2017-2018学年江苏省南京市秦淮区七年级(下)期末数学试卷-0
【精品试卷】2017-2018学年苏科版七年级下数学期末复习综合试卷(4)(有答案)
2017-2018学年第二学期初一数学期末复习综合试卷(4)分值:130分;知识涵盖:七下全册及八上全等三角形;一、选择题(本题共10小题,每题3分,共30分)1.下列运算正确的是………………………………………………………………………( )A .437a a a -=;B .4312a a a =;C .()3412a a =;D .437a a a +=;2.若x >y ,则下列式子错误的是…………………………………………………( ) A .33x y ->-; B .33x y ->-; C .33x y +>+; D .33x y >; 3.有长为2cm 、3cm 、4cm 、6cm 的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是………………………………………………………………………( )A .1个;B .2个 ;C .3个;D .4个;4.一个多边形,它的每个内角的度数等于与其相邻外角的度数的5倍,则这个多边形是( )A .4;B .6;C .8;D .12;5.(2016•金华)如图,已知∠ABC=∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是…………( )A .AC=BD ;B .∠CAB=∠DBA ;C .∠C=∠D ; D .BC=AD ; 6. (2017.山西)将不等式组的解集表示在数轴上,下面表示正确的是……( )7. 已知2(0.3)a =-,23b -=-,21()3c -=-,比较,,a b c 的大小………………………( ) A.a b c << ; B. b a c << ; C. a c b <<; D. c a b <<;8.如图,FD//BE ,则∠1+∠2-A 的度数为……………………………………( )A .90°B .135°C .150°D .180°9.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成西个相同的等腰梯形(图甲),然后拼成一个平行四边形(图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式是…………………………………………………………… ( )A .()2222a b a ab b -=-+; B .()2222a b a ab b +=++; C .()2222a b a ab b -=-+; D .()()22a b a b a b -=+-; 10.(2017•齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买………( )A .16个;B .17个 ;C .33个;D .34个;二、填空题:(本题共8小题,每题3分,共24分)11. 一生物教师在显微镜下发现,某种植物的细胞直径约为0.00012mm ,用科学记数法表示这个数为__________mm .12. 已知2a b +=,1ab =,则22a b ab += .13.命题“在数轴上,表示互为相反数的两个数的点到原点的距离相等”的逆命题是 第9题图A. B. C. D.第8题图第5题图.14.已知22x y -=,则()()3312x x y y x -+--的值是 . 15.(2017.泰安)不等式组的解集为x <2,则k 的取值范围为 .16. 如图,AD 是△ABC 的中线,∠ADC=60°,BC=4㎝,把△ADC 沿直线AD 折叠后,点C 落在C ′的位置上,则BC ′的长为 ㎝.17. 如图所示,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B 、D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE=8,BF=5,则EF 的长为 .18.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC=90°﹣∠ABD ;④∠BDC=∠BAC .其中正确的结论的有 . (把正确结论的序号都写上去)三、解答题:(本题满分76分)19.(本题满分8分)(1)()()22018020171125424-⎛⎫⎛⎫---+⨯- ⎪ ⎪⎝⎭⎝⎭; (2)()()2322823m m m m ⋅-⋅ ;20.(本题满分6分) 分解因式:(1)()28a 116a +-; (2)()()22248416x x x x ---+.21. (本题满分5分) 求解不等式组2(1)31213x x x +>-⎧⎪+⎨≥⎪⎩,并在数轴上表示出它的解集..............22. (本题满分8分)(1)已知01452=--x x ,求代数式)2)(1()12()3(22++-+++-x x x x x 的值.(2)已知n 为正整数,且24n x=,求()()22322nn x x -的值.第17题图第16题图 第18题图23.(本题满分6分)如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助于网格.......). (1)分别画出△ABC 中BC 边上的高AH 、中线AG.(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF.(3)画一个锐角△MNP (要求各顶点在格点上),使其面积等于△ABC 的面积的2倍.24. (本题满分6分)已知:如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB ∥CD ;(2)求∠C 的度数.25. (本题满分6分)如图,点C 、E 分别在直线AB 、DF 上,CF 和BE 相交于点O ,CO=FO ,EO=BO .(1)求证:△COB ≌△FOE ;(2)若∠ACE=70°,求∠DEC 的度数.26.(本题满分7分)已知关于x ,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解;(2)若方程组的解满足0x y +=,求m 的值;(3)无论实数m 取何值,方程250x y mx -++=总有一个固定的解,则这个解是 .27. (本题满分8分)(2017•绵阳)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.28. (本题满分7分)如图,△ABC中,∠C=90°,AC=12,BC=9,AB=15,若动点P从点C开始,按C→A→B→C 的路径运动,且速度为每秒3个单位,设运动的时间为t秒.(1)当t= 时,CP把△ABC的面积分成相等的两部分;= .(2)当t=5时,CP把△ABC分成的两部分面积之比是S:SAPC BPC(3)若△BPC的面积为18,试求t的值.29. (本题满分9分)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.(2)5×3=15,AP=15﹣12=3,BP=15﹣3=12,则S△APC :S△BPC=3:12=1:4;(3)分两种情况:①当P在AC上时,∵△BCP的面积=18,∴×9×CP=18,∴CP=4,∴3t=4,t=;②当P在AB上时,∵△BCP的面积=18=△ABC 面积的=,∴3t=12+15×=22,t=.故t=或秒时,△BCP的面积为12.29.(1)全等;(2)11xt=⎧⎨=⎩,322xt⎧=⎪⎨⎪=⎩;。
【苏科版】2017-2018学年第二学期七年级期末复习数学试卷(解析版)
2017-2018学年第二学期初一数学期末复习综合试卷(1)一、选择题:(本题共10小题,每小题3分,共30分)1. 等于( )A. 3B.C. -3D.【答案】D【解析】分析:根据负整数指数幂的定义解答. 详解:==.故选D .点睛:本题主要考查了负整数指数幂的运算,要明确负整数指数为正整数指数的倒数.2. 下列运算正确的是( ) A. B. C. D.【答案】D【解析】分析:A .利用完全平方公式展开得到结果,即可做出判断;B .合并同类项得到结果,即可做出判断;C .利用幂的乘方运算法则计算得到结果,即可做出判断;D .利用单项式乘单项式法则计算得到结果,即可做出判断.详解:A .(a +b )2=a 2+2ab +b 2,本选项错误; B .x 3+x 3=2x 3,本选项错误;C .(a 3)2=x 6,本选项错误;D .(2x 2)(﹣3x 3)=﹣6x 5,本选项正确.故选D .点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,以及单项式乘单项式,熟练掌握公式及法则是解答本题的关键.3. 若实数a 、b 、c 在数轴上的位置如图所示,则下列不等式成立的是( )A. ac >bcB. ab >cbC. a+c >b+cD. a+b >c+b【答案】B【解析】试题分析:根据数轴判断出a、b、c的正负情况,然后根据不等式的性质解答.解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.考点:实数与数轴.4. 下列各式中,是完全平方式的是()A. B. C. D.【答案】D【解析】试题分析:A.,乘积项不是平方项两数的二倍,故本选项错误;B.两平方项符号相反,故本选项错误;C.乘积项不是平方项两数的二倍,故本选项错误;D.∵,∴是完全平方式.故选D.考点:完全平方式.5. 如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5.其中能判定AB∥CD的条件的个数有()A. 1B. 2C. 3D. 4【答案】C【解析】试题解析:①∵∠B+∠BDC=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.6. 如图,AD=AE.补充下列一个条件后,仍不能判定△ABE≌△ACD的是()A. ∠B=∠CB. AB=ACC. ∠AEB=∠ADCD. BE=CD【答案】D【解析】分析:根据题目所添加的条件,用全等三角形的判定定理进行分析即可.详解:A.∠B=∠C,AD=AE,∠A=∠A可用ASA定理进行判定;B.AB=AC,AD=AE,∠A=∠A可用SAS定理进行判定;C.∠AEB=∠ADC,AD=AE,∠A=∠A可用ASA定理进行判定;D.BE=DC,AD=AE,∠A=∠A不能判定△ABE≌△ACD.故选D.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7. 把多项式分解因式,得(x+1)(x-3),则a,b的值分别是()A. a=-2,b=-3;B. a=2,b=3;C. a=-2,b=3;D. a=2,b=-3;【答案】A【解析】∵,∴,故选B.8. 有下列四个命题:①相等的角是对顶角;②同位角相等;③两点之间,直线最短;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A. 0个B. 1个C. 2个D. 3个【答案】A【解析】分析:①根据对顶角的定义进行判断;②根据同位角的知识判断;根据线段公理的知识对③进行判断;根据点到直线的距离的定义对④进行判断.详解:①对顶角相等,相等的角不一定是对顶角,①假命题;②两直线平行,同位角相等;②假命题;③两点之间,线段最短;③假命题;④从直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以④假命题;真命题的个数为0.故选A.点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9. 在关于x、y的二元一次方程组中,若,则a的值为()A. 1B. -3C. 3D. 4【答案】C【解析】分析:上面方程减去下面方程得到2x+3y=a﹣1,由2x+3y=2得出a﹣1=2,即a=3.详解:,①﹣②,得:2x+3y=a﹣1.∵2x+3y=2,∴a﹣1=2,解得:a=3.故选C.点睛:本题主要考查解二元一次方程组,观察到两方程的系数特点和等式的基本性质是解题的关键.10. 如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,则∠1+∠2的度数为()A. 80°;B. 90°;C. 100°;D. 110°;【答案】A【解析】分析:连接AA′.首先求出∠BAC,再证明∠1+∠2=2∠BAC即可解决问题.详解:连接AA′.∵A'B平分∠ABC,A'C平分∠ACB,∠BA'C=110°,∴∠A′BC+∠A′CB=70°,∴∠ABC+∠ACB=140°,∴∠BAC=180°﹣140°=40°.∵∠1=∠DAA′+∠DA′A,∠2=∠EAA′+∠EA′A.∵∠DAA′=∠DA′A,∠EAA′=∠EA′A,∴∠1+∠2=2(∠DAA′+∠EAA′)=2∠BAC=80°.故选A.点睛:本题考查了三角形的内角和定理、角平分线的定义、三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识,属于中考常考题型.二、填空题:(本题共8小题,每小题3分,共24分)11. 目前,中国网民已经达到731 000 000人,将数据731 000 000用科学记数法表示为______.【答案】【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n是负数.详解:将数据731 000 000用科学记数法表示为7.31×108.故答案为:7.31×108.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.12. 一个多边形的内角和等于一个三角形的外角和的2倍,则这个多边形的边数是_________.【答案】6【解析】分析:n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.详解:设多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得:n=6.故答案为:6.点睛:本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.13. 在△ABC中,∠A=∠B=∠C,那么△ABC是______三角形.【答案】直角........ ...................考点:三角形内角和定理.14. 已知,,则= _________ .【答案】【解析】分析:根据同底数幂的除法及乘法进行计算即可.详解:x a﹣2b=x a÷(x b•x b)=4÷(3×3)=.故答案为:.点睛:本题考查的是同底数幂的除法及乘法,解答此题的关键是逆用同底数幂的除法及乘法的运算法则进行计算.15. 若,,则的值为________ .【答案】【解析】分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.详解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为:.点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.16. 如图,分别过矩形ABCD的顶点A、D作直线、,使,与边BC交于点P,若∠1=38°,则∠BPD 的度数为__________ .【答案】142°【解析】分析:先根据平行线的性质,得到∠ADP的度数,再根据平行线的性质,即可得到∠BPD的度数.详解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°.∵矩形ABCD的对边平行,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.点睛:本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.17. 的不等式组的正整数解是1,2,3,则的取值范围是_______________.【答案】【解析】分析:解不等式得出x≤,根据不等式的正整数解是1,2,3知3≤<4,解之可得.详解:∵3x﹣k≤0,∴.∵正整数解为1,2,3,∴,∴9≤k<12.故答案为:9≤k<12.点睛:本题主要考查解一元一次不等式的能力,根据一元一次不等式的整数解确定k的取值范围是解题的关键.18. 如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②AF∥EB;③∠FAN=∠EAM;④△ACN≌△ABM其中正确的有_____________.(只需填写序号)【答案】①③④【解析】试题分析:由∠E=∠F=90°,∠B=∠C,AE=AF,利用“AAS”得到△ABE与△ACF全等,根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等,AE与AF相等,AB与AC相等,然后在等式∠EAB=∠FAC两边都减去∠MAN,得到∠EAM与∠FAN相等,然后再由∠E=∠F=90°,AE=AF,∠EAM=∠FAN,利用“ASA”得到△AEM与△AFN全等,利用全等三角形的对应边相等,对应角相等得到选项①和③正确;然后再∠C=∠B,AC=AB,∠CAN=∠BAM,利用“ASA”得到△ACN与△ABM全等,故选项④正确;若选项②正确,得到∠F与∠BDN相等,且都为90°,而∠BDN不一定为90°,故②错误.考点:全等三角形的判定与性质三、解答题:(本大题共76分)19. (1)计算:;(2)解方程组:【答案】(1);(2);【解析】分析:(1)根据零指数幂、负整数指数幂、有理数的乘方等知识点进行解答;(2)原方程组去分母后,用加法消元法求解即可.详解:(1)原式=1﹣2﹣=;(2)方程整理得:,①×2-②×3得:y=-24,把y=-24代入②得:x=60,∴原方程组的解为)点睛:需要注意的知识点是:a﹣p=;解二元一次方程组的关键是熟练运用方程组的解法,本题属于基础题型.20. 把下列各式分解因式:(1) ;(2) .【答案】(1);(2);【解析】分析:(1)首先把(y﹣x)变为﹣(x﹣y),再提取公因式(x﹣y)进行分解即可;(2)首先提取公因式-b,再用完全平方公式分解即可.详解:(1)原式=3a(x﹣y)+5b(x﹣y)=(x﹣y)(3a+5b);(2)原式=-b(b2-4ab+4a2)=-b(b-2a)2.点睛:本题主要考查了提公因式法和公式法分解因式,关键是要分解彻底.21. 先化简,再求值:,其中.【答案】=8【解析】分析:将原式第一项利用完全平方公式展开,第二项提取﹣1后,利用平方差公式化简,去括号合并同类项后得到最简结果,将a的值代入化简后的式子中计算,即可得到原式的值.详解:(a+2)2﹣(1﹣a)(﹣a﹣1)=(a+2)2+(1﹣a)(1+a)=a2+4a+4+1﹣a2=4a+5,当a=时,原式=4×+5=3+5=8.点睛:本题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解答本题的关键.22. 解不等式:(1);(2),并写出其整数解;【答案】(1);(2),整数解是0,1;【解析】分析:(1)去分母、去括号、移项、合并同类项、系数化为1即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分.详解:(1)去分母得:3(x+1)+2(x﹣1)≤6,去括号整理得:5x≤5,解得:x≤1;(2)解不等式9x+5<8x+7得:x<2,解不等式x+2>1﹣x得:x>﹣0.5,所以不等式组的解集为﹣0.5<x<2,所以不等式组的整数解是0,1.点睛:本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.23. (1)若的值;(2)若求的值;【答案】(1)144;(2)27;【解析】分析:(1)根据积的乘方和幂的乘方法则的逆运算,即可解答;(2)根据同底数幂乘法、除法公式的逆运用,即可解答.详解:(1)(x2y)2n=x4n y2n=(x n)4(y n)2=24×32=16×9=144;(2)32a﹣4b+1=(3a)2÷(32b)2×3=36÷4×3=27.点睛:本题考查的是幂的乘方和积的乘方、同底数幂的乘除法,掌握它们的运算法则及其逆运算是解题的关键.24. (1)已知的值;(2)已知的值.【答案】(1)7;(2)54;【解析】分析:(1)将两边平方,然后利用完全平方公式进行计算即可;(2)将x﹣y=3两边同时平方得:x2﹣2xy+y2=9,从而可求得x2+y2=27的值,然后将xy=9,x2+y2=27代入所求的代数式即可得出问题的答案.详解:(1)将a+=3两边同时平方得:=9,∴=7;(2)将x﹣y=3两边同时平方得:x2﹣2xy+y2=9,∴x2+y2=9+2xy=9+2×9=27,∴x2+3xy+y2=27+3×9=54.点睛:本题主要考查的是完全平方公式的应用,平方法的应用是解题的关键.25. 画图并填空,如图:方格纸中每个小正方形的边长都为1,△ABC的顶点都在方格纸的格点上,将△ABC 经过一次平移后得到△A'B'C'.图中标出了点C的对应点C'.(1)请画出平移后的△A'B'C';(2)若连接AA',BB',则这两条线段的关系是;(3)利用网格画出△ABC中AC边上的中线BD以及AB边上的高CE;(4)线段AB在平移过程中扫过区域的面积为.【答案】(1)图见解析;(2)平行且相等;(3)见解析;(4)20;【解析】分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出两条线段之间的关系;(3)利用网格得出AC的中点即可得出答案;利用网格得出高CE即可得出答案;(4)直接利用线段AB在平移过程中扫过区域的面积进而得出答案.详解:(1)如图所示,(2)根据平移的性质可得:AA′∥BB′,AA′=BB′.故答案为:平行且相等;(3)如图所示;(4)线段AB在平移过程中扫过区域的面积=S四边形AA′B′B=5×4=20.故答案为:20.点睛:本题主要考查了平移的性质以及三角形面积的求法,正确得出对应点的位置是解题的关键.26. 如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.【答案】(1)证明见解析;(2)证明见解析.【解析】分析:(1)求出∠BAD=∠BAC,根据SAS证出△BAD≌△CAE即可;(2)根据全等推出∠DBA=∠C,根据等腰三角形性质得出∠C=∠ABC,根据平行线性质得出∠ABC=∠DFB,推出∠DFB=∠DBF,根据等腰三角形的判定推出即可.(2)∵△BAD≌△CAE,∴∠DBA=∠C.∵AB=AC,∴∠C=∠ABC.∵DF∥BC,∴∠DFB=∠ABC=∠C=∠DBA,即∠DFB=∠DBF,∴DF=CE.点睛:本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质和判定等知识点,主要考查学生运用性质进行推理的能力,题目比较典型,是一道比较好的题目.27. 已知关于x、y的方程组(实数m是常数).(1)若x+y=1,求实数m的值;(2)若-1≤x-y≤5,求m的取值范围;(3)在(2)的条件下,化简:.【答案】(1);(2);(3)当时,原式=;当时,原式=.【解析】试题分析:(1)先将方程组中的两个方程相加,得3(x+y)=6m+1,再将x+y=1代入,得到关于m的方程,解方程即可求出实数m的值;(2)先将方程组中的两个方程相减,得x﹣y=2m﹣1,再解不等式组﹣1≤2m﹣1≤5,即可求出m的取值范围;(3)先根据绝对值的定义去掉绝对值的符号,再合并同类项即可.试题解析:(1)将方程组中的两个方程相加,得3(x+y)=6m+1,将x+y=1代入,得6m+1=3,解得m;(2)将方程组中的两个方程相减,得x﹣y=2m﹣1,解不等式组﹣1≤2m﹣1≤5,得0≤m≤3;(3)当0≤m≤时,|m+2|+|2m﹣3|=(m+2)﹣(2m﹣3)=5﹣m;当<m≤3时,|m+2|+|2m﹣3|=(m+2)+(2m﹣3)=3m﹣1.考点:二元一次方程组的解;解一元一次不等式组28. 某地图书馆为了满足群众多样化阅读的需求,决定购买甲、乙两种品牌的电脑若干组建电子阅览室.经了解,甲、乙两种品牌的电脑单价分别3100元和4600元.(1)若购买甲、乙两种品牌的电脑共50台,恰好支出200000元,求甲、乙两种品牌的电脑各购买了多少台?(2)若购买甲、乙两种品牌的电脑共50台,每种品牌至少购买一台,且支出不超过160000元,共有几种购买方案?并说明哪种方案最省钱.【答案】(1)甲种品牌的电脑购买了20台,乙种品牌的电脑购买了30台;(2)一共有三种购买方案,甲种品牌的电脑购买49台,乙种品牌的电脑购买1台比较省钱.【解析】分析:(1)设甲种品牌的电脑购买了x台,乙种品牌的电脑购买了y台,根据题意建立二元一次方程组,求出其解即可;(2)设甲种品牌的电脑购买了x台,乙种品牌的电脑购买了(50-x)台,根据题意建立不等式组求出其解即可.详解:(1)设甲种品牌的电脑购买了x台,乙种品牌的电脑购买了y台,则,解得,答:甲种品牌的电脑购买了20台,乙种品牌的电脑购买了30台.(2)设甲种品牌的电脑购买了x台,乙种品牌的电脑购买了(50-x)台,则,解得≤x≤49,∴x的整数值为47,48、49,当x=47时,50-x=3;当x=48时,50-x=2;当x=49时,50-x=1.∴一共有三种购买方案:甲种品牌的电脑购买47台,乙种品牌的电脑购买3台;甲种品牌的电脑购买48台,乙种品牌的电脑购买2台;甲种品牌的电脑购买49台,乙种品牌的电脑购买1台.∵甲、乙两种品牌的电脑单价分别3100元和4600元.∴甲种品牌的电脑购买49台,乙种品牌的电脑购买1台比较省钱.点睛:本题考查了二元一次方程组的运用,一元一次不等式组的运用,方案设计题型的运用,解答时找到等量关系建立方程或者方程组和建立不等式是关键.29. 在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明)【答案】(1)90°;(2)①α+β=180°;②α=β.【解析】试题分析:(1)利用等腰三角形证明ABD ACE,所以∠ECA=∠DBA,所以∠DCE=90°.(2)方法类似(1)证明△ABD≌△ACE,所以∠B=∠ACE,再利用角的关系求.(3)同理方法类似(1). 试题解析:解:(1)90 度.∠DAE=∠BAC ,所以∠BAD=∠EAC,AB=AC,AD=AE,所以ABD ACE,所以∠ECA=∠DBA,所以∠ECA=90°.(2)①.理由:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE, 又AB=AC,AD=AE,∴△ABD≌△ACE,∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴.∵,∴.(3)补充图形如下,.。
2017–2018学年苏科版七年级数学下册期末试卷含答案解析
2017–2018学年苏科版七年级数学下册期末试卷含答案解析2017-2018学年七年级下学期数学试卷一、选择题(每题3分)1.若某三角形的两边长是3和4,则第三边的长度可以是()A.10 B.9 C.7 D.52.不等式5x-1>2x+5的解集在数轴上的表示正确的是()A. B. C. D.3.若a>b,则下列式子中错误的是()A.a-2>b-2B.a+2>b+2 C.a>b D.-2a>-2b4.若am=2,an=3,则a2m-n的值为()A.12 B.3/2 C.1 D.1/65.方程2x+3y=15的正整数解有()A.0个 B.1个 C.2个 D.无数个6.XXX和爸爸一起做投篮游戏,两人商定:XXX投中1个得3分,爸爸投中1个得1分,结果两人一共投中20个,两人的得分恰好相等,设XXX投中x个,爸爸投中y个,根据题意,列方程组为()A.3x+y=20,x+3y=20 B.x+y=20,3x+y=20 C.x+3y=20,3x+y=20 D.x+y=20,x+3y=207.从下列不等式中选择一个与x+1≤2组成不等式组,若要使该不等式组的解集为x≤1,则可以选择的不等式是()A.x0 D.x>28.下列命题:①同旁内角互补;②对顶角相等;③一个角的补角大于这个角;④三角形的一个外角等于两个内角之和,其中,真命题的个数是()A.0 B.1 C.2 D.3二、填空题(每题3分)9.不等式3-2x>1的解集为______.x<110.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.xxxxxxxx6克,用科学记数法表示是______克.7.6 × 10^-811.某多边形的内角和与外角和相等,这个多边形的边数是______.n = 612.若一直角三角形的两个锐角的差是20°,则其较大锐角的度数是______.70°13.若a+b=5,ab=4,则a^2+b^2=______.914.已知二元一次方程组x+y=5,2x+3y=11,则x+y的值是______.315.命题“若a=b,则|a|=|b|”的逆命题是______.若|a| ≠ |b|,则a ≠ b16.如果不等式组的解集为x<-1,则m=______.m < -2三、解答题17.计算:(-1) - 1+(-2)^2×2016-(-2)^2.答案:403118.分解因式:(x+5)^2-4.答案:x^2+10x+2119.分解因式:2x^3y-4x^2y^2+2xy^3.答案:2xy(x-y)^220.解方程组:2x+3y=7,5x-2y=8.答案:x=2,y=1/321.解不等式组:2x-32x-2.答案:-4/3<x<322.先化简,再求值:(x+y)^2-2x(x+2y)+(x+3y)(x-3y),其中x=-1,y=2.答案:-3023.已知与都是方程y=ax+b的解,则a+b=______.答案:0的关系,写出结论:______;(2)证明结论:______.24.已知图中CD⊥AB,FG⊥AB,垂足分别为D、G,点E在AC上,且∠1=∠2,证明:∠B=∠ADE。
【秦淮区】2017-2018学年第二学期初一数学期末试卷及解析
;
(2) 将图 1 中的几何体分割成三个长方体①、②、③,如图 2 所示,因为 BC=a,
AB=a-b,CF=b,所以长方体①的体积为 ab(a b) ,类似地,长方体②的体积为
,长方体③的体积为
;(结果不需要化简)
(3) 将表示长方体①、②、③的体积的式子相加,并将得到的多项式分解因式,结
果为
6
题号 14
15
不等式两边都乘(或除以)同一
答案 110 个负数,不等号的方向改变(或
写“不等式的基本性质 2”)
16 0,1
17
18
3
a = 3 且b 2
4
2
三、解答题
19、(8 分)
解:⑴原式= 4 − 1 + 9
……………………………………………………………………3 分
=12
……………………………………………………………………4 分
……………………………………………………4 分
( ) (说明:若写 ab(a − b) + a2 (a − b) + b2 (a − b) = (a − b) a2 + ab + b2 不扣分)
( ) ⑷ a3 − b3 = (a − b) a2 + ab + b2
……………………………………………………6 分
相应的图形.
