试样中是否有该元素的存在。
这些元素含量很低但仍然能够出现的光谱线,一般是共振线,或是激发电位的谱线,这样的谱线跃迁几率是的。
当然,也有跃迁几率较大但不是共振线的。
元素的灵敏线在许多分析书籍和手册上均可查到。
光谱定量分析的基础是光谱线强度与元素浓度的关系,通常利用罗马金和赛伯提出的经验公式:式中:I——谱线强度A——发射系数c——元素含量b——自吸系数发射系数A与试样的蒸发、激发和发射的整个过程有关,还与光源类型、工作条件、试样组分、元素化合物形态以及谱线的自吸收现象有关,由激发电位和元素在光源中的浓度等因素决定。
发射光谱原理
发射光谱原理
发射光谱是一种用于分析物质成分和结构的方法。
其原理是将待测物质激发至高能态后,通过从高能态返回基态所释放出的光进行分析。
这些光通过光谱仪分散成各个波长的光线,在光散射板上形成色散图谱。
这些光线的波长和强度提供了关于元素或分子的信息。
发射光谱的原理基于原子和分子的能级结构。
当一个原子或分子被激发时,其电子从基态跃迁到高能态。
激发可以通过不同的方法实现,例如电子碰撞、热激发或光激发。
在高能态,电子处于不稳定状态,会迅速返回到低能态。
这个过程中,电子会释放出能量,形成一系列特定波长的光。
光谱仪是用来测量发射光谱的仪器。
光谱仪包括一个入射口,用于接收发出的光,并将其通过一个光栅或晶体进行色散,使光线分散成不同波长的光。
然后,光线通过一个检测器进行测量和记录。
测量得到的发射光谱通常以图谱的形式展示。
图谱上的峰表示特定波长的光线的强度。
不同元素或分子的发射光谱具有不同的峰值位置和强度分布,因此可以通过比对已知标准光谱或参考波长表来确定物质的成分和结构。
发射光谱广泛应用于化学、物理、天文学等领域。
它可以用于分析金属合金中的成分、检测环境中的污染物、研究星系中的元素组成等。
此外,发射光谱还被用于开发新材料、优化工业
生产过程等。
其非侵入性和快速分析的特点使其成为一种重要的分析方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度5000-6000K,激发能量高,可激发许多很难激发的
非金属元素:C、N、F、Br、Cl、C、H、O 等,可用于有机 物成分分析,测定金属元素的灵敏度不如DCP和ICP。
2012-12-30
b. 电极
电极材料:采用光谱纯的碳或石墨,特殊情况采用铜电极; 电极尺寸:直径约6mm,长3~4 mm;
试样槽尺寸:直径约3~4 mm,
深பைடு நூலகம்~6 mm;
试样量:10 ~20mg ;
放电时,碳+氮产生氰 (CN), 氰分子在358.4~ 421.6 nm产生带
状光谱,干扰其他元素出现在该区
2012-12-30
凹面光栅与罗兰圆
多道型光电直读光度仪多采用凹面光栅; 罗兰圆:Rowland(罗兰)发现在曲率半径为R 的凹面反射 光栅上存在着一个直径为R的圆,不同波长的光都成像在圆上 ,即在圆上形成一个光谱带;
凹面光栅既具有色散作用
也起聚焦作用(凹面反射镜将色 散后的光聚焦)。
2012-12-30
域的光谱线,需要该区域时,可采 用铜电极,但灵敏度低。
离子由第一激发态到基态的跃迁(离子发射的谱线):
电离线,其与电离能大小无关,离子的特征共振线。 原子谱线表:I 表示原子发射的谱线; II 表示一次电离离子发射的谱线; III表示二次电离离子发射的谱线;
Mg:I 285.21 nm ;II 280.27 nm;
2012-12-30
第四章 原子发射光谱 分析法
特点 :
(1) 多达70个通道可选择设置,同时进行多元素分析,这 是其他金属分析方法所不具备的; (2) 分析速度快,准确度高; (3) 线性范围宽, 4~5个数量级,高、中、低浓度都可分
析;
缺点:出射狭缝固定,各通道检测的元素谱线一定; 改进型: n+1型ICP光谱仪
