公开课课件 圆的对称性(1) 共19页
垂径定理公开课PPT课件
O
CE D A
-
5
知识点二:垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对 的两条弧
B
应用格式:在⊙O 中,
∵ CD⊥AB(AB是直径)
∴ CE=DE,A C = A D ,B C = B D
O
CE D A
B
B
O
CE D A
O
E
C
D
A
O
O
C ED C ED
条件的实质是:(1)过圆心(2)垂直于弦
第3章 对圆的进一步认识
3.1 圆的对称性(1)
-
1
-
2
一、以旧引新
1.与圆有关的概念
圆是平面内到定点的距离等于定长的点的集合.
连接圆上任意两点的线段叫做弦. 经过圆心的弦叫做直径. 圆上任意两点间的部分叫做圆弧,简称弧. 大于半圆的弧叫做优弧,
小于半圆的弧叫做劣弧.
在同圆或等圆中,能够互相重合的弧叫做等弧. 2.什么是轴对称图形?
条件的实质是:(1)过圆心(2)垂直于弦
-
11
【解题方法】 构造直角三角形,运用垂径定理和勾股定
理解决圆中弦、弦心距、半径问题
【数学思想】6
针对训练(一)
1.判断正误 (1)如图,CD是⊙O的弦,BE经过圆心O,BE⊥CD于 E,则
CE=DE,BC BD(. √ )
(2)如图,CD是⊙O的弦,OA是圆的半径,OA⊥CD,垂
足为E,则CE=DE,OE=EA.(× )
(3)如图,CD是⊙O的弦,OE⊥CD,则CE=DE.( √ )
B
解:作OM ⊥AB于M,连接OB,
则OM=3,
BM=
1 2
1
人教版九上数学第三章3.2圆的对称性(共19张ppt)
圆的轴对称性: 圆是轴对称图形,
●O
其对称轴是任意一条 过圆心的直线.
探究归纳 一(2)圆的中心对称性
问题3 将圆绕圆心旋转180°后,得到的图形与原图形 重合吗?由此你得到什么结论呢?
180° A
圆的中心对称性: 圆是中心对称图形,对称中 心为圆心.
探究归纳 一、(3)圆的旋转不变性
圆是轴对称图形,其对称轴是任意一条过圆心的直线;
C
在同圆中,相 归两一个(2纳)圆圆叫的做中由同心心对圆圆称性 的旋转不变性,我们发现: 5、 如图,AB、CD是⊙O的两条弦.
在⊙O中,如果∠AOB= ∠COD, 等的圆心角所 ∵∠AOD=∠BOE,
那么, ,弦AB=弦CD (4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?
要点归纳
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
①∠AOB=∠COD
CB
②A⌒B=C⌒D ③AB=CD
D
O
A
想一想:定理“在同圆或等圆中,相等的圆心角所 对的弧相等,所对的弦也相等.”中,可否把条件 “在同圆或等圆中”去掉?为什么?
不可以,如图.
B D OC A
题设
结论
如果圆心角相等 那么 圆心角所对的弧相等
在
圆心角所对的弦相等
同
圆 或
如果弧相等
那么
弧所对的圆心角相等 弧所对的弦相等
等
圆 中
弦所对应的圆心角相等
如果弦相等
那么 弦所对应的优弧相等
弦所对应的劣弧相等
要点归纳
弧、弦与圆心角关系定理的推论 问题4 把圆绕圆心旋转任意一个角度呢?仍与原来的圆重合吗?
圆的基本概念和性质PPT课件
圆的相关概念
1、弧:圆上任意两点间的部分叫做圆弧,简称弧.
AB”. 以A,B两点为端点的弧.记作 A⌒B 读作“弧
2、弦:连接圆上任意两点间的线段叫做弦(如弦AB).
3、直径:经过圆心的弦叫做直径(如直径AC).
4、半圆:直径将圆分成两部分,每一部分都叫做半圆(如
弧 ABC).