A
P
B
C
第 6 页,共 9 页
2017-2018 秦淮区初一(下)期末考试(答案)
一、选择题(每题 2 分,共 16 分)
题号
1
2
3
4
5
6
7
8
答案
C
2017-2018学年苏科版初一下学期期末数学试卷及答案
2017-2018学年七年级下学期期末数学试卷一、选择题(每小题3分,共30分)1.9的算术平方根是( )A.±3 B.3 C.D.2.为了解全市1 600多万民众的身体健康状况,从中任意抽取1 000人进行调查,在这个问题中,这1 000人的身体状况是( )A.总体B.个体C.样本D.样本容量3.若x>y,则下列式子中错误的是( )A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y 4.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于( )A.35°B.45°C.55°D.65°5.若是关于x、y的方程ax﹣y=3的解,则a=( )A.1 B.2 C.3 D.46.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )A.x>1 B.x≥1 C.x>3 D.x≥37.下列命题中,不正确的是( )A.邻补角互补B.内错角相等C.对顶角相等D.垂线段最短8.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④9.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为何?( )A.(﹣9,3)B.(﹣3,1)C.(﹣3,9)D.(﹣1,3)10.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x﹣100)<1000,则下列何者可能是小美告诉小明的内容?( )A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打73折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元11.某中学计划租用若干辆汽车运送2014-2015学年七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x辆车,共有y名学生.则根据题意列方程组为( )A.B.C.D.12.如果关于x的不等式组:的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对[a,b]共个数为( )A.3 B.4 C.5 D.6二、填空题(每小题4分,共20分)13.的立方根是__________.14.图中是对顶角量角器,用它测量角的原理是__________.15.已知点A(﹣1,b+2)不在任何象限,则b=__________.16.已知9.972=99.4009,9.982=99.6004,9.992=99.8001,之值的个位数字为__________.17.如图是一组密码的一部分,为了保密,许多情况下可采用不同的密码,请你运用所学数学知识找到破译密码的“钥匙”,目前,已破译处“正做数学”的真实意义是“”祝你成功,若“正”所处的位置为(x,y),你找到的密码钥匙是__________,破译的“今天考试”真实意思是__________.三、解答题18.(1)计算:﹣32+|﹣3|+(2)解方程组:.19.解不等式组,并把解集在数轴上表示出来.20.为了解某区2014-2015学年八年级学生身体素质情况,该区从全区2014-2015学年八年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A 级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是__________;(2)如1中∠α的度数是__________;并把图2条形统计图补充完整;(3)该区2014-2015学年八年级有学生5500名,如果全部参加这次体育科目测试,请估计不及格的人数为__________;21.如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O为坐标原点),解答下列问题.(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,四边形点A′B′BA的面积.22.如图,(1)因为∠A=__________(已知),所以AC∥ED__________(2)因为∠2=__________(已知),所以AC∥ED__________(3)因为∠A+__________=180°(已知),所以AB∥FD__________(4)因为AB∥__________(已知),所以∠2+∠AED=180°__________(5)因为AC∥__________(已知),所以∠C=∠3__________.23.“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?24.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).2017-2018学年七年级下学期期末数学试卷一、选择题(每小题3分,共30分)1.9的算术平方根是( )A.±3 B.3 C.D.考点:算术平方根.分析:根据开方运算,可得算术平方根.解答:解:9的算术平方根是3,故选:B.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根.2.为了解全市1 600多万民众的身体健康状况,从中任意抽取1 000人进行调查,在这个问题中,这1 000人的身体状况是( )A.总体B.个体C.样本D.样本容量考点:总体、个体、样本、样本容量.专题:应用题.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体.在这个问题中,这1 000人的身体状况是样本.解答:解:A、总体是全市1 600多万民众的身体健康状况的全体,错误;B、个体是所抽取的1 000人中每一个人的身体状况,错误;C、样本是所抽取的这1 000人的身体状况,正确;D、样本容量是1 000,错误.故选C.点评:正确理解总体,个体,样本的含义是解决本题的关键.3.若x>y,则下列式子中错误的是( )A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y考点:不等式的性质.分析:根据不等式的基本性质,进行判断即可.解答:解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.点评:本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于( )A.35°B.45°C.55°D.65°考点:平行线的性质;直角三角形的性质.专题:计算题.分析:利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.解答:解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.故选:A.点评:本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.5.若是关于x、y的方程ax﹣y=3的解,则a=( )A.1 B.2 C.3 D.4考点:二元一次方程的解.分析:把x=2,y=1代入后得出方程,求出方程的解即可.解答:解:∵是关于x、y的方程ax﹣y=3的解,∴代入得:2a﹣1=3,解得:a=2,故选B.点评:本题考查了二元一次方程的解,解一元一次方程的应用,关键是得出关于a的方程.6.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )A.x>1 B.x≥1 C.x>3 D.x≥3考点:在数轴上表示不等式的解集.分析:根据不等式组的解集是大于大的,可得答案.解答:解:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>3.故选:C.点评:本题考查了不等式组的解集,不等式组的解集是大于大的.7.下列命题中,不正确的是( )A.邻补角互补B.内错角相等C.对顶角相等D.垂线段最短考点:命题与定理.分析:根据邻补角的定义对A解析判断;根据平行线的性质对B解析判断;根据对顶角的性质对C解析判断;根据垂线段的性质对D解析判断.解答:解:A、邻补角互补,所以A选项为真命题;B、两直线平行,内错角相等,所以B选项为假命题;C、对顶角相等,所以C选项为真命题;D、垂线段最短,所以D选项为真命题.故选B.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④考点:线段的性质:两点之间线段最短.专题:应用题.分析:由题意,认真分析题干,用数学知识解释生活中的现象.解答:解:①②现象可以用两点可以确定一条直线来解释;③④现象可以用两点之间,线段最短来解释.故选D.点评:本题主要考查两点之间线段最短和两点确定一条直线的性质.9.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为何?( )A.(﹣9,3)B.(﹣3,1)C.(﹣3,9)D.(﹣1,3)考点:点的坐标.分析:根据点到x轴的距离等于纵坐标的长度求出点A的纵坐标,再根据点到y轴的距离等于横坐标的长度求出横坐标,即可得解.解答:解:∵A点到x轴的距离为3,A点在第二象限,∴点A的纵坐标为3,∵A点到y轴的距离恰为到x轴距离的3倍,A点在第二象限,∴点A的横坐标为﹣9,∴点A的坐标为(﹣9,3).故选A.点评:本题考查了点的坐标,主要利用了点到x轴的距离等于纵坐标的长度,点到y轴的距离等于横坐标的长度,需熟练掌握并灵活运用.10.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x﹣100)<1000,则下列何者可能是小美告诉小明的内容?( )A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打73折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元考点:一元一次不等式的应用.分析:根据0.3(2x﹣100)<1000,可以理解为买两件减100元,再打3折得出总价小于1000元.解答:解:由关系式可知:0.3(2x﹣100)<1000,由2x﹣100,得出两件商品减100元,以及由0.3(2x﹣100)得出买两件打3折,故可以理解为:买两件等值的商品可减100元,再打3折,最后不到1000元.故选:A.点评:此题主要考查了一元一次不等式的应用,根据已知最后打3折,再得出不等关系是解题关键.11.某中学计划租用若干辆汽车运送2014-2015学年七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x辆车,共有y名学生.则根据题意列方程组为( )A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设计划租用x辆车,共有y名学生,根据如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,列方程组即可.解答:解:设计划租用x辆车,共有y名学生,由题意得,.故选B.点评:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.12.如果关于x的不等式组:的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对[a,b]共个数为( )A.3 B.4 C.5 D.6考点:一元一次不等式组的整数解.分析:首先解不等式组,不等式组的解集即可利用a,b表示,根据不等式组的整数解仅为1,2即可确定a,b的范围,即可确定a,b的整数解,即可求解.解答:解:,由①得:x≥,由②得:x≤,不等式组的解集为:≤x≤,∵整数解仅有1,2,,∴0<≤1,2≤<3,解得:0<a≤3,4≤b<6,∴a=1,2,3,b=4,5,∴整数a,b组成的有序数对(a,b)共有(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)即6个,故选D.点评:此题主要考查了不等式组的整数解,根据不等式组整数解的值确定a,b的取值范围是解决问题的关键.二、填空题(每小题4分,共20分)13.的立方根是2.考点:立方根;算术平方根.专题:计算题.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.解答:解:∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故答案为:2.点评:本题主要考查了立方根的概念的运用.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.14.图中是对顶角量角器,用它测量角的原理是对顶角相等.考点:对顶角、邻补角.专题:应用题.分析:由题意知,一个破损的扇形零件的圆心角与其两边的反向延长线组的角是对顶角,根据对顶角的性质解答即可.解答:解:由题意得,扇形零件的圆心角与其两边的反向延长线组的角是对顶角.因为对顶角相等,所以利用图中的量角器可以量出这个扇形零件的圆心角的度数.故答案为:对顶角相等.点评:本题考查了对顶角的定义、性质,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.15.已知点A(﹣1,b+2)不在任何象限,则b=﹣2.考点:点的坐标.分析:根据坐标轴上的点的坐标特征方程求解即可.解答:解:∵点A(﹣1,b+2)不在任何象限,∴b+2=0,解得b=﹣2.故答案为:﹣2.点评:本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.16.已知9.972=99.4009,9.982=99.6004,9.992=99.8001,之值的个位数字为8.考点:算术平方根;尾数特征.专题:规律型.分析:利用已知得出≈9.98,进而得出答案.解答:解:∵9.972=99.4009,9.982=99.6004,9.992=99.8001,∴≈9.98,∴≈998,即其个位数字为8.故答案为:8.点评:此题主要考查了算术平方根,得出的近似值是解题关键.17.如图是一组密码的一部分,为了保密,许多情况下可采用不同的密码,请你运用所学数学知识找到破译密码的“钥匙”,目前,已破译处“正做数学”的真实意义是“”祝你成功,若“正”所处的位置为(x,y),你找到的密码钥匙是(x﹣1,y﹣2),破译的“今天考试”真实意思是努力发挥.考点:坐标确定位置.分析:由题意可知:“正”的位置为(5,4),对应字母位置是(4,2)即为“祝”,“做”的位置为(6,8),对应字母位置是(5,6)即为“你”,“数”的位置为(8,4),对应字母位置是(7,2)即为“成”,“学”的位置为(3,6),对应字母位置是(2,4)即为“功”,若“正”所处的位置为(x,y),你找到的密码钥匙是(x﹣1,y﹣2),由此规律得出答案即可.解答:解:“正”所处的位置为(x,y),你找到的密码钥匙是(x﹣1,y﹣2).∵“今”的位置为(4,4)对应字母位置是(3,2)即为“努”,“天”的位置为(6,3)对应字母位置是(5,1)即为“力”,“考”的位置为(2,7)对应字母位置是(1,6)即为“发”,“试”的位置为(7,8)对应字母位置是(6,6)即为“挥”,∴“今天考试”真实意思是“努力发挥”.故答案为:(x﹣1,y﹣2);努力发挥.点评:此题主要考查了坐标确定位置,根据已知得出“正”对应文字位置是:(x﹣1,y﹣2),进而得出密码钥匙是解题关键.三、解答题18.(1)计算:﹣32+|﹣3|+(2)解方程组:.考点:实数的运算;解二元一次方程组.专题:计算题.分析:(1)原式第一项利用乘方意义计算,第二项利用绝对值的代数意义化简,最后一项利用算术平方根定义计算即可得到结果;(2)方程组利用代入消元法求出解即可.解答:解:(1)原式=﹣9+3﹣+6=﹣;(2),把①代入②得:x﹣3x=﹣4,即x=2,把x=2代入①得:y=3,则方程组的解为.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.解答:解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:点评:本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.20.为了解某区2014-2015学年八年级学生身体素质情况,该区从全区2014-2015学年八年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A 级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40;(2)如1中∠α的度数是54°;并把图2条形统计图补充完整;(3)该区2014-2015学年八年级有学生5500名,如果全部参加这次体育科目测试,请估计不及格的人数为1100;考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据B级的人数除以B级所占的百分比,可得抽测的人数;(2)根据A级的人数除以抽测的人数,可得A级人数所占抽测人数的百分比,根据圆周角乘以A级人数所占抽测人数的百分比,可得A级的扇形的圆心角,根据有理数的减法,可得C级抽测的人数,然后补出条形统计图;(3)根据D级抽测的人数除以抽测的总人数,可得D级所占抽测人数的百分比,根据2014-2015学年八年级的人数乘以D级所占抽测人数的百分比,可得答案.解答:解:(1)本次抽样测试的学生人数是:12÷30%=40(人),故答案为:40;(2)∵A级的百分比为:×100%=15%,∴∠α=360°×15%=54°;C级人数为:40﹣6﹣12﹣8=14(人).故答案为:54°;如图:(3)∵D级的百分比为:×100%=20%,∴5500×20%=1100(人),故答案为:1100.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.21.如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O为坐标原点),解答下列问题.(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,四边形点A′B′BA的面积.考点:作图-平移变换.分析:(1)直接根据图形平移的性质画出△A′B′C′,并写出各点坐标即可;(2)根据平行四边形的面积公式即可得出结论.解答:解:(1)如图所示,A′(﹣1,5),B′(﹣4,0),C′(﹣1,0);(2)S四边形点A′B′BA=5×5=25.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.22.如图,(1)因为∠A=∠BED(已知),所以AC∥ED同位角相等两直线平行(2)因为∠2=∠DFC(已知),所以AC∥ED内错角相等两直线平行(3)因为∠A+∠AFD=180°(已知),所以AB∥FD同旁内角互补两直线平行(4)因为AB∥DF(已知),所以∠2+∠AED=180°两直线平行同旁内角互补(5)因为AC∥DE(已知),所以∠C=∠3两直线平行同位角相等.考点:平行线的判定与性质.专题:推理填空题.分析:(1)根据同位角相等两直线平行解答;(2)根据内错角相等两直线平行解答;(3)根据同旁内角互补两直线平行解答;(4)根据两直线平行同旁内角互补解答;(5)根据两直线平行同位角相等解答.解答:解:(1)因为∠A=∠BE(已知),所以AC∥ED(同位角相等两直线平行);(2)因为∠2=∠DFC(已知),所以AC∥ED (内错角相等两直线平行);(3)因为∠A+∠AFD=180°(已知),所以AB∥FD(同旁内角互补两直线平行);(4)因为AB∥DF(已知),所以∠2+∠AED=180°(两直线平行同旁内角互补);(5)因为AC∥DE(已知),所以∠C=∠3(两直线平行同位角相等).故答案为:(1)∠BED,同位角相等,两直线平行;(2)∠CFD,内错角相等,两直线平行;(3)∠AFD,同旁内角互补,两直线平行;(4)FD,两直线平行,同旁内角互补;(5)ED,两直线平行,同位角相等.点评:此题考查了平行线的判定与性质:内错角相等⇔两直线平行;同位角相等⇔两直线平行;同旁内角互补⇔两直线平行.23.“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:优选方案问题.分析:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1200万元”和“10辆公交车在该线路的年均载客总和不少于680万人次”列出不等式组探讨得出答案即可.解答:解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:6≤a≤8,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.点评:此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.24.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).考点:平行线的性质.专题:阅读型;分类讨论.分析:(1)①根据图形猜想得出所求角度数即可;②根据图形猜想得出所求角度数即可;③猜想得到三角关系,理由为:延长AE与DC交于F点,由AB与DC平行,利用两直线平行内错角相等得到一对角相等,再利用外角性质及等量代换即可得证;(2)分四个区域分别找出三个角关系即可.解答:解:(1)①∠AED=70°;②∠AED=80°;③猜想:∠AED=∠EAB+∠EDC,证明:延长AE交DC于点F,∵AB∥DC,∴∠EAB=∠EFD,∵∠AED为△EDF的外角,∴∠AED=∠EDF+∠EFD=∠EAB+∠EDC;(2)根据题意得:点P在区域①时,∠EPF=360°﹣(∠PEB+∠PFC);点P在区域②时,∠EPF=∠PEB+∠PFC;点P在区域③时,∠EPF=∠PEB﹣∠PFC;点P在区域④时,∠EPF=∠PFC﹣∠PEB.点评:此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.。
2017-2018学年度苏科版数学七年级下学期期末试卷(有答案)
