2019秋浙教版数学九年级上册同步测试试题:对点专题提升5——圆的性质的综合运用
2019—2020年最新浙教版九年级数学上册《圆的基本性质》综合测试题及答案解析.docx
圆的基本性质综合测试题满分150分,考试时间120分钟一、选择题(本题有10小题,每小题4分,共40分)1.⊙O的半径为5㎝,点A到圆心O的距离OA=3㎝,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定2.在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30°B.45°C.60°D.90°AMB上一点,则∠3.如图,将⊙O 沿弦AB折叠,圆弧恰好经过圆心O,点P 是优弧¼APB 的度数为A.45°B.30°C.75°D.60°4.下列说法中,正确的是()A.三点确定一个圆B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D .对角线互相垂直平分且相等的四边形是正方形5.如图,已知AB =AC =AD ,∠CBD =2∠BDC ,∠BAC =44°,则∠CAD 的度数为( )A.68°B.88°C.90°D.112°6.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .34B .36C .32D .87.数学课上,老师让学生尺规作图画Rt △ABC ,使斜边AB =c ,BC =a ,小明的作法如图所示,你认为这种作法中判断∠ACB 是直角的依据是( )A .勾股定理B .直径所对的圆周角是直角C .勾股定理的逆定理D . 90°的圆周角所对的弦是直径8.如图,⊙O 为△ABC 的外接圆,∠A = 72°,则∠BCO 的度数为( )D C BAA.15°B.18°C.20°D.28°9.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG.DE,FG,»AC,»BC的中点分别是M,N,P,Q,若MP+NQ=14,AC+BC=18,则AB的长为()A.92B.907C.13 D.1610.如图,在直角∠O的内部有一滑动杆AB.当端点A沿直线AO向下滑动时,端点B 会随之自动的沿直线OB向左滑动.如果滑动杆从图中AB处滑动到A B''处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分二、填空题(本题有6小题,每小题5分,共30分)11.如图,已知AB 是⊙O 上,若∠CAB=40°,则∠ABC 的度数为____________.12.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=_______________.13.如图,在⊙O 中,∠OAB =45°,圆心O 到弦AB 的距离OE =2 cm,则弦AB 的长为_____cm . B A E O14. 将量角器按如图所示的方式放置在三角形纸板上,使顶点C 在半圆上,点A 、B 的读数分别为0100、0150 ,则ACB的大小为___________度.[15. 如图,⊙O 的内接四边形ABCD 中,∠A =115°,则∠BOD = °.16. 如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,依次类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是.三、解答题(本题有8小题,共80分)17.(本题8分) 如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(4分)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.(4分)18.(本题8分) 如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=2.(1)求作⊙O,使它经过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)所作的图中,求出劣弧»BC的长l.AB C19.(本题8分) 已知:如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC =6cm ,AC =8cm ,∠ABD =45°.(1)求BD 的长;(2)求图中阴影部分的面积.20.(本题8分) 如图,菱形OABC 的顶点A 的坐标为(2,0),60COA ∠=︒,将菱形OABC 绕坐标原点O 逆时针旋转120︒得到菱形ODEF.⑴直接写出点F 的坐标;⑵求线段OB 的长及图中阴影部分的面积.21.(本题10分) 如图,△ABC 在平面直角坐标系内,顶点的坐标分别为A (-1,5),B(-4,1),C (-1,1).将△ABC 绕点A 逆时针旋转90°,得到△AB ′C ′,点B ,C 的对应点分别为点B ′,C ′.(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.AB C22.(本题12分) 如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.23.(本题12分) 已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m - 5,2).(1)是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m 的取值范围;若不存在,请说明理由.(2)当∠AOC 与∠OAB 的平分线的交点Q 在边BC 上时,求m 的值.24.(本题14分) 如图,四边形ABCD 为菱形,对角线AC ,BD 相交于点E .F 是边BA 延长线上一点,连接EF ,以EF 为直径作⊙O ,交边DC 于D ,G 两点,AD 分别与EF ,GF 交于I ,H 两点.(1)求∠FDE 的度数;(2)试判断四边形FACD 的形状,并证明你的结论;(3)当G 为线段DC 的中点时,①求证:DF=FI ;②设AC=2m ,BD=2n ,求⊙O 的面积与菱形ABCD 的面积之比. HIDG C A OE F B参考答案一、选择题1.B 2.D 3.D 4.D 5.B 6.A 7.B 8.B 9.C 10.B二、填空题11. 50°12.74-13.414.2515.13016.3024π三、解答题17.(1)如图1,点O为所求;(2)连接OA,AB,OC交AB于D,如图2,∵C为的中点,∴OC⊥AB,∴AD=BD=12AB=40,设⊙O的半径为r,则OA=r,OD=OC−CD=r−20,在Rt△OAD中,∵OA2=OD2+BD2,∴r2=(r−20)2+402,解得r=50,即所在圆的半径是50m.18.(1)如图所示; A O BC(2)因为AC =1,AB =2,∠ACB =90°,所以∠B =30°,∠A =60°,连结OC ,则∠BOC=120°,OC =OB =1,所以劣弧»BC 的长l =12021803ππ=.19.(1)连结AD ,因为AB 是⊙O 的直径,所以∠C =90°,∠BDA =90°.因为BC =6cm ,AC =8cm ,所以AB =10cm.因为∠ABD =45°,所以ABD ∆是等腰直角三角形,即BD =AD =2522AB =(cm ). (2)连结DO ,因为BD =AD ,∠BDA =90°,所以∠BAD =45°,所以∠BOD =90°.因为直径AB =10cm ,所以OB =OD =5cm.所以OBD BOD S S S ∆=-阴影扇形=22905153602π⨯-⨯=252542π-(2cm ).20.⑴由A 的坐标为(2,0),可得OF=OA=2,∴F(-2,0);⑵如图,连接AC 交OB 于M 点.∵四边形OABC 为菱形,∴OC OA =且AC OB ⊥.∵2OA =,60COA ∠=︒,∴△AOC 为等边三角形,2,3,23AC OM OB ===. ∴()21202322324233602S S B S OC ππ⨯⨯=-=-=-阴影扇形OEB . x yM O E DB C F A21.(1)如图.A B AB′C′(2)B ′(3,2),C ′(3,5).(3)∵AC 旋转角度为90°,旋转半径为AC=4,∴点C 经过的路径长:l=904180π⋅=2π. 22.证明:(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°. ∵∠DCE +∠BCD =180°,∴∠A =∠DCE .∵DC =DE ,∴∠DCE =∠AEB ,∴∠A =∠AEB .(2)∵∠A =∠AEB ,∴△ABE 是等腰三角形.∵EO ⊥CD ,∴CF =DF ,∴EO 是CD 的垂直平分线,∴ED =EC .∵DC =DE ,∴DC =DE =EC ,∴△DCE 是等边三角形,∴∠AEB =60°.∴△ABE 是等边三角形.23.(1)由题意,知:BC ∥OA.以OA 为直径作⊙D ,与直线BC 分别交于点E 、F ,则∠OEA=∠OFA=90º.作DG ⊥EF 于G ,连接DE ,则DE =OD =2.5,DG =2,EG =GF ,∴ EG =DE 2-DG 2 =1.5,∴点E(1,2),点F(4,2).∴当⎩⎪⎨⎪⎧m -5≤4,m ≥1,即1≤m ≤9时,边BC 上总存在这样的点P ,使∠OPA =90º.(2)∵BC=5=OA ,BC ∥OA ,∴四边形OABC 是平行四边形.当Q 在边BC 上时,∠OQA =180º-∠QOA -∠QAO=180º-12(∠COA+∠OAB)=90º, ∴点Q 只能是点E 或点F .当Q 在F 点时,∵OF 、AF 分别是∠AOC 与∠OAB 的平分线,BC ∥OA ,∴∠CFO =∠FOA=∠FOC ,∠BFA =∠FAO=∠FAB ,∴CF =OC ,BF =AB ,∵OC =AB ,∴F 是BC 的中点.∵F 点为 (4,2),∴此时m 的值为6.5.当Q 在E 点时,同理可求得此时m 的值为3.5.24.(1)∵EF 为⊙O 的直径,∴∠FDE=90°.(2)四边形FACD 为平行四边形.理由如下:∵ABCD 为菱形,∴ AB ∥CD ,AC ⊥BD ,∴ ∠AEB=90°.又∵∠FDE=90°,∴AC ∥FD .∴四边形FACD 为平行四边形.(3)①如图23-1,连接GE .A F E O D xy2 C B∵在Rt △DEC 中,G 为CD 的中点,∴EG=DG ,∴¼DG=»EG ,∴∠1=∠2. 又∵EF 为⊙O 的直径,∴∠FGE=90°,∴FG ⊥EG . ∵G 为DC 中点,E 为AC 中点,∴GE 为△DAC 的中位线,∴EG ∥AD .∴FG ⊥AD ,∴∠FHD=∠FHI=90°.由△DHF ≌△IHF 或由等角的余角相等,可得,FD=FI . 347896521HI DG CA O E F B(第23-1)②∵菱形ABCD ,∴AE=CE=m ,BE=DE=n , ∵四边形FACD 为平行四边形,∴FD=AC=2m=FI .∵FD ∥AC ,∴∠3=∠8.又∵∠3=∠4=∠7,∴∠7=∠8.∴EI=EA=m .在Rt △FDE 中,FE ²=FD ²+DE ²,∴(3m )²=(2m )²+n ²,解得,n=5m .∴O S ⊙=π232m ⎛⎫ ⎪⎝⎭=94πm ²,ABCD S 菱形=12•2m •2n=2mn=25m ².∴O S ⊙:ABCD S 菱形=94πm ²:25m ²=9540 .。
浙教版九上数学第三章:圆的基本性质能力提升测试答案
第三章:圆的基本性质能力提升测试答案一.选择题:1.答案:B 解析:∵∠A=42°,∠APD=77°,∴000354277=-=∠C ,∴035=∠B ,故选择B2.答案:BA .解析:小明的画法是,画线段AB=c ,画AB 的垂直平分线,找到AB 的中点O ,以O 为圆心,以c 21为半径画圆,过B 画弦BC=a ,连接AC ,即完成所作,故090=∠ACB ,依据为直径所对的圆周角是直角,故选择B3.答案:A解析:过O 作AC OH ⊥,连接OA ,∴HC HA =,∵060=∠B ,∴060=∠AOH ,∴030=∠OAH ,∵3224,2,422=-=∴=∴=AH OH OA ,∴34=AC ,故选择A4.答案:B解析:连接OC ,∵5:1:,12==PA PB AB ,∴10,2==PA PB ,∴AB 是直径,∴426=-=OP ,∵CD AB ⊥,∴DP CP =,在CPO Rt ∆中,524622=-=CP ,∴54=CD ,故选择B5.答案:B解析:连接OB ,OC ,∴ππ63606602=⨯==BOCS S 扇形阴影, 故选择B6.答案:D解析:作AH ⊥BC 于H ,作直径CF ,连结BF ,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF ,∴DE BF =∴DE=BF=6,∵AH ⊥BC ,∴CH=BH ,∵CA=AF ,∴AH 为△CBF 的中位线,∴AH=21BF=3. ∴点A 到弦BC 的距离为:3.故选择D7.答案:D解析:连接DC,分别过D作BCDKACDH⊥⊥,,在ABCRt∆中,∵D是AB的中点,且AB=2,∴DC=1,∴43601902ππ=⨯=DEFS扇形,∵KDPHDQDKPDHQDHDKBCAC∠=∠∠=∠=∴=,,,,∴△DHQ≌△DKP,∴21222=⎪⎪⎭⎫⎝⎛==DHCKDQCPSS,∴214-=π阴影S,故选择D8.答案:C解析:∵D为AC的中点,AC=AO=6,∴OD⊥AC,∴AD=21AO,∴∠AOD=30°,OD=33,同理可得:∠BOE=30°,∴∠DOE=150°-60°=90°,∴点D所经过路径长为ππ2331803390=⨯. 故选C;9.答案:D解析:连接OC ,∵CD OA //,∴070=∠=∠AOD ODC ,∵OC OD =,∴070=∠=∠OCD ODC ,∴00040140180=-=∠DOC ,∴0001104070=+=∠BOC ,∴055=∠B ,故选择D10.答案:C解析:∵DC 平分∠PCH ,∴HCD PCD ∠=∠,∵BC DH AC DP ⊥⊥,,∴090=∠=∠DHC DPC ,∵DC=DC ,∴△DPC ≌△DHC (AAS )∴CH CP =,故①正确;∵∠BDC 是弧BC 所对的圆周角,∠DBC 是弧DC 所对的圆周角,∴DAB BDC DBC ∠=∠+∠,∵DCH BDC DBC ∠=∠+∠,DCP DCH ∠=∠,DAB DCA ∠=∠,∵DCA ABD ∠=∠,∴DBA DAB ∠=∠,∴AD BD =,故②正确;∵DBH DAP ∠=∠,090=∠=∠BHD APD ,DH DP =,∴△APD ≌△AHD (AAS )∴BH AP =,故③正确;∵条件没有给出AC AB =,故④错误,故正确答案:①②③共3个,故选择C二.填空题:11.