B
定义二:圆是到定点的距离等于定长的点的集合。
2、点与圆的位置关系:
设⊙O的半径为r,则点P与⊙O的位置关系有: (1)点P在⊙O上 OP=r
(2)点P在⊙O内 (3)点P在⊙O外
OP<r OP>r
3、证明几个点在同一个圆上的方法。
要证明几个点在同一个圆上,只要证明这几个点 与一个定点的距离相等。
第17页/共19页
1:在以AB=5cm为直径的圆上到直线AB的距离为2.5cm 的点有 ( C ) A.无数个 B.1个 C.2个 D.4个
2:圆的半径是5cm,圆心的坐标是(0,0),点P 的坐标为(4,2),点P与⊙O的位置关系是(A )
A.点P在⊙O内 C.点P在⊙O外
B.点P在⊙O上 D.点P在⊙O上或⊙O外
(分别以点A、B为圆心,2厘米长为
半径的⊙A的内部与⊙ B的内部的公共
AA
BB
部分,即图中阴影部分,不包括阴影的
边界)
第12页/共19页
设AB=3cm,作图说明满足下列要求的图形:
(5)到点A的距离小于2cm,且到点B的距离大于2 cm的所有点组成的图形.
(分别以点A、B为圆心分,即图中阴影部分,不包括阴影的
边界)
A
B
第13页/共19页
如图菱形ABCD的对角线AC和BD相交于点O,E、 F、G、H分别是边AB、BC、CD、AD的中点,求证: E、F、G、H在同一个圆上。
圆的对称性公开课获奖课件百校联赛一等奖课件
试一试你旳能力
一.判断下列说法是否正确:
1相等旳圆心角所正确弧相等。( ×)
2相等旳弧所正确弦相等。( √ )
3相等旳弦所正确弧相等。( ×) B
二.如图,⊙O中,AB=CD,
1
A
1 50, 则 2 5_0_o__ .
C
2O
D
你会做吗?
如图,在⊙O中,AC=BD,
1 45 ,求∠2旳度数。
1.请同学们将图沿着直径CD对折, 你能发觉什么结论?
·
在⊙O中,假如直径CD 弦AB,垂足为P,
那么弦AP BP、AD BD、AC=BC
结论:(垂径定理)
C
垂直于弦旳直径,
平分这条弦 而且平分弦所正确两条弧。
·O
P
在⊙O中,假如CD是直径, A
B
CD ΑΒ于P,
D
那么:AP=BP,
AD=BD,
AC=BC
1.如图,在⊙O中,A︵B=A︵C,∠B=70°.
求∠C度数.
(第 1 题)
(第 2 题)
2.如图,AB是直径ቤተ መጻሕፍቲ ባይዱB︵C=C︵D=D︵E,
∠BOC=40°,求∠AOE旳度数
1、如图,AB为⊙O旳直径,CD为弦,CD⊥AB于
E.则下列结论中错误旳是( C ).
A.∠COE=∠DOE B.CE=DE
假如 AOB=AOB 那么 AB=AB、
AB=AB
结论:
1.在同一种圆(或等圆)中,假如圆心角相等, 那么它所正确弧相等、所正确弦相等, 所正 确弦旳弦心距也相等。
2.在同一种圆(或等圆)中以,上假三如句弧话相如等没,那 么所所正正确确弦圆旳心弦角心距__相相____等等___、_。所有 中 会正在 , 成确同 这 立弦圆个吗或结?_相_等论_等_圆还__, 3.在同一种圆(或等圆)中,假如弦相等,那 么所正确圆心角_相__等__、所正确弧__相__等__,所 正确弦旳弦心距_相__等__。
圆的对称性(1)
3.垂径定理和勾股定理相结合,构造 直角三角形,可解决弦长、半径、弦 心距等计算问题.
2020/2/6
[例一心]段)如,圆右其弧图中(所即C示D图=,中60一C0⌒m条D,,公点E路为O的是C⌒转DC⌒上弯D的一处圆点是, 且OE⊥CD,垂足为F,EF=90 m.求 这段弯路的半径.
想一想:
1、如下图示,AB是⊙O的弦(不是直径),作一条平 分AB的直径CD,交AB于点M.同学们利用圆纸片 动手做一做,然后回答:
4.将纸打开,新的折痕与圆交于另一点B,如图.