2017-2018学年度七年级数学第二学期期末试卷一、选择题(每题有且只有一个答案正确,请把你认为正确的答案填在答题纸上,每题3分,共24分) 1. -12等于( ▲ ) A .12B .12-C .2D .2-2.下列运算中,正确的是( ▲ )A.44m m m =B.5210m m =()C.623m m m ÷=D.336+m m m = 3.已知b a <,c 是有理数,下列各式中正确的是( ▲ )A.22bc ac < B.b c a c -<- C.a c b c -<- D.cb c a < 4. 下列命题中的真命题...是( ▲ ) A .相等的角是对顶角 B .三角形的一个外角等于两个内角之和C .如果33a b =,那么a b = D. 内错角相等5. 如图,把三角板的直角顶点放在直尺的一边上,若130∠=︒,则2∠的度数为( ▲ )A.60︒ B.50︒ C.40︒ D.30︒第5题图 第6题图① 第6题图② 6. 把三张大小相同的正方形卡片A 、B 、C 叠放在一个底面为正方形的盒底上,盒底底面未被卡片覆盖的部分用阴影表示.若按图①摆放时,阴影部分的面积为1S ,若按图②摆放时,阴影部分的面积为2S ,则1S 与2S 的大小关系为( ▲ )A. 1S >2SB. 1S <2SC. 1S =2SD.不能确定7.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售,该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是( ▲ )A.14016615x y x y +=⎧⎨+=⎩,B.140 61615x y x y +=⎧⎨+=⎩, C.15166140x y x y +=⎧⎨+=⎩, D.15616140x y x y +=⎧⎨+=⎩, 8. 如图,在四边形ABCD 中,A B C ∠∠∠==,点E 在边AB 上,60AED ∠︒=,则一定有( ▲ )A .20ADE ∠︒=B .30ADE ∠︒=C .12ADE ADC ∠∠=D .13ADE ADC ∠∠=二、填空题(每题3分,共30分)9. 某种生物细胞的直径约为0.00056米,用科学记数法表示为 ▲ 米.10.多项式29x -因式分解的结果是 ▲ .11.等腰三角形的两边长分别为5和10,则它的周长为 ▲ . 12.若,21,8==n ma a则m n a -= ▲ . 13.如果2x y -=,3xy =,则22x y xy -= ▲ .14.一个多边形的内角和是其外角和的2倍,那么这个多边形的边数n = ▲ . 15.“同位角相等”的逆命题是 ▲ . 16.已知关于x ,y 的二元一次方程组⎩⎨⎧-=+=+12,32y x k y x 的解互为相反数,则k 的值是 ▲ .17.小聪,小玲,小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A 、B 两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案(按1~5题的顺序排列)是 ▲ .18.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108︒,那么这个“梦想三角形”的最小内角的度数为▲ .三.解答题(本大题共10题,满分96分) 19.(本题满分8分,每小题4分) (1)计算:0231(2009)()(2)2--++-; (2)化简:()()()y x x y y x -+--33322.20.(本题满分8分,每小题4分)(1)因式分解:2244ax axy ay -+; (2)解方程组: 31,328x y x y +=-⎧⎨-=⎩21. (本题满分8分,每小题4分)(1) 先化简,再求值:()()()2x y x y x x y xy +--++ ,其中1,2x y =-=(2)解不等式组:⎩⎨⎧>-+-≤-0)3()1(202x x x ,并把它的解集在数轴上表示出来.22.(本题满分8分)如图,EF BC ∥,AC 平分BAF ∠,80B ∠=︒.求C ∠的度数.23.(本题满分10分)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A 、B 两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A 、B 两种饮料共100瓶,问A 、B 两种饮料各生产了多少瓶?24.(本题满分10分)如图,已知DAC ∠是ABC ∆的一个外角,请在下列三个关系: ①B C ∠=∠; ②AE 平分DAC ∠ ③AE BC 中,选出两个恰当的关系作为条件,另一个作为结论,组成一个命题.(1)请写出所有的真命题(用序号表示); (2)请选择其中的一个真命题加以证明.25.(本题满分10分)在如图所示的方格纸中,每个小正方形方格的边长都为1,△ABC 的三个顶点在格点上.(1)画出△ABC 的AC 边上的高,垂足为D ;(标出画高时,你所经过的两个格点,用M 、N 表示)(2)画出将△ABC 先向左平移2格,再向下平移2格得到的△111A B C ; (3)求平移后,线段AC 所扫过的部分所组成的封.闭图形...的面积.26.(本题满分10分)某小区为了绿化环境,计划分两次购进A 、B 两种花草,第一次分别购进A 、B 两种花草30棵和15棵,共花费675元;第二次分别购进A 、B 两种花草12 棵和5棵..两次共...花费940元(两次购进的A 、B 两种花草价格均分别相同). (1)A 、B 两种花草每棵的价格分别是多少元?(2)若再次购买A 、B 两种花草共12棵(A 、B 两种花草价格不变),且A 种花草的数量不少于B 种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用.27.(本题满分12分)对于三个数,,a b c ,{},,M a b c 表示,,a b c 这三个数的平均数,{}min ,,a b c 表示,,a b c 这三个数中最小的数,如:{}12341,2,333M -++-==, {}1,2,min 31-=-;{}1211,2,33a a M a -+++-==,{}1in ,m ,2a -=()11(1)a a a ⎧≤-⎪⎨->-⎪⎩; 解决下列问题:(1)填空:{}220min 2,2,2013--=_______; (2)若{}min 2,22,422x x +-=,求x 的取值范围;(3)①若{}2,1,2M x x +={}min 2,1,2x x +,那么x =_______;②根据①,你发现结论“若{},,M a b c {}min ,,a b c =,则_______”(填,,a b c 的大小关系);③运用②解决问题:若{}22,2,2x y x y M y x +++-{}min 22,2,2x y x y x y =+++-,求x y +的值.28. (本题满分12分)已知△ABC 中,ABC ACB ∠=∠,D 为射.线.CB 上一点(不与C 、B 重合),点E 为射线..CA 上一点,ADE AED ∠=∠.设BAD α∠=,CDE β∠=.(1) 如图(1),① 若40BAC ∠︒=,30DAE ∠︒=,则α=_____,β=_____. ② 写出α与β的数量关系,并说明理由;(2) 如图(2),当D 点在BC 边上,E 点在CA 的延长线上时,其它条件不变,写出α与β的数量关系,并说明理由.(3) 如图(3),D 在CB 的延长线上,根据已知补全图形,并直接写出α与β的关系式__________________.图(1)图(2)图(3)七年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)二、填空题(本大题共10小题,每题3分,共30分)9.-45.610⨯ 10.(3)(3)x x +- 11.25 12.1613.6 14.6 15.相等的角是同位角 16.1- 17.BABBA 18. 18︒或36︒三、 解答题:(本大题有8题,共96分)19.(1)解:原式=1+4+(8)- ……2分3=- …………4分 (2)解:原式=22224129(9)x xy y x y -+-- ……2分=2251210x xy y --+ ………4分20.(1)解:原式=)44(22y xy x a +- ………………………2分 =2)2(y x a - ……………………… 4分 (2)解:①⨯3,得393x y +=- ③③-②,得1111y =- 解得1y =-将1y =-代入①,得2x =故方程组的解为2,1x y =⎧⎨=-⎩………………………4分21.(1)原式=xy xy x y x 2222+---=xy y +-2………………………2分 =24--=6-………………………4分 (2)解不等式①,得2≤x ………………………1分解不等式②,得1->x ………………………2分所以原不等式组的解集为21≤<-x ………………………3分………………………4分22.解:∵EF BC∴180100FAB B ∠=︒-∠=︒ ∵AC 平分BAF ∠ ∴1502FAC FAB ∠=∠=︒ ∵EF BC∴50C FAC ∠=∠=︒ ………………………8分 23.解设A 饮料生产了x 瓶,B 饮料生产了y 瓶, 依题意得:10023270x y x y +=⎧⎨+=⎩ ………………………6分 解得:3070x y =⎧⎨=⎩ . ………………………9分答:A 饮料生产了30瓶,B 饮料生产了70瓶. ………………………10分 24.(1)①②⇒③或①③⇒②或②③⇒①………………………3分 (2)选②③⇒①,证明如下: ∵BC ∥AE∴C EAC B DAE ∠∠∠∠= = ∵AE 平分DAC ∠ ∴EAC DAE ∠∠=∴C B ∠∠=………………………10分 25.(1)4个格点中任取两个作为M 和N 各1分,标出D 点1分(2)………………………6分 (3)9………………………10分26.(1)设A 种花草每棵的价格x 元,B 种花草每棵的价格y 元,根据题意得:3015675125940675x y x y +=⎧⎨+=-⎩解得 205x y =⎧⎨=⎩∴ A 种花草每棵的价格是20元,B 种花草每棵的价格是5元.……………………………………………………5分(2)设A 种花草的数量为m 株,则B 种花草的数量为(12)m -株, ∵A 种花草的数量不少于B 种花草的数量的4倍, ∴4(12)m m ≥-解得:9.6m ≥9.612m ∴≤≤设购买树苗总费用为205(12)1560W m m m =+-=+,当10m =时,最省费用为:151060210⨯+=(元).答:购进A 种花草的数量为10株、B 种2株,费用最省;最省费用是210元. (本题也可以算出所有方案费用,取最小值.) …10分 27. (1)-4 …………………………1分 (2)由题意,得222,422x x +≥⎧⎨-≥⎩解得01x ≤≤ …………………………4分(3)①1 …………………………6分②a b c == …………………………8分 ③由题意,得22222x y x y x y x y ++=+⎧⎨+=-⎩ 解得31x y =-⎧⎨=-⎩ ∴4x y +=- . …………………………12分 28(本题满分12分)(1)①α=10︒,β=5︒.…………………………2分 ②解:=2αβ …………………………3分 设,BAC x DAE y ∠=︒∠=︒ ,则x y α=︒-︒∵ABC ACB ∠=∠ ∴1802x C ︒-︒∠=∵ADE AED ∠=∠∴1802y AED ︒-︒∠=∴180180222y x x y β︒-︒︒-︒︒-︒=-= ∴=2αβ…………………………5分(2) 1802αβ︒+=…………………………6分 设,BAC x DAE y ∠=︒∠=︒ ,则180CAD y ∠=︒-︒∴(180)180x y x y α=︒-︒-︒=︒-︒+︒∵ABC ACB ∠=∠ ∴1802x C ︒-︒∠=∵ADE AED ∠=∠∴1802y AED ︒-︒∠=∴180180180222y x x y β︒-︒︒-︒︒+︒=︒--= ∴1802αβ︒+=…………………………8分(3)画图…………………………10分 180-=2αβ︒ …………………………12分。
初中数学南京市秦淮区七年级下期末数学考试卷含答案解析.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列运算正确的是()A.3x2+2x3=5x6 B.(x3)2=x6 C. D.50=0试题2:下列分解因式中,结果正确的是()A.x2﹣1=(x﹣1)2 B.x2+2x﹣1=(x+1)2C.2x2﹣2=2(x+1)(x﹣1) D.x2﹣6x+9=x(x﹣6)+9试题3:若a>b,则下列各式中一定成立的是()①a+2>b+2;②ac<bc;③﹣2a>﹣2b;④3﹣a<3﹣b.A.①② B.③④ C.②③ D.①④试题4:如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为()A.50° B.60° C.65° D.70°评卷人得分试题5:一个三角形的三边长分别是xcm、(x+1)cm、(x+2)cm,它的周长不超过10cm,则x的取值范围是()A.x B.1 C.x D.1试题6:有一个两位数,它的十位数字与个位数字之和为6,则符合条件的两位数有()A.5个 B.6个 C.7个 D.8个试题7:人体红细胞的直径约为0.0000077m,用科学记数法表示为.试题8:分解因式:2a2﹣6a= .试题9:计算:0.54×25= .试题10:根据不等式的基本性质,将“mx<3”变形为“x”,则m的取值范围是.试题11:不等式x﹣1≤x的解集是.试题12:下面有3个命题:①同旁内角互补,两直线平行;②二元一次方程组的解是唯一的;③平方后等于9的数一定是3.其中是真命题(填序号).试题13:如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为.试题14:如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= .试题15:将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.试题16:现有长为57cm的铁丝,要截成n(n>2)小段,每小段的长度为不小于1cm的整数,如果其中任意3小段都不能拼成三角形,则n的最大值为.试题17:计算:﹣22.试题18:分解因式:m4﹣2m2+1.试题19:先化简,再求值:4x(x﹣1)﹣(2x+1)(2x﹣1),其中x=﹣1.试题20:解方程组.试题21:解不等式组,并写出不等式组的整数解.试题22:如图,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.试题23:如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=∠2,∠C=∠D.求证:AC∥DF.试题24:比较a2+b2与2ab的大小(用“>”、“<”或“=”填空):①当a=3,b=2时,a2+b22ab,②当a=﹣1,b=﹣1时,a2+b22ab,③当a=1,b=﹣2是,a2+b22ab.(2)猜想a2+b2与2ab有怎样的大小关系?并证明你的结论.试题25:南京地铁4号线目前正在紧张的建设中,计划2016年通车,现有大量建材需要运输,“宏兴”运输车队有载重量为8吨、10吨的卡车共15辆,全部车辆运输一次能运输136吨建材.(1)求“宏兴”运输车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“宏兴”运输车队需要一次运输建材190吨以上,为了完成任务,车队准备增购这两种卡车共6辆,请求出购车方案.试题26:如图①,AD是△ABC的中线,△ABD与△ACD的面积有怎样的数量关系?为什么?(2)若三角形的面积记为S,例如:△ABC的面积记为S△ABC,如图②,已知S△ABC=1,△ABC的中线AD、CE相交于点O,求四边形BDOE的面积.小华利用(1)的结论,解决了上述问题,解法如下:连接BO,设S△BEO=x,S△BDO=y,由(1)结论可得:S,S△BCO=2S△BDO=2y,S△BAO=2S△BEO=2x.则有,即.所以.请仿照上面的方法,解决下列问题:①如图③,已知S△ABC=1,D、E是BC边上的三等分点,F、G是AB边上的三等分点,AD、CF交于点O,求四边形BDOF的面积.②如图④,已知S△ABC=1,D、E、F是BC边上的四等分点,G、H、I是AB边上的四等分点,AD、CG交于点O,则四边形BDOG 的面积为.试题1答案:B【考点】幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.【分析】A:根据合并同类项的方法判断即可.B:根据幂的乘方的运算方法判断即可.C:根据负整数指数幂的运算方法判断即可.D:根据零指数幂的运算方法判断即可.【解答】解:∵3x2+2x3≠5x6,∴选项A不正确;∵(x3)2=x6,∴选项B正确;∵,∴选项C不正确;∵50=1,∴选项D不正确.故选:B.【点评】(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(4)此题还考查了合并同类项的方法,要熟练掌握.试题2答案:C【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】各项分解因式得到结果,即可做出判断.【解答】解:A、原式=(x+1)(x﹣1),错误;B、原式不能分解,错误;C、原式=2(x2﹣1)=2(x+1)(x﹣1),正确;D、原式=(x﹣3)2,错误.故选C.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.试题3答案:D【考点】不等式的性质.【分析】①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.②因为c的正负不确定,所以由a>b得ac<bc不正确,据此判断即可.③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.④首先根据不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,可得﹣a<﹣b,然后根据不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,可得3﹣a<3﹣b,据此判断即可.【解答】解:∵a>b,∴a+2>b+2,∴结论①正确;∵a>b,∴①c>0时,ac>bc;②c=0时,ac=bc;③c<0时,ac<bc,∴结论②不正确;∵a>b,∴﹣2a<﹣2b,∴结论③不正确;∵a>b,∴﹣a<﹣b,∴3﹣a<3﹣b,∴结论④正确.综上,可得各式中一定成立的是①④.故选:D.【点评】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.试题4答案:C【考点】平行线的性质;角平分线的定义.【专题】计算题.【分析】根据平行线的性质和角平分线性质可求.【解答】解:∵AB∥CD,∴∠1+∠BEF=180°,∠2=∠BEG,∴∠BEF=180°﹣50°=130°,又∵EG平分∠BEF,∴∠BEG=∠BEF=65°,∴∠2=65°.故选C.【点评】本题考查了两直线平行,内错角相等和同旁内角互补这两个性质,以及角平分线的性质.试题5答案:D【考点】解一元一次不等式组;三角形三边关系.【分析】根据三角形的三边关系得出x+2<x+x+1,根据三角形的周长得出x+x+1+x+2≤10,求出两不等式解集的公共部分即可.【解答】解:∵三角形的三边长分别是xcm、(x+1)cm、(x+2)cm,它的周长不超过10cm,∴x+2<x+x+1,x+x+1+x+2≤10,解得:x>1,x≤,所以x的取值范围是1<x≤,故选D.【点评】本题考查了解一元一次不等式组,三角形三边关系定理,解一元一次不等式的应用,解此题的关键是能根据题意得出两个不等式,难度适中.试题6答案:B【考点】二元一次方程的应用.【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且x,y为整数,分别讨论两未知数的取值即可.注意不要漏解.【解答】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个.故选:B.【点评】本题考查了二元一次方程的应用,解题的关键在于根据未知数的整数性质讨论未知数的具体值,注意不要漏掉两位数的个位数可以为0的情况.试题7答案:7.7×10﹣6m .【考点】科学记数法—表示较小的数.【专题】应用题.【分析】较小的数的科学记数法的一般形式为:a×10﹣n,在本题中a应为7.7,10的指数为﹣6.【解答】解:0.000 007 7=7.7×10﹣6.故答案为:7.7×10﹣6m.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数.试题8答案:2a(a﹣3).【考点】因式分解-提公因式法.【专题】因式分解.【分析】观察原式,找到公因式2a,提出即可得出答案.【解答】解:2a2﹣6a=2a(a﹣3).故答案为:2a(a﹣3).【点评】此题主要考查了因式分解的基本方法一提公因式法.本题只要将原式的公因式2a提出即可.试题9答案:2 .【考点】幂的乘方与积的乘方.【分析】先根据积的乘方的逆运算把0.54×25化为(0.5×2)4×2,在求得结果.【解答】解:0.54×25=(0.5×2)4×2=1×2=2,故答案为2.【点评】本题主要考查了积的乘方,把0.54×25化为(0.5×2)4×2是解题的关键.试题10答案:m<0 .【考点】不等式的性质.【分析】不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,根据将“mx<3”变形为“x”,可得m的取值范围是m<0,据此解答即可.【解答】解:∵将“mx<3”变形为“x”,∴m的取值范围是m<0.故答案为:m<0.【点评】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.试题11答案:x≤2 .【考点】解一元一次不等式.【分析】先移项,再合并同类项、化系数为1即可.【解答】解:移项得,x﹣x≤1,合并同类项得,x≤1,化系数为1得,x≤2,故此不等式的解集为;x≤2.故答案为:x≤2.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.试题12答案:①.【考点】命题与定理.【分析】根据平行线的判定对①进行判断;根据二元一次方程组的解情况对②进行判断;根据平方根的定义对③解析判断.【解答】解:同旁内角互补,两直线平行,所以①正确;二元一次方程组的解可能有唯一一组,也可能无解,也可能有无数组解,所以②错误;平方后等于9的数是±3,所以③错误.故答案为【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.试题13答案:16 .【考点】平移的性质;等边三角形的性质.【专题】数形结合.【分析】由将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,根据平移的性质得到BE=AD=2,EF=BC=4,DF=AC=4,然后利用周长的定义可计算出四边形ABFD的周长.【解答】解:∵将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,∴BE=AD=2,EF=BC=4,DF=AC=4,∴四边形ABFD的周长=AD+AB+BE+EF+FD=2+4+2+4+4=16.故答案为16.【点评】本题考查了平移的性质:平移不改变图象的大小和形状;平移后的线段与原线段平行(或在同一直线上)且相等;对应点的连线段等于平移的距离.试题14答案:300°.【考点】多边形内角与外角.【专题】数形结合.【分析】根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.【解答】解:由题意得,∠5=180°﹣∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°﹣∠5=300°.故答案为:300°.【点评】本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.试题15答案:75 度.【考点】三角形内角和定理;平行线的性质.【专题】计算题.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.【点评】考查三角形内角之和等于180°.试题16答案:8 .【考点】三角形三边关系.【分析】根据三角形的三边关系;三角形两边之和大于第三边,由于每段的长为不小于1的整数,所以设最小的是1,又由于其中任意三段都不能拼成三角形,所以每段长是;1,1,2,3,5,然后依此类推,最后每段的总和要不大于57即可.【解答】解:因为n段之和为定值57cm,故欲n尽可能的大,必须每段的长度尽可能的小.又由于每段的长度不小于1cm,且任意3段都不能拼成三角形,因此这些小段的长度只可能分别是1,1,2,3,5,8,13,21,34,55,但1+1+2+3+5+8+13+21=54<57,1+1+2+3+5+8+13+21+34=88>57,所以n的最大值为8.故答案为8.【点评】此题主要考查了三角形的三边关系,做题时要注意符合题目条件,题目有一定的难度.试题17答案:【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=﹣4+1+4=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.试题18答案:【考点】因式分解-运用公式法.【专题】计算题.【分析】原式利用完全平方公式化简,再利用平方差公式分解即可.【解答】解:原式=(m2﹣1)2=(m+1)2(m﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.