答案:070解析:连接AC ,∵C 为BD 的中点,∴020=∠=∠BAC DAC ,∵AB 是⊙O 的直径,∴090=∠ACB ,∴000702090=-=∠B12.答案:035解析:连接OC ,∵直径CD AB ⊥,∴DOB COB ∠=∠,∵020=∠D ,∴070=∠DOB ,∴070=∠COB ,∴035=∠A13.答案:060或0120解析:如图:∵AB OE ⊥,∴BE AE =,∵32=AB ,∴3=AE , ∵2=OA ,∴()13222=-=OE ,∴0060,30=∠∴=∠AOE OAE , ∴0120=∠AOB ,∴00120,240AB ADB ==, ∴00120,60=∠=∠ACB ADB14.答案:3解析:∵030,=∠=∠∴=ABC ACB AC AB ,∵BC 平分∠ABD ,∴030=∠DBC ,∵BD 是直径,∴△BCD 为直角三角形,∵2,1=∴=BD CD ,在BAD Rt ∆中,312,2,30220=-=∴==∠AD BD ADB15.答案:352或142解析:如图1,作BC OE ⊥,∵AB=AC ,连接AO ,∴A ,O ,E 在同一直线上,∵OB=7,OE=3,∴1023722=-=BE ,∴()3521021022=+=AB , 如图2,在AHB Rt ∆中,()142410222=+=AB16.答案:①②④解析:连接AD ,∵AB 是⊙O 的直径,∴BC AD ⊥,∵AC AB =,∴DC BD =,故②正确,∴005.22452121=⨯=∠=∠BAC DAC , ∴05.22=∠=∠CAD EBC ,故①正确;∵AB 是直径,∴090=∠AEB ,∵045=∠BAE ,∴045=∠=∠BAE ABE ,∴AE AB AC 2==,∴AC EC 222-=,故③错误;∵045=∠ABE ,∴弧AE 的度数为090,∵05.22=∠BAD ,∴弧BD 的度数为045,∴弧AE 的度数为弧BD 的度数的2倍,故④正确;∵,BE AE =在直角三角形BEC 中,BE BC >,∴AE BC >,故⑤错误,故正确的答案为:①②④三.解答题:17.解析:∵AB 为⊙O 的直径,∴∠ADB =90°.又∵∠A =30°,∴∠ABD =60°.∵AB =AC ,∴∠ABC =∠ACB =75°,∴∠DBC =15°.18.解析:(1)∵AC 是⊙O 的直径,∴AE ⊥BC .又∵OD ∥BC ,∴OD ⊥AE ,∴D 是AE 的中点.(2)∵D 是AE 的中点,∴AD DE =,∴∠ACD =∠DAE .∵AC 是⊙O 的直径,∴∠DAO +∠ACD =90°.∵AE ⊥BC ,∴∠B +∠BAD +∠DAE =90°,∴∠DAO =∠B +∠BAD .19.解析:解析:(1)∵060=∠=∠APC ABC ,060=∠=∠CPB BAC ,∴△ABC 为等边三角形;(2)PA +PB =PC .如图①,在PC 上截取PD =PA, 连结AD .∵∠APC =60°,∴△PAD 是等边三角形,∴PA =AD, ∠PAD =60°,又∵∠BAC =60°,∴∠PAB =∠DAC .又∵AB =AC ,∴△PAB ≌△DAC ,∴PB =DC .∵PD +DC =PC ,∴PA +PB =PC .(3)如图②,过点P 作PE ⊥AB ,垂足为E ,过点C 作CF ⊥AB ,垂足为F .∵S △PAB =21AB ·PE , S △ABC =21AB ·CF , ∴S 四边形APBC =21AB (PE +CF ). 当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 的直径,∴此时四边形APBC 的面积最大.又∵⊙O 的半径为1,∴其内接正三角形的边长AB =3.∴S 四边形APBC =12×2×3=3. 故当点P 为AB 的中点时,四边形APBC 的面积最大,最大面积为3.20解析:(1)BC =BD ,BC ⊥AC ,BC =2OF 等;连结OC.∵∠A =∠D =30°,∴AB =2BC =2.∵AC 2=AB 2-BC 2,∴AC =3.∵OF ⊥AC ,∴AF =CF.∵AO =BO =21AB =1, ∴OF 是△ABC 的中位线,∴OF =21BC =21. ∵∠BOC =2∠A =60°,∴∠AOC =120°, ∴S 阴影=S 扇形OAC -S △AOC =433213313601120-=⨯⨯-⨯ππ21.解析:(1)连结AC,延长PO交AC于H,如图1,∵P是弧AC的中点,∴PH⊥AC,∵AB是⊙O的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC; (2)如图2,∵P是弧AC的中点,∴PA=PC,∴∠PAC=∠PCA,∵OA=OC,∴∠OAC=∠OCA,∴∠PAO=∠PCO,当DO=DC,设∠DCO=x,则∠DOC=x,∠PAO=x,∴∠OPC=∠OCP=x,∠PDO=2x,∵∠OPA=∠PAO=x,∴∠POD=2x,在△POD中,x+2x+2x=180°,解得x=36°,即∠PAO=36°;当CO=CD,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD=2x,∴∠ODC=∠POD+∠OPC=3x,∵CD=CO,∴∠DOC=∠ODC=3x,在△POC中,x+x+5x=180°,解得x=7180⎪⎭⎫⎝⎛,即∠PAO=7180⎪⎭⎫⎝⎛.综上所述,∠A的度数为36°或0 7 180⎪⎭⎫⎝⎛22.解析:(1)∵AB是⊙O的直径,CE⊥AB,∴AB垂直平分CE,即H为CE中点,弧AC=弧AE,又∵C 是AD ︵的中点,∴弧AC =弧CD ,∴弧AC =弧CD =弧AE ,∴∠ACH =∠CBD ;(2)由(1)知,∠ACH =∠CBD ,又∵∠CAD =∠CBD ,∴∠ACH =∠CAD ,∴AP =CP.又∵AB 是⊙O 的直径,∴∠ACB =∠ADB =90°,∴∠PCQ =90°-∠ACH ,∠PQC =∠BQD =90°-∠CBD ,∴∠PCQ =∠PQC ,∴PC =PQ ,又∵AP =CP ,∴AP =PQ ,∴P 是线段AQ 的中点;(3)连结OC ,∵BH =8,OB =OC =5,∴OH =3,∴由勾股定理得:CH =43522=-,由(1)知:CH =EH =4,∴CE =8.23.解析:(1)∵BC OD ⊥,∴33362121=⨯==BC CE , 设圆的半径为R ,在CEO Rt ∆中,33,3,=-==CE R OE R OC , ∴()()222333-+=R R ,解得:6=R ; (2)∵AB 是⊙O 的直径,∴090=∠ACB ,在ABC Rt ∆中,∵36,12==BC AB ,()6361222=-=∴AC ;(3)∵6===AC OA OC ,∴AOC ∆为等边三角形,∴060=∠AOC ,∴ππ63606602=⨯=AOC S 扇形,39662321=⨯⨯⨯=∆AOC S , ∴396-=π阴影S。
浙教版九年级数学上册 第三章 圆的基本性质能力提升训练(一)及答案
第三章 圆的基本性质能力提升训练(一)一.选择题:1.在⊙O 上作一条弦AB ,再作一条与弦AB 垂直的直径CD ,CD 与AB 交于点E ,则下列 结论中不一定正确是( )A. BE AE =B. AC BC =C. EO CE =D. AD BD = 2、如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD =( ) A 、20°B 、40°C 、50°D 、80°3、在一个圆中,给出下列命题,其中正确的是( )A 、若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直.B 、若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有四个公共点.C 、若两条弦所在直线平行,则这两条弦之间的距离一定小于圆的直径.D 、若两条弦所在直线不平行,则这两条弦一定在圆内有公共点.4.已知⊙O 的半径r =3,设圆心O 到一条直线的距离为d ,圆上到这条直线的距离为2的 点的 个数为m ,给出下列命题:①若d >5,则m =0;②若d =5,则m =1;③若1<d <5,则m =2;④若d =1,则m =3;⑤若d <1,则m =4、其中正确命题的个数是( ) A.5B.4C.3D.25.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC 、若AB =8,CD =2,则EC 的长为( )D. 8 6.如图,AB 是⊙O 的直径,==,∠COD =34°,则∠AEO 的度数是( )A.51°B.56°C.68°D.78°7.如图,圆O 的内接四边形ABCD 中,BC =DC ,∠BOC =130°,则∠BAD 的度数是( )A.120°B.130°C.140°D.150°8.如图,MN 是半径为2的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,点B 为劣弧AN 的中点、点P 是直径MN 上一动点,则P A +PB 的最小值为( ) A 、42 B 、2C 、4D 、229.如图,在半径为6cm 的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,且030=∠D ,下列四个结论:①BC OA ⊥;②BC = 63cm ;③四边形ABOC 是菱形、其中正确结论的序号是( )A. ①③B. ①②③C. ②⑨D. ①②10.某景点有一座圆形的建筑,如图,小江从点A 沿AO 匀速直达建筑中心点O 处,停留拍照后,从点O 沿OB 以同样的速度匀速走到点B ,紧接着沿BCA 回到点A ,下面可以近似地刻画小江与中心点O 的距离S 随时间t 变化的图象是( )二、填空题:11、如图,在O Θ中,040ACB ∠=,则AOB ∠= 度、12. 如图,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,则S 扇形= cm .13、正n 边形的一个内角比一个外角大100º,则n = .14、如图,点P (3a ,a )是反比例函xky =(k >0)图像与⊙O 的一个交点,图中阴影部分的面积为π10,则反比例函数的解析式为___________15.如下图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E , CE =4,CD =6,则AE 的长为__________16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =, 那么CD =17.如图,⊙O 的半径是4,△ABC 是⊙O 的内接三角形,过圆心O 分别作AB 、BC 、AC 的垂线,垂足为E 、F 、G ,连接EF 、若OG ﹦1,则EF =18.如图,四边形ABCD 内接于⊙O ,AD 、BC 的延长线相交于点E ,AB 、DC 的延长线相 交于点F 、若∠E +∠F =80°,则∠A =19.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE , ∠E =36º,则∠ADC 的度数是20、如图,在扇形AOB 中,∠AOB =90,半径OA =6、将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,整个阴影部分的而积____________ 三、解答题:21.如图,点A 、B 、C 在⊙O 上,且四边形OABC 是一平行四边形、 (1)求∠AOC 的度数; (2)若⊙O 的半径为3,求图中阴影部分的面积.22.如图,点E是边长为1的正方形ABCD的边AB上任意一点(不含A、B),过B、C、E 三点的圆与BD相交于点F,与CD相交于点G,与∠ABC的外角平分线相交于点H、(1)求证:四边形EFCH是正方形;(2)设BE=x,△CFG的面积为y,求y与x的函数关系式,并求y的最大值、Array 23.(1)如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF. 求证:BF=DF;(2)如图,在□ABCD中,AD=4,AB=8,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,求阴影部分的面积、(结果保留π)24.正方形纸片ABCD 的对称中心为O ,翻折∠A 使顶点A 重合于对角线AC 上一点P ,EF 是折痕:(1)证明:AE =AF ;(2)尺规作图:在图中作出当点P 是OC 中点时的△EFP (不写画法,保留作图痕迹);完成作图后,标注所作△EFP 的外接圆心M .25.如图,菱形ABCD 的边长为4,∠BAD =60°,AC 为对角线、将ACD ∆ 绕点A 逆时针旋转60°得到AC D ''∆,连结DC '、(1)求证:ADC ∆≌ADC '∆、 (2)求在旋转过程中线段CD 扫过图形的面积、(结果保留π).参考答案一.选择题:二.解答题: 21.(1)连结OB∵四边形OABC 是一平行四边形,∴AB =OC ;又∵⊙O 中,OA =OB =OC ,∴AB =OA =OB ,即△OAB 是等边三角形∴∠AOB =60º,同理∠BOC =60º,∴∠AOC =120º (2)S 阴影=439634336122-=⨯-⨯ππ22.(1)证明:∵B 、H 、C 、F 、E 在同一圆上,且∠EBC =90° ∴∠EFC =90°,∠EHC =90° 又∠FBC =∠HBC =45°,∴CF =CH ∵∠HBF +∠HCF =180°,∴∠HCF =90°∴四边形EFCH 是正方形 (2)∵∠BFG +∠BCG =180°,∴∠BFG =90°由(1)知∠EFC =90°,∴∠CFG +∠BFC =∠BFE +∠BFC∴∠CFG =∠BFE ,∴CG =BE =x ∴DG =DC -CG =1-x易知△DFG 是等腰直角三角形∴△CFG 中CG 边上的高为DG 21()x -=121()1612141121212+⎪⎭⎫ ⎝⎛--=-⋅=∴x x x y∴当21=x 时,y 有最大值 16123.(1)证明:∵四边形ABCD 和AEFG 都是正方形, ∴AB =AD ,AE =AG =EF =FG ,∠BEF =∠DGF =90°, ∵BE =AB ﹣AE ,DG =AD ﹣AG , ∴BE =DG ,在△BEF 和△DGF 中,⎪⎩⎪⎨⎧=∠=∠=GF EF DGF BEF DGBF∴△BEF ≌△DGF (SAS ) ∴BF =DF ;(2)解:过D 点作DF ⊥AB 于点F 、∵AD =4,AB =8,∠A =30° ∴DF =2 EB =AB -AE =4∴阴影部分的面积=8×2-2303604π⨯⨯-4×2×12=16-34π-4 =12-43π、24.(1)证明:设AP 交EF 于点Q ,∵P 是A 的对称点, ∴AP ⊥EF , 在△AEQ 和△AFQ 中:∵点P 在AC 上,∴∠EAQ =∠F AQ =45° AQ 公共边,∠AQE =∠AQF =90°∴△AEQ ≌△AFQ (ASA ) ∴AE =AF(注:也可以证明△AEP ≌△AFP ,或证AEPF 是正方形.)(2)尺规作图:OC 中点P 作AP 垂直平分线EF 、 或PE 、PF 用角平分线、或过P 作垂直线等方法获得△EFP△EFP 的外接圆心M 的位置是EF 与AC 的交点(位置正确即可)()SAS C AD ADC ADAD C A AC CAD AD C ADC D C A AC D BAC ABCD '∆≅∆∴='=∴=∠='∠∴∆''∆='∠=∠∴ 000306030,.25得到旋转是由菱形。