在多道仪器的基础上,设置一个扫描单色器,增加一个 可变通道;
2012-12-30
四、 ICP-AES 特点
feature of ICP-AES
(1)温度高,惰性气氛,原子化条件好,有利于难熔化合物
的分解和元素激发,有很高的灵敏度和稳定性;
(2)“趋肤效应”,涡电流在外表面处密度大,使表面温度 高,轴心温度低,中心通道进样对等离子的稳定性影响小。 也有效消除自吸现象,线性范围宽(4~5个数量级); (3) ICP中电子密度大,碱金属电离造成的影响小; (4) Ar气体产生的背景干扰小; (5) 无电极放电,无电极污染; ICP焰炬外型像火焰,但不是化学燃烧火焰,气体放电; 缺点:对非金属测定的灵敏度低,仪器昂贵,操作费用高。
2012-12-30
2. 定性方法
标准光谱比较法: 最常用的方法,以铁谱作为标准(波长标尺);为什么选铁谱?
2012-12-30
标准光谱比较定性法
为什么选铁谱? (1)谱线多:在210~660nm范围内有数千条谱线; (2)谱线间距离分配均匀:容易对比,适用面广; (3)定位准确:已准确测量了铁谱每一条谱线的波长。 标准谱图:将其他元素的分析线标记在铁谱上,铁谱起 到标尺的作用。 谱线检查:将试样与纯铁在完全相同条件下摄谱,将两
谱片在映谱器(放大器)上对齐、放大20倍,检查待测元素的
分析线是否存在,并与标准谱图对比确定。可同时进行多元 素测定。
2012-12-30
2012-12-30
3. 定性分析实验操作技术
(1) 试样处理 a. 金属或合金可以试样本身作为电极,当试样量很少
时,将试样粉碎后放在电极的试样槽内;
b. 固体试样研磨成均匀的粉末后放在电极的试样槽内; c. 糊状试样先蒸干,残渣研磨成均匀的粉末后放在电极 的试样槽内。液体试样可采用ICP-AES直接进行分析。 (2) 实验条件选择 a. 光谱仪 在定性分析中通常选择灵敏度高的直流电弧;狭缝宽度5 ~7m;分析稀土元素时,由于其谱线复杂,要选择色散率较 高的大型摄谱仪。
2012-12-30
一、概述
generalization
原子发射光谱分析法(atomic emission spectroscopy ,AES):元素在受到热或电激发时,由基态跃迁到激发态, 返回到基态时,发射出特征光谱,依据特征光谱进行定性、 定量的分析方法。 1859年,基尔霍夫(Kirchhoff G R)、本生(Bunsen R W) 研制第一台用于光谱分析的分光镜,实现了光谱检验; 1930年以后,建立了光谱定量分析方法;
2012-12-30
ICP-AES
2012-12-30
三、 ICP-AES的原理
principle and feature of ICP-AES
ICP是由高频发生器和等离子体炬管组成。
1. 晶体控制高频发生器 石英晶体作为振源, 经电压和功率放大,产生 具有一定频率和功率的高 频信号,用来产生和维持 等离子体放电。 石英晶体固有振荡频 率:6.78MHz,二次倍频后 为27.120MHz,电压和功率 放大后,功率为1-2kW;
四、ICP-AES的特点
feature of ICP-AES
五、等离子体发射光谱仪 plasma emission spectrometry
2012-12-30
一、概述 generalization
原子发射光谱在50年代发展缓慢; 1960年,工程热物理学家 Reed ,设计了环形放电感耦等 离子体炬,指出可用于原子发射光谱分析中的激发光源; 1960年,工程热物理学家 Reed 设计了环形放电感耦等离子体炬; 指出可用于原子发射光谱分析中的激 发光源; 光谱学家法塞尔和格伦菲尔德用 于发射光谱分析,建立了电感耦合等 离子体光谱仪(ICP-AES); 70年代获ICP-AES应用广泛。