试题19答案:【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式利用单项式乘以多项式,以及平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=4x2﹣4x﹣4x2+1=﹣4x+1,当x=﹣1时,原式=4+1=5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.试题20答案:【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×2+②得:5x=0,即x=0,把x=0代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.试题21答案:【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x≥﹣1,解不等式②得:x<3,∴不等式组的解集为﹣1≤x<3,∴不等式组的整数解为﹣1,0,1,2.【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.试题22答案:【考点】直角三角形的性质.【专题】证明题.【分析】根据∠ACB=90°,得出∠A+∠B=90°,根据∠ACD=∠B,得出∠A+∠ACD=90°,再根据两锐角互余的三角形是直角三角形即可得出答案.【解答】证明:∵∠ACB=90°,∴∠A+∠B=90°,∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC=90°,∴CD⊥AB.【点评】此题考查了直角三角形的性质,关键是根据直角三角形的性质得出∠A+∠B=90°.试题23答案:【考点】平行线的判定与性质.【专题】证明题.【分析】先由对顶角相等,得到:∠1=∠DGF,然后根据等量代换得到:∠2=∠DGF,然后根据同位角相等两直线平行,得到BD∥CE,然后根据两直线平行,同位角相等,得到∠C=∠DBA,然后根据等量代换得到:∠D=∠DBA,最后根据内错角相等两直线平行,即可得到DF与AC平行.【解答】证明:∵∠1=∠DGF,∠1=∠2,∴∠2=∠DGF,∴BD∥CE,∴∠C=∠DBA,∵∠C=∠D,∴∠D=∠DBA,∴AC∥DF.【点评】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.试题24答案:【考点】完全平方公式.【分析】(1)①代入a,b的值,分别计算出a2+b2、2ab,即可解答;②代入a,b的值,分别计算出a2+b2、2ab,即可解答;③代入a,b的值,分别计算出a2+b2、2ab,即可解答;(2)将作差,即可比较大小.【解答】解:(1)①当a=3,b=2时,a2+b2=13,2ab=12,∴a2+b2>2ab;②当a=﹣1,b=﹣1时,a2+b2=2,2ab=2,∴a2+b2=2ab;③当a=1,b=2时,a2+b2=5,2ab=4,∴a2+b2>2ab;故答案为:①>,②=,③>;(2)∵a2+b2﹣2ab=(a﹣b)2≥0,∴a2+b2>2ab.【点评】本题考查了完全平分公式,解决本题的关键是熟记完全平分公式.试题25答案:【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)根据“宏兴车队有载重量为8吨、10吨的卡车共15辆,全部车辆运输一次能运输136吨建材”分别得出等式组成方程组,求出即可;(2)利用“宏兴车队需要一次运输190吨建材以上”得出不等式求出购买方案即可.【解答】解:(1)设“宏兴”车队载重量为8吨、10吨的卡车分别有x辆、y辆,根据题意得:,解得:.答:“宏兴”车队载重量为8吨的卡车有7辆,10吨的卡车有8辆;(2)设载重量为8吨的卡车增加了z辆,依题意得:8(7+z)+10(8+6﹣z)>190,解得:z<3,∵z≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.【点评】此题主要考查了二元一次方程组的应用以及不等式的应用,理解题意,找出题目蕴含的等量关系与不等式关系是解题关键.试题26答案:【考点】面积及等积变换.【分析】(1)利用等底等高的三角形面积相等求解即可;(2)①连接BO,设S△BDO=x,S△BGO=y,根据三角形间的面积关系列出方程组求解即可;②连接BO,设S△BDO=x,S△BGO=y,根据三角形间的面积关系列出方程组求解即可.【解答】解:(1)S△ABD=S△ACD.∵AD是△ABC的中线,∴BD=CD,又∵△ABD与△ACD高相等,∴S△ABD=S△ACD.(2)①如图3,连接BO,设S△BFO=x,S△BDO=y,S△BCF=S△ABD =S△ABC =S△BCO=3S△BDO=3y,S△BAO=3S△BFO=3x .则有,即,所以x+y=,即四边形BDOF的面积为;,②如图,连接BO,设S△BDO=x,S△BGO=yS△BCO=4S△BDO=4x,S△BAO=4S△BGO=4y .则有,即,所以x+y=,即四边形BDOG 的面积为,故答案为:.【点评】本题主要考查了面积与等积变换,等底等高的三角形的面积相等等知识,解题的关键是正确分析三角形各部分之间的关系.。
江苏省2017-2018学年七年级数学第二学期期末模拟试卷及答案(共三套)
江苏省2017-2018学年七年级数学第二学期期末模拟试卷及答案(共三套)江苏省2017-2018学年七年级数学第二学期期末模拟试卷及答案(一)一、选择题:每小题3分,共30分。
1.下列运算中,结果是a5的是()A.a2•a3B.a10÷a2C.(a2)3D.(﹣a)52.下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,113.如图所示,直线AB,CD,EF相交于点O,且AB⊥CD于点O,∠BOE=70°,则∠FOD 等于()A.10°B.20°C.30°D.40°4.下列图形中,不是轴对称图形的是()A. B. C. D.5.“a是有理数,|a|≥0”这一事件是()A.必然事件B.不确定事件 C.不可能事件 D.随机事件6.若(x+y)2=9,(x﹣y)2=5,则xy的值为()A.﹣1 B.1 C.﹣4 D.47.小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是()A.B.C.D.8.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm9.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢10.如图,已知∠1=∠2,再加上面某一条件仍无法判定△ABD≌△ABC的是()A.∠CAB=∠DAB B.∠C=∠D C.BC=BD D.AC=AD二、填空题:每小题3分,共24分。
11.不一定在三角形内部的线段是(填“角的平分线”或“高线”或“中线”).12.如图,已知∠1=∠2,∠B=30°,则∠3=.13.一种病毒的直径为0.000023m,用科学记数法表示0.000023为.14.如图,∠A=29°,∠C′=62°,△ABC与△A′B′C′关于直线l对称,则∠B=.15.在一个不透明的口袋中,装有4个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,从口袋中任意摸出一个球,估计它是红球的概率是.16.设地面气温为20℃,如果每升高1千米,气温下降6℃,在这个变化过程中,自变量是,因变量是,如果高度用h(千米)表示,气温用t(℃)表示,那么t随h的变化而变化的关系式为.17.若代数式x2﹣6x+b可化为(x﹣a)2﹣3,则b﹣a=.18.若一个三角形的两条边相等,一边长为4cm,另一边长为7cm,则这个三角形的周长为.三、解答题:共66分。
2017-2018学年江苏省南京市秦淮区七年级(下)期末数学试卷 解析版
2017-2018学年江苏省南京市秦淮区七年级(下)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给出的四个选项中恰一项是符合题目要求的)1.(2分)下方的“月亮”图案可以由如图所示的图案平移得到的是()A.B.C.D.2.(2分)某红外线遥控器发出的红外线波长为0.00000094m,将0.00000094用科学记数法表示为()A.9.4×10﹣7B.0.94×10﹣6C.9.4×10﹣6D.9.4×1073.(2分)下列各式从左边到右边的变形,是因式分解的是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a﹣1)C.(a+b)2=a2+2ab+b2D.a2b=ab•a4.(2分)二元一次方程2x+3y+10=35的一个解可以是()A.B.C.D.5.(2分)已知a>b,则下列不等关系正确的是()A.﹣a>﹣b B.3a>3b C.a﹣1<b﹣1D.a+1<b+26.(2分)如图,在Rt△ABC中,∠A=90°,直线DE∥BC,分别交AB、AC于点D、E,若∠ADE =30°,则∠C的度数为()A.30°B.40°C.50°D.60°7.(2分)命题“若a=b,则|a|=|b|”与其逆命题的真假性为()A.该命题与其逆命题都是真命题B.该命题是真命题,其逆命题是假命题C.该命题是假命题,其逆命题是真命题D.该命题与其逆命题都是假命题8.(2分)已知AB=3,BC=1,则AC的长度的取值范围是()A.2≤AC≤4B.2<AC<4C.1≤AC≤3D.1<AC<3二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程)9.(2分)计算:a5÷a2的结果是.10.(2分)计算(x+1)(2x﹣1)的结果为.11.(2分)因式分解:ab2﹣2ab+a=.12.(2分)不等式2x﹣1<3的解集是.13.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.14.(2分)如图,将一张长方形纸片ABCD沿EF折叠后,点C、D分别落在C、D的位置,DE与BC 相交于点G.若∠1=40°,则∠2=°.15.(2分)将不等式“﹣2x>﹣2”中未知数的系数化为“1”可得到“x<1”,该步的依据是.16.(2分)不等式组的整数解为.17.(2分)如图,BE是△ABC的中线,D是AB的中点,连接DE.若△ABC的面积为1,则四边形DBCE的面积为.18.(2分)二元一次方程组有可能无解.例如方程组无解,原因是:将①×2得2x+4y=2,它与②式存在矛盾,导致原方程组无解.若关于x、y的方程组无解,则a、b须满足的条件是.三、解答题(本大题共9小题,共64分)19.(8分)计算:(1)()﹣2﹣π0+(﹣3)2(2)2m3•3m﹣(2m2)2+m6÷m220.(4分)解二元一次方程组21.(5分)先化简,再求值:(a+2b)(a﹣2b)﹣a(a﹣b),其中a=2,b=3.22.(6分)解不等式x2﹣4<0.请按照下面的步骤,完成本题的解答.解:x2﹣4<0可化为(x+2)(x﹣2)<0.(1)依据“两数相乘,异号得负”,可得不等式组①或不等式组②.(2)不等式组①无解;解不等式组②,解集为.(3)所以不等式x2﹣4<0的解集为.23.(6分)把下面的证明过程补充完整已知:如图,∠1+∠2=180°,∠C=∠D,求证:∠A=∠F.证明:∵∠1+∠2=180°(已知)∴∠C=∠ABD()∵∠C=∠D(已知),∴(等量代换).∴AC∥DF().∴∠A=∠F().24.(6分)如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=34°,∠AEB=80°,求∠CAD的度数.25.(8分)课本上,我们利用数形结合思想探索了整式乘法的法则和一些公式.类似地,我们可以探索一些其他的公式.【以形助数】借助一个棱长为a的大正方体进行以下探索.(1)在其一角截去一个棱长为b(b<a)的小正方体,如图1所示,则得到的几何体的体积为.(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,因为BC=a,AB=a﹣b,CF =b,所以长方体①的体积为ab(a﹣b),类似地,长方体②的体积为,长方体③的体积为:(结果不需要化简)(3)将表示长方体①、②、③的体积的式子相加,并将得到的多项式分解因式,结果为.(4)用不同的方法表示图1中几何体的体积,可以得到的等式为.【以数解形】(5)对于任意数a、b,运用整式乘法法则证明(4)中得到的等式成立.26.(11分)某校组织学生乘汽车前往自然保护区野营.从学校出发后,汽车先以60km/h的速度在平路上行驶,后又以30km/h的速度爬坡到达目的地;返回时,汽车沿原路线先以40km/h的速度下坡,后又以60km/h的速度在平路上行驶回到学校.(1)用含x、y的代数式填表:(2)已知汽车从学校出发到到达目的地共用时5h.①若汽车在返回时共用时4h,求(1)的表格中的x、y的值.②若学校与目的地的距离不超过180km,请围绕“汽车从学校出发到到达目的地”这一过程中汽车行驶的“时间”或“路程”,提出一个能用一元一次不等式解决的问题,并写出解答过程.27.(10分)已知△ABC,P是平面内任意一点(A、B、C、P中任意三点都不在同一直线上).连接PB、PC,设∠PBA=x°,∠PCA=y°,∠BPC=m°,∠BAC=n°.(1)如图,当点P在△ABC内时,①若n=80,x=10,y=20,则m=;②探究x、y、m、n之间的数量关系,并证明你得到的结论.(2)当点P在△ABC外时,直接写出x、y、m、n之间所有可能的数量关系,并画出相应的图形.2017-2018学年江苏省南京市秦淮区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给出的四个选项中恰一项是符合题目要求的)1.(2分)下方的“月亮”图案可以由如图所示的图案平移得到的是()A.B.C.D.【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【解答】解:通过图案平移得到必须与图案完全相同,角度也必须相同,观察图形可知C可以通过图案①平移得到.故选:C.【点评】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.2.(2分)某红外线遥控器发出的红外线波长为0.00000094m,将0.00000094用科学记数法表示为()A.9.4×10﹣7B.0.94×10﹣6C.9.4×10﹣6D.9.4×107【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000094=9.4×10﹣7.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(2分)下列各式从左边到右边的变形,是因式分解的是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a﹣1)C.(a+b)2=a2+2ab+b2D.a2b=ab•a【分析】直接利用因式分解的定义分别分析得出答案.【解答】解:A、ab+ac+d=a(b+c)+d,不符合因式分解的定义,故此选项错误;B、a2﹣1=(a+1)(a﹣1),正确;C、(a+b)2=a2+2ab+b2,是多项式乘法,故此选项错误;D、a2b=ab•a,不符合因式分解的定义,故此选项错误;故选:B.【点评】此题主要考查了因式分解的定义,正确把握定义是解题关键.4.(2分)二元一次方程2x+3y+10=35的一个解可以是()A.B.C.D.【分析】把x看做已知数表示出y,即可确定出方程一个解.【解答】解:方程2x+3y=25,解得:y=(25﹣2x),当x=14时,y=﹣1,则方程的一个解为,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.(2分)已知a>b,则下列不等关系正确的是()A.﹣a>﹣b B.3a>3b C.a﹣1<b﹣1D.a+1<b+2【分析】利用不等式的性质对A、B、C进行判断;利用特殊值对D进行判断.【解答】解:∵a>b,∴﹣a<﹣b,3a>3b,a﹣1>b﹣1,当a=﹣1,b=﹣2时,a+1=b+2.故选:B.【点评】本题考查了不等式的性质:应用不等式的性质应注意的问题,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.6.(2分)如图,在Rt△ABC中,∠A=90°,直线DE∥BC,分别交AB、AC于点D、E,若∠ADE =30°,则∠C的度数为()A.30°B.40°C.50°D.60°【分析】根据“两直线平行,同位角相等”可得出∠B的度数,由三角形的内角和为180°可得出∠C 的度数.【解答】解:∵DE∥BC,∴∠ADE=∠B=30°.∵∠A+∠B+∠C=180°,且∠A=90°,∴∠C=180°﹣90°﹣30°=60°.故选:D.【点评】本题考查了三角形的内角和定义以及平行线的性质,解题的关键是求出∠B的度数.解决该题型题目时,根据角的计算求出角的度数,再结合平行线的性质找出结论.7.(2分)命题“若a=b,则|a|=|b|”与其逆命题的真假性为()A.该命题与其逆命题都是真命题B.该命题是真命题,其逆命题是假命题C.该命题是假命题,其逆命题是真命题D.该命题与其逆命题都是假命题【分析】写出其逆命题,进而判断即可.【解答】解:命题“若a=b,则|a|=|b|”的逆命题为:若|a|=|b|,则a=b,是假命题,而命题“若a =b,则|a|=|b|”是真命题;故选:B.【点评】本题考查命题的真假判断,考查原命题、逆命题等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.8.(2分)已知AB=3,BC=1,则AC的长度的取值范围是()A.2≤AC≤4B.2<AC<4C.1≤AC≤3D.1<AC<3【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:若A,B,C三点共线,则AC=2或=4;若A,B,C三点不共线,则根据三角形的三边关系:第三边大于两边之差1,而小于两边之和7.即:2<AC<4.故线段AC的长度的取值范围是2≤AC≤4.故选:A.【点评】此题考查三角形三边关系,注意考虑三点共线和不共线的情况.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程)9.(2分)计算:a5÷a2的结果是a3.【分析】根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:原式=a5﹣2=a3,故答案为:a3.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.10.(2分)计算(x+1)(2x﹣1)的结果为2x2+x﹣1.【分析】直接利用多项式乘法运算法则计算得出答案.【解答】解:(x+1)(2x﹣1)=2x2+x﹣1.故答案为:2x2+x﹣1.【点评】此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键.11.(2分)因式分解:ab2﹣2ab+a=a(b﹣1)2.【分析】原式提取a,再运用完全平方公式分解即可.【解答】解:原式=a(b2﹣2b+1)=a(b﹣1)2;故答案为:a(b﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(2分)不等式2x﹣1<3的解集是x<2.【分析】先移项,再合并同类项,化系数为1即可.【解答】解:移项得,2x<3+1,合并同类项得,2x<4,化系数为1得,x<2.故答案为;x<2.【点评】本题考查的是解一元一次不等式,即①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.13.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.14.(2分)如图,将一张长方形纸片ABCD沿EF折叠后,点C、D分别落在C、D的位置,DE与BC 相交于点G.若∠1=40°,则∠2=110°.【分析】根据两直线平行,同旁内角互补,可得∠DEG+∠1=180°,∠2+∠DEF=180°,再根据翻折变换的性质可得:∠DEF=∠DEG,可得结论.【解答】解:∵四边形ABCD是矩形,∴AD∥CB,∴∠DEG+∠1=180°,∠2+∠DEF=180°,∵∠1=40°,∴∠DEG=180°﹣40°=140°,由折叠得:∠DEF=∠DEG=70°,∴∠2=180°﹣70°=110°,故答案为:110,【点评】本题考查了平行线的性质,翻折变换的性质,熟记各性质是并准确识图是解题的关键.15.(2分)将不等式“﹣2x>﹣2”中未知数的系数化为“1”可得到“x<1”,该步的依据是不等式两边都乘以(或除以)同一个负数,不等号的方向改变.【分析】由题意知不等式两边都除以﹣2,结合不等式的性质求解可得.【解答】解:该步的依据是:不等式两边都乘以(或除以)同一个负数,不等号的方向改变,故答案为:不等式两边都乘以(或除以)同一个负数,不等号的方向改变.【点评】本题主要考查不等式的性质,解题的关键是熟练掌握不等式的基本性质.16.(2分)不等式组的整数解为0,1.【分析】分别解两个不等式,找两个不等式解集公共部分就是该不等式组的解集,再找出符合x取值范围的整数解即可.【解答】解:解不等式x﹣3(x﹣2)≥4得:x≤1,解不等式得:x>﹣1,即不等式组的解集为:﹣1<x≤1,符合x的取值范围的整数解为:0,1.故答案为:0,1.【点评】本题考查一元一次不等式组的整数解,掌握解不等式组的方法是解题的关键.17.(2分)如图,BE是△ABC的中线,D是AB的中点,连接DE.若△ABC的面积为1,则四边形DBCE的面积为.【分析】由AD=DB,AE=EC,推出DE∥CB,DE=BC,推出△ADE∽△ABC,可得=()2=,由此即可解决问题;【解答】解:∵AD=DB,AE=EC,∴DE∥CB,DE=BC,∴△ADE∽△ABC,∴=()2=,=1,∵S△ABC=,∴S△ADE∴S=.四边形DBCE【点评】本题考查三角形的面积,三角形的中位线定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(2分)二元一次方程组有可能无解.例如方程组无解,原因是:将①×2得2x+4y=2,它与②式存在矛盾,导致原方程组无解.若关于x、y的方程组无解,则a、b须满足的条件是a=且b≠2.【分析】①×2得2x+2ay=2b,根据方程组无解得出2a=3且2b≠4,解之可得.【解答】解:,①×2,得:2x+2ay=2b,由题意知2a=3且2b≠4,解得:a=且b≠2,故答案为:a=且b≠2.【点评】本题主要考查解二元一次方程组,解题的关键是理解并掌握方程组无解的情况.三、解答题(本大题共9小题,共64分)19.(8分)计算:(1)()﹣2﹣π0+(﹣3)2(2)2m3•3m﹣(2m2)2+m6÷m2【分析】(1)直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用单项式乘以单项式以及积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:(1)原式=4﹣1+9=12;(2)原式=6m4﹣4m4+m4=3m4.【点评】此题主要考查了实数运算以及单项式乘以单项式,正确化简各数是解题关键.20.(4分)解二元一次方程组【分析】利用加减消元法解二元一次方程组.【解答】解:,①×2﹣②得,3y=﹣3,解得,y=﹣1,把y=﹣1代入①得,x=3,则方程组的解为.【点评】本题考查的是二元一次方程组的解法,掌握加减法解二元一次方程组的一般步骤是解题的关键.21.(5分)先化简,再求值:(a+2b)(a﹣2b)﹣a(a﹣b),其中a=2,b=3.【分析】根据整式的运算法则即可求出答案【解答】解:当a=2,b=3时,原式=a2﹣4b2﹣a2+ab=ab﹣4b2=6﹣36=﹣30【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.(6分)解不等式x2﹣4<0.请按照下面的步骤,完成本题的解答.解:x2﹣4<0可化为(x+2)(x﹣2)<0.(1)依据“两数相乘,异号得负”,可得不等式组①或不等式组②.(2)不等式组①无解;解不等式组②,解集为﹣2<x<2.(3)所以不等式x2﹣4<0的解集为﹣2<x<2.【分析】(1)根据两数相乘,同号得正知另一个不等式组为两整式均为负数;(2)根据大小小大中间找可得;(3)由以上不等式的解集可得答案.