浙教版九年级数学上册《圆的基本性质》单元练习检测试卷及答案解析
浙教版九年级数学上册《圆的基本性质》单元练习检测试卷及答案解析一、选择题1、圆是轴对称图形,它的对称轴有().A.一条B.两条C.三条D.无数条2、下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧3、如图是一个旋转对称图形,以O为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合()A.60°B.150°C.180°D.240°(第3题图)(第4题图)(第5题图)4、如图,AB 为⊙O 的直径,弦CD⊥AB 于E,已知CD=12,BE=3,则⊙O的直径为()A.8 B.10 C.15 D.205、如图,AB为⊙O的直径,∠ABD=38°,则∠DCB=()A.52°B.56°C.60°D.64°6、如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连结OD,若∠BAC=55°,则∠COD的大小为( )A.70°B.60°C.55°D.35°(第6题图)(第7题图)7、如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为()A.140°B.110°C.90°D.70°8、以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.二、填空题9、一个扇形的圆心角为120°,扇形的弧长12π,则扇形半径是______.10、某圆锥的底面圆的半径为3cm,它的侧面展开图是半圆,则此圆锥的侧面积是_______cm2.(结果保留π)11、如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为_________.(第11题图)(第12题图)(第13题图)12、如图,AB是半圆的直径,O是圆心,,则∠ABC=________°.13、如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是__________.14、如图,AB是⊙O直径,D是半圆弧AB中点,P是BA延长线上一点,连接PD交A⊙O于点C,连接BC,若∠P=250,则∠ABC= ______o.(第14题图)(第15题图)15、如图,将边长为的正方形绕点顺时针旋转到的位置,旋转角为30°,则点运动到点时所经过的路径长为_______.三、解答题16、已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.17、如图,某公园的石拱桥的桥拱是圆弧形(弓形),其跨度AB=24 m,拱的半径R=13 m,求拱高CD.18、如图,已知AB、AD是⊙O的弦,点C是DO的延长线与弦AB的交点,∠ABO=30°,OB=2.(1)求弦AB的长;(2)若∠D=20°,求∠BOD的度数.19、如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=4.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)参考答案1、D2、B3、D4、C5、A6、A7、D8、D9、1810、18π11、6.512、3013、60°.14、20°15、16、DB=cm17、CD=8m18、(1);(2)100°.19、(1)证明见解析;(2)8-【解析】1、试题分析:过圆心的任何一条直线都是圆的对称轴,故选D.考点:轴对称图形.2、试题解析:A、直径是圆中最长的弦,所以A选项的说法正确;B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项的说法错误;C、面积相等的两个圆的半径相等,则它们是等圆,所以C选项的说法正确;D、半径相等的两个半圆是等弧,所以D选项的说法正确.故选B.3、试题分析:根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.解:O为圆心,连接三角形的三个顶点,即可得到∠AOB=∠BOC=∠AOC=120°,所以旋转120°或240°后与原图形重合.故选:D.考点:旋转对称图形.4、试题分析:连接OC,设OC=r,则OE=r-3,CE=6,根据Rt△OCE的勾股定理可得:,解得:r=7.5,则圆的直径为7.5×2=15.考点:垂径定理5、试题分析:连结AD,先根据圆周角定理的推论得到∠ADB=90°,再根据互余计算出∠A=52°,然后根据圆周角定理求解.解:连结AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A=90°﹣∠ABD=90°﹣38°=52°,∴∠DCB=∠A=52°.故选A.考点:圆周角定理.6、试题分析:根据AC为切线,OC为半径可得∠ACB=90°,根据∠A=55°可得∠B=90°-55°=35°,根据同弧所对的圆心角与圆周角的关系可得:∠DOC=2∠B=35°×2=70°.考点:圆的基本性质7、试题分析:圆的内接四边形,对角互补.则∠BAD=180°-∠BCD=180°-110°=70°.考点:圆的内接四边形8、试题分析:如图1,∵OC=1,∴OD=1×sin30°=;如图2,∵OB=1,∴OE=1×sin45°=;如图3,∵OA=1,∴OD=1×cos30°=,则该三角形的三边分别为:、、,∵,∴该三角形是以、为直角边,为斜边的直角三角形,∴该三角形的面积是××=,故选D.考点:正多边形和圆;分类讨论.9、分析:根据扇形弧长公式求得该扇形的半径.详解:设该扇形的半径为R.则解得R=18故答案为:18.点睛:此题主要考查了弧长公式的应用,根据弧长公式,解方程即可求出半径,比较简单,熟记弧长公式是解题关键10、分析:已知底面半径为3的圆锥的侧面展开图是半圆,根据侧面展开图角度与母线,半径的关系,可求出圆锥的母线,代入侧面积公式可得答案.详解:若圆锥的侧面展开图是半圆,则圆锥的母线长为底面半径的2倍,∵圆锥的底面半径为3cm,故圆锥的母线长为6cm,故圆锥的侧面积S==2π·3²=18π,故答案为18π. 点睛:本题利用了圆的周长公式和扇形面积公式求解,掌握圆锥与扇形各个元素之间的关系是解答本题的关键.11、如图,设圆弧的圆心为点O,连接AO,DO,则由题意可知:O、D、C在同一直线上,且OD⊥AB于点D,∴∠ADO=90°,AD=AB=6,设拱桥的半径为,则AO=,OD=OC-CD=,在Rt△ADO中,由勾股定理可得:,即:,解得:,∴拱桥的半径为6.5.12、试题解析:因为,所以,则,又因为,所以,则,.所以本题的正确答案为30°.13、∵CD=OD=OE,∴∠C=∠DOC=20°,∴∠EDO=∠E=40°,∴∠EOB=∠C+∠E=20°+40°=60°.故答案是:60°.14、分析:连接DB、DA,根据圆周角定理的推论,得到△ADB为等腰直角三角形,然后根据三角形的外角的性质得到∠PDA的度数,然后根据等弧所对的圆周角求解即可.详解:连接DB、DA∵D为弧AB的中点,AB为直径∴△ADB为等腰直角三角形∴∠DAB=45°∴∠P+∠PDA=45°∵∠P=25°,∴∠PDA=45°-25°=20°即∠PBC=20°.故答案为:20°.点睛:此题主要考查了圆周角定理和推论,利用三角形的外角的性质和等腰直角三角形的性质是解题关键.15、分析:连接AC,A′C,利用勾股定理可求出AC的长,即C点运动到C′点所在圆的半径,又因为旋转角为30°,所以根据弧长公式计算即可.详解:连接AC,A′C,∵AB=BC=2cm,∴AC=,∵正方形ABCD绕点A顺时针旋转到AB′C′D′的位置,∴C和C′是对应点,∵旋转角为30°,∴∠CAC′=30°,∴C点运动到C′点的路径长=cm,故答案为:.点睛:本题考查了弧长的计算公式运用,旋转的性质,正方形的性质以及勾股定理的运用,解题的关键是正确求出旋转角∠CAC′=30°.16、试题分析:由AB是⊙O的直径,弦CD⊥AB,根据垂径定理,可得CE=DE,∠AEC=∠DEB=90°,然后由含30°角的直角三角形的性质,即可求得EC与DE的长,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B=30°,继而求得DB的长.试题解析:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE,∠AEC=∠DEB=90°,∵∠B=∠ACD=30°,在Rt△ACE中,AC=2AE=4cm,∴CE==2(cm),∴DE=2cm,在Rt△BDE中,∠B=30°,∴BD=2DE=4cm.∴DB的长为4cm.点睛:注意数形结合思想的应用,注意掌握垂径定理与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.17、分析:先构建直角三角形,再利用勾股定理和垂径定理计算.详解:如图:因为跨度AB=24m,拱所在圆半径R=13m,所以找出圆心O并连接OA,延长CD到O,构成直角三角形,利用勾股定理和垂径定理求出DO=(m),进而得拱高CD=CO−DO=13−5=8(m).所以拱高CD为8米.点睛:本题考查了垂径定理和勾股定理的应用.可通过作辅助线建立模形,利用垂径定理解答,也可用相交弦定理来解.18、试题分析:(1)延长BO交⊙O 于E,连结AE,由BE是⊙O的直径,可得Rt△ABE,根据已知以及勾股定理即可求得;(2)连结OA,由OA=OB,OA=OD,可得∠BAO=∠B,∠DAO=∠D,从而可得∠DAB=∠B+∠D,再由圆周角定理即可求得.试题解析:(1)延长BO交⊙O 于E,连结AE,∵BE是⊙O的直径,∴∠BAE=90°,在Rt△ABE中,∠ABE=30°,BE=4,∴AE=2,AB==;(2)如图,连结OA.∵OA=OB,OA=OD,∴∠BAO=∠B,∠DAO=∠D,∴∠DAB=∠BAO+∠DAO =∠B+∠D,又∵∠B=30°,∠D=20°,∴∠DAB=50°,∴∠BOD=2∠DAB=100°.19、试题分析:(1)连接OC,根据圆周角定理求出∠COA,根据三角形内角和定理求出∠OCA,根据切线的判定推出即可;(2)求出DE,解直角三角形求出OC,分别求出△ACO的面积和扇形COD的面积,即可得出答案.试题解析:(1)证明:连接OC,交BD于E,∵∠B=30°,∠B=∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC是⊙O的切线;(2)∵AC∥BD,∠OCA=90°,BD=4,∴∠OED=∠OCA=90°,∴DE=BD=2,∵sin∠COD=,∴OD=4,在Rt△ACO中,tan∠COA=,∴AC=4,∴S阴影=×4×4-=8-.。
浙教版九年级数学上册第三章圆的基本性质单元综合能力测试卷(含答案)
第三章圆的基天性质综合能力测试卷班级姓名学号一、选择题(共10 小题,每题 3 分,满分30 分)1、以下图,体育课上,小丽的铅球成绩为 6.4m,她投出的铅球落在()A. 地区①B.地区②C. 地区③D.地区④2、以下命题中正确的选项是()A. 三点确立一个圆B.两个等圆可能内切C. 一个三角形有且只有一个内切圆D.一个圆有且只有一个外切三角形3、如图,从圆O外一点P引圆O的两条切线PA, PB ,切点分别为A,B .假如APB60 ,PA8,那么弦AB 的长是()A. 4B.8C. 4 3D.8 34、已知圆1、圆 2 的半径不相等,圆 1 的半径长为3,若圆2上的点A 知足 1 = 3,则圆O O O O AO1 与圆2 的地点关系是()O OA. 订交或相切B. 相切或相离C.订交或内含D.相切或内含5、在半径为 27m的圆形广场中心点O的上空安装了一个照明光源S, S 射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°( 以下图 ) ,则光源离地面的垂直高度SO为() .A. 54m B.m C.m D.m6、一条弦的两个端点把圆周分红4:5 两部分,则该弦所对的圆周角为() .A. 80°B.100°C.80°或100°D.160°或200°7、如,AB是⊙O的直径,AC是⊙O的切,接OC交⊙ O于点 D,接 BD,∠ C=40°.∠ABD的度数是()A . 30 °B.25°C.20°D.15°8、“ 材埋壁”是我国古代有名的数学著作《九章算》中的:“今有材,埋在壁中,不知大小,以之,深一寸,道一尺,径几何?”用数学言可表示:如所示, CD⊙ O的直径,弦AB⊥CD于 E,CE=1寸, AB=10寸,直径CD的() A. 12.5 寸 B . 13寸C.25寸D.26寸9、如是一△ABC余料,已知 AB=20cm,BC=7cm,AC=15cm,将余料裁剪成一个形资料,的最大面是()2222 A.πcm B.2πcm C.4πcm D . 8 πcm10、如,正六形A1B1C1D1E1F1的2,正六形A2B2C2D2E2F2的外接与正六形A1 B1C1D1E1F1的各相切,正六形A3B3C3D3E3F3的外接与正六形A2B2C2D2E2F2的各相切,⋯按的律行下去,A10B10C10D10E10F10的()A.B.C.D.二、填空题(共 6 小题,每题 4 分,满分 24 分)11、已知圆心角为120°的扇形的面积为2cm.12πcm,则扇形的弧长是12、如图,已知圆心角∠AOB的度数为100°,则圆周角∠ACB等于(度)13、在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.14、以下图,△ABC的三个极点的坐标分别为A(-1,3)、 B (- 2,- 2) 、C (4,- 2) ,则△ABC外接圆半径的长度为.15、已知半径为R的半圆,过直径AB上一点,作⊥ 交半圆于点,且3O C CD AB D CD R ,2则 AC的长为.16、如图①,O1,O2,O3,O4为四个等圆的圆心,A, B, C, D为切点,请你在图中画出一条直线,将这四个圆分红面积相等的两部分,并说明这条直线经过的两个点是;如图②,O1,O2,O3, O4, O5为五个等圆的圆心,A,B,C,D, E为切点,请你在图中画出一条直线,将这五个圆分红面积相等的两部分,并说明这条直线经过的两个点是....三、解答题(此题有7 个小题,共66 分)解答应写出证明过程或推演步骤.17、(6 分)作图题:用直尺和圆规作出△ABC的外接圆 O(不写作法,保存作图印迹);18、(8 分)如图,点 D 在⊙O的直径 AB 的延伸线上,点 C 在⊙O 上,且,∠° .(1)求证:CD是⊙O的切线;(2)若⊙O的半径为 2,求图中暗影部分的面积 .19、(8 分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥ BC,OD与 AC交于点E.( 1)若∠B=70°,求∠CAD的度数;( 2)若AB=4,AC=3,求DE的长.20、( 10 分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的均分线交⊙ O于点D.(Ⅰ)如图①,若BC为⊙ O的直径, AB=6,求 AC,BD, CD的长;(Ⅱ)如图②,若∠CAB=60°,求 BD的长.21、( 10 分)如图,在单位长度为 1 的正方形网格中成立平面直角坐标系,一段圆弧经过网格的交点为 A、 B、C.(1)在图中标出该圆弧所在圆的圆心D,并连结 AD、 C D.(2)在( 1)的基础上,达成以下填空:①写出点的坐标:C()、D();②⊙ D的半径是2(结果保存根号);③若扇形 DAC是一个圆锥的侧面睁开图,则该圆锥的底面的面积(结果保存π).22、( 12 分)已知:如图,⊙O和⊙ O’订交于 A、 B两点, AC是⊙ O’的切线,交⊙O于 C 点,连结 CB并延伸交⊙ O’于点 F, D为⊙ O’上一点,且∠DAB=∠ C,连结 DB交延伸交⊙ O于点E。