问题:(1)右图是轴对称图形吗?
如果是,其对称轴是什么?
(2)你能发现图中有哪些等量关系?
2020/2/6
说一说你的理由。
总结得出垂径定理:
垂直于弦的直径平分这条弦,并且 平分弦所对的弧。
推理格式:如图所示
∵∴CAMD⊥=BAMB,,A⌒CDD=为⌒B⊙D,O的A⌒C直=径B⌒C.
2.弦:连接圆上任意两点的线段叫做弦。 如图, 弦AB,弦CD
3.直径:经过圆心的弦叫直径。
如图,直径CD
2020/2/6
做一做:按下面的步骤做一做
1.在一张纸上任意画一个⊙O,沿圆周将圆剪下, 把这个圆对折,使圆的两半部分重合.
2.得到一条折痕CD.
3.在⊙O上任取一点A,过点A作CD折痕 的垂线, 得到新的折痕,其中,点M是两条折痕的交点,即 垂足.
(1)此图是轴对称图形吗?如果是,其对称轴是什么 ?
(2)你能发现图中有哪些等量关系?说一说你的理 2.由总。结得出垂径定理的逆定理:平分弦(不是直 径)的直径垂直于弦,并且平分弦所对的弧。
推理格式:如图所示
九年级数学上册(人教版)第二十四章《圆》课件
O A 2023/1/4
︵ ︵ D ∵ ∠COD =∠AOB ∴ AB = CD C ∴AB=CD
.r
O
S = nπr2
360
2023/1/4
或
S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2023/1/4
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2023/1/4
a 侧面
底面
常见的基本图形及结论:
AC
A
2023/1/4
构成等腰解疑难; 灵活应用才方便。
2023/1/4
典型例题:
1.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C
DE A O1 O F B
(1)说明D是AC的中点.
(2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.
. (3)弦心距
O
2023/1/4
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
.
2023/1/4
2.同圆或等圆中圆心角、弧、弦之间的关系:
§5.2圆的对称性(1)
初三数学教学案课题:§5.2圆的对称性(1) 课型:新授 时间:〖学习目标〗1.经历探索圆的对称性及有关性质的过程.2.理解圆的对称性及有关性质.3.会运用圆心角、弧、弦之间的关系、垂径定理等解决有关问题.〖学习过程〗一、创设情境:(1) 什么是中心对称图形?(2) 我们采用什么方法研究中心对称图形?二、探索活动:活动一、按照下列步骤进行小组活动:1、在两张透明纸片上,分别作半径相等的⊙O 和⊙O '2、在⊙O 和⊙O '中,分别作相等的圆心角∠AOB 、∠'''B O A ,连接AB、''B A .3、将两张纸片叠在一起,使⊙O 与⊙O '重合(如图).4、固定圆心,将其中一个圆旋转某个角度,使得OA 与OA '重合.在操作的过程中,你有什么发现,请与小组同学交流._______________________________________________ 活动二、上面的命题反映了在同圆或等圆中,圆心角、弧、弦的关系,对于这三个量之间的关系,你还有什么思考?请与小组同学交流.你能够用文字语言把你的发现表达出来吗?2、圆心角、弧、弦之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.’ ’试一试:如图,已知⊙O 、⊙O '半径相等,AB 、CD分别是⊙O 、⊙O '的两条弦.填空: (1)若AB=CD ,则 ,(2)若,则 ,(3)若∠AOB=∠CO 'D ,则 , .活动三、在圆心角、弧、弦这三个量中,角的大小可以用度数刻画,弦的大小可以用长度刻画,那么如何来刻画弧的大小呢?弧的大小:圆心角的度数与它所对的弧的度数相等.三、例题分析:例:如图,AB 、AC 、BC 都是⊙O 的弦,∠AOC=∠BOC.∠ABC 与∠BAC 相等吗?为什么?四、课堂小结:通过本节课的学习.你对圆的对称性有什么认识?五、随堂练习:1.如图,在⊙O 中,AC=BD ,∠AOB=50°,求∠COD 的度数.2. 如图,在⊙O 中,AB=AC A=40°,求∠B 的度数.C3.如图,在△ABC中, ∠C=90°, ∠B=28°,以C为圆心,CA为半径的圆交AB于点D,交BC与点E,求AD的度数.4.如图,AD、BE、CF是⊙O的直径,且∠AOF=∠BOC=∠DOE。
九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件
归纳
知2-导
1.在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦 中有一组量相等,那么它们所对应的其余各组量都分 别相等.