【解答】解:(1)依据“两数相乘,异号得负”,可得不等式组①或不等式组②,故答案为:;(2)不等式组①无解;解不等式组②,解集为﹣2<x<2,故答案为:﹣2<x<2;(3)所以不等式x2﹣4<0的解集为﹣2<x<2,故答案为:﹣2<x<2.【点评】本题主要考查解一元一次不等式组,解题的关键是掌握有理数的乘法法则得出不等式组并熟练掌握解不等式组的能力.23.(6分)把下面的证明过程补充完整已知:如图,∠1+∠2=180°,∠C=∠D,求证:∠A=∠F.证明:∵∠1+∠2=180°(已知)∴∠C=∠ABD(两直线平行,同位角相等)∵∠C=∠D(已知),∴∠D=∠ABD(等量代换).∴AC∥DF(内错角相等,两直线平行).∴∠A=∠F(两直线平行,内错角相等).【分析】由∠1+∠2=180°根据同位角相等,两直线平行,易证得DB∥EC,又由∠C=∠D,易证得AC∥DF,继而证得结论.【解答】证明:∵∠1+∠2=180°(己知)∴BD∥CE(同旁内角互补,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)∵∠C=∠D(己知),∴∠D=∠ABD(等量代换).∴AC∥DF(内错角相等,两直线平行).∴∠A=∠F(两直线平行,内错角相等).故答案为:两直线平行,同位角相等;∠D=∠ABD;内错角相等,两直线平行;两直线平行,内错角相等.【点评】此题考查了平行线的判定与性质.此题难度适中,注意掌握数形结合思想的应用.24.(6分)如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=34°,∠AEB=80°,求∠CAD的度数.【分析】根据角平分线定义求出∠CBE=∠EBA=34°,根据三角形外角性质求出∠C,即可求出答案.【解答】解:∵BE为△ABC的角平分线,∴∠CBE=∠EBA=34°,∵∠AEB=∠CBE+∠C,∴∠C=80°﹣34°=46°,∵AD为△ABC的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=44°.【点评】本题考查了三角形内角和定理和三角形外角性质,能灵活运用三角形内角和定理求出角的度数是解此题的关键.25.(8分)课本上,我们利用数形结合思想探索了整式乘法的法则和一些公式.类似地,我们可以探索一些其他的公式.【以形助数】借助一个棱长为a的大正方体进行以下探索.(1)在其一角截去一个棱长为b(b<a)的小正方体,如图1所示,则得到的几何体的体积为a3﹣b3..(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,因为BC=a,AB=a﹣b,CF =b,所以长方体①的体积为ab(a﹣b),类似地,长方体②的体积为b2(a﹣b),,长方体③的体积为a2(a﹣b):(结果不需要化简)(3)将表示长方体①、②、③的体积的式子相加,并将得到的多项式分解因式,结果为(a﹣b)(a2+ab+b2).(4)用不同的方法表示图1中几何体的体积,可以得到的等式为a3﹣b3=(a﹣b)(a2+ab+b2).【以数解形】(5)对于任意数a、b,运用整式乘法法则证明(4)中得到的等式成立.【分析】(1)由大正方体的体积减去小正方体的体积可得;(2)根据长方体的体积=长×宽×高,可求体积;(3)根据提公因式法可求得;(4)根据几何体体积的不同表示方法可得:a3﹣b3=(a﹣b)(a2+ab+b2);(5)运用整式乘法法则可证明:a3﹣b3=(a﹣b)(a2+ab+b2)成立.【解答】解:(1)由题意可得:a3﹣b3.故答案为:a3﹣b3.(2)由题意可得:b2(a﹣b),a2(a﹣b)故答案为:b2(a﹣b),a2(a﹣b)(3)由题意可得:b2(a﹣b)+a2(a﹣b)+ab(a﹣b)=(a﹣b)(a2+ab+b2)故答案为:(a﹣b)(a2+ab+b2)(4)根据几何体体积的不同表示方法可得:a3﹣b3=(a﹣b)(a2+ab+b2)故答案为:a3﹣b3=(a﹣b)(a2+ab+b2)(5)∵右边=(a﹣b)(a2+ab+b2)=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3.∴右边=左边∴对于任意数a、b,a3﹣b3=(a﹣b)(a2+ab+b2)成立.【点评】本题考查了因式分解的应用,立体图形,整式的乘法,利用数形结合思想解决问题是本题的关键.26.(11分)某校组织学生乘汽车前往自然保护区野营.从学校出发后,汽车先以60km/h的速度在平路上行驶,后又以30km/h的速度爬坡到达目的地;返回时,汽车沿原路线先以40km/h的速度下坡,后又以60km/h的速度在平路上行驶回到学校.(1)用含x、y的代数式填表:(2)已知汽车从学校出发到到达目的地共用时5h.①若汽车在返回时共用时4h,求(1)的表格中的x、y的值.②若学校与目的地的距离不超过180km,请围绕“汽车从学校出发到到达目的地”这一过程中汽车行驶的“时间”或“路程”,提出一个能用一元一次不等式解决的问题,并写出解答过程.【分析】(1)根据时间=即可得到结论;(2)①根据题意得方程组,列方程组即可得到结论;②根据题意列不等式即可得到结论.【解答】解:(1)由题意得,,x,,y;故答案为:,x,,y;(2)①根据题意得,,解得:;②平路的长度最多为多少?根据题意得,x+30(5﹣)≤180,解得:x≤60,答:平路的长度最多为60km.【点评】本题考查了一元一次不等式的应用,二元一次方程组的应用,正确的理解题意是解题的关键.27.(10分)已知△ABC,P是平面内任意一点(A、B、C、P中任意三点都不在同一直线上).连接PB、PC,设∠PBA=x°,∠PCA=y°,∠BPC=m°,∠BAC=n°.(1)如图,当点P在△ABC内时,①若n=80,x=10,y=20,则m=110;②探究x、y、m、n之间的数量关系,并证明你得到的结论.(2)当点P在△ABC外时,直接写出x、y、m、n之间所有可能的数量关系,并画出相应的图形.【分析】(1)①利用三角形的内角和定理即可解决问题;②结论:m=n+x+y.利用三角形内角和定理即可证明;(2)分6种情形分别求解即可解决问题;【解答】解:(1)①∵∠A=80°,∴∠ABC+∠ACB=100°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=70°,∴∠BPC=110°,∴m=110,故答案为110.②结论:m=n+x+y.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC =180°,∴∠A+∠PBA+∠PCA=∠BPC,∴m=n+x+y.(2)x、y、m、n之间所有可能的数量关系:①如图1中,m+x=n+y;②如图2中,n=x+m+y;③如图3中,n+x=m+y;④如图4中,x=m+n+y;⑤如图5中,y=m+n+x;⑥如图6中,x+y+m+n=360°【点评】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.。
江苏省南京市秦淮区2017-2018学年七年级数学下学期期末试题
图1
图2
图3
图4
图5
图6
]
∴ ∠D=∠ABD (等量代换)
…………………………………………4 分
∴AC∥DF( 内错角相等,两直线平行 )
……………ห้องสมุดไป่ตู้……………………5 分
∴∠A=∠F( 两直线平行,内错角相等 )
……………………………………6 分
24、(6 分)
解:∵BE 为△ABC 的角平分线,∠EBA=34°,
∴∠CBE=∠EBA=34°,
………………………………………………………2 分
∵∠AEB 是△BEC 的外角,
∴∠AEB=∠CBE+∠C,
……………………………………………………3 分
∵∠AEB=80°,∴∠C=46°
……………………………………………………4 分
∵AD 为△ABC 的高,
∴∠ADC=90°.
∴ CAD = 90 − C = 44 .
]
23、(6 分) 已知:如图,∠1+∠2=180°,∠C=∠D.
求证:∠A=∠F. 证明:
∵∠1+∠2=180°(已知)
∴ BD∥CE ( 同旁内角互补,两直线平行 ) ……………………………………2 分
∴∠C=∠ABD(两直线平行,同位角相等)
……………………………………3 分
所以∠C=∠D(已知)
22、(6 分)
解:⑴
x x
+ −
2 2
0 0
………………………………………………………………………2 分
⑵ −2 x 2 ………………………………………………………………………4 分 ⑶ −2 x 2 ………………………………………………………………………6 分 (说明:若写“无解或 −2 x 2 ”得 1 分)
江苏省2017-2018学年七年级数学下学期期末模拟试卷及答案(一)
江苏省2017-2018学年七年级数学下学期期末模拟试卷及答案(一)一、选择题1.的绝对值是()A.B.C.D.2.下列计算正确的是()A.3a+4b=7ab B.7a﹣3a=4C.3a+a=3a2D.3a2b﹣4a2b=﹣a2b3.下图中的图形绕虚线旋转一周,可得到的几何体是()A.B. C.D.4.下列各数是无理数的是()A.﹣2 B.C.0.010010001 D.π5.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)6.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3 B.∠1=180°﹣∠3 C.∠1=90°+∠3 D.∠3=90°+∠1二、填空题7.温度由3℃下降6℃后是℃.8.比较大小:﹣π﹣3.14(选填“>”、“=”、“<”).9.据统计,截止2016年11月,南京市投放公共自行车累计达52000辆,为方便群众,缓解城市交通拥堵,倡导绿色交通,促进节能减排发挥了积极作用,将52000用科学记数法表示为.10.若单项式a m b3与﹣3ab n是同类项,则m+n=.11.若关于x的方程2(x﹣1)+a=0的解是x=3,则a的值为.12.若m2+mn=﹣3,n2﹣3mn=﹣12,则m2+4mn﹣n2的值为.13.如图,点A在数轴上对应的数为2,若点B也在数轴上,且线段AB的长为3,则点B在数轴上对应的数为.14.如图,用火柴棒搭“小鱼”,则搭10条“小鱼”需用根火柴棒,搭n条“小鱼”所需火柴棒的根数为(填写化简后的结果).15.如图,将一副三角板的直角顶点重合,摆放在桌面上,若∠BOC=∠AOD,则∠AOD=.16.计算(++)﹣2×(﹣﹣﹣)﹣3×(++﹣)的结果是.三、解答题17.计算:(1)(﹣+)×36;(2)﹣32+16÷(﹣2)×.18.先化简后求值2(x2y+xy2)﹣2(x2y﹣3x)﹣2xy2﹣2y的值,其中x=﹣1,y=2.19.解方程:(1)1﹣3(x ﹣2)=4;(2)﹣=1.20.将6个棱长为2cm 的小正方体在地面上堆叠成如图所示的几何体,然后将露出的表面部分染成红色.(1)画出这个的几何体的三视图:(2)该几何体被染成红色部分的面积为 .21.如图,C 是线段AB 的中点.(1)若点D 在CB 上,且DB=2cm ,AD=8cm ,求线段CD 的长度;(2)若将(1)中的“点D 在CB 上”改为“点D 在CB 的延长线上”,其它条件不变,请画出相应的示意图,并求出此时线段CD 的长度.22.生态公园计划在园内的坡地上种植一片有A 、B 两种树的混合林,需要购买这两种树苗共100棵.假设这批树苗种植后成活95棵,种植A 、B 两种树苗的相关信息如下表:(1)求购买这两种树苗各多少棵?(2)求种植这片混合林的总费用需多少元?(总费用=购买树苗费用+栽树劳务费)23.如图,点P 在∠AOB 内.(1)过点P 画直线PC ∥OA ,交OB 于点C ;(2)过点C 画OA 的垂线,垂足为H ;(3)因为直线外一点和直线上各点连接的所有线段中,,所以两条线段CH、OC的大小关系是:(用“<”号连接).24.如图,已知直线AB与CD相交于点O,OE是∠BOD的平分线,OF是∠AOD 的平分线.(1)已知∠BOD=60°,求∠EOF的度数;(2)求证:无论∠BOD为多少度,均有OE⊥OF.25.扬子江药业集团生产的某种药品的长方体包装盒的侧面展开图如图所示.根据图中数据,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.26.如图,射线OB、OC均从OA开始,同时绕点O逆时针旋转,OB旋转的速度为每秒6°,OC旋转的速度为每秒2°.当OB与OC重合时,OB与OC同时停止旋转.设旋转的时间为t秒.(1)当t=10,∠BOC=.(2)当t为何值时,射线OB⊥OC?(3)试探索,在射线OB与OC旋转的过程中,是否存在某个时刻,使得射线OB,OC与OA中的某一条射线是另两条射线所成角的角平分线?若存在,请求出所有满足题意的t值;若不存在,请说明理由.参考答案与试题解析一、选择题1.的绝对值是()A.B.C.D.【考点】15:绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值等于它的相反数,得|﹣|=.故选A.2.下列计算正确的是()A.3a+4b=7ab B.7a﹣3a=4C.3a+a=3a2D.3a2b﹣4a2b=﹣a2b【考点】35:合并同类项.【分析】根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变,进行判断.【解答】解:A、3a和4b不是同类项,不能合并,故本选项错误;B、字母不应去掉.故本选项错误;C、字母的指数不应该变,故本选项错误;D、符合合并同类项的法则,故本选项正确.故选D.3.下图中的图形绕虚线旋转一周,可得到的几何体是()A.B. C.D.【考点】I2:点、线、面、体.【分析】根据面动成体的原理:上面的长方形旋转一周后是一个圆柱,下面的直角三角形旋转一周后是一个圆锥,所以应是圆锥和圆柱的组合体.【解答】解:∵上面的长方形旋转一周后是一个圆柱,下面的直角三角形旋转一周后是一个圆锥,∴根据以上分析应是圆锥和圆柱的组合体.故选:C.4.下列各数是无理数的是()A.﹣2 B.C.0.010010001 D.π【考点】26:无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是整数,是有理数,选项错误;B、是分数,是有理数,选项错误;C、是有限小数,是有理数,选项错误;D、是无理数,选项正确.故选D.5.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)【考点】IB:直线的性质:两点确定一条直线.【分析】直接利用直线的性质以及两点确定一条直线的性质分析得出答案.【解答】解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选:B.6.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3 B.∠1=180°﹣∠3 C.∠1=90°+∠3 D.∠3=90°+∠1【考点】IL:余角和补角.【分析】根据∠1与∠2互补,∠2与∠3互余,先把∠1、∠3都用∠2来表示,再进行运算.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:C.二、填空题7.温度由3℃下降6℃后是﹣3℃.【考点】1A:有理数的减法.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:3﹣6=﹣3,则温度由3℃下降6℃后是﹣3℃,故答案为:﹣38.比较大小:﹣π<﹣3.14(选填“>”、“=”、“<”).【考点】2A:实数大小比较.【分析】先比较π和3.14的大小,再根据“两个负数,绝对值大的反而小”即可比较﹣π<﹣3.14的大小.【解答】解:因为π是无理数所以π>3.14,故﹣π<﹣3.14.故填空答案:<.9.据统计,截止2016年11月,南京市投放公共自行车累计达52000辆,为方便群众,缓解城市交通拥堵,倡导绿色交通,促进节能减排发挥了积极作用,将52000用科学记数法表示为 5.2×104.【考点】1I:科学记数法—表示较大的数.【分析】根据科学记数法可以用科学记数法表示题目中的数据.【解答】解:52000=5.2×104,故答案为:5.2×104.10.若单项式a m b3与﹣3ab n是同类项,则m+n=4.【考点】34:同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得m=1,n=3,m+n=3+1=4,故答案为:4.11.若关于x的方程2(x﹣1)+a=0的解是x=3,则a的值为﹣4.【考点】85:一元一次方程的解.【分析】把x=3代入方程计算即可求出a的值.【解答】解:把x=3代入方程得:4+a=0,解得:a=﹣4,故答案为:﹣412.若m2+mn=﹣3,n2﹣3mn=﹣12,则m2+4mn﹣n2的值为9.【考点】45:整式的加减—化简求值.【分析】已知两等式左右两边相减求出所求式子的值即可.【解答】解:∵m2+mn=﹣3,n2﹣3mn=﹣12,∴原式=(m2+mn)﹣(n2﹣3mn)=﹣3﹣(﹣12)=﹣3+12=9,故答案为:9.13.如图,点A在数轴上对应的数为2,若点B也在数轴上,且线段AB的长为3,则点B在数轴上对应的数为5或﹣1.【考点】1A:有理数的减法;13:数轴.【分析】此题应考虑两种情况:当点B在点A的左边或当点B在点A的右边.【解答】解:当点B在点A的左边时,2﹣3=﹣1;当点B在点A的右边时,2+3=5.则点B在数轴上对应的数为﹣1或5.14.如图,用火柴棒搭“小鱼”,则搭10条“小鱼”需用62根火柴棒,搭n条“小鱼”所需火柴棒的根数为6n+2(填写化简后的结果).【考点】38:规律型:图形的变化类.【分析】找到规律,得出搭10条这样的小鱼需要的火柴根数即可;根据规律,写出通项公式即可;【解答】解:搭2条小鱼用火柴棒14根,搭3条小鱼用火柴棒20根;所以每个小鱼比前一个小鱼多用6根火柴棒,即可得搭n条小鱼需要用8+6(n﹣1)=(6n+2)根火柴棒.取n=10代入得:6n+2=6×10+2=62.故答案为:62,6n+2.15.如图,将一副三角板的直角顶点重合,摆放在桌面上,若∠BOC=∠AOD,则∠AOD=108°.【考点】IL:余角和补角.【分析】根据已知求出∠AOD+∠BOC=180°,再根据∠BOC=∠AOD求出∠AOD,即可求出答案.【解答】解:∵∠AOB=∠COD=90°,∴∠AOD+∠BOC=∠AOB+DOB+∠BOC=∠AOB+∠COD=90°+90°=180°,∵∠BOC=∠AOD,∴∠AOD+∠AOD=180°,∴∠AOD=108°.故答案为:108°.16.计算(++)﹣2×(﹣﹣﹣)﹣3×(++﹣)的结果是﹣.【考点】1G:有理数的混合运算.【分析】原式利用乘法分配律计算,即可得到结果.【解答】解:原式=++﹣1+++﹣﹣﹣+=+(+﹣)+(+﹣)+(﹣1++﹣)=﹣+=﹣,故答案为:﹣三、解答题17.计算:(1)(﹣+)×36;(2)﹣32+16÷(﹣2)×.【考点】1G:有理数的混合运算.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=×36﹣×36+×36=18﹣21+30=27;(2)原式=﹣9+16×(﹣)×=﹣9﹣4=﹣13.18.先化简后求值2(x2y+xy2)﹣2(x2y﹣3x)﹣2xy2﹣2y的值,其中x=﹣1,y=2.【考点】45:整式的加减—化简求值;35:合并同类项;36:去括号与添括号.【分析】根据单项式乘多项式的法则展开,再合并同类项,把x y的值代入求出即可.【解答】解:原式=2x2y+2xy2﹣2x2y+6x﹣2xy2﹣2y=6x﹣2y,当x=﹣1,y=2时,原式=6×(﹣1)﹣2×2=﹣10.19.解方程:(1)1﹣3(x﹣2)=4;(2)﹣=1.【考点】86:解一元一次方程.【分析】根据解一元一次方程的一般步骤,可得答案.【解答】解:(1)去括号,得1﹣3x+6=4移项,得﹣3x=4﹣6﹣1合并同类项,得﹣3x=﹣3系数化为1,得x=1;(2)去分母,得2(2x+1)﹣(5x﹣1)=6去括号,得4x+2﹣5x+1=6移项,得4x﹣5x=6﹣1﹣2合并同类项,得﹣x=3系数化为1,得x=﹣3.20.将6个棱长为2cm的小正方体在地面上堆叠成如图所示的几何体,然后将露出的表面部分染成红色.(1)画出这个的几何体的三视图:(2)该几何体被染成红色部分的面积为84cm2.【考点】U4:作图﹣三视图.【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为2,1,1;左视图有3列,每列小正方形数目分别为1,2,1;俯视图有3列,每列小正方数形数目分别为3,1,1.据此可画出图形;(2)分别从前面,后面,左面,右面和上面数出被染成红色部分的正方形的个数,再乘以1个面的面积即可求解.【解答】解:(1)作图如下:(2)(4+4+4+4+5)×(2×2)=21×4=84(cm2).答:该几何体被染成红色部分的面积为84cm2.故答案为:84cm2.21.如图,C是线段AB的中点.(1)若点D在CB上,且DB=2cm,AD=8cm,求线段CD的长度;(2)若将(1)中的“点D在CB上”改为“点D在CB的延长线上”,其它条件不变,请画出相应的示意图,并求出此时线段CD的长度.【考点】ID:两点间的距离.【分析】(1)根据线段的和差,可得AB的长,根据线段中点的性质,可得BC 的长,再根据线段的和差,可得答案.(2)根据线段的和差,可得AB的长,根据线段中点的性质,可得BC的长,再根据线段的和差,可得答案.【解答】解:(1)由线段的和差,得AB=AD+DB=8+2=10cm,由C是AB的中点,得BC=AB=5cm,由线段的和差,得CD=CB﹣DB=5﹣2=3cm;(2)如图1,由线段的和差,得AB=AD﹣DB=8﹣2=6cm,由C 是AB 的中点,得BC=AB=3cm ,由线段的和差,得CD=CB +DB=3+2=5cm .22.生态公园计划在园内的坡地上种植一片有A 、B 两种树的混合林,需要购买这两种树苗共100棵.假设这批树苗种植后成活95棵,种植A 、B 两种树苗的相关信息如下表:(1)求购买这两种树苗各多少棵?(2)求种植这片混合林的总费用需多少元?(总费用=购买树苗费用+栽树劳务费)【考点】8A :一元一次方程的应用.【分析】(1)设购买A 种树苗x 棵,则购买B 种树苗棵,然后根据表格中的各自成活率及种植后成活95棵可以列出关于x 的方程,然后解方程即可求出两种树苗的棵数;(2)根据(1)中两种树苗的棵数和表格中A 、B 两种栽树劳务费就可以求出混合林的总费用.【解答】解:(1)设购买A 种树苗x 棵,则购买B 种树苗)棵,根据题意得:96%x +92%=95,解得x=75.答:购买A 种树苗75棵,购买B 种树苗25棵;(2)(15+3)×75+(20+4)×25=1950.答:种植这片混合林总费用1950元.23.如图,点P 在∠AOB 内.(1)过点P 画直线PC ∥OA ,交OB 于点C ;(2)过点C画OA的垂线,垂足为H;(3)因为直线外一点和直线上各点连接的所有线段中,垂线段最短,所以两条线段CH、OC的大小关系是:CH<CO(用“<”号连接).【考点】N3:作图—复杂作图;JA:平行线的性质.【分析】(1)根据平行线的画法作出PC∥OA;(2)根据直线外一点作已知直线的垂线方法作图;(3)根据垂线段的性质解答可得.【解答】解:(1)如图所示,直线PC即为所求直线;(2)如图,线段CH即为所求垂线段;(3)因为直线外一点和直线上各点连接的所有线段中,垂线段最短,所以两条线段CH、OC的大小关系是:CH<OC,故答案为:垂线段最短,CH<OC.24.如图,已知直线AB与CD相交于点O,OE是∠BOD的平分线,OF是∠AOD 的平分线.(1)已知∠BOD=60°,求∠EOF的度数;(2)求证:无论∠BOD为多少度,均有OE⊥OF.【考点】J3:垂线;IJ:角平分线的定义;J2:对顶角、邻补角.【分析】(1)根据∠BOD的度数可得∠AOD的度数,再根据角平分线定义可得∠DOF=∠AOD=60°,∠DOE=∠BOD=30°,进而可得∠EOF=∠DOF+∠DOE=90°;(2)首先根据角平分线定义可得∠DOF=∠AOD,∠DOE=∠BOD,再根据邻补角定义可得∠AOD+∠DOB=180°,利用等量代换可得∠EOF=∠DOF+∠DOE=(∠AOD+∠BOD)=90°.【解答】解:(1)∵∠BOD=60°,∴∠AOD=180°﹣∠BOD=120°,∵OE、OF分别是∠AOD和∠BOD的平分线.∴∠DOF=∠AOD=60°,∠DOE=∠BOD=30°,∴∠EOF=∠DOF+∠DOE=90°;(2)∵OE、OF分别是∠AOD和∠BOD的平分线.∴∠DOF=∠AOD,∠DOE=∠BOD,∵∠AOD+∠DOB=180°,∴∠EOF=∠DOF+∠DOE=(∠AOD+∠BOD)=90°,∴无论∠BOD为多少度,均有OE⊥OF.25.扬子江药业集团生产的某种药品的长方体包装盒的侧面展开图如图所示.根据图中数据,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.【考点】8A:一元一次方程的应用.【分析】由图可知:设宽为xcm,则长为(x+4)cm,高为(18﹣x),根据长、宽、高的和为37列出方程,进一步利用长方体的体积计算方法解答即可.【解答】解:设宽为xcm,则长为(x+4)cm,高为(18﹣x),由题意得:2(x+4)+x+(18﹣x)=37解得:x=8…则x+4=12,(18﹣x)=58×5×12=480(cm3)答:这种药品包装盒的体积为480cm3.26.如图,射线OB、OC均从OA开始,同时绕点O逆时针旋转,OB旋转的速度为每秒6°,OC旋转的速度为每秒2°.当OB与OC重合时,OB与OC同时停止旋转.设旋转的时间为t秒.(1)当t=10,∠BOC=40°.(2)当t为何值时,射线OB⊥OC?(3)试探索,在射线OB与OC旋转的过程中,是否存在某个时刻,使得射线OB,OC与OA中的某一条射线是另两条射线所成角的角平分线?若存在,请求出所有满足题意的t值;若不存在,请说明理由.【考点】IK:角的计算;IJ:角平分线的定义;J3:垂线.【分析】(1)根据题意可知:当t=10时,分别求出∠AOB与∠AOC的度数即可求出∠BOC的度数.(2)当OB⊥OC,此时∠BOC=90°或270°,列出方程即可求出t的值.(3)根据题意可分三种情况讨论:当OC平分∠AOB;当OA平分∠BOC;当OB 平分∠AOC时,从而求出t的值.【解答】解:(1)由题意可知:∠AOB=6t,∠AOC=2t,∴∠BOC=∠AOB﹣∠AOC=4t=40°(2)由(1)可知:∠BOC=4t,当4t=90°,∴t=当4t=270°时,∴t=(3)当OC平分∠AOB.∵∠AOB=6t,∠AOC=2t,∴∠AOB=3∠AOC,与角平分线矛盾,此种情况不成立,舍去②当OA平分∠BOC由于∠AOC=2t,∠AOB=360﹣6t∵∠AOB=∠AOC∴2t=360﹣6t,t=45,③当OB平分∠AOC时,由于∠AOC=2t,∠AOB=360﹣6t,∵∠AOB=∠AOC∴6t﹣360=×2t,∴t=72综上所述:t=45或72故答案为:(1)40°。