5%~10% (一般光源); <1% (ICP) ; 线性范围4~6数量级,可测高、中
(6)ICP-AES性能优越
缺点:非金属元素不能检测或灵敏度低。
2012-12-30
二、原子发射光谱的产生
formation of atomic emission spectra
在正常状态下,元素处于基态,元素在受到热(火焰)
2012-12-30
二、 ICP-AES的结构流程
structure of ICP-AES and process
采用ICP作为光源是ICP-AES与其他光谱仪的主要不同之处。 主要部分: 1. 高频发生器 自激式高频发生器,用于中 、低档仪器; 晶体控制高频发生器,输出 功率和频率稳定性高,可利用 同轴电缆远距离传送。 2. 等离子体炬管 三层同心石英玻璃管 3. 试样雾化器 4. 光谱系统
2012-12-30
等离子体光源的形成类型
等离子体喷焰作为发射光谱的光源主要有以下三种形式:
(1)直流等离子体喷焰(direct currut plasmajet,DCP)
弧焰温度高 8000-10000K,稳定性好,精密度接近ICP, 装置简单,运行成本低;
(2)电感耦合等离子体(inductively coupled plasma, ICP)
分析线:复杂元素的谱线可能多至数千条,只选择其中几条
特征谱线检验,称其为分析线;
最后线:浓度逐渐减小,谱线强度减小,最后消失的谱线; 灵敏线:最易激发的能级所产生的谱线,每种元素都有一条 或几条谱线最强的线,即灵敏线。最后线也是最灵敏线; 共振线:由第一激发态回到基态所产生的谱线;通常也是最 灵敏线、最后线;
2012-12-30
2. 炬管与雾化器
三层同心石英玻璃 炬管置于高频感应线圈 中,等离子体工作气体 从管内通过,试样在雾
化器中雾化后,由中心
管进入火焰; 外层Ar从切线方向 进入,保护石英管不被 烧熔,中层Ar用来点燃 等离子体;
2012-12-30
3. 原理
当高频发生器接通电源后,高频 电流I通过感应线圈产生交变磁场(绿色 )。 开始时,管内为Ar气,不导电,需 要用高压电火花触发,使气体电离后 ,在高频交流电场的作用下,带电粒 子高速运动,碰撞,形成“雪崩”式 放电,产生等离子体气流。在垂直于 磁场方向将产生感应电流(涡电流, 粉色),其电阻很小,电流很大(数百 安),产生高温。又将气体加热、电离 ,在管口形成稳定的等离子体焰炬。
(7) 分析精度:CV 0.5%。
2012-12-30
第四章 原子发射光谱 分析法
atomic emission spectrometry,AES
一、光谱定性分析 qualitative spectrometric analysis 二、光谱定量分析 quantitative spectrometric analysis 三、特点与应用 feature and applications
2012-12-30
五、 等离子体发射光谱仪
plasma emission spectrometry 1. 光电直读等离子体发射光谱仪
光电直读是利用光电法直接获得光谱线的强度; 两种类型:多道固定狭缝式和单道扫描式; 一个出射狭缝和一个光 电倍增管,可接受一条谱线 ,构成一个测量通道; 单道扫描式是转动光栅 进行扫描,在不同时间检测 不同谱线; 多道固定狭缝式则是安 装多个(多达70个),同时 测定多个元素的谱线;
或电(电火花)激发时,由基态跃迁到激发态,返回到基态
时,发射出特征光谱(线状光谱); 热能、电能 基态元素M
E
特征辐射
激发态M*
2012-12-30
原子的共振线与离子的电离线
原子由第一激发态到基态的跃迁: 第一共振线,最易发生,能量最小; 原子获得足够的能量(电离能)产生电离,失去一个电子, 一次电离。
2012-12-30