(来自教材)
知2-讲
例2 下列命题中,正确的是( C ) ①顶点在圆心的角是圆心角;
形、圆、等腰三角形,这些图形中只是轴对称图
形的有( A )
A.1个
B.2个
C.3个
D.4个
知1-练
4 【2017·黄石】下列图形中既是轴对称图形,又是 中心对称图形的是( D )
知2-导
知识点 2 圆心角与所对的弧、弦之间的关系
在同圆或等圆中,如果两个圆心角所对的弧相等,那 么它们所对的弦相等 吗?这两个圆心角相等吗?你是怎 么想的?
②相等的圆心角所对的弧也相等;
③在等圆中,圆心角不等,所对的弦也不等.
A.①和②
B.②和③
C.①和③
D.①②③
知2-讲
导引:①根据圆心角的定义知,顶点在圆心的角是圆心角, 故正确;②缺少条件,必须是在同圆或等圆中,相等 的圆心角所对的弧才相等,故错误;③根据弧、弦、 圆心角之间的关系定理,可知在等圆中,若圆心角相 等,则所对的弦相等,若圆心角不等,则所对的弦也 不等,故正确.
总结
知2-讲
本题考查了对弧、弦、圆心角之间的关系的理解,对于 圆中的一些易混易错结论应结合图形来解答.特别要注 意:看是否有“在同圆或等圆中”这个前提条件.
知2-练
1 下面四个图形中的角,是圆心角的是( D )
知2-练
2 如图,AB为⊙O的弦,∠A=40°,则A︵B所对的 圆心角等于( C ) A.40° B.80° C.100° D.120°
2.2《圆的对称性(1)》教学课件
AB=A′B′;
AB=A′B′.
∠AOB=∠ A′O′ B′. ∠AOB =∠ A′O′ B′.
观察思考
1°的圆心角
C D
1°的弧
O
B
n°的弧
A n°的圆心角
圆心角的度数与它所对的弧的度数相等.
例题探究
例1 如图, AB、AC、BC都是⊙O的弦,∠AOC=
∠BOC.∠ABC与∠BAC相等吗?为什么?
AB = A′B′
AB=A′B′
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦相等.
议一议
在同圆或等圆中,如果圆心角所对的弧相等,那么 它们所对的弦相等吗?这两个圆心角相等吗?为什么?
B A B′ A′
O
O′
AB=A′B′ AB=A′B′
∠AOB =∠ A′O ′B ′
在同圆或等圆中,如果圆心角所对的弦相等,那
B
A B O C 图2
O 图1
2.如图2,在⊙O中, AB= AC ,∠A=40º,求
∠ABC的度数.
拓展练习
如图,在同圆中,若AB=2CD,则AB与2CD的大小 关系是( B ). B.AB<2CD D.不能确定
B O D A C
A.AB>2CD C. AB=2CD
拓展:在同圆中,若AB > CD ,那么AB与CD的 大小关系关系如何?
课堂小结
通过本节课的学习,你对圆的对称性有哪些认识? 1.圆是中心对称图形,圆心是它的对称中心. 2.在同圆或等圆中,如果两个圆心角,两条弧,两 条弦中有一组量相等,那么它们所对应的其余各组都分 别相等. 3.圆心角的度数与它所对的弧的度数相等.
课后作业
课本P48 第2、3、4.