2018年苏科版七年级数学下学期期末测试卷及答案
2017-2018学年第二学期期末考试七 年 级 数 学(总分150分 时间120分钟)一、选择题(本大题共8题,每题3分,共24分.每题的四个选项中,只有一个选项是符合要求的)1.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是 ( ▲ )2.下列运算正确的是( ▲ )A .2a a a =+B .326a a a =÷C .933)(a a =D .222()a b a b +=+3.如图,AD 平分∠BAC ,DE ∥AC 交AB 于点E ,∠1=25°, 则∠BED 等于( ▲ )A .40°B .50°C .60°D .25°4.把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为( ▲ ) A .x>0B .x ≤ 1C .0≤ x < 1D .0 < x ≤ 15.如果单项式-x 2y m+2与x n y 与的和仍然是一个单项式,则m 、n 的值是( ▲ )A 、m = 2,n = 2;B 、m =-2,n = 2;C 、m = -1,n = 2;D 、m = 2 ,n =-1。
6.下列命题是真命题的是( ▲ )A .内错角相等B .如果a 2= b 2,那么 a 3= b 3C .三角形的一个外角大于任何一个内角D . 平行于同一直线的两条直线平行7.一个三角形的3边长分别是xcm 、(x +2)cm 、(x +4)cm ,它的周长不超过20cm ,则x 的取值范围是( ▲ )A .2<x<143 B .2<x ≤143C .2<x<4D .2<x ≤48.在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.如记1123(1)n k k n n ==+++⋅⋅⋅+-+∑,3()(3)(4)()nk x k x x x n =+=++++⋅⋅⋅++∑;已知22[()(1)]44nk x k x k xx m =+-+=++∑,则m 的值是……………………( ▲ )A . 40B .- 70C .- 40D .- 20二、填空题(本大题共10题,每题3分,共30分.把答案填在答题卡相应的横线上)9. 一个n 边形的内角和是720°,那么n = ▲ .10.某流感病毒的直径大约为0.000 000 08lm ,用科学记数法表示为 ▲ m . 11.如图,在△ ABC 中,AD 是中线,△ ABC 面积为16,则△ ADC 的面积为 . 12.“同位角相等”的逆命题是 ▲ . 13.若的值为则2y-x 2,54,32==yx▲ .14.如果不等式组⎩⎨⎧-<+>148x x nx 的解集是x >3,那么n 的取值范围是 ▲ .15.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有 ▲ 种租车方案. 16.如果21x y -++(2x -y -4)2=0,则x y= ▲ .17.已知4x+y=3,且y≤7,则x 的取值范围是 ▲ .18.设有n 个数x 1,x 2,…x n ,其中每个数都可能取0,1,-2这三个数中的一个,且满足下列等式:x 1+x 2+…+x n =0,x 12+x 22+…+x n 2=12,则x 13+x 23+…+x n 3的值是 ▲ .三、解答题(本大题共有10个小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分,每小题4分)(1)解方程组:⎩⎨⎧=-=+13242y x y x (2)计算:20100101)21()3()31(3--+---⨯-π20.(本题满分8分,每小题4分)因式分解:(1)2a 2﹣8 (2)4ab 2―4a 2b―b 321.(本题满分8分)解不等式组:,并把解集在数轴上表示出来.22.(本题满分8分)若x +y =3,且(x +2)(y +2)=12.(1)求xy 的值; (2)求x 2+3xy +y 2的值.B23.(本题满分10分)如图,△ABC 中,∠ACB=90°,CD ⊥AB 于D ,CE 平分∠ACB 交AB 于E ,EF ⊥AB 交CB 于F . (1)CD 与EF 平行吗?并说明理由; (2)若∠A=70°,求∠FEC 的度数.24.(本题满分10分)已知,关于y x 、的方程组325x y a x y a-=+⎧⎨+=⎩ 的解满足0>>y x .(1) 求a 的取值范围. (2)化简 a a --2.25.(本题满分10分)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高 cm ,放入一个大球水面升高 cm ; (2)如果要使水面上升到50cm ,应放入大球、小球各多少个?26.(本题满分10分)为支援灾区学生,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元. (1)若购买这批学习用品用了26000元,则购买A,B 两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件?27.(本题满分12分)阅读下列材料解决问题: 将下图一个正方形和三个长方形拼成一个大长方形,观察这四个图形的面积与拼成的大长方形的面积之间的关系.∵用间接法表示大长方形的面积为:x 2+px+qx+pq ,用直接法表示面积为:(x+p )(x+q )∴x 2+px+qx+pq=(x+p )(x+q )∴我们得到了可以进行因式分解的公式:x 2+(p+q )x+pq=(x+p )(x+q ) (1)运用公式将下列多项式分解因式:①x 2+6x+8 ②y 2+7y-18(2)如果二次三项式“a 2+□ab+□b 2”中的“□”只能填入有理数2、3、4(两个“□”内数字可以相同),并且填入后的二次三项式能进行因式分解,请你写出所有的二次三项式及因式分解的结果. 28.(本题满分12分)已知在四边形ABCD 中,∠A =x , ∠C =y ,(o o 180x 0<<, o o180y 0<<).(1)∠ABC + ∠ADC = (用含x 、y 的代数式表示) ;(2)如图1,若x =y =90°,DE 平分∠ADC ,B F 平分与∠ABC 相邻的外角,请写出DE 与 BF 的位置关系,并说明理由.(3)如图2,∠DFB为四边形ABCD的∠ABC、∠ADC相邻的外角平分线所在直线构成的锐角,①当x﹤y时,若x+y=140°,∠DFB=30°试求x、y.②小明在作图时,发现∠DFB不一定存在,请直接指出x、y满足什么条件时,∠DFB不存在.图1 图22017-2018学年第二学期期末考试七年级数学答案(总分150分 时间120分钟)一、选择题 C C B D C D B C 二、填空题9. 6 10. 8101.8-⨯ 11. 8 12.相等的角是同位角 13. 5314.n ≤3 15. 2 16. 9 17. x ≥-1 18. -12 三、解答题 19. (1):⎩⎨⎧==12y x ……………4分 (2)0 ……………8分20.(1) 2(a+2)(a-2) ……………4分 (2)-b(2a-b)2……………8分 21. -1<x ≤4 ……………6分 解集表示 ……………8分 22. (1)2; ……………4分 (2)11.……………8分 23.(1)证明:∵ CD ⊥AB ,EF ⊥AB , ∴ ∠CDB=∠FEB=90°,∴ EF∥CD;……………5分(2)解:∵ ∠ ACB=90°,CE 平分∠ACB 交AB 于E , ∴ ∠ACE=45°, ∵ ∠A=70°,∴ ∠ACD=90°﹣70°=20°, ∴ ∠ECD=∠ACE﹣∠ACD=25°, ∵ EF∥CD,∴ ∠FEC=∠ECD=25°.……………10分24.(1)a >2……………6分,(2)2……………10分 25.(1)2,3 ……………4分(2)设应放入大球m 个,小球n 个.由题意,得解得:,答:如果要使水面上升到50cm ,应放入大球4个,小球6个.……………10分 26.(1)设购买A 型学习用品x 件,B 型学习用品y 件,由题意,得,解得:。
2017-2018学年苏科版七年级下数学期末复习综合试卷(1)及答案(1).docx
2017-2018 学年第二学期初一数学期末复习综合试卷一、 :(本 共 10 小 ,每小 3 分,共 30 分)1. 3 1等于⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.3 ;B.1; C.-3 ; D.1 ;332. 下列运算正确的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()2b 2 ; B . x 3 x 3 x 6 ; C . a 3 25 ;D . 2x 23x 36x 5 ;A . a ba 2 a3. 若 数 a 、b 、c 在数 上的位置如 所示, 下列不等式成立的是⋯⋯⋯⋯⋯⋯ ()A . ac > bc ;B . ab > cb ;C . a+c > b+c ;D . a+b > c+b ;4. 下列各式中,是完全平方式的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. m2mn n 2; B.x22x 1; C. x22x1; D.1 b2 ab a 2 ;445.如 ,有以下四个条件:①∠ B +∠ BCD =180°,②∠ 1=∠ 2, ③∠ 3=∠ 4,④∠ B =∠ 5 .其中能判定 AB ∥ CD 的条件的个数有⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A . 1B . 2C . 3D . 4第 5第 6第 106.如 ,AD = AE . 充下列一个条件后, 仍不能判定△ ABE ≌△ ACD 的是⋯⋯⋯⋯⋯⋯ ( )A .∠B =∠ CB . AB =ACC .∠ AEB =∠ ADCD . BE = CD7.( 2016? 州)把多 式 x 2ax b 分解因式, 得( x+1)( x-3 ), a ,b 的 分 是 ()A . a=-2 , b=-3 ;B . a=2, b=3;C . a=-2 , b=3;D . a=2, b=-3 ;8. 有下列四个命 :①相等的角是 角;②同位角相等;③两点之 ,直 最短;④从 直 外一点到 条直 的垂 段,叫做点到直 的距离.其中是真命 的个数有⋯( A . 0 个 B . 1 个 C . 2 个 D . 3 个)3x y a 2 , a 的 ⋯⋯⋯⋯ ()9. 在关于 x 、y 的二元一次方程2 y 中,若 2x 3yx 1A . 1B . -3C . 3D . 410. 如 ,将△ ABC 片沿 DE 折叠,使点 A 落在点 A' ,且 A'B 平分∠ ABC ,A'C 平分∠ ACB ,若∠ BA'C=110°, ∠ 1+∠ 2 的度数 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(A . 80°; B . 90°; C . 100°; D . 110°;)二、填空 :(本 共 8 小 ,每小 3 分,共 24 分)11. ( 2017? )目前,中国网民已 达到731 000 000 人,将数据 731 000 000 用科学 数法表示 .12 .一个多 形的内角和等于一个三角形的外角和的是.2 倍, 个多 形的 数13. 在△ ABC 中,∠ A=1 ∠ B= 1∠ C ,那么△ ABC 是三角形 .2 314.已知 x a4 , x b 3 ,则 x a 2 b =.15. 若 a 2b 2 1 , a b1 ,则 a b 的值为.6316.( 2017?抚顺)如图,分别过矩形 ABCD 的顶点 A 、 D 作直线 l 1 、 l 2 ,使 l 1 / / l 2 , l 2 与边 BC 交于点 P ,若∠ 1=38°,则∠ BPD 的度数为.第 16 题图第 18 题图17. 的不等式组3xk0 的正整数解是 1, 2, 3,则 k 的取值范围是_______________.18.如图所示, ∠ E =∠ F = 90°,∠ B =∠ C ,AE = AF ,结论:① EM = FN ;②AF ∥ EB ;③∠ FAN=∠ EAM ;④△ ACN ≌△ ABM 其中正确的有 .(只需填写序号)三、解答题 :(本大题共 76 分)19.(本题满分 8 分)x y1 1200847(1)计算:22009;( 2)解方程组:33231.5x y38220.(本题满分 8 分) 把下列各式分解因式:(1) 3a x y 5b y x ;(2)b 3 4ab 2 4a 2 b .21.(本题满分 4 分) 先化简,再求值:a 21 aa 1 ,其中 a32.422. (本题满分 7 分)解不等式:(1)x1 x 19x 5 8x 71;( 2) 4 2 1 2 ,并写出其整数解;23x 3x323. (本题满分 6分)(1)若x n2, y n3, 求 x2 y 2 n( 2)若3a6,9b2, 求32a 4b 1的值;的值 .24.(本题满分 6 分)(1)已知a13,求 a21的值;( 2)已知xy 9, x y3,求x23xy y 2a a2的值 .25.(本题满分 7 分)画图并填空,如图:方格纸中每个小正方形的边长都为1,△ ABC的顶点都在方格纸的格点上,将△ABC经过一次平移后得到△A'B'C'.图中标出了点 C 的对应点C' .(1)请画出平移后的△A'B'C';(2)若连接AA' , BB',则这两条线段的关系是;(3)利用网格画出△ABC中 AC边上的中线BD以及 AB边上的高CE;(4)线段 AB在平移过程中扫过区域的面积为.26.(本题满分 6 分)如图,在△ ABC和 ADE中,AB=AC,AD=AE,且∠ BAC=∠ DAE,点 E 在 BC上.过点 D 作 DF∥BC,连接 DB.求证:( 1)△ ABD≌△ ACE;(2) DF=CE.27.(本题满分8 分)已知关于2 x y 4mx、 y 的方程组(实数 m是常数).x 2 y 2m 1(1)若 x+ y= 1,求实数 m的值;(2)若- 1≤x- y≤ 5,求 m的取值范围;(3) 在 (2) 的条件下,化简:m 2 2m 3 .28.(本题满分 8 分)(2017?青海)某地图书馆为了满足群众多样化阅读的需求,决定购买甲、乙两种品牌的电脑若干组建电子阅览室.经了解,甲、乙两种品牌的电脑单价分别3100 元和 4600 元.(1)若购买甲、乙两种品牌的电脑共 50 台,恰好支出 200000 元,求甲、乙两种品牌的电脑各购买了多少台?(2)若购买甲、乙两种品牌的电脑共 50 台,每种品牌至少购买一台,且支出不超过 160000 元,共有几种购买方案?并说明哪种方案最省钱.29.(本题满分 8 分)在△ ABC中,AB=AC,点 D 是射线 CB上的一动点(不与点 B、C重合),以 AD为一边在 AD的右侧作△ ADE,使 AD=AE,∠ DAE=∠ BAC,连接 CE.(1)如图 1,当点 D 在线段 CB上,且∠ BAC=90°时,那么∠DCE=度;(2)设∠ BAC=α,∠ DCE=β.①如图 2,当点 D 在线段 CB上,∠ BAC≠ 90°时,请你探究α与β 之间的数量关系,并证明你的结论;②如图 3,当点 D 在线段 CB的延长线上,∠ BAC≠ 90°时,请将图 3 补充完整,并直接写出此时α 与β之间的数量关系(不需证明)参考答案一、选择题:1.D;2.D;3.B ;4.D;5.C;6.D;7.A ;8.A ;9.C;10.A;二、填空题:11. 7.31 108; 12.6 ; 13. 直角 14.4; 15.192; 16.142°; 17.9k 12 ;18.①③④;三、解答题:19. (1) 5 ;(2)x 60;2y2420.(1)x y 3a 5b;(2) b b 2a2;21.=8; 22. (1);(2)1,整数解是,;x 24a5x120123.(1)144;(2)27;24.(1)7;(2)54;25.图略;(2)平行且相等;(3)略;(4)20;26.(1)证明:∵∠ BAC=∠DAE,∴∠ BAC-∠BAE=∠DAE-∠BAE,∴∠ BAD=∠EAC,在△ BAD和△ CAE中AD AE∵BAD EAC ,∴△BAD≌△CAE(SAS);AB AC(2)证明:∵△ BAD≌△ CAE,∴∠ DBA=∠C,∵AB=AC,∴∠ C=∠ ABC,∵DF∥BC,∴∠ DFB=∠ABC=∠C=∠DBA,即∠ DFB=∠DBF,∴ DF=CE.27.(1)1;(2)0m 3;(3)当 0 m3时,原式 = 5m ;当3m 3 322时,原式 = 3m1;28.解:(1)设甲种品牌的电脑购买了 x 台,乙种品牌的电脑购买了y 台,则,解得,答:甲种品牌的电脑购买了20 台,乙种品牌的电脑购买了30 台.(2)设甲种品牌的电脑购买了 x 台,乙种品牌的电脑购买了(50﹣x)台,则,解得,∴x 的整数值为 47,48、49,当x=47 时, 50﹣x=3;当 x=48 时, 50﹣x=2;当 x=49 时, 50﹣x=1.∴一共有三种购买方案:甲种品牌的电脑购买 47 台,乙种品牌的电脑购买 3 台;甲种品牌的电脑购买 48 台,乙种品牌的电脑购买 2 台;甲种品牌的电脑购买 49 台,乙种品牌的电脑购买 1 台.∵甲、乙两种品牌的电脑单价分别 3100 元和 4600 元.∴甲种品牌的电脑购买 49 台,乙种品牌的电脑购买 1 台比较省钱.28.(1)证明:如图,∵ D是 AB的中点,∴ AD=BD.AC BC∵在△ ACD与△ BCD中,AD BD ,∴△ACD≌△BCD(SSS);CD CD(2)解:如图,∵在△ ABC中, AC=BC,∠ ACB=90°,∴∠ A=∠ ABC,∠ A+∠ ABC=90°,∴∠ A=∠ ABC=45°,即∠ A=45°;( 3)证明:如图1,∵点 D 是 AB中点, AC=BC,∠ ACB=90°,∴CD⊥AB,∠ ACD=∠ BCD=45°,∴∠ CAD=∠CBD=45°,∴∠ CAE=∠ BCG,又∵ BF⊥ CE,∴∠ CBG+∠BCF=90°,又∵∠ ACE+∠BCF=90°,∴∠ACE=∠CBG,在△ AEC和△ CGB中,CAE BCGAC BC,∴△ AEC≌△ CGB(ASA),∴ AE=CG;ACE CBG( 4)解: BE=CM.理由如下:∵CH⊥HM,CD⊥ ED,∴∠ CMA+∠ MCH=90°,∠ BEC+∠ MCH=90°,∴∠ CMA=∠BEC,又∵∠ ACM=∠CBE=45°,在△ BCE和△ CAM中,BEC CMAACM CBE ,∴△BCE≌△CAM(AAS),∴BE=CM.BC AC29.(1)90°;(2)∵∠ BAD+∠DAC=α,∠ DAC+∠CAE=α,∴∠ BAD=∠CAE,在△ BAD和△ CAE中,,∴△ BAD≌△ CAE( SAS),∴∠ ACE=∠B,∵∠ B+∠ACB=180°﹣α,∴∠ DCE=∠ACE+∠ACB=180°﹣α=β,∴α+β=180°;(3)作出图形,∵∠ BAD+∠BAE=α,∠ BAE+∠CAE=α,∴∠ BAD=∠CAE,在△ BAD和△ CAE中,,∴△ BAD≌△ CAE(SAS),∴∠ AEC=∠ADB,∵∠ ADE+∠AED+α=180°,∠CDE+∠CED+β=180°,∠C ED=∠AEC+∠AED,∴α=β.。
【精品试卷】2017-2018学年苏科版七年级下数学期末复习综合试卷(1)(有答案)