【浙教版】九年级数学上册第三章圆的基本性质单元综合测试(含答案)
【浙教版】九年级数学上册第三章圆的基本性质单元综合测试(含答案)浙教版九年级数学上册第三章圆的基本性质单元综合测试一.选择题(共10小题)1.如图,△ABC的顶点A.B.C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 30°B. 45°C. 60°D. 70°(第1题) (第2题) (第4题)2.如图,...均为以O点为圆心所画出的四个相异弧,其度数均为60°,且G在OA上,C.E在AG上,若AC=EG,OG=1,AG=2,则与两弧长的和为何?()A. πB.C.D.3.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A. B. 2π C. 3π D. 12π4.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A. 3B. 4C.D. 55.有一直圆柱状的木棍,今将此木棍分成甲.乙两段直圆柱状木棍,且甲的高为乙的高的9倍.若甲.乙的表面积分别为S1.S2,甲.乙的体积分别为V1.V2,则下列关系何者正确?()A. S1>9S2B. S1<9S2C. V1>9V2D. V1<9V26.如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A. 26°B. 116°C. 128°D. 154°(第6题) (第12题) (第15题)7.在半径为2的圆中,弦AB的长为2,则的长等于()A. B. C. D.8.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A. 6πB. 8πC. 12πD. 16π9.一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()A. 60°B. 120°C. 150°D. 180°10.已知扇形的圆心角为60°,半径为1,则扇形的弧长为()A. B. π C. D.二.填空题(共6小题)(除非特别说明,请填准确值)11.已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是_________ (结果保留π).12.如图,A.B.C是⊙O上的三点,∠AOB=100°,则∠ACB= _________ 度.13.若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是_________ .14.在半径为2的圆中,弦AC长为1,M为AC中点,过M点最长的弦为BD,则四边形ABCD的面积为_________ .15.如图,已知A.B.C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC 的度数是_________ .16.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为_________ cm2.三.解答题(共10小题)(选答题,不自动判卷)17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD 恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.18.已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.19.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.20.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A 按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.21.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD 交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.22.如图,A.B是圆O上的两点,∠AOB=120°,C是AB弧的中点.(1)求证:AB平分∠OAC;(2)延长OA至P使得OA=AP,连接PC,若圆O的半径R=1,求PC 的长.23.如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE. (1)求证:BE=CE;(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.24.如图,AB是半圆O的直径,C.D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.25.已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.26.如图,⊙O1的圆心在⊙O的圆周上,⊙O和⊙O1交于A,B,AC切⊙O于A,连接CB,BD是⊙O的直径,∠D=40°,求:∠AO1B,∠ACB和∠CAD 的度数.参考答案与试题解析一.选择题(共10小题)1.(2014?重庆)如图,△ABC的顶点A.B.C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 30°B. 45°C. 60°D. 70°考点:圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.解答:解:∵∠ABC=∠AOC, 而∠ABC+∠AOC=90°, ∴∠AOC+∠AOC=90°, ∴∠AOC=60°.故选C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.如图,...均为以O点为圆心所画出的四个相异弧,其度数均为60°,且G在OA上,C.E在AG上,若AC=EG,OG=1,AG=2,则与两弧长的和为何?()A. πB . C . D .考点:弧长的计算.分析:设AC=EG=a,用a表示出CE=2﹣2a,CO=3﹣a,EO=1+a,利用扇形弧长公式计算即可.解答:解:设AC=EG=a,CE=2﹣2a,CO=3﹣a,EO=1+a,+=2π(3﹣a)×+2π(1+a)×=(3﹣a+1+a)=.故选B.点评:本题考查了弧长的计算,熟悉弧长的计算公式是解题的关键.3.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A. B. 2πC. 3πD. 12π考点:弧长的计算.分析:根据弧长公式l=,代入相应数值进行计算即可.解答:解:根据弧长公式:l==3π,故选:C.点评:此题主要考查了弧长计算,关键是掌握弧长公式l=.4.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A. 3B. 4C.D. 5考点:圆周角定理;勾股定理;圆心角.弧.弦的关系.分析:首先连接AC,由圆周角定理可得,可得∠C=90°,继而求得AC的长,然后可求得AP的长的取值范围,继而求得答案.解答:解:连接AC,∵在⊙O中,AB是直径,∴∠C=90°,∵AB=5,BC=3,∴AC==4,∵点P是上任意一点.∴4≤AP≤5.故选A.点评:此题考查了圆周角定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.5.有一直圆柱状的木棍,今将此木棍分成甲.乙两段直圆柱状木棍,且甲的高为乙的高的9倍.若甲.乙的表面积分别为S1.S2,甲.乙的体积分别为V1.V2,则下列关系何者正确?()A. S1>9S2B. S1<9S2C. V1>9V2D. V1<9V2考点:圆柱的计算.分析:根据两圆柱的底面积相同,且甲的高为乙的高的9倍设圆柱的底面半径为r,乙圆柱的高为h,从而得到甲圆柱的高为9h,然后利用圆柱的体积和表面积的计算方法即可得到正确的选项.解答:解:∵两圆柱的底面积相同,且甲的高为乙的高的9倍,∴设圆柱的底面半径为r,乙圆柱的高为h,∴甲圆柱的高为9h,∴甲圆柱的表面积S1为2πr×9h+2πr2=2πr(9h+r),体积V1为9πr2h;甲圆柱的表面积S2为2πrh+2πr 2=2πr(h+r),体积V1为πr2h;∴S1<9S2,V1=9V2,故选B.点评:本题考查了圆柱的计算,了解圆柱的表面积和体积的计算方法是解答本题的关键.6.如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A. 26°B. 116°C. 128°D. 154°考点:圆周角定理.分析:根据圆周角定理直接解答即可.解答:解:∵∠A=64°,∴∠BOC=2∠A=2×64°=128°.故选:C.点评:本题考查了圆周角定理,知道同弧所对的圆周是圆心角的一半是解题的关键.7.在半径为2的圆中,弦AB的长为2,则的长等于()A. B. C. D.考点:弧长的计算.分析:连接OA.OB,求出圆心角∠AOB的度数,代入弧长公式求出即可.解答:解:连接OA.OB,∵OA=OB=AB=2,∴△AOB是等边三角形,∴∠AOB=60°,∴的长为:=,故选:C.点评:本题考查了弧长公式,等边三角形的性质和判定的应用,注意:已知圆的半径是R,弧AB对的圆心角的度数是n°,则弧AB的长=.8.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A. 6πB. 8πC. 12πD. 16π考点:圆锥的计算.专计算题.题:分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.解答:解:此圆锥的侧面积=?4?2π?2=8π. 故选:B.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()A. 60°B. 120°C. 150°D. 180°考点:弧长的计算.分析:首先设扇形圆心角为n°,根据弧长公式可得:=,再解方程即可.解答:解:设扇形圆心角为n°,根据弧长公式可得:=, 解得:n=120°,故选:B.点评:此题主要考查了弧长计算,关键是掌握弧长计算公式:l=.10.已知扇形的圆心角为60°,半径为1,则扇形的弧长为()A. B. πC. D.考点:弧长的计算.分析:利用弧长公式l=即可直接求解.解答:解:弧长是:=. 故选:D.点评:本题考查了弧长公式,正确记忆公式是关键.二.填空题(共6小题)(除非特别说明,请填准确值)11.已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是20π(结果保留π).考点:圆锥的计算.分析:圆锥的侧面积=底面周长×母线长÷2.解答:解:∵底面圆的半径为4,∴底面周长=8π,∴侧面面积=×8π×5=20π. 故答案为:20π.点评:本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.12.如图,A.B.C是⊙O上的三点,∠AOB=100°,则∠ACB= 50 度.点:圆周角定理.分析:根据圆周角定理即可直接求解.解答:解:∠ACB=∠AOB=×100°=50°. 故答案是:50.点评:此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.13.若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是180°.考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到扇形的弧长为4π,扇形的半径为4,再根据弧长公式求解.解答:解:∵轴截面是一个边长为4的等边三角形, ∴母线长为4,圆锥底面直径为4,∴底面周长为4π,即扇形弧长为4π.设这个圆锥的侧面展开后所得到的扇形的圆心角的度数为n , 根据题意得4π=,解得n=180°.故答案为:180°.评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.在半径为2的圆中,弦AC长为1,M为AC中点,过M点最长的弦为BD,则四边形ABCD的面积为 2 .考点:垂径定理;勾股定理.分析:先由直径是圆中最长的弦得出BD=4,再根据垂径定理的推论得出AC⊥BD,则四边形ABCD的面积=AC?BD.解答:解:如图.∵M为AC中点,过M点最长的弦为BD,∴BD是直径,BD=4,且AC⊥BD,∴四边形ABCD的面积=AC?BD=×1×4=2.故答案为:2.点评:本题考查了垂径定理,四边形的面积,难度适中.得出BD是直径是解题的关键.15.如图,已知A.B.C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC 的度数是70°.考圆周角定理.专题:计算题.分析:根据垂直的定义得到∠ADB=90°,再利用互余的定义计算出∠A=90°﹣∠B=35°,然后根据圆周角定理求解.解答:解:∵AC⊥BO,∴∠ADB=90°,∴∠A=90°﹣∠B=90°﹣55°=35°, ∴∠BOC=2∠A=70°.故答案为:70°.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为60πcm2.考点:圆锥的计算.分析:圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.解答:解:圆锥的侧面积=π×6×10=60πcm2.点评:本题考查圆锥侧面积公式的运用,掌握公式是关键.三.解答题(共10小题)(选答题,不自动判卷)17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD 恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.。