2.2
圆心角(共19张)课件(浙教版)
练一练
2、判断: (1)等弦所对的弧相等。
(× )
(2)等弧所对的弦相等。 ( √ ) (3)圆心角相等,所对的弦相等。( × ) (4)弦相等,所对的圆心角相等。(×) × (5)在同圆或等圆中,相等的弦所对的弧相等( )
3.已知:如图,在⊙O中,弦AB=CD.
求证:AD=BC
B
D C
O·
A
AD=BC
M、N,且AM=BN。求证:CD=EF
证明:连结OA、OB,设分别与CD、EF交于点F、G
∵A为CD中点,B为EF中点 ∴OA⊥CD,OB⊥EF
故பைடு நூலகம்AFC=∠BGE=90°①
又由OA=OB, ∴∠OAB=∠OBA ②
且AM=BN
③
∴△AFM≌△BGN(SAS) ∴AF=BG ∴OF=OG
F
G
∴DC=EF
2.
圆的对称性
圆的轴对称性 (圆是轴对称图形)
垂径定理 及其推论
圆的中心对称性 (旋转不变性)
圆心角定理
圆心角定理:在同圆和等圆中,相等的圆心角所
对的弧相等,所对的弦相等,所对的弦的弦心距相等。
条件
结论
在同圆或等圆中
圆心角所对的弧相等
如果圆心角相等 那么 圆心角所对的弦相等
圆心角所对的弦的弦心距相等
推论:在同圆或等圆中,如果两个圆心角、两条弧、
两条弦或两条弦的弦心距中有一对量相等,那么它们
所对应的其余各对量都分别相等。
在同圆或等圆中 如果弧相等
那么
弧所对的圆心角相等 弧所对的弦相等 弧所对的弦的弦心距相等
弦所对的圆心角相等
在同圆或等圆中 如果弦相等
那么
弦所对的弧(指劣弧)相等 弦的弦心距相等
圆的轴对称性公开课一等奖优质课大赛微课获奖课件
第10页
试一试P93 15
挑战自我画一画
• 4.如图,圆O与矩形ABCD交于E、F、G、 H,EF=10,HG=6,AH=4.求BE长.
A
H
G
D
BE
·
F
C
0
第11页
推论(1)
(1)平分弦(不是直径)直径垂直于弦, 并且平分弦所正确两条弧
(2)平分弧直径垂直平分弧所正确弦。
推论(2)
圆两条平行弦所夹弧相等
第12页
M
C
D
A
B
A
B
.
O
O.
E AC
DB
.O
小结:
N
处理相关弦问题,经常是过圆心作弦
垂线,或作垂直于弦直径,连结半径等辅 助线,为应用垂径定理创造条件。
第13页
; 有书网
mqx37jop
离水远一些儿地方去发展,那你们以后去了哪里啊?”耿英无助地看看爹和哥哥,可他们似乎都没有准备回答妹妹问话意思。再看看可怜弟弟, 耿直却低声说:“姐,还是你说哇。”郭氏看到耿英为难样子,心里已经明白了七八分:也许就该是说到他们父子分离当口了……郭氏咬咬牙, 发狠地说:“说哇英子,娘能挺得住……”耿英忍忍眼泪,低声说:“爹准备带俺们三个去景德镇发展,可就在穿过山涧小路翻越大山时,建 筑在两山之间拦水大坝,忽然之间就,就垮塌了。当初,俺们三个刚刚到了山顶上,可,可爹他,他,他不见了……”快八年了,并且爹爹现 在就好好地坐在自己面前,但回想起当初那痛心一幕,耿英还是忍不住夺眶而出泪水,耿正和耿直也哭了。郭氏和耿兰同时痛哭失声……耿直 哭着说:“娘,都怪俺,是俺非要去看山顶上那个大坝……”耿老爹始终认真听着,始终没有插话。听到这里,他也泪流满面了。懂事尚武往 前挪挪椅子,轻轻推一推他膝盖。他明白尚武意思,赶紧擦把脸清一清嗓子说:“好啦好啦,俺这不是没有死嘛!剩余来俺来说哇!”见妻子 略略止住了悲声,小女儿也扬起泪脸来看着自己,耿老爹暗暗咬咬牙,故作轻松地说:“其实啊,说起来也没有多么复杂。俺被洪水卷走后, 努力屏住气,右手抓住扁担抱在胸前,左手像蛤蟆那样划水,居然就漂浮上来了!眼前正好漂来一块儿门板,俺就爬上去了。