2017-2018学年第二学期初一数学期末复习综合试卷(1)分值:130分;知识涵盖:七年级下全册及八上全等三角形一、选择题:(本题共10小题,每小题3分,共30分)1.13--等于…………………………………………………………………………………( )A.3;B. 13;C.-3;D. 13-; 2.下列运算正确的是……………………………………………………………………( ) A .()222a b a b +=+ ;B .336x x x +=;C .()235a a =; D .()()235236x x x -=-;3.若实数a 、b 、c 在数轴上的位置如图所示,则下列不等式成立的是………………( )A .ac >bc ;B .ab >cb ;C .a+c >b+c ;D .a+b >c+b ;4.下列各式中,是完全平方式的是……………………………………………………( )A. 22m mn n -+;B. 221x x --;C. 2124x x ++;D. 2214b ab a -+; 5.如图,有以下四个条件:①∠B +∠BCD =180°,②∠1=∠2, ③∠3=∠4,④∠B =∠5.其中能判定AB ∥CD 的条件的个数有…………………………………………………( )A .1B .2C .3D .46.如图,AD =AE .补充下列一个条件后,仍不能判定△ABE ≌△ACD 的是………………( )A .∠B =∠C B .AB =AC C .∠AEB =∠ADCD .BE =CD7.(2016•滨州)把多项式2x ax b ++分解因式,得(x+1)(x-3),则a ,b 的值分别是( )A .a=-2,b=-3;B .a=2,b=3;C .a=-2,b=3;D .a=2,b=-3;8. 有下列四个命题:①相等的角是对顶角;②同位角相等;③两点之间,直线最短;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有…( )A .0个B .1个C .2个D .3个9.在关于x 、y 的二元一次方程组321x y a x y +=⎧⎨-=⎩中,若232x y +=,则a 的值为…………( )A .1B .-3C .3D .410.如图,将△ABC 纸片沿DE 折叠,使点A 落在点A'处,且A'B 平分∠ABC ,A'C 平分∠ACB ,若∠BA'C=110°,则∠1+∠2的度数为…………………………………………………( )A .80°;B .90°;C .100°;D .110°;二、填空题:(本题共8小题,每小题3分,共24分)11.(2017•抚顺)目前,中国网民已经达到731 000 000人,将数据731 000 000用科学记数法表示为 .12.一个多边形的内角和等于一个三角形的外角和的2倍,则这个多边形的边数是 .13.在△ABC 中,∠A=12∠B=13∠C ,那么△ABC 是 三角形. 14. 已知4a x =,3b x =,则2a b x -= .15. 若2216a b -=,13a b -=,则a b +的值为 . 16.(2017•抚顺)如图,分别过矩形ABCD 的顶点A 、D 作直线1l 、2l ,使12//l l ,2l 与边BC 交于点P ,若∠1=38°,则∠BPD 的度数为 . 第5题图 第6题图第10题图17. 的不等式组30x k -≤的正整数解是1,2,3,则k 的取值范围是_______________.18.如图所示,∠E =∠F =90°,∠B =∠C ,AE =AF ,结论:①EM =FN ;②AF ∥EB ;③∠FAN =∠EAM ;④△ACN ≌△ABM 其中正确的有 .(只需填写序号)三、解答题:(本大题共76分)19.(本题满分8分)(1)计算:()()1200802009123 1.523π-⎛⎫⎛⎫--+⨯- ⎪ ⎪⎝⎭⎝⎭; (2)解方程组:743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩20.(本题满分8分)把下列各式分解因式:(1) ()()35a x y b y x ---; (2) 32244b ab a b -+-.21.(本题满分4分)先化简,再求值:()()()2211a a a +----,其中34a =.22. (本题满分7分)解不等式: (1)11123x x +-+≤; (2)9587422133x x x x +<+⎧⎪⎨+>-⎪⎩,并写出其整数解;23. (本题满分6分)(1)若()222,3,n n n x y x y==求的值. (2)若36,92,a b ==求2413a b -+的值;24. (本题满分6分)(1)已知22113,a a a a+=+求的值; (2)已知229,3,3xy x y x xy y =-=++求的值.第16题图25.(本题满分7分)画图并填空,如图:方格纸中每个小正方形的边长都为1,△ABC 的顶点都在方格纸的格点上,将△ABC 经过一次平移后得到△A'B'C'.图中标出了点C 的对应点C'.(1)请画出平移后的△A'B'C';(2)若连接AA',BB',则这两条线段的关系是 ;(3)利用网格画出△ABC 中AC 边上的中线BD 以及AB 边上的高CE ;(4)线段AB 在平移过程中扫过区域的面积为 .26. (本题满分6分)如图,在△ABC 和ADE 中,AB=AC ,AD=AE ,且∠BAC=∠DAE ,点E 在BC 上.过点D 作DF ∥BC ,连接DB . 求证:(1)△ABD ≌△ACE ;(2)DF=CE .27. (本题满分8分)已知关于x 、y 的方程组24221x y m x y m +=⎧⎨+=+⎩(实数m 是常数). (1)若x +y =1,求实数m 的值;(2)若-1≤x -y ≤5,求m 的取值范围;(3)在(2)的条件下,化简:223m m ++-.28. (本题满分8分)(2017•青海)某地图书馆为了满足群众多样化阅读的需求,决定购买甲、乙两种品牌的电脑若干组建电子阅览室.经了解,甲、乙两种品牌的电脑单价分别3100元和4600元.(1)若购买甲、乙两种品牌的电脑共50台,恰好支出200000元,求甲、乙两种品牌的电脑各购买了多少台?(2)若购买甲、乙两种品牌的电脑共50台,每种品牌至少购买一台,且支出不超过160000元,共有几种购买方案?并说明哪种方案最省钱.29. (本题满分8分)在△ABC 中,AB=AC ,点D 是射线CB 上的一动点(不与点B 、C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D 在线段CB 上,且∠BAC=90°时,那么∠DCE= 度;(2)设∠BAC=α,∠DCE=β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论; ②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明)2017-2018学年第二学期初一数学期末复习综合试卷(1)参考答案一、选择题:1.D ;2.D ;3.B ;4.D ;5.C ;6.D ;7.A ;8.A ;9.C ;10.A ;二、填空题:11. 87.3110⨯;12.6;13.直角14. 49;15. 12; 16. 142°;17. 9k 12≤<; 18.①③④;三、解答题:19.(1)52-;(2)6024x y =⎧⎨=-⎩; 20.(1)()()35x y a b -+;(2)()22b b a --;21.45a +=8; 22.(1)1x ≤;(2)122x -<<,整数解是0,1;23.(1)144;(2)27;24.(1)7;(2)54;25.图略;(2)平行且相等;(3)略;(4)20;26. (1)证明:∵∠BAC=∠DAE ,∴∠BAC-∠BAE=∠DAE-∠BAE ,∴∠BAD=∠EAC ,在△BAD 和△CAE 中∵AD AE BAD EAC AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS );(2)证明:∵△BAD ≌△CAE ,∴∠DBA=∠C ,∵AB=AC ,∴∠C=∠ABC , ∵DF ∥BC ,∴∠DFB=∠ABC=∠C=∠DBA ,即∠DFB=∠DBF ,∴DF=CE .27.(1)13;(2)03m ≤≤;(3)当302m ≤<时,原式=5m -;当332m <≤时,原式=31m -;28. 解:(1)设甲种品牌的电脑购买了x 台,乙种品牌的电脑购买了y台,则,解得, 答:甲种品牌的电脑购买了20台,乙种品牌的电脑购买了30台.(2)设甲种品牌的电脑购买了x 台,乙种品牌的电脑购买了(50﹣x )台,则,解得,∴x 的整数值为47,48、49,当x=47时,50﹣x=3;当x=48时,50﹣x=2;当x=49时,50﹣x=1.∴一共有三种购买方案:甲种品牌的电脑购买47台,乙种品牌的电脑购买3台;甲种品牌的电脑购买48台,乙种品牌的电脑购买2台;甲种品牌的电脑购买49台,乙种品牌的电脑购买1台.∵甲、乙两种品牌的电脑单价分别3100元和4600元.∴甲种品牌的电脑购买49台,乙种品牌的电脑购买1台比较省钱.28. (1)证明:如图,∵D 是AB 的中点,∴AD=BD .∵在△ACD 与△BCD 中,AC BC AD BD CD CD =⎧⎪=⎨⎪=⎩,∴△ACD ≌△BCD (SSS );(2)解:如图,∵在△ABC 中,AC=BC ,∠ACB=90°,∴∠A=∠ABC ,∠A+∠ABC=90°,∴∠A=∠ABC=45°,即∠A=45°;(3)证明:如图1,∵点D 是AB 中点,AC=BC ,∠ACB=90°,∴CD ⊥AB ,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG ,又∵BF ⊥CE ,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG ,在△AEC 和△CGB 中,CAE BCG AC BCACE CBG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC ≌△CGB (ASA ),∴AE=CG ; (4)解:BE=CM .理由如下:∵CH ⊥HM ,CD ⊥ED ,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC ,又∵∠ACM=∠CBE=45°,在△BCE 和△CAM 中,BEC CMA ACM CBE BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CAM (AAS ),∴BE=CM . 29. (1)90°;(2)∵∠BAD+∠DAC=α,∠DAC+∠CAE=α,∴∠BAD=∠CAE ,在△BAD 和△CAE 中,,∴△BAD ≌△CAE (SAS ),∴∠ACE=∠B ,∵∠B+∠ACB=180°﹣α,∴∠DCE=∠ACE+∠ACB=180°﹣α=β,∴α+β=180°;(3)作出图形,∵∠BAD+∠BAE=α,∠BAE+∠CAE=α,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠AEC=∠ADB,∵∠ADE+∠AED+α=180°,∠CDE+∠CED+β=180°,∠CED=∠AEC+∠AED,∴α=β.。
苏科新版2017-2018学年江苏省南京市秦淮区七年级(下)期末数学试卷
2017-2018学年江苏省南京市秦淮区七年级(下)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给出的四个选项中恰一项是符合题目要求的)1.(2分)下方的“月亮”图案可以由如图所示的图案平移得到的是( )A .B .C .D .2.(2分)某红外线遥控器发出的红外线波长为0.00000094m ,将0.00000094用科学记数法表示为( ) A .79.410-⨯B .60.9410-⨯C .69.410-⨯D .79.410⨯3.(2分)下列各式从左边到右边的变形,是因式分解的是( ) A .()ab ac d a b c d ++=++ B .21(1)(1)a a a -=+- C .222()2a b a ab b +=++D .2a b ab a =4.(2分)二元一次方程231035x y ++=的一个解可以是( )A .83x y =⎧⎨=-⎩B .55x y =⎧⎨=-⎩C .141x y =⎧⎨=-⎩D .72x y =⎧⎨=⎩5.(2分)已知a b >,则下列不等关系正确的是( ) A .a b ->-B .33a b >C .11a b -<-D .12a b +<+6.(2分)如图,在Rt ABC ∆中,90A ∠=︒,直线//DE BC ,分别交AB 、AC 于点D 、E ,若30ADE ∠=︒,则C ∠的度数为( )A .30︒B .40︒C .50︒D .60︒7.(2分)命题“若a b =,则||||a b =”与其逆命题的真假性为( ) A .该命题与其逆命题都是真命题B .该命题是真命题,其逆命题是假命题C .该命题是假命题,其逆命题是真命题D .该命题与其逆命题都是假命题8.(2分)已知3AB =,1BC =,则AC 的长度的取值范围是( )A .24AC 剟B .24AC << C .13AC 剟D .13AC <<二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程) 9.(2分)计算:52a a ÷的结果是 .10.(2分)计算(1)(21)x x +-的结果为 .11.(2分)因式分解:22ab ab a -+= . 12.(2分)不等式213x -<的解集是 .13.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .14.(2分)如图,将一张长方形纸片ABCD 沿EF 折叠后,点C 、D 分别落在C 、D 的位置,DE 与BC 相交于点G .若140∠=︒,则2∠= ︒.15.(2分)将不等式“22x ->-”中未知数的系数化为“1”可得到“1x <”,该步的依据是 .16.(2分)不等式组3(2)421132x x x x --⎧⎪--⎨>⎪⎩…的整数解为 .17.(2分)如图,BE 是ABC ∆的中线,D 是AB 的中点,连接DE .若ABC ∆的面积为1,则四边形DBCE 的面积为 .18.(2分)二元一次方程组有可能无解.例如方程组21243x y x y +=⎧⎨+=⎩①②无解,原因是:将①2⨯得242x y +=,它与②式存在矛盾,导致原方程组无解.若关于x 、y 的方程组234x ay bx y +=⎧⎨+=⎩无解,则a 、b 须满足的条件是 .三、解答题(本大题共9小题,共64分) 19.(8分)计算: (1)2021()(3)2π--+-(2)3226223(2)m m m m m -+÷20.(4分)解二元一次方程组2125x y x y +=⎧⎨+=⎩21.(5分)先化简,再求值:(2)(2)()a b a b a a b +---,其中2a =,3b =. 22.(6分)解不等式240x -<. 请按照下面的步骤,完成本题的解答. 解:240x -<可化为(2)(2)0x x +-<.(1)依据“两数相乘,异号得负”,可得不等式组①2020x x +<⎧⎨->⎩或不等式组② .(2)不等式组①无解;解不等式组②,解集为 . (3)所以不等式240x -<的解集为 . 23.(6分)把下面的证明过程补充完整已知:如图,12180∠+∠=︒,C D ∠=∠,求证:A F ∠=∠. 证明:12180∠+∠=︒(已知) (C ABD ∴∠=∠ )C D ∠=∠(已知),∴ (等量代换). //(AC DF ∴ ). (A F ∴∠=∠ ).24.(6分)如图,AD 为ABC ∆的高,BE 为ABC ∆的角平分线,若34EBA ∠=︒,80AEB ∠=︒,求CAD ∠的度数.25.(8分)课本上,我们利用数形结合思想探索了整式乘法的法则和一些公式.类似地,我们可以探索一些其他的公式.【以形助数】借助一个棱长为a 的大正方体进行以下探索.(1)在其一角截去一个棱长为()b b a <的小正方体,如图1所示,则得到的几何体的体积为 .(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,因为BC a =,AB a b =-,CF b =,所以长方体①的体积为()ab a b -,类似地,长方体②的体积为 ,长方体③的体积为 :(结果不需要化简)(3)将表示长方体①、②、③的体积的式子相加,并将得到的多项式分解因式,结果为 . (4)用不同的方法表示图1中几何体的体积,可以得到的等式为 . 【以数解形】(5)对于任意数a 、b ,运用整式乘法法则证明(4)中得到的等式成立.26.(11分)某校组织学生乘汽车前往自然保护区野营.从学校出发后,汽车先以60/km h 的速度在平路上行驶,后又以30/km h 的速度爬坡到达目的地;返回时,汽车沿原路线先以40/km h 的速度下坡,后又以60/km h 的速度在平路上行驶回到学校.(1)用含x 、y 的代数式填表:(2)已知汽车从学校出发到到达目的地共用时5h .①若汽车在返回时共用时4h ,求(1)的表格中的x 、y 的值.②若学校与目的地的距离不超过180km ,请围绕“汽车从学校出发到到达目的地”这一过程中汽车行驶的“时间”或“路程”,提出一个能用一元一次不等式解决的问题,并写出解答过程.27.(10分)已知ABC ∆,P 是平面内任意一点(A 、B 、C 、P 中任意三点都不在同一直线上) . 连接PB 、PC ,设P B A x ∠=︒,PCA y ∠=︒,BPC m ∠=︒,BAC n ∠=︒.(1) 如图, 当点P 在ABC ∆内时, ①若80n =,10x =,20y =,则m = ;②探究x 、y 、m 、n 之间的数量关系, 并证明你得到的结论 .(2) 当点P 在ABC ∆外时, 直接写出x 、y 、m 、n 之间所有可能的数量关系, 并画出相应的图形 .。
南京秦淮外国语学校七年级下册数学期末试卷测试卷 (word版,含解析)
南京秦淮外国语学校七年级下册数学期末试卷测试卷 (word 版,含解析) 一、解答题1.已知,//AE BD ,A D ∠=∠. (1)如图1,求证://AB CD ;(2)如图2,作BAE ∠的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG ∠的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM ∠=∠+∠,过点H 作HM FH ⊥交FG 的延长线于点M ,且3518E AFH ∠-∠=︒,求EAF GMH ∠+∠的度数.2.已知:直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,作射线EG 平分∠BEF 交CD 于G ,过点F 作FH ⊥MN 交EG 于H . (1)当点H 在线段EG 上时,如图1 ①当∠BEG =36︒时,则∠HFG = .②猜想并证明:∠BEG 与∠HFG 之间的数量关系.(2)当点H 在线段EG 的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG 与∠HFG 之间的数量关系.3.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.4.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.5.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系; (3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示).二、解答题6.如图,以直角三角形AOC 的直角顶点О为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 满足220a b b -+-=.(1)C 点的坐标为______;A 点的坐标为______.(2)如图1,已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为()0t t >.问:是否存在这样的t ,使ODPODQSS=?若存在,请求出t 的值:若不存在,请说明理由.(3)如图2,过O 作//OG AC ,作AOF AOG ∠=∠交AC 于点F ,点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACEOEC∠+∠∠的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由. 7.如图1所示:点E 为BC 上一点,∠A =∠D ,AB ∥CD (1)直接写出∠ACB 与∠BED 的数量关系;(2)如图2,AB ∥CD ,BG 平分∠ABE ,BG 的反向延长线与∠EDF 的平分线交于H 点,若∠DEB 比∠GHD 大60°,求∠DEB 的度数;(3)保持(2)中所求的∠DEB 的度数不变,如图3,BM 平分∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角).8.已知:直线1l ∥2l ,A 为直线1l 上的一个定点,过点A 的直线交 2l 于点B ,点C 在线段BA 的延长线上.D ,E 为直线2l 上的两个动点,点D 在点E 的左侧,连接AD ,AE ,满足∠AED =∠DAE .点M 在2l 上,且在点B 的左侧.(1)如图1,若∠BAD =25°,∠AED =50°,直接写出∠ABM 的度数 ;(2)射线AF 为∠CAD 的角平分线.① 如图2,当点D 在点B 右侧时,用等式表示∠EAF 与∠ABD 之间的数量关系,并证明; ② 当点D 与点B 不重合,且∠ABM +∠EAF =150°时,直接写出∠EAF 的度数 .9.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动45秒,灯A 射线才开始转动,当灯B 射线第一次到达BQ 时运动停止,问A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围. 10.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________. 问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.三、解答题11.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON =60°,在射线OM 上取一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (点C 不与O 、B 重合),若∠ACB =80°.判定△AOB 、△AOC 是否是“梦想三角形”,为什么?(3)如图2,点D 在△ABC 的边上,连接DC ,作∠ADC 的平分线交AC 于点E ,在DC 上取一点F ,使得∠EFC +∠BDC =180°,∠DEF =∠B .若△BCD 是“梦想三角形”,求∠B 的度数.12.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.13.如图,已知直线a ∥b ,∠ABC =100°,BD 平分∠ABC 交直线a 于点D ,线段EF 在线段AB 的左侧,线段EF 沿射线AD 的方向平移,在平移的过程中BD 所在的直线与EF 所在的直线交于点P .问∠1的度数与∠EPB 的度数又怎样的关系?(特殊化)(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;(2)当∠1=70°,求∠EPB的度数;(一般化)(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).14.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.15.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)【参考答案】一、解答题1.(1)见解析;(2) 【分析】(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证; (2)过点E 作,延长DC 至Q ,过点M 作,根据平行线的性质及等量代换可得出,再根据平角的解析:(1)见解析;(2)72︒ 【分析】(1)根据平行线的性质得出180A B ∠+∠=︒,再根据等量代换可得180B D ∠+∠=︒,最后根据平行线的判定即可得证;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB ,根据平行线的性质及等量代换可得出ECQ BGM DFG ∠=∠=∠,再根据平角的含义得出ECF CFG ∠=∠,然后根据平行线的性质及角平分线的定义可推出,BHF CFH CFA FAB ∠=∠∠=∠;设,FAB CFH αβ∠=∠=,根据角的和差可得出2AEC AFH ∠=∠,结合已知条件35180AEC AFH ∠-∠=︒可求得18AFH ∠=︒,最后根据垂线的含义及平行线的性质,即可得出答案. 【详解】 (1)证明://AE BD180A B ∴∠+∠=︒A D ∠=∠180B D ∴∠+∠=︒//AB CD ∴;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB//AB CDQCA CAB ∴∠=∠,BGM DFG ∠=∠,CFH BHF ∠=∠,CFA FAG ∠=ACE BAC BGM ∠=∠+∠ECQ QCA BAC BGM ∴∠+∠=∠+∠ECQ BGM DFG ∴∠=∠=∠180,180ECQ ECD DFG CFG ∠+=︒∠+=︒ECF CFG ∴∠=∠ //AB CD//AB EP ∴,PEA EAB PEC ECF ∴∠=∠∠=∠AEC PEC PEA ∠=∠-∠AEC ECF EAB ∴∠=∠-∠ ECF AEC EAB ∴∠=∠+∠AF 平分BAE ∠12EAF FAB EAB ∴∠=∠=∠FH 平分CFG ∠12CFH HFG CFG ∴∠=∠=∠//CD AB,BHF CFH CFA FAB ∴∠=∠∠=∠设,FAB CFH αβ∠=∠=AFH CFH CFA CFH FAB ∠=∠-∠=∠-∠AFH βα∴∠=-,BHF CFH β∠=∠=222ECF AFH AEC EAB AFH AEC β∴∠+∠=∠+∠+∠=∠+22ECF AFH E BHF ∴∠+∠=∠+∠ 2AEC AFH ∴∠=∠35180AEC AFH ∠-∠=︒ 18AFH ∴∠=︒FH HM ⊥90FHM ∴∠=︒90GHM β∴∠=︒-180CFM NMF ∠+∠=︒90HMB HMN β∴∠=∠=︒-EAF FAB ∠=∠18EAF CFA CFH AFH β∴∠=∠=∠-∠=-︒ 189072EAF GMH ββ∴∠+∠=-︒+︒-=︒72EAF GMH ∴∠+∠=︒.