浙江省2019-2020学年九年级上册数学《圆的基本性质》试题分类——解答题(含答案)
2019--2020学年浙江省九年级上册数学(浙教版)《圆的基本性质》试题分类——解答题1.(2019秋•拱墅区校级期末)如图,AB为⊙O直径,点D为AB下方⊙O上一点,点C为弧ABD中点,连接CD,CA.(1)若∠ABD=α,求∠BDC(用α表示);(2)过点C作CE⊥AB于H,交AD于E,∠CAD=β,求∠ACE(用β表示);(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长.2.(2019秋•柯桥区期末)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E 是BA延长线上一点,∠DAE=105°.(1)求∠CAD的度数;(2)若⊙O的半径为4,求弧BC的长.3.(2019秋•江干区期末)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2√3.(1)求OD的长;(2)计算阴影部分的面积.4.(2019秋•丽水期末)如图,半圆O的直径AB=10,将半圆O绕点B顺时针旋转45°得到半圆O′,与AB交于点P,求AP的长.5.(2019秋•奉化区期末)如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.6.(2019秋•义乌市期末)如图,已知AB为半圆O的直径,AC,AD为弦,且AD平分∠BAC.(1)若∠ABC=28°,求∠CBD的度数;(2)若AB=6,AC=2,求AD的长.7.(2019秋•义乌市期末)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形)(1)画出△ABC关于原点对称的△A′B′C′;(2)将△A′B′C′绕A′顺时针旅转90°画出旅转后得到的△A″B″C″并直接写出此过程中线段A′C′扫过图形的面积(结果保留π).8.(2019秋•鄞州区期末)已知:如图,在半圆O中,直径AB的长为6,点C是半圆上一点,过圆心O作AB的垂线交线段AC的延长线于点D,交弦BC于点E.(1)求证:∠D=∠ABC;(2)记OE=x,OD=y,求y关于x的函数表达式;(3)若OE=CE,求图中阴影部分的面积.9.(2019秋•西湖区期末)如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=8cm,求图中劣弧BC的长.10.(2019秋•下城区期末)如图,MB ,MD 是⊙O 的两条弦,点A ,C 分别在MM ̂,MM ̂上,且AB =CD ,M 是MM̂的中点. (1)求证:MB =MD ;(2)过O 作OE ⊥MB 于点E ,当OE =1,MD =4时,求⊙O 的半径.11.(2019秋•温州期末)如图,点A 、B 、C 、D 、E 都在⊙O 上,AC 平分∠BAD ,且AB ∥CE ,求证:MM̂=MM ̂.12.(2019秋•温州期末)如图,已知△ABO 中A (﹣1,3),B (﹣4,0).(1)画出△ABO 绕着原点O 按顺时针方向旋转90°后的图形,记为△A 1B 1O ;(2)求第(1)问中线段AO 旋转时扫过的面积.13.(2019秋•吴兴区期末)如图,已知在矩形ABCD 中,AB =2,BC =2√3.点P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD .(1)若DQ =√3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与园重叠部分的面积.14.(2019秋•瑞安市期末)如图,Rt △ABC 中,∠C =90°,在BC 上取一点D 使AD =BD ,连结AD ,作△ACD 的外接圆⊙O ,交AB 于点E .(1)求证:AE =BE ;(2)若CD =3,AB =4√5,求AC 的长.15.(2019秋•温州期末)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E两点,过点D 作DH ⊥AC 于点H .(1)求证:BD =CD ;(2)连结OD 若四边形AODE 为菱形,BC =8,求DH 的长.16.(2019春•余姚市期末)如图,4×6的正方形网格中,每个小正方形的顶点称为格点,A ,B ,C 均为格点.在下列各图中画出四边形ABCD ,使点D 也为格点,且四边形ABCD 分别符合下列条件:(1)是中心对称图形(画在图1中).(2)是轴对称图形(画在图2中).(3)既是轴对称图形,又是中心对称图形(画在图3中).17.(2019秋•萧山区期末)如图,在⊙O 中,AB =AC .(1)求证:OA 平分∠BAC .(2)若MM ̂:MM ̂=3:2,试求∠BAC 的度数.18.(2020春•西湖区期末)将一副三角板中的两块直角三角尺的直角顶点C 按照如图①的方式叠放在一起(∠A =30°,∠ABC =60°,∠E =∠EDC =45°),且三角板ACB 的位置保持不动.(1)将三角板DCE 绕点C 按顺时针方向旋转至图②,若∠ACE =60°,求∠DCB 的度数.(2)将三角板DCE 绕点C 按顺时针方向旋转,当旋转到ED ∥AB 时,求∠BCE 的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE <180°且点E 在直线BC 的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE 所有可能的值;若不存在,请说明理由.19.(2019秋•吴兴区期末)如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =8,∠CBD =30°,求图中阴影部分的面积.20.(2019秋•瑞安市期末)如图,Rt △OAB 中,∠OAB =90°,以OA 为半径的⊙O 交BO 于点C ,交BO 延长线于点D .在⊙O 上取一点E ,且MM̂=MM ̂,延长DE 与BA 交于点F . (1)求证:△BDF 是直角三角形;(2)连接AC ,AC =2√10,OC =2BC ,求AF 的长.2019--2020学年浙江省九年级上册数学(浙教版)《圆的基本性质》试题分类——解答题参考答案与试题解析一.解答题(共20小题)1.【答案】见试题解答内容【解答】解:(1)连接AD ,如图1所示:设∠BDC =γ,∠CAD =β,则∠CAB =∠BDC =γ,∵点C 为弧ABD 中点,∴MM̂=MM ̂, ∴∠ADC =∠CAD =β,∴∠DAB =β﹣γ,∵AB 为⊙O 直径,∴∠ADB =90°,∴γ+β=90°,∴β=90°﹣γ,∴∠ABD =90°﹣∠DAB =90°﹣(β﹣γ)=90°﹣90°+γ+γ=2γ,∴∠ABD =2∠BDC ,∴∠BDC =12∠ABD =12α; (2)连接BC ,如图2所示:∵AB 为⊙O 直径,∴∠ACB =90°,即∠BAC +∠ABC =90°,∵CE ⊥AB ,∴∠ACE +∠BAC =90°,∴∠ACE =∠ABC ,∵点C 为弧ABD 中点,∴MM̂=MM ̂, ∴∠ADC =∠CAD =∠ABC =β,∴∠ACE =β;(3)连接OC ,如图3所示:∴∠COB =2∠CAB ,∵∠ABD =2∠BDC ,∠BDC =∠CAB ,∴∠COB =∠ABD ,∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴MM MM =MM MM =12, ∴BD =2OH =10,∴AB =√MM 2+MM 2=√242+102=26,∴AO =13,∴AH =AO +OH =13+5=18,∵∠EAH =∠BAD ,∠AHE =∠ADB =90°,∴△AHE ∽△ADB ,∴MM MM =MM MM ,即1824=MM 26, ∴AE =392, ∴DE =AD ﹣AE =24−392=92.2.【答案】见试题解答内容【解答】解:(1)∵AB =AC ,∴MM̂=MM ̂, ∴∠ABC =∠ACB ,∵D 为MM̂的中点, ∴MM̂=MM ̂, ∴∠CAD =∠ACD ,∴MM̂=2MM ̂, ∴∠ACB =2∠ACD ,又∵∠DAE =105°,∴∠BCD =105°,∴∠ACD =13×105°=35°,∴∠CAD =35°;(2)∵∠DAE =105°,∠CAD =35°,∴∠BAC =40°,连接OB ,OC ,∴∠BOC =80°,∴弧BC 的长=80M ×4180=16M 5.3.【答案】见试题解答内容【解答】解:(1)∵AB⊥OD,∴∠OCB=90°,AC=BC=12AB=√3,∵点C为OD的中点,∴OC=12OB,∵cos∠COB=MMMM=12,∴∠COB=60°,∴OC=√33BC=√33×√3=1,∴OB=2OC=2,∴OD=OB=2;(2)阴影部分的面积=S扇形BOD﹣S△COB=60×M×22360−12×√3×1=2 3π−√32.4.【答案】见试题解答内容【解答】解:∵∠OBA′=45°,O′P=O′B,∴△O′PB是等腰直角三角形,∴PB=√2BO′=5√2,∴AP=AB﹣BP=10﹣5√2.5.【答案】见试题解答内容【解答】解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N=√MM′2−MM2=√342−302=16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.6.【答案】见试题解答内容【解答】解:(1)∵AB 是⊙O 的直径, ∴∠C =∠ADB =90°,∴∠CAB =90°﹣28°=62°,∵AD 平分∠BAC ,∴∠CAD =12∠CAB =31°, ∴∠CBD =∠CAD =31°;(2)连接OD 交BC 于E ,如图,在Rt △ACB 中,BC =√62−22=4√2, ∵AD 平分∠BAC ,∴∠CAD =∠BAD ,∴MM̂=MM ̂, ∴OD ⊥BC ,∴BE =CE =12BC =2√2,∴OE =12AC =12×2=1, ∴DE =OD ﹣OE =3﹣1=2,在Rt △BDE 中,BD =√22+(2√2)2=2√3, 在Rt △ABD 中,AD =√62−(2√3)2=2√6.7.【答案】见试题解答内容【解答】解:(1)如图,△A ′B ′C ′为所作;(2)如图,△A ″B ″C ″为所作,线段A ′C ′扫过图形的面积=90⋅M ⋅42360=4π,.8.【答案】见试题解答内容【解答】解:(1)∵AB 是直径, ∴∠ACB =90°∴∠A +∠ABC =90°∵DO ⊥AB ,∴∠A +∠D =90°∴∠D =∠ABC .(2)∵OB =OC ,∴∠B =∠OCE ,∴∠OCE =∠D .而∠COE =∠COD ,∴△OCE ∽△ODC ,∴MM MM =MM MM ,即M 3=3M∴y =9M (0<x <3).(3)设∠B =a ,则∠BCO =a ,∵OE =CE ,∴∠EOC =∠BCO =a在△BCO 中,a +a +90°+a =180°, ∴a =30°∴S =3×3√32−30M ⋅32360−√34×32=9√34−34π. 9.【答案】见试题解答内容【解答】解:(1)连接OB ,∵OA ⊥BC ,∴MM̂=MM ̂, ∴∠AOC =∠AOB ,由圆周角定理得,∠AOB =2∠ADB =60°, ∴∠AOC =∠AOB =60°;(2)∵OA ⊥BC ,∴BE =12BC =4,在Rt △BOE 中,∠AOB =60°,∴OB =MM MMM60°=8√33, ∴劣弧BC 的长=120M ×8√33180=16√39π(cm ). 10.【答案】见试题解答内容【解答】(1)证明:∵AB =CD , ∴MM̂=MM ̂, ∵M 是MM̂的中点, ∴MM̂=MM ̂, ∴MM̂=MM ̂, ∴BM =DM .(2)解:如图,连接OM .∵DM =BM =4,OE ⊥BM ,∴EM =BE =2,∵OE =1,∠OEM =90°,∴OM =√MM 2+MM 2=√12+22=√5,∴⊙O 的半径为√5.11.【答案】见试题解答内容【解答】证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,∵AB ∥CE ,∴∠BAC =∠ACE ,∴∠DAC =∠ACE ,∴MM̂=MM ̂. 12.【答案】见试题解答内容【解答】解:(1)如图所示,△A 1B 1O 即为所求;(2)线段AO 旋转时扫过的面积为:90×M ×(√10)2360=52M . 13.【答案】(1)6√77; (2)83√3.【解答】解:如图:过点P 作PT ⊥BQ 于点T ,∵AB =2,AD =BC =2√3,DQ =√3,∴AQ =√3,在Rt △ABQ 中,根据勾股定理可得:BQ =√7.又∵四边形BPDQ 是平行四边形,∴BP =DQ =√3∵∠AQB =∠TBP ,∠A =∠BTP ,∴△AQB ∽△TPB ,∴MM MM =MM MM , 即√3=√3√7, ∴BT =3√77,∴BE =2BT =6√77. (2)设菱形BPDQ 的边长为x , 则AQ =2√3−x ,在Rt △ABQ 中,根据勾股定理,得AB 2+AQ 2=BQ 2, 即4+(2√3−x )2=x 2,解得x =43√3 由(1)可知: MM M =2√3−MM, ∴BT =2√3−x =2√3−4√33=2√33, ∴BE =43√3,∴点E 、Q 重合, ∴圆P 经过点B 、Q 、D , ∴S 菱形=83√3. 14.【答案】见试题解答内容【解答】解:(1)证明:连结DE ,∵∠C =90°,∴AD 为直径,∴DE ⊥AB ,∵AD =BD ,∴AE =BE ;(2)设BD =x ,∵∠B =∠B ,∠C =∠DEB =90°∴△ABC ~△DBE ,∴MM MM =MM MM , ∴4√5=2√5M +3, ∴x =5.∴AD =BD =5,∴AC =√52−32=4.15.【答案】见试题解答内容【解答】(1)证明:如图,连接AD.∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD.(2)解:如图,连接OE.∵四边形AODE是菱形,∴OA=OE=AE,∴△AOE是等边三角形,∴∠A=60°,∵AB=AC,∴△ABC是等边三角形,∵OA=OB=BD=CD∴AE=EC,∴CD=CE,∵∠C=60°,∴△EDC是等边三角形,∵DH⊥EC,CD=4,∴DH=CD•sin60°=2√3.16.【答案】见试题解答内容【解答】解:(1)如图1,四边形ABCD为所作;(2)如图2,四边形ABCD为所作;(2)如图3,四边形ABCD为所作.17.