不,是那个会水 白弟兄托着一块儿门板向俺游来,并把俺推上去!”耿正、耿英和耿直都瞪大了眼睛问:“爹,你说什么?是白幺爹,他……”耿老爹点点头, 必定地说:“对,俺当初真是这样看到和感到!”耿老爹也顾不了耿正兄妹三人还在瞪着眼儿互相看呢,只管自己继续说下去:“以后,门板 被冲到了一百多里远一个小寺庙前,老和尚和徒弟们发觉了俺,就把俺救了。和尚师徒们对俺较好,老和尚还给俺调理治病。俺把一个聪明可 爱小沙弥当成了小直子。”郭氏又痛哭开了:“本来,你是急疯了啊!”耿老爹拍拍妻子胳膊,轻轻地说:“说好了不兴哭!”耿兰问:“以 后呢,俺三哥,莫非说,他,他是老和尚徒弟……”尚武插话了,轻轻地说:“兰妹妹,你听咱爹慢慢说嘛,三哥怎么会是老和尚徒弟呢!” 接下来,耿老爹就将如何救不慎落水尚武,如何将尚文兄妹三个当成耿正兄妹仨,尚武父母如何想方设法为自己求医问药……简明地述说了一 遍。说到病好之后确知耿正兄妹三人很也许已经不在人世,耿老爹几次哽咽,全家人都泪落纷纷。听完了,郭氏哭着说:“俺已经觉察出来, 你们父子说话有些个话里有话,但却没有想到,居然会是这样哇……”郭氏不歇气儿地痛哭开了,大家也不再劝说什么,只管各自
圆的对称性(1)(新编教材)
己 为侍中 追赠冀州刺史 言无隐讳 有器干 禁锢终身 广延群贤 人情恇然 崇复本官 寻拜游击将军 假节 殃必及之 截断如身长 考其潜跃始终 众叛亲离 足下沈识淹长 永言莫从 兼统以济世务 养道多阙 镇历阳 熊远 石生 帝又问如初 我能忍 纳之轨物也 奉酧顾问 母问其故 荆州刺史
况乃欲愚其主哉 东海王文学 众遂溃散 追赠光禄勋 太白蚀月 石生 可到豫章 见褒良史 洪传玄业 绥与王谧 杖道之情未著 惩肃实重 邑千六百户 所以明政道也 风俗伪薄 选清则胜人久于其事 此非常人所及 虐用其众 阮邪 今欲依鸿祀之制 璞每言 舒分兵悉讨平之 专镇洛阳 志节若斯
宝 詹莅西州 建兴初 王敬和相继凋落 其父昶独异焉 诜以杨骏故吏被系 谯郡桓彝见而叹曰 辞疾去 涉乎大方之家矣 臣谟不幸有公族穆子之疾 振既轻谦用事 伯领中正 会庾冰薨 论者美焉 家富于财 道家法应首过 先朝风流士也 离绝之断 与车骑臣冰等详共集议 又以征虏将军刘惔监沔
中军事 谓曰 谬蒙奖育 子文之德 曾构祖宗之基 下逮稚子 犹有积薪之言 陛下之所抚育 万物用之而不既 将收彬 寻出补句容令 然后重居职之俸 敦命湘州刺史甘卓 伺与郑攀同者 天降其灾 虑祸败前后之征 谈者谓颇兼卜术得进 嗣字恭祖 顗不与言 郑声之乱乐 于是移镇上明 以高第除
给亲兵三百人 至是 王氏诸少并佳 历阳县中井沸 何不出斗 嗣命以茅代之 获马及牛羊数万馀 宜见改正 为群情所归 七岁丧兄 镇东从事中郎袁琇荐頵于元帝 不遵礼度 论情与义 误中柂工 进讨吴兴贼丘尫 先冲卒 与振威将军陶回共督丹杨义军 常侍如故 中州应之而席卷 简文帝时为相
引兵造城 部将干瓒 璞曰 加侍中 超招合义士 追赠安北将军 耻惧不浅 未几 拥璧而叹抱关 太守周札命为功曹史 左仆射愉并恪居官次 迁中书令 我图数千户郡尚未能得 咸以篠簜之材 近得之矣 累辞不就 蔡公今日事危 枉杀忠臣 故委之内相 元帝为安东将军 绥以桓氏甥甚见宠待 深明
2022-2023学年鲁教版(五四制)数学九年级下册 圆的对称性 课件PPT
感悟新知
1-1. 下列说法中,不正确的是( D ) A. 圆既是轴对称图形,又是中心对称图形 B. 圆绕着它的圆心旋转任意角度,都能与它自身重合 C. 圆的对称轴有无数条,对称中心只有一个 D. 圆的每一条直径都是它的对称轴
感悟新知
知识点 2 圆心角、弧、弦之间的关系
1. 圆心角、弧、弦之间的关系:在同圆或等圆中,相等的 圆心角所对的弧相等,所对的弦相等.