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.2.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部 【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.解析:(1)①18°;②2∠BEG +∠HFG =90°,证明见解析;(2)2∠BEG -∠HFG =90°证明见解析部 【分析】(1)①证明2∠BEG +∠HFG =90°,可得结论.②利用平行线的性质证明即可. (2)如图2中,结论:2∠BEG -∠HFG =90°.利用平行线的性质证明即可. 【详解】解:(1)①∵EG 平分∠BEF , ∴∠BEG =∠FEG , ∵FH ⊥EF , ∴∠EFH =90°, ∵AB ∥CD ,∴∠BEF +∠EFG =180°, ∴2∠BEG +90°+∠HFG =180°, ∴2∠BEG +∠HFG =90°, ∵∠BEG =36°, ∴∠HFG =18°. 故答案为:18°.②结论:2∠BEG +∠HFG =90°. 理由:∵EG 平分∠BEF ,∴∠BEG =∠FEG ,∵FH ⊥EF ,∴∠EFH =90°,∵AB ∥CD ,∴∠BEF +∠EFG =180°,∴2∠BEG +90°+∠HFG =180°,∴2∠BEG +∠HFG =90°.(2)如图2中,结论:2∠BEG -∠HFG =90°.理由:∵EG 平分∠BEF ,∴∠BEG =∠FEG ,∵FH ⊥EF ,∴∠EFH =90°,∵AB ∥CD ,∴∠BEF +∠EFG =180°,∴2∠BEG +90°-∠HFG =180°,∴2∠BEG -∠HFG =90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.4.(1)见详解;(2)15°;(3)67.5°;(4)45cm ;(5)10s 或30s 或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E 作EK ∥MN ,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm ;(5)10s 或30s 或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E 作EK ∥MN ,利用平行线性质即可求得答案;(3)如图3,分别过点F 、H 作FL ∥MN ,HR ∥PQ ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A =DF ,DD′=EE′=AF =5cm ,再结合DE +EF +DF =35cm ,可得出答案;(5)设旋转时间为t 秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC ∥DE 时,②当BC ∥EF 时,③当BC ∥DF 时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF 中,∠EDF =90°,∠DFE =30°,∠DEF =60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.5.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E 在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED =∠DET -∠BET =∠D -∠B .如图2-2中,当点E 在AC 的延长线上时,过点E 作ET ∥A B .∵AB ∥ET ,AB ∥CD ,∴ET ∥CD ∥AB ,∴∠B =∠BET ,∠TED =∠D ,∴∠BED =∠BET -∠DET =∠B -∠D .(3)如图,设∠ABE =∠EBM =x ,∠CDE =∠EDM =y ,∵AB ∥CD ,∴∠BMD =∠ABM +∠CDM ,∴m =2x +2y ,∴x +y =12m ,∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 二、解答题6.(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a ,b 的值,再利用中点坐标公式即可得出答案;(2)先得出CP=t ,OP=2-t ,OQ=2t ,AQ=4-解析:(1)()2,0C ,()0,4A ;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a ,b 的值,再利用中点坐标公式即可得出答案;(2)先得出CP =t ,OP =2-t ,OQ =2t ,AQ =4-2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC ∠+∠∠进行计算即可. 【详解】解:(1)∵2a b -+|b -2|=0, ∴a -2b =0,b -2=0, 解得a =4,b =2,∴A (0,4),C (2,0).(2)存在, 理由:如图1中,D (1,2),由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒, ∴0<t ≤2时,点Q 在线段AO 上, 即 CP =t ,OP =2-t ,OQ =2t ,AQ =4-2t ,∴S △DOP =12•OP •y D =12(2-t )×2=2-t ,S △DOQ =12•OQ •x D =12×2t ×1=t ,∵S △ODP =S △ODQ ,∴2-t =t ,∴t =1.(3)结论:OHC ACE OEC ∠+∠∠的值不变,其值为2.理由如下:如图2中,∵∠2+∠3=90°, 又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC ,∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4, ∴124414OHC ACE OEC ∠+∠∠+∠+∠+∠=∠∠+∠=2. 【点睛】本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.7.(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥E 解析:(1) +180ACB BED ∠∠=︒;(2) 100︒;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出+180ACB BED ∠∠=︒;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥ES 推出BED ABE CDE ∠=∠+∠,再根据AB ∥TH ,AB ∥CD 推出GHD THD THB ∠=∠-∠,最后根据BED ∠比BHD ∠大60︒得出BED ∠的度数;(3)如图3,过点E 作EQ ∥DN ,根据DEB CDE ABE ∠=∠+∠得出βα-的度数,根据条件再逐步求出PBM ∠的度数.【详解】(1)如答图1所示,延长DE 交AB 于点F .AB ∥CD ,所以D EFB ∠=∠,又因为A D ∠=∠,所以A EFB ∠=∠,所以AC ∥DF ,所以ACB CED ∠=∠.因为+180CED BED ∠∠=︒,所以+180ACB BED ∠∠=︒.(2)如答图2所示,过点E 作ES ∥AB ,过点H 作HT ∥AB .设ABG EBG α∠=∠=,FDH EDH β∠=∠=,因为AB ∥CD ,AB ∥ES ,所以ABE BES ∠=∠,SED CED ∠=∠,所以21802BED BES SED ABE CDE αβ∠=∠+∠=∠+∠=+︒-,因为AB ∥TH ,AB ∥CD ,所以ABG THB ∠=∠,FDH DHT ∠=∠,所以GHD THD THB βα∠=∠-∠=-,因为BED ∠比BHD ∠大60︒,所以2+1802()60αββα︒---=︒,所以40βα-=︒,所以40BHD ∠=︒,所以100BED ∠=︒(3)不发生变化如答图3所示,过点E 作EQ ∥DN .设CDN EDN α∠=∠=,EBM KBM β∠=∠=,由(2)易知DEB CDE ABE ∠=∠+∠,所以2+1802100αβ︒-=︒,所以40βα-=︒, 所以180()180DEB CDE EDN EBM PBM PBM αβ∠=∠+∠+︒-∠+∠=+︒--∠, 所以80()40PBM βα∠=︒--=︒.【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键.8.(1);(2)①,见解析;②或【分析】(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,解析:(1)125︒;(2)①2ABD EAF ∠=∠,见解析;②30或110︒【分析】(1)由平行线的性质可得到:DEA EAN =∠∠,MBA BAN =∠∠,再利用角的等量代换换算即可;(2)①设EAF α∠=,AED=DAE=β∠∠,利用角平分线的定义和角的等量代换表示出ABD ∠对比即可;②分类讨论点D 在B 的左右两侧的情况,运用角的等量代换换算即可.【详解】.解:(1)设在1l 上有一点N 在点A 的右侧,如图所示:∵12//l l∴DEA EAN =∠∠,MBA BAN =∠∠∴50AED DAE EAN ==︒∠=∠∠∴255050125BAN BAD DAE EAN =++=︒+︒+︒=︒∠∠∠∠125BAM =︒∠(2)①2ABD=EAF ∠∠.证明:设EAF α∠=,AED=DAE=β∠∠.∴+=+FAD EAF DAE αβ=∠∠∠.∵AF 为CAD ∠的角平分线,∴22+2CAD FAD αβ==∠∠.∵12l l ,∴EAN=AED=β∠∠.∴2+22CAN CAD DAE EAN αβββα=--=--=∠∠∠∠.∴=22ABD CAN EAF α∠∠==∠.②当点D 在点B 右侧时,如图:由①得:2ABD EAF ∠=∠又∵180ABD ABM +=︒∠∠∴2180ABM EAF +=︒∠∠∵150ABM EAF ∠+∠︒=∴18015030EAF =︒-︒=︒∠当点D 在点B 左侧,E 在B 右侧时,如图:∵AF 为CAD ∠的角平分线 ∴12DAF CAD =∠∠ ∵12l l∴AED NAE =∠∠,CAN ABE =∠∠∵DAE AED NAE ==∠∠∠∴11()22DAE DAE NAE DAN =+=∠∠∠∠ ∴11()(360)22EAF DAF DAE CAD DAN CAN =+=+=︒-∠∠∠∠∠∠ 11802ABE =︒-∠ ∵180ABE ABM +=︒∠∠∴11180(180)9022EAF ABM ABM =︒-︒-=︒+∠∠∠ 又∵150EAF ABM +=︒∠∠∴1190(150)16522EAF EAF EAF =︒+⨯︒-=︒-∠∠∠ ∴110EAF =︒∠当点D 和F 在点B 左侧时,设在2l 上有一点G 在点B 的右侧如图:此时仍有12DAE DAN =∠∠,12DAF CAD =∠∠ ∴11(360)1802211180(180)9022EAF DAE DAF CAN ABG ABM ABM =+=︒-=︒-=︒-︒-=︒+∠∠∠∠∠∠∠ ∴110EAF =︒∠综合所述:30EAF ∠=︒或110︒【点睛】本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.9.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=, ∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.10.(1);(2)①,②,理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即解析:(1)80︒;(2)①APE αβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)1()2ANE αβ∠=∠+∠ 【分析】(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【详解】解:(1)如图1,过点P 作//PG AB ,则//PG CD ,由平行线的性质可得180B BPG ︒∠+∠=,180C CPG ︒∠+∠=,又∵125PBA ︒∠=,155PCD ︒∠=,∴36012515580BPC ︒︒︒︒∠=--=,故答案为:80︒;(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠;过点P 作PM ∥FD ,则PM ∥FD ∥CG ,∵PM ∥FD ,∴∠1=∠α,∵PM ∥CG ,∴∠2=∠β,∴∠1+∠2=∠α+∠β,即:APE αβ∠=∠+∠,②如图,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由:过P 作//PQ DF ,∵//DF CG ,∴//PQ CG ,∴QPA β∠=∠,QPE α∠=∠,∴APE APQ EPQ βα∠=∠-∠=∠-∠;(3)如图,由①可知,∠N=∠3+∠4,∵EN 平分∠DEP ,AN 平分∠PAC ,∴∠3=12∠α,∠4=12∠β, ∴1()2ANE αβ∠=∠+∠,∴ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.三、解答题11.(1)36°或18°;(2)△AOB 、△AOC 都是“梦想三角形”,证明详见解析;(3)∠B =36°或∠B =.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°, 解析:(1)36°或18°;(2)△AOB 、△AOC 都是“梦想三角形”,证明详见解析;(3)∠B =36°或∠B =5407︒().【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.(2)△AOB、△AOC都是“梦想三角形”证明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB为“梦想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“梦想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“梦想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC +∠BCD +∠B =180°,∴∠B =36°或∠B =5407︒(). 【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.12.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.13.(1)∠EPB =170°;(2)①当交点P 在直线b 的下方时:∠EPB =20°,②当交点P 在直线a ,b 之间时:∠EPB =160°,③当交点P 在直线a 的上方时:∠EPB =∠1﹣50°=20°;(3)①当解析:(1)∠EPB =170°;(2)①当交点P 在直线b 的下方时:∠EPB =20°,②当交点P 在直线a ,b 之间时:∠EPB =160°,③当交点P 在直线a 的上方时:∠EPB =∠1﹣50°=20°;(3)①当交点P 在直线a ,b 之间时:∠EPB =180°﹣|n°﹣50°|;②当交点P 在直线a 上方或直线b 下方时:∠EPB =|n°﹣50°|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:①当交点P 在直线b 的下方时;②当交点P 在直线a ,b 之间时;③当交点P 在直线a 的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:①当交点P 在直线a ,b 之间时;②当交点P 在直线a 上方或直线b 下方时;【详解】解:(1)∵BD 平分∠ABC ,∴∠ABD =∠DBC =12∠ABC =50°,∵∠EPB 是△PFB 的外角,∴∠EPB =∠PFB+∠PBF =∠1+(180°﹣50°)=170°;(2)①当交点P 在直线b 的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;【点睛】考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.14.(1),理由见解析;(2)当点P在B、O两点之间时,;当点P在射线AM上时,.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C∠=∠+∠,理由见解析;解析:(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.15.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年江苏省南京市秦淮区七年级(下)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给出的四个
选项中恰一项是符合题目要求的)
1.(2分)下方的“月亮”图案可以由如图所示的图案平移得到的是()
A.B.C.D.
2.(2分)某红外线遥控器发出的红外线波长为0.00000094m,将0.00000094用科学记数法表示为()
A.9.4×10﹣7B.0.94×10﹣6C.9.4×10﹣6D.9.4×107 3.(2分)下列各式从左边到右边的变形,是因式分解的是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a﹣1)
C.(a+b)2=a2+2ab+b2D.a2b=ab•a
4.(2分)二元一次方程2x+3y+10=35的一个解可以是()A.B.C.D.
5.(2分)已知a>b,则下列不等关系正确的是()
A.﹣a>﹣b B.3a>3b C.a﹣1<b﹣1D.a+1<b+2 6.(2分)如图,在Rt△ABC中,∠A=90°,直线DE∥BC,分别交AB、AC 于点D、E,若∠ADE=30°,则∠C的度数为()
A.30°B.40°C.50°D.60°
7.(2分)命题“若a=b,则|a|=|b|”与其逆命题的真假性为()A.该命题与其逆命题都是真命题
B.该命题是真命题,其逆命题是假命题
C.该命题是假命题,其逆命题是真命题
D.该命题与其逆命题都是假命题
8.(2分)已知AB=3,BC=1,则AC的长度的取值范围是()A.2≤AC≤4B.2<AC<4C.1≤AC≤3D.1<AC<3
二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程)9.(2分)计算:a5÷a2的结果是.
10.(2分)计算(x+1)(2x﹣1)的结果为.
11.(2分)因式分解:ab2﹣2ab+a=.
12.(2分)不等式2x﹣1<3的解集是.
13.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.14.(2分)如图,将一张长方形纸片ABCD沿EF折叠后,点C、D分别落在C、D的位置,DE与BC相交于点G.若∠1=40°,则∠2=°.
15.(2分)将不等式“﹣2x>﹣2”中未知数的系数化为“1”可得到“x<1”,该步的依据是.
16.(2分)不等式组的整数解为.
17.(2分)如图,BE是△ABC的中线,D是AB的中点,连接DE.若△ABC 的面积为1,则四边形DBCE的面积为.
18.(2分)二元一次方程组有可能无解.例如方程组无解,原因是:将①×2得2x+4y=2,它与②式存在矛盾,导致原方程组无解.若关于x、y 的方程组无解,则a、b须满足的条件是.
三、解答题(本大题共9小题,共64分)
19.(8分)计算:
(1)()﹣2﹣π0+(﹣3)2
(2)2m3•3m﹣(2m2)2+m6÷m2
20.(4分)解二元一次方程组
21.(5分)先化简,再求值:(a+2b)(a﹣2b)﹣a(a﹣b),其中a=2,b=3.22.(6分)解不等式x2﹣4<0.
请按照下面的步骤,完成本题的解答.
解:x2﹣4<0可化为(x+2)(x﹣2)<0.
(1)依据“两数相乘,异号得负”,可得不等式组①或不等式组
②.
(2)不等式组①无解;解不等式组②,解集为.
(3)所以不等式x2﹣4<0的解集为.
23.(6分)把下面的证明过程补充完整
已知:如图,∠1+∠2=180°,∠C=∠D,求证:∠A=∠F.
证明:∵∠1+∠2=180°(已知)
∴∠C=∠ABD()
∵∠C=∠D(已知),
∴(等量代换).
∴AC∥DF().
∴∠A=∠F().
24.(6分)如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=34°,
∠AEB=80°,求∠CAD的度数.
25.(8分)课本上,我们利用数形结合思想探索了整式乘法的法则和一些公式.类似地,我们可以探索一些其他的公式.
【以形助数】
借助一个棱长为a的大正方体进行以下探索.
(1)在其一角截去一个棱长为b(b<a)的小正方体,如图1所示,则得到的几何体的体积为.
(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,因为BC =a,AB=a﹣b,CF=b,所以长方体①的体积为ab(a﹣b),类似地,长方体②的体积为,长方体③的体积为:(结果不需要化简)(3)将表示长方体①、②、③的体积的式子相加,并将得到的多项式分解因式,结果为.
(4)用不同的方法表示图1中几何体的体积,可以得到的等式为.【以数解形】
(5)对于任意数a、b,运用整式乘法法则证明(4)中得到的等式成立.26.(11分)某校组织学生乘汽车前往自然保护区野营.从学校出发后,汽车先以60km/h的速度在平路上行驶,后又以30km/h的速度爬坡到达目的地;返回时,汽车沿原路线先以40km/h的速度下坡,后又以60km/h的速度在平路上行驶回到学校.
(1)用含x、y的代数式填表:
速度(km/h)时间(h)路程(km)前往平路60x
上坡30y 返回平路60
下坡40
(2)已知汽车从学校出发到到达目的地共用时5h.
①若汽车在返回时共用时4h,求(1)的表格中的x、y的值.
②若学校与目的地的距离不超过180km,请围绕“汽车从学校出发到到达目的
地”这一过程中汽车行驶的“时间”或“路程”,提出一个能用一元一次不等式解决的问题,并写出解答过程.
27.(10分)已知△ABC,P是平面内任意一点(A、B、C、P中任意三点都不在同一直线上).连接PB、PC,设∠PBA=x°,∠PCA=y°,∠BPC=m°,∠BAC=n°.
(1)如图,当点P在△ABC内时,
①若n=80,x=10,y=20,则m=;
②探究x、y、m、n之间的数量关系,并证明你得到的结论.
(2)当点P在△ABC外时,直接写出x、y、m、n之间所有可能的数量关系,并画出相应的图形.
2017-2018学年江苏省南京市秦淮区七年级(下)期末数
学试卷
参考答案
一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给出的四个
选项中恰一项是符合题目要求的)
1.C;2.A;3.B;4.C;5.B;6.D;7.B;8.A;
二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程)9.a3;10.2x2+x﹣1;11.a(b﹣1)2;12.x<2;13.6;14.110;15.不等式两边都乘以(或除以)同一个负数,不等号的方向改变;16.0,1;17.;
18.a=且b≠2;
三、解答题(本大题共9小题,共64分)
19.;20.;21.;22.;﹣2<x<2;﹣2<x
<2;23.两直线平行,同位角相等;∠D=∠ABD;内错角相等,两直线平行;两直线平行,内错角相等;24.;25.a3﹣b3.;b2(a﹣b),;
a2(a﹣b);(a﹣b)(a2+ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2);26.;x;
;y;27.110;。