【答案】见试题解答内容【解答】(1)证明:延长半径AO 交⊙O 于D ,∴MMM̂=MMM ̂ ∵AB =AC ,∴MM̂=MM ̂, ∴MM̂=MM ̂, ∴∠BAD =∠CAD ,∴OA 平分∠BAC ;(2)解:∵MM̂:MM ̂=3:2,MM ̂=MM ̂ ∴MM̂=28×360°=90° ∴∠BAC =45°;18.【答案】见试题解答内容【解答】解:(1)如图2中,∵∠ACB =∠ECD =90°,∴∠ECB =∠ACD ,∵∠ACE =60°,∴∠BCE =∠ACD =30°,∴∠BCD =∠BCE +∠ECD =30°+90°=120°;(2)如图2中,当DE ∥AB 时,延长BC 交DE 于M ,∴∠B =∠DMC =60°,∵∠DMC =∠E +∠MCE ,∴∠ECM =15°,∴∠BCE=165°,当D′E′∥AB时,∠E′CB=∠ECM=15°,∴当ED∥AB时,∠BCE的度数为165°或15°;(3)存在.如图,①CD∥AB时,∠BCE=30°,②DE∥BC时,∠BCE=45°,③CE∥AB时,∠BCE=120°,④DE∥AB时,∠BCE=165°,⑤当AC∥DE时,∠BCE=135°综上所述,当∠BCE<180°且点E在直线BC的上方时,这两块三角尺存在一组边互相平行,∠BCE的值为30°或45°或120°或165°或135°.19.【答案】见试题解答内容【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)连接CD,OD,∵OC∥BD,∴∠OCB=∠CBD=30°,∵OC=OB,∴∠OCB=∠OBC=30°,∴∠AOC=∠OCB+∠OBC=60°,∵∠COD=2∠CBD=60°,∴∠AOD=120°,∴S阴=S扇形OAD﹣S△ADO=120⋅M⋅42360−12•4√3×2=16M3−4√320.【答案】见试题解答内容【解答】(1)证明:如图连接EC交OA于H.∵MM̂=MM ̂, ∴OA ⊥EC ,∵CD 是⊙O 的直径,∴∠DEC =90°,∴DF ⊥EC ,∴OA ∥DF ,∵BF 是⊙O 的切线,∴OA ⊥BF ,∴DF ⊥BF ,∴∠F =90°,∴△DFB 是直角三角形.(2)解:∵∠DEC =∠F =90°,∴EC ∥FB ,∴MM MM =MM MM =2,∴OH =2AH ,设AH =m ,则OH =2m ,OC =3m , ∵CH 2=OC 2﹣OH 2=AC 2﹣AH 2,∴9m 2﹣4m 2=40﹣m 2,∴m =2√153(负根已经舍弃), ∴CH =10√33, ∵OA ⊥EC ,∴EH =HC =10√33, ∵∠F =∠F AH =∠AHE =90°,∴四边形AFEH 是矩形,∴AF =EH =10√33.。
2019—2020年最新浙教版九年级数学上册《圆的基本性质》单元综合测试及答案解析.docx
九年级上数学试卷圆的基本性质(3.1—3.7)一、选择题(每题4分,共28分)1、在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,⊙A 的半径为2,下列说法中不正确的是( )A 、当a <5时,点B 在⊙A 内 B 、当1<a <5时,点B 在⊙A 内C 、当a <1时,点B 在⊙A 外D 、当a >5时,点B 在⊙A 外2、下列命题中不正确的是( )A 、圆有且只有一个内接三角形B 、三角形只有一个外接圆C 、三角形的外心是这个三角形任意两边的垂直平分线的交点D 、等边三角形的外心也是三角形的三条中线、高、角平分线的交点3、⊙O 内一点M 到圆的最大距离为10cm ,最短距离为8cm ,那么过M 点的最短弦长为( )A 、1cmB 、58cmC 、41cmD 、9cm4、如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm ,以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是( )A 、6cmB 、10cmC 、32cmD 、52cm(第4题图) (第5题图) (第6题图) (第7题图)5、如图所示,以O 为圆心的两个同心圆中,小圆的弦AB 的延长线交大圆于C ,若AB =3,BC =1,则与圆环的面积最接近的整数是( )A 、9B 、10C 、15D 、136、如图,圆上由A 、B 、C 、D 四点,其中∠BAD =80°,若⌒ABC ,⌒ADC的长度分别为π7,π11,则⌒BAD的长度为( ) A 、π4 B 、π8 C 、π10 D 、π157、如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y =x 的图象被⊙P 截得的弦AB 的长为32,则a 的值是( )A 、32B 、222+C 、22+D 、32+二、填空题(每题4分,共60分)8、如图,⊙O 的半径OA =6,以A 为圆心,OA 为半径的弧交⊙O 于B 、C ,则BC 的长 是 .(第8题图) (第9题图) (第12题图)9、如图,点A 、B 、C 、D 都在⊙O 上,⌒CD的度数等于84°,CA 是∠OCD 的平分线,则∠ABD +∠CAO = .10、已知,A 、B 、C 是⊙O 上不同的三点,∠AOC =100°,则∠ABC = .11、在⊙O 中,弦CD 与直径AB 相交于点E ,且∠AEC =30°,AE =1cm ,BE =5cm ,那么弦CD 的弦心距OF = cm ,弦CD 的长为 cm .12、如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在校量角器上对应的度数为65°,那么在大量角器上对应的度数为 (只需写出0°~90°的角度).13、如图,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则AC = ,BC = .(第13题) (第14题) (第15题)14、在圆柱形油槽内装有一些油,截面如图,油面宽AB 为6分米,如果再注入一些油后,油面AB 上升1分米,油面宽变为8分米,圆柱形油槽的直径MN 为 .15、如图AB 、CD 是⊙O 的两条互相垂直的弦,∠AOC =130°,AD 、CB 的延长线相交于点P ,∠P = .16、如图,弦AB 、CD 相交于点E ,AD⌒ =60°,BC ⌒ =40°,则∠AED = .(第16题图) (第17题图) (第18题图) (第19题图)17、如图,弦CD ⊥AB 于P ,AB =8,CD =8,⊙O 半径为5,则OP 的长为 .18、如图,矩形ABCD 的边AB 过⊙O 的圆心,E 、F 分别为AB 、CD 与⊙O 的交点,若AE =3cm ,AD =4cm ,DF =5cm ,则⊙O 的直径等于 .19、如图,⊙O 是△ABC 的外接圆,AO ⊥BC 于F ,D 为AC⌒ 的中点,E 是BA 延长线上一点,∠DAE =114°,则∠CAD 等于 .20、半径为R 的圆内接正三角形的面积是 .21、一个正多边形的所有对角线都相等,则这个正多边形的内角和为 .22、AC 、BD 是⊙O 的两条弦,且AC ⊥BD ,⊙O 的半径为21,则22CD AB 的值为 . 三、解答题(共32分)23、(10分)某地有一座圆弧形拱桥,桥下水面宽度AB 为7.2m ,拱顶高出水面2.4m ,OC⊥AB ,现有一艘宽3m ,船舱顶部为正方形并高出水面2m的货船要经过这里,此货船能顺利通过这座桥吗?24、(10分)已知,如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连接AD .(1)求证:∠DAC =∠DBA ;(2)求证:P 是线段AF 的中点.25、(12分)如图,AD 是⊙O 的直径.(1)如图①,垂直于AD 的两条弦11C B ,22C B 把圆周4等分,则∠1B 的度数是 ,∠2B 的度数是 .(2)如图②,垂直于AD 的三条弦11C B ,22C B ,33C B 把圆周6等分,分别求∠1B ,∠2B ,∠3B 的度数;(3)如图③,垂直于AD 的n 条弦11C B ,22C B ,33C B ,…,n n C B 把圆周2n 等分,请你用含n 的代数式表示∠n B 的度数(只需直接写出答案).圆的基本性质(3.1—3.7)参考答案: 1~7:AABBDCC8、36 9、48° 10、50°或130° 11、1cm 24cm 12、50°13、215- 215+ 14、10分米 15、40° 16、50° 17、23 18、10cm 19、38° 20、2433R 21、360°或540° 22、123、解:如图,连接ON ,OB ,∵OC ⊥AB ,D 为AB 中点,∵AB =7.2m ,∴BD =21AB =3.6m ,又∵CD =2.4m , 设OB =OC =ON =r ,则OD =(r -2.4)m ,在Rt △BOD 中,根据勾股定理得:2226.3)4.2(+-=r r ,解得:r =3.9∵CD =2.4m ,船舱顶部为正方形并高出水面2m ,∴CH =2.4-2=0.4m ,∴OH =r -CH =3.9-0.4=3.5m ,在Rt △OHN 中,96.25.39.3OH ON HN 22222=-=-=,∴HN =96.2m ,∴MN =2HN =2×96.2≈3.44m >3m .∴此货船能顺利通过这座桥.24、证明:(1)∵BD 平分∠CBA ,∴∠CBD =∠DBA ,∵∠DAC 与∠CBD 都是弧CD 所对的圆周角,∴∠DAC =∠CBD ,∴∠DAC =∠DBA .(2)∵AB 为直径,∴∠ADB =90°,又∵DE ⊥AB 于点E ,∴∠DEB =90°,∴∠ADE+∠EDB=∠ABD+∠EDB=90°,∴∠ADE=∠ABD=∠DAP ,∴PD=PA ,又∵∠DFA+∠DAC=∠ADE+∠PDF=90°且∠ADE=∠DAP ,∴∠PDF=∠PFD ,∴PD =PF ,∴PA =PF ,即P 是点段AF 的中点.25、(1)∠1B =22.5°,∠2B =67.5°;(2)∠1B =15°,∠2B =45°,∠3B =75°;(3)n n C B 把圆周2n 等分,则弧D B n 的度数是n 4360︒,则∠AD B n =n 8360︒, ∴∠n B =90°-n 8360︒=90°-n︒45。
浙教版九年级数学上册第3章圆的基本性质单元测试卷含答案试卷分析详解
第3章 圆的基本性质检测题(本检测题满分:120分,时间:120分钟)一、 选择题(每小题3分,共30分)1.△AB C 为⊙O 的内接三角形,若∠AOC =160°,则∠ABC 的度数是( )A.80°B.160°C.100°D.80°或100°2.如图所示,点A ,B ,C 是⊙O 上三点,∠AOC =130°,则∠ABC 等于( )A.50°B.60°C.65°D.70°①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A.4个B.3个C.2个D.1个4.如图所示,已知BD 是⊙O 直径,点A ,C 在⊙O 上,弧AB =弧BC ,∠AOB =60°,则∠BDC 的度数是( )A.20°B.25°C.30°D.40°5.如图,在⊙O 中,直径CD 垂直弦AB 于点E ,连接OB,CB ,已知⊙O 的半径为2,AB =32,则∠BCD 的大小为( )A. 30oB. 45oC. 60oD. 15o6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为3,则弦CD 的长为( )A.23 B.3 C.32 D.9 7.如图,已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的点有( )A.4个B.3个C.2个D.1个8. 如图,在Rt△ABC 中,△ACB =90°,AC =6,AB =10,CD 是斜边AB 上的中线,以AC 为直径作△O ,设线段CD 的中点为P ,则点P 与△O 的位置关系是( )A.点P 在△O 内B.点P 在△O 上C.点P 在△O 外D.无法确定9. 圆锥的底面圆的周长是4π cm ,母线长是6 cm ,则该圆锥的侧面展开图的圆心角的度数是( )A.40°B.80°C.120°D.150°10.如图,长为4 cm ,宽为3 cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( )A.10 cmB.4π cmC.27π cmD.25 cm 二、填空题(每小题3分,共24分)11.如图所示,AB 是⊙O 的弦,OC ⊥AB 于C .若AB =2√3,OC =1,则半径OB 的长为 .12.(·安徽中考)如图所示,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD = °13.如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=_______.14.如图,⊙O的半径为10,弦AB的长为12,OD⊥AB,交AB于点D,交⊙O于点C,则OD=_______,CD=_______.15.如图,在△ABC中,点I是外心,∠BIC=110°,则∠A=_______.16.如图,把半径为1的四分之三圆形纸片沿半径OA剪开,依次用得到的半圆形纸片和四分之一圆形纸片做成两个圆锥的侧面,则这两个圆锥的底面积之比为_______.17. 如图,一条公路的转弯处是一段圆弧(图中的弧AB),点O是这段弧的圆心,C是弧AB上一点,OC⊥AB,垂足为D,AB=300 m,CD=50 m ,则这段弯路的半径是_________.18.用圆心角为120°,半径为6 cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是.三、解答题(共46分)19.(8分) (·宁夏中考)如图所示,在⊙O中,直径AB⊥CD于点E,连结CO并延长交AD于点F,且CF⊥A D.求∠D的度数.20.(8分)(·山东临沂中考)如图所示,AB是⊙O的直径,点E是BC的中点,AB=4,∠BED=120°,试求阴影部分的面积.21.(8分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.22.(8分)如图,⊙O的半径OA、OB分别交弦CD于点E、F,且CE=DF.求证:△OEF 是等腰三角形.23.(8分)如图,已知OA、OB、OC都是⊙O的半径,且∠AOB=2∠BOC.试探索∠ACB 与∠BAC之间的数量关系,并说明理由.24.(8分)如图是一跨河桥,桥拱是圆弧形,跨度AB为16米,拱高CD为4米,求:⑴桥拱的半径;⑵若大雨过后,桥下河面宽度EF为12米,求水面涨高了多少?25.(8分)如图,已知圆锥的底面半径为3,母线长为9,C为母线PB的中点,求从A点到C点在圆锥的侧面上的最短距离.26.(10分)如图,把半径为r的圆铁片沿着半径OA、OB剪成面积比为1︰2的两个扇形S1、S2,把它们分别围成两个无底的圆锥.设这两个圆锥的高分别为h1、h2,试比较h1与h2的大小关系.第3章 圆的基本性质检测题参考答案一、选择题1. D 解析:∠ABC =12∠AOC =12×160°=80°或∠ABC =12×(360°-160°)=100°.2. C 解析:∵ ∠AOC =130°,∴ ∠ABC =12∠AOC =12×130°=65°.3.C 解析:③④正确.4 C 解析:连接OC ,由弧AB =弧BC ,得∠BOC =∠AOB =60°,故∠BDC =12∠BOC =12×60°=30°. 5.A 解析:由垂径定理得BE =√3,∠OEB =90o . 又OB =2, ∴ OE =1,∴ ∠BOE =60o . 又OB =OC ,∴ ∠BCD =30o .6.B 解析: 在Rt △COE 中,∠COE =2∠CDB =60°,OC =3,则OE =23,2322=-=OE OC CE .由垂径定理知CD =2CE =3,故选B . 7.B 解析:在弦AB 的两侧分别有1个和2个点符合要求,故选B.8.A 解析:因为OA =OC ,AC =6,所以OA =OC =3.又CP =PD ,连接OP ,可知OP 是△ADC 的中位线,所以OP =21AD =25,所以OP <OC ,即点P 在⊙O 内. 9.C 解析:设圆心角为n °,则nπ∙6180=4π,解得n =120.10.C 解析: 第一次转动是以点B 为圆心,AB 为半径,圆心角是90度,所以弧长=90π55π1802⋅=,第二次转动是以点C 为圆心,A 1C 为半径,圆心角为60度,所以弧长=π1803π60=⋅,所以走过的路径长为5π2+π=27π (cm). 二、填空题11. 2 解析:∵ BC = 1 2AB = √3,∴ OB = √OC 2+BC 2=√12+(√3)2=2.12. 60 解析:∵ 四边形OABC 为平行四边形,∴ ∠B =∠AOC ,∠BAO =∠BCO . ∵ AOC ∠=2∠D ,∠B +∠D =180°,∴ ∠B =∠A O C =120°,∠B A O =∠B C O =60°.又∵ ∠BAD +∠BCD =180°,∴ ∠OAD +∠OCD =(∠BAD +∠BCD )-(∠BAO +∠BCO )=180°-120°=60°. 13.40° 解析:因为∠AOC =100°,所以∠BOC =80°.又∠D =21∠BOC ,所以∠D =40°. 14.8;2 解析:因为OD ⊥AB ,由垂径定理得AD =BD =6 ,故OD =√OA 2-AD 2=8 ,CD = OC-OD =2.15.55° 解析:根据同弧所对的圆周角等于圆心角的一半可得.16. 4︰1 解析: 由题意知,小扇形的弧长为2π,则它组成的圆锥的底面半径=41,小圆锥的底面面积=16π;大扇形的弧长为π,则它组成的圆锥的底面半径=21,大圆锥的底面面积=4π,∴ 大圆锥的底面面积︰小圆锥的底面面积=4︰1. 17.250 解析:依据垂径定理和勾股定理可得.18. 4√2 解析:扇形的弧长l =120π×6180=4π(cm ),所以圆锥的底面半径为4π÷2π=2(cm ),所以这个圆锥形纸帽的高为√62-22 = 4√2(cm ).三、解答题19.分析:连接BD ,易证∠BDC =∠C ,∠BOC =2∠BDC =2∠C ,∴ ∠C =30°, 从而∠ADC =60°.解:连接BD .∵ AB 是⊙O 的直径,∴ BD ⊥AD .又∵ CF ⊥AD ,∴ BD ∥CF .∴ ∠BDC =∠C .又∵ ∠BDC =12∠BOC ,∴ ∠C =12∠BOC .∵ AB ⊥CD ,∴ ∠C =30°,∴ ∠ADC =60°.点拨:直径所对的圆周角等于90°,在同一个圆中,同一条弧所对的圆心角等于圆周角的2倍.20. 解:连接AE ,则AE ⊥BC .由于E 是BC 的中点,则AB =AC ,∠BAE =∠CAE ,则BE =DE =EC ,S 弓形BE =S 弓形DE ,∴ S 阴影=S △DCE .由于∠BED =120°,则△ABC 与△DEC 都是等边三角形,∴ S △DCE =12×2×√3=√3.21.分析:(1)欲求∠DEB ,已知一圆心角,可利用圆周角与圆心角的关系求解.(2)利用垂径定理可以得到AC =BC =21AB ,从而AB 的长可求. 解:(1)连接OB ,∵ OD ⊥AB ,∴ AC =BC ,弧AD =弧BD ,∴ ∠AOD =∠BOD.又∠DEB =21∠DOB , ∴ ∠DEB =21∠AOD =21×52°=26°. (2)∵ OC =3,OA =5,∴ AC =4. 又AC =BC =21AB ,∴ AB =2AC =2×4=8. 22.分析:要证明△OEF 是等腰三角形,可以转化为证明OE =OF ,通过证明△OCE ≌△ODF 即可得出.证明:如图,连接OC 、OD ,则OC =OD ,∴ ∠OCD =∠ODC.在△OCE 和△ODF 中,{OC =OD,∠OCD =∠ODC,CE =DF,∴ △OCE ≌△ODF (SAS ),∴ OE =OF ,从而△OEF 是等腰三角形.23.分析:由圆周角定理,得∠ACB =21∠AOB ,∠CAB =21∠BOC ;已知 ∠AOB = 2∠BOC ,联立三式可得.解:∠ACB =2∠BAC .理由如下:∵ ∠ACB =21∠AOB ,∠BAC =21∠BOC ,又∠AOB =2∠BOC ,∴ ∠ACB =2∠BAC .24.解:(1)已知桥拱的跨度AB =16米,拱高CD =4米,∴ AD =8米.利用勾股定理可得OA 2=AD 2+OD 2=82+(OA-4)2,解得OA =10(米).故桥拱的半径为10米.(2)当河水上涨到EF 位置时,因为EF =12米,EF ∥AB ,所以OC ⊥EF ,∴ EM =21EF =6(米), 连接OE ,则OE =10米,OM =√OE 2-EM 2=√102-62=8(米).又OD =OC-CD =10-4=6(米),所以OM-OD =8-6=2(米),即水面涨高了2米.25.分析:最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离问题.需先算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.解:由题意可知圆锥的底面周长是6π,则6π=nπ∙9180,∴ n =120,即圆锥侧面展开图的圆心角是120°.∴ ∠APB =60°.在圆锥侧面展开图中,AP =9,PC =4.5,可知∠ACP =90°.∴ AC =√AP 2-PC 2=239. 故从A 点到C 点在圆锥的侧面上的最短距离为239. 点评:本题需注意最短距离的问题最后都要转化为平面上两点间的距离的问题.26.分析:利用圆锥侧面展开图的弧长=底面周长得到圆锥底面半径和母线长的关系,进而利用勾股定理可求得各个圆锥的高,比较即可. 解:设扇形S 2 做成圆锥的底面半径为R 2, 由题意知,扇形S 2的圆心角为240°,则它的弧长=240πr 180=2πR 2,解得R 2=32r , 由勾股定理得,h 2=√r 2-(32r)2=35r . 设扇形S 1做成圆锥的底面半径为R 1,由题意知,扇形S 1的圆心角为120°,则它的弧长=120πr 180=2πR 1,解得R 1=31r , 由勾股定理得h 1=√r 2-(31r)2=322r ,所以 h 1>h 2.。
2019秋浙教版数学九年级上册同步测试试题:3.1 圆
第3章圆的基本性质3.1 圆第1课时圆的有关概念知识点1.圆的定义1.下列条件中,能确定圆的是(C)A.以点O为圆心B.以2 cm长为半径C.以点O为圆心,以5 cm长为半径D.经过已知点A2.已知⊙O的直径AB=6 cm,则圆上任意一点到圆心的距离等于(C) A.2 cm B.2.5 cmC.3 cm D.无法确定知识点2.圆的有关概念3.下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦.其中错误的个数为(C)A.2 B.3 C.4 D.54.如图1,在⊙O中,点A,O,D,点B,O,C以及点E,D,C分别在一条直线上.图中弦的条数为(B)A.2 B.3 C.4 D.5【解析】图中的弦有AB,BC,CE共三条.图1 图25.如图2,已知AB,CD是⊙O的两条直径,且∠AOC=50°,过A作AE∥CD 交⊙O于E,则∠AOE的度数为(D)A.65°B.70°C.75°D.80°6.如图3,点A,B在⊙O上,且AB=BO.∠ABO的平分线与AO相交于点C,若AC=3,则⊙O的半径为__6__.图3【解析】∵OA=OB,AB=BO,∴OA=OB=AB,即△OAB是等边三角形.∵BC 平分∠ABO,∴OA=2AC=6.7.如图4,AB是⊙O的直径,点C,D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,问AC与BD相等吗?为什么?图4 第7题答图【解析】 AC 与BD 相等.理由如下:连结OC ,OD ,如答图,∵OA =OB ,AE =BF ,∴OE =OF .∵CE ⊥AB ,DF ⊥AB ,∴∠OEC =∠OFD =90°,在Rt △OEC 和Rt △OFD 中,⎩⎪⎨⎪⎧OE =OF ,OC =OD ,∴Rt △OEC ≌Rt △OFD (HL ),CE =DF ,∴在Rt △AEC 和Rt △BFD 中,⎩⎪⎨⎪⎧CE =DF ,AE =BF ,∴Rt △AEC ≌Rt △BFD ,∴AC =BD .知识点3.点与圆的位置关系8.[2018秋·庆阳期末]已知⊙O 的半径为4,点P 到圆心O 的距离为5,那么点P 与⊙O 的位置关系是( C )A .点P 在⊙O 上B .点P 在⊙O 内C .点P 在⊙O 外D .无法确定【解析】 ∵r =4,d =5,∴d >r ,∴点P 在⊙O 外.9.[2018秋·淮南期末]已知⊙P 的半径为5,点P 的坐标为(2,1),点Q 的坐标为(0,6),则点Q与⊙P的位置关系是(A)A.点Q在⊙P外B.点Q在⊙P上C.点Q在⊙P内D.不能确定易错点:对“弦与直径”“弧与半圆、优弧、劣弧”之间的关系理解不透.10.下列说法正确的是(D)A.半圆是弧,弧也是半圆B.过圆上任意一点只能做一条弦,且这条弦是直径C.弦是直径D.直径是同一圆中最长的弦【解析】A.半圆是弧,但弧不一定是半圆,故错误;B.过圆上任意一点能作无数条弦,故错误;C.直径是弦,但弦不一定是直径,故错误;故选D.第2课时确定圆的条件知识点1.确定圆的条件1.给定下列条件可以确定一个圆的是(D)A.已知圆心B.已知半径C.已知直径D.不在同一直线上的三个点2.如图1所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知AB=24 cm,CD=8 cm.(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.图1 第2题答图解:(1)作弦AC的垂直平分线与CD交于O点,以O为圆心,OA长为半径作⊙O 就是此残片所在的圆,如答图;(2)连结OA,设OA=x,∵AD=12 cm,OD=(x-8)cm,则根据勾股定理列方程:x2=122+(x-8)2,解得x=13(cm).答:圆的半径为13 cm.3.已知A,B,C三点.根据下列条件,说明A,B,C三点能否确定一个圆,请说明理由.(1)AB=23+1,BC=43,AC=23-1;(2)AB=AC=10,BC=12.解:(1)∵AB+AC=BC,∴A,B,C三点共线,∴不能确定一个圆;(2)∵10+10=20>12,∴A,B,C三点不共线,∴能确定一个圆.知识点2.三角形的外接圆4.如图2,已知⊙O是△ABC的外接圆,∠AOB=110°,则∠OAB的度数为(C)图2A.55°B.70°C.35°D.45°5.直角三角形的外心在(D)A.直角顶点上B.直角三角形内C.直角三角形外D.斜边中点上6.如图3,在△ABC中,BC=12,AB=AC,∠BAC=120°.(1)作△ABC的外接圆;(只需作出图形,并保留作图痕迹)(2)求它的外接圆直径.图3 第6题答图解:(1)作AB,BC的垂直平分线交于点P,以点P为圆心,P A为半径作圆,则⊙P 即为所求,如答图所示;(2)如答图,连结BP,设BC与AP交于点M,∵BC=12,AB=AC,∠BAC=120°,由(1)得∠BAM=60°,BM=CM=12BC=6,∴AB=4 3.∵P A=PB,∴△P AB是等边三角形,∴P A=AB=43,∴△ABC的外接圆直径为2×43=8 3.易错点:对“外心”的概念理解不透.7.下列命题正确的是(D)A.三点确定一个圆B.圆有且只有一个内接三角形C.三角形的外心是三角形三个角的平分线的交点D.三角形的外心是三角形任意两边的垂直平分线的交点。
浙教版数学九年级上册 第3章测试卷 圆的基本性质(含答案)
第3章测试卷圆的基本性质班级学号得分姓名一、选择题(本大题有10小题,每小题3分,共30分)1.已知⊙O的直径为10,点P到点O的距离大于8,那么点P的位置( )A. 一定在⊙O的内部B. 一定在⊙O的外部C. 一定在⊙O上D. 不能确定2.正六边形的每个内角度数为( )A. 90°B. 108°C. 120°D. 150°3.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为( )A. 60°B. 50°C. 40°D. 20°4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是( )A7 B. 7 C. 6 D. 85. 下列有关圆的一些结论:①与半径长相等的弦所对的圆周角是30°;②圆内接正六边形的边长与该圆半径相等;③垂直于弦的直径平分这条弦;④平分弦的直径垂直于弦.其中正确的是( )A. ①②③B. ①③④C. ②③D. ②④6. 如图,正方形ABCD 内接于⊙O,AB=22,则AB的长是( )A. πB.32π C. 2π D127.如图,已知 BC 是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点 A,点C重合),BD与OA交于点E,设∠AED=α,∠AOD=β,则( )A. 3α+β=180°B. 2α+β=180°C. 3α-β=90°D. 2α-β=90°8. 如图,在扇形 AOB中,∠AOB=90°,点C 是弧AB 的中点,点 D 在OB 上,点 E 在OB 的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为( )A. π-2B. 2π—2C. π—4D. 2π-49. 如图,四边形ABCD内接于⊙O,点I是△ABC角平分线的交点,∠AIC=124°,点 E 在AD 的延长线上,则∠CDE的度数为( )A. 56°B. 62°C. 68°D. 78°10. 如图,AB是半圆O 的直径,点 P 从点O 出发,沿OA→AB→BO(的路径匀速运动一周.设OP 的长为s,运动时间为t,则下列图象能大致地刻画s与t之间关系的是( )二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,点 A,B,C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为 .12. 如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB 的距离为 .13. 如图,在四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC 交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是 .14.如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为 .15.如图,在半径2₂的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形面积为 .16. 如图所示,E,F分别是正方形ABCD 的边AB,BC上的点,BE=CF,连结CE,DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转了.三、解答题(本大题有8小题,共66分)17. (6分)已知扇形的半径为6cm,面积为10πcm²,求该扇形的弧长.18. (6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,点O,M也在格点上.(1)画出△ABC关于直线OM 对称的△A₁B₁C₁;(2)画出△ABC绕点O按顺时针方向旋转 90°后所得的△A₂B₂C₂.19. (6分)中国的拱桥始建于东汉中后期,已有一千八百余年的历史,如图,一座拱桥在水面上方部分是.AB,拱桥在水面上的跨度AB为8米,拱桥AB与水面的最大距离为3米.(1)用直尺和圆规作出AB所在圆的圆心O;(2)求拱桥 AB所在圆的半径.20.(8分)如图所示,在△ABC中,AB=AC,∠A=30°,,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点 B作BP 平行于DE,交⊙O于点P,连结OP,CP.(1)求证:BD=DC;(2)求∠BOP的度数.21.(8分)如图,AB是⊙O的直径,C是.AE的中点,CD⊥AB于点D,交AE于点F,连结AC.求证:AF=CF.22.(10分)如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1) 试判断△ABC是否为等边三角形? 为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,,求⊙O的半径长.23.(10分)如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的⊙O交BC 于点D,且.BD= DE.(1)求证:AB为⊙O的直径;(2)若AB=8,∠BAC=45°,,求阴影部分的面积.24.(12分)如图,点A,B,C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB;(2)如图,过点O作(OE⊥AB于点E,交AC于点 P.若AB=2,∠AOE=30°,求 PE的长.第3章测试卷 圆的基本性质1. B2. C3. B4. B5. C6. A7. D8. A9. C 10. C 11. 6 12. 3 13. 6π14 12 15. π 16. 9017. 解:由 S =12l ⋅R 得 l =2S R =2×106=103π(cm ).18. 解:(1)如图, △A₁B₁C₁即为所求作的三角形.(2)如图, △A₂B₂C₂即为所求作的三角形.19. 解:(1)如图1所示,点 O 即为所求;(2)如图2 所示,取 AB 的中点D ,连结OD 交AB 于点 E,连结OA,则 OD ⊥AB,且AE=EB=4米,由题意得,DE=3米,设圆的半径为r 米,在 Rt△AEO 中, AE +EO²=OA²,即 4²+(r−3)²=r²,解得 r =256.即拱桥AB 所在圆的半径为 256米.20. (1)证明:如图,连结 AD.∵AB 为⊙O 的直径,∴∠ADB=90°,即 AD⊥BC,∵AB=AC,∴BD=CD. (2)解:∵∠BAC= 30°,AB= AC,∴ ∠ABC =12×(180∘−30∘)=75°.∵四边形 ABDE 为圆O 的内接四边形,∴∠EDC=∠BAC=30°.∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠OBP=∠ABC--∠PBC=45°.∵OB =OP,∴∠OPB=∠OBP=45°,∴∠BOP =90°21. 证明:延长CD 交⊙O 于点 H,∵C 是 AE 的中点, ∴AC =CE ,∵CD ⊥AB,∴AC =AH ,∴CE =AH ,∴∠ACD=∠CAE,∴AF=CF.22. 解:(1)△ABC 是等边三角形.理由:∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB =180°−∠BAC−∠ABC =180°− 60°−60°=60°,∴△ABC 是等边三角形. (2)如图,连结OB,∵△ABC 为等边三角形,⊙O 为其外接圆,∴BO 平分∠ABC,∴∠OBC=30°,∵OD ⟂BC,∴BD =CD,BE =CE = 4,∠BOD =60∘,∴OE =433, OB =833.∴OO|的半径长 833.23. (1)证明:如图,连结.AD, ∵⌢BD =DE ,∴∠BAD =∠CAD.又∵AB = AC, ∴AD ⊥ BC, ∴∠ADB=90°,∴AB 为⊙O 的直径. (2)解:∵AB 为⊙O 的直径,∴O 在AB 上,如图,连结OE,∵AB=8,∠BAC=45°,∴∠AOE=∠BOE= ∴1∘∴AB =8,∴BO =EO =4,S 扇形AOE =90×π×42360 =4π,S BOE =12OB 2=12×16=8,∴S 阴影=S BOE24. (1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC,∴∠BAC=∠OAC,即AC 平分∠OAB. (2)解: COE⟂AB,∴AE =BE =12AB =1,又∵∠AOE 、30°,∠PEA=90°,∴∠OAE= 60∘,∴∠EAP =3∠OAE =30∘,∴PE =12PA.设PE=x,则 PA=2x,根据勾股定理得 x²+1²=(2x)²,解得 x =33,∴PE =33.。
浙教版九年级上第3章圆的基本性质综合测评卷(含答案)
第3章综合测评卷一、选择题(每题3分,共30分)1.在Rt△ABC 中,∠C=90°,AC=4cm ,BC=3cm ,D 是AB 边的中点,以点C 为圆心、2.4cm 为半径作圆,则点D 与⊙C 的位置关系是(B ).A.点D 在⊙C 上B.点D 在⊙C 外C.点D 在⊙C 内D.不能确定2.如图所示,点A ,B ,C 在⊙O 上,∠A=50°,则∠BOC 的度数为(D ).A.40°B.50°C.80°D.100°(第2题) (第3题)(第4题)(第5题)3.如图所示,四边形ABCD 内接于⊙O ,AB 经过圆心,∠B=3∠BAC,则∠ADC 等于(B ).A.100°B.112.5°C.120°D.135°4.运用图形变化的方法研究下列问题:如图所示,AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8,则图中阴影部分的面积是(A ).A. 225π B.10π C.24+4π D.24+5π 5.如图所示,在⊙O 中,半径OC 垂直弦AB ,垂足为点D ,且AB=8,OC=5,则CD 的长是(C ).A.3B.2.5C.2D.16.观察下列图片及相应推理,其中正确的是(B ).A. B.C. D.7.如图所示,四边形OABC 是菱形,点B ,C 在以点O 为圆心的上,且∠1=∠2,若扇形EOF 的面积为3π,则菱形OABC 的边长为(C ).A. 23 B.2 C.3 D.4 (第7题)(第8题)(第9题)8.如图所示,正六边形硬纸片ABCDEF 在桌面上由图1的起始位置沿直线不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm ,则正六边形的中心O 运动的路程为(D ).A.πcmB.2πcmC.3πcmD.4πcm9.如图所示,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,B 是的中点.P是直径MN 上一动点,则PA+PB 的最小值为(A ).A. 2B.1C.2D.2210.如图1所示为一张圆形纸片,小芳对其进行了如下连续操作:将纸片左右对折,折痕为AB ,如图2所示;将纸片上下折叠,使A ,B 两点重合,折痕CD 与AB 相交于点M ,如图3所示;将纸片沿EF 折叠,使B ,M 两点重合,折痕EF 与AB 相交于点N ,如图4所示; 连结AE ,AF ,如图5所示.经过以上操作,小芳得到了以下结论:①CD∥EF;②四边形MEBF 是菱形;③△AEF 是等边三角形;④S △AEF ∶S 圆32∶4π.以上结论正确的有(D ).A.1个B.2个C.3个D.4个(第10题)二、填空题(每题4分,共24分)11.一条弦分圆周为5∶7,这条弦所对的圆周角为 75°或105° .12.如图所示,正五边形ABCDE 内接于⊙O,P ,Q 分别是边AB ,BC 上的点,且BP=CQ ,则∠POQ= 72° .(第12题) (第13题)(第15题)13.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小圆孔的宽口AB 的长度为 8 mm .14.在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0),直线y=kx -3k+4与⊙O 交于B ,C 两点,则弦BC 的长的最小值为 24 .15.如图所示,在扇形AOB 中,∠AOB=90°,C 是上的一个动点(不与点A ,B 重合),OD⊥BC,OE⊥AC,垂足分别为点D ,E.若DE=1,则扇形AOB 的面积为 2 . 16.正方形和圆都是人们比较喜欢的图形,给人以美的感受.某校数学兴趣小组在学习中发现:(第16题)(1)如图1所示,研究在以AB 为直径的半圆中,裁剪出面积最大的正方形CDEF 时惊喜地发现,点C 和点F 其实分别是线段AF 和BC 的黄金分割点.如果设圆的半径为r ,此时正方形的边长a 1= 552r .(2)如图2所示,如果在半径为r 的半圆中裁剪出两个同样大小且分别面积最大的正方形的边长a 2= 22r .如图3所示,并列n 个正方形时的边长an= 2r n 241+ . (3)如图4所示,当n=9时,我们还可以在第一层的上面再裁剪出同样大小的正方形,也可以再在第二层的上面再裁剪出第三层同样大小的正方形,则最多可以裁剪到第 5 层.三、解答题(共66分)17.(6分)如图所示,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22 时,求阴影部分的面积. (第17题) (第17题答图)【答案】如答图所示,连结OC.∵在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是的中点,∴∠COD=45°.∴OD=CD =22.∴OC=()()222222+=4.∴S 阴影=S 扇形BOC -S △ODC =36045×π×42-21×(22)2=2π-4. (第18题)18.(8分)如图所示,在平面直角坐标系中,直线l 经过原点O ,且与x 轴正半轴的夹角为30°,点M 在x 轴上,⊙M 半径为2,⊙M 与直线l 相交于A ,B 两点,若△ABM 为等腰直角三角形,求点M 的坐标.【答案】(第18题答图)如答图所示,过点M 作MC⊥l 于点C.∵△MAB 是等腰直角三角形,∴MA=MB.∴∠BAM=∠ABM=45°.∵MC⊥直线l ,∴∠BAM=∠CMA=45°.∴AC=CM.在Rt△ACM 中,∵AC 2+CM 2=AM 2,∴2CM 2=4,即CM =2.在Rt△OCM 中,∠COM=30°,∴OM=2CM =22.∴M(22,0). 根据对称性,在负半轴的点M(-22,0)也满足条件.∴点M 的坐标为(22,0)或(-22,0).19.(8分)赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.若桥跨度AB 约为40m ,主拱高CD 约10m.(1)如图1所示,请通过尺规作图找到桥弧所在圆的圆心O(保留作图痕迹).(2)如图2所示,求桥弧AB 所在圆的半径R.图1图2(第19题) 图1图2(第19题答图)【答案】(1)如答图1所示.(2)如答图2所示,连结OA.由(1)中的作图可知:△AOD 为直角三角形,D 是AB 的中点.∴AD=21 AB=20(m ).∵CD=10m,∴OD=(R -10)m.在Rt△AOD 中,由勾股定理得OA 2=AD 2+OD 2,即R 2=202+(R-10)2,解得R=25.∴桥弧AB 所在圆的半径R 为25m. (第20题)20.(10分)如图所示,△ABC 是⊙O 的内接三角形,C 是上一点(不与点A ,B 重合),设∠OAB=α,∠C=β.(1)当α=35°时,求β的度数.(2)猜想α与β之间的关系,并给予证明.【答案】 (第20题答图)(1)如答图所示,连结OB ,则OA=OB ,∴∠OBA=∠OAB=35°.∴∠AOB=110°.∴β=21∠AOB=55°. (2)α+β=90°.证明:∵OA=OB,∴∠OBA=∠OAB=α.∴∠AOB=180°-2α. ∴β=21∠AOB=90°-α.∴α+β=90°. 21.(10分)如图所示,正方形ABCD 内接于⊙O ,E 为上任意一点,连结DE ,AE. (1)求∠AED 的度数.(2)如图2所示,过点B 作BF∥DE 交⊙O 于点F ,连结AF ,AF=1,AE=4,求DE 的长.图1图2(第21题) 图1图2(第21题答图)【答案】(1)如答图1所示,连结OA ,OD.∵四边形ABCD 是正方形,∴∠AOD=90°.∴∠AED=21 ∠AOD=45°.(2)如答图2所示,连结CF ,CE ,CA ,BD ,过点D 作DH⊥AE 于点H.∵BF∥DE,∴∠FBD=∠EDB. ∵四边形ABCD 是正方形,∴AB∥CD.∴∠ABD=∠CDB.∴∠ABF=∠CDE.∵∠CFA=∠AEC=90°,∴∠DEC=∠AFB=135°.∵CD=AB ,∴△CDE ≌△ABF.∴CE=AF=1.∴AC=22CE AE =17.∴AD=22AC= 234.∵∠DHE=90°,∴∠HDE=∠HED=45°.∴DH=HE.设DH=EH=x.在Rt△ADH 中,∵AD 2=AH 2+DH 2,∴(234)2=(4-x)2+x 2,解得x=23或25.∴DE=2DH=223或225. 22.(12分)已知⊙O 中,AB=AC ,P 是∠BAC 所对弧上一动点,连结PB ,PA .(