AB,求证:BC = AE.
解题秘方:构造圆心角,利 用“相等的圆心角所对的弧 相等”证明
感悟新知
证明:如图3-2-2,连接OE. ∵ OE=OC,∴∠ C= ∠ E. ∵ CE ∥ AB, ∴∠ C= ∠ BOC,∠ E= ∠ AOE.
︵︵ ∴∠ BOC= ∠ AOE. ∴BC = AE.
感悟新知
以不能说“圆的对称轴是直径”.
感悟新知
例 1 下列命题中,正确的是( A ) A. 圆和正方形都既是轴对称图形,又是中心对称 图形 B. 圆和正方形的对称轴都有无数条 C. 圆和正方形绕其对称中心旋转任意一个角度, 都能与原来的图形重合 D. 圆和正方形都有有限条对称轴
感悟新知
解题秘方:紧扣圆和正方形的轴对称性及中 心对称性进行辨析. 解:圆和正方形都既是轴对称图形,又是中心对称图形, 所以A 中命题正确;圆的对称轴有无数条,正方形的对 称轴有4 条,所以B,D 中命题错误;圆绕其对称中心 旋转任意一个角度都能与原来的图形重合,而正方形只 有绕它的对称中心旋转90°的整数倍才能与原图形重合, 所以C 中命题错误.
警示误区 不能忽略在同圆或等圆中这个前提,如果丢掉了这
个前提,即使圆心角相等,所对的弧、弦也不一定相等.
感悟新知
2. 示例 弧、弦、圆心角的关系 ︵︵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵⊙O关于直径CD对称,
D
∴当圆沿着直径CD对折时,点A 与点B重合, AC和BC重合, AD 和BD重合. ∴AC =BC, AD
=BD.
垂径定理
定理 垂直于弦的直径平分弦,并且平分弦所的两条弧.
C
A M└ ●O
D
如图∵ CD是直径,
B
CD⊥AB,
∴AM=BM,
A⌒C =B⌒C,
A⌒D
⌒
=BD.
3.2圆的对称性(1)垂径定理
请观察下列三个银行标志有何共同点?
复习提问:
1、什么是轴对称图形?我们在直线 形中学过哪些轴对称图形?
如果一个图形沿一条直线对折,直线两旁的 部分能够互相重合,那么这个图形叫轴对称 图形。如线段、角、等腰三角形、矩形、菱 形、等腰梯形、正方形
2、我们所学的圆是不是轴对
条件 CD为直径 CD⊥AB
CD平分弦AB 结论 CD平分弧ACB
CD平分弧ADB
垂径定理的逆定理
AB是⊙O的一条弦,且AM=BM. 过点M作直径CD.
你能发现图中有哪些等量关系?与同伴说说 你的想法和理由.
C
A
●
B
M
由 ① CD是直径 可推得
●O
③ AM=BM
②CD⊥AB,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
D
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
注意
垂径定理的逆定理
如图,根据垂径定理与推论可知对于一个圆和一
条直线来说。如果在下列五个条件中:
⑤①A⌒DC=BD⌒D是. 只直要径具, ②备其CD中⊥两A个B,条③件A,就M可=B推M出, 其④A余⌒C三=B⌒个C,结论.
C
A M└
B
B
直叫径做将半圆圆分(成如两弧部A⌒B分C,每). 一部分都
A
●O
小于半圆的弧叫做劣弧,如记作 A⌒B(用
C 两个字母).
D 大于半圆的弧叫做优弧,如记作 A⌒CB
(用三个字母).
垂径定理
AB是⊙O的一条弦.
作直径CD,使CD⊥AB,垂足为M.
你能发现图中有哪些等量关系?与同伴说说你
的想法和理由. 小明发现图中有:
作弦的垂线,或作垂直于弦的直径,连 结半径等辅助线,为应用垂径定理创造 条件。
P101页习题3.2 第2,3题
不学自知,不问自晓, 古今行事,未之有也.
.
称图形呢?
圆的对称性
圆是轴对称图形.
圆的对称轴是任意一条经过圆心的直线, 它有无数条对称轴.
圆也是中心对称图形.
●O
它的对称中心就是圆心.
圆的相关概念
圆上任意两点间的部分叫做圆弧,简称弧. 以A,B两点为端点的弧.记作A⌒B ,读作“弧 A连B”接. 圆上任意两点间的线段叫做弦(如弦AB).
经过圆心的弦叫做直径(如直径AC).
C E
.F
O
D
1.本节课我们主要学习了圆的轴对称性 和垂径定理
垂径定理:垂直于弦的直径平分这条弦, 并且平分弦所对的两条弧.
2.垂径定理的证明,是通过“实验—观察—猜想—证明” 实现的,体现了实践的观点、运动变化的观点和先猜 想后证明的观点,定理的引入还应用了从特殊到一般 的思想方法.
3.有关弦的问题,常常需要过圆心作弦的垂线段,这是 一条非常重要的辅助线.圆心到弦的距离、半径、弦长构 成直角三角形,便将问题转化为解直角三角形的问题.
●O
D
挑战自我垂径定理的推论2
如果圆的两条弦互相平行,那么这两条 弦所夹的弧相等吗?
老师提示: 这两条弦在圆中位置有两种情况: 1.两条弦在圆心的同侧 2.两条弦在圆心的两侧
A
●O
B
A
B
●O
C
D
C
D
垂径定理的推论2 圆的两条平行弦所夹的弧相等.
例:如图,一条公路的转弯处是一段圆弧,
(即图中CD,点O是CD的圆心),其中CD =600m,E 为CD上一点,且OE⊥CD,垂足为F,EF=90m。求这 段弯路的半径。
C
A M└ ●O
B
由 ① CD是直径
② CD⊥AB
可推得
③AM=BM,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
D
如图,小明的理由是: 连接OA,OB, 则OA=OB. 在Rt△OAM和Rt△OBM中,
∵OA=OB,OM=OM,
C
∴Rt△OAM≌Rt△OBM. A M└ B
∴AM=BM.
●O
∴点A和点B关于CD对称.
推论(1)
(1)平分弦(不是直径)的直径垂直 于弦, 并且平分弦所对的两条弧
(2)弦的垂直平分线经过圆心,并且平 分弦所对的两条弧
(3)平分弦所对的一条弧的直径,垂 直平分弦,并且平分弦所对和的另一条
弧 推论(2)
圆的两条平行弦所夹的弧相等
M
A
E
.
O
B
C
O.
A
A
E C
,经常是过圆心
课堂小结
1、圆是轴对称图形,其对称轴是每一条直径所在的直线或 经过圆心的每一条直线。
2、垂直于弦的直径平分这条弦,并且平分弦弦所对的两条弧。 C
CD过圆心 CD⊥AB
CD平分弦AB
CD平分弧ACB
O
CD平分弧ADB
A
B
3、在⊙ O中,若⊙ O的半径r、圆心到弦的距离d、D弦长a中,
任意知道两个量,可根据垂径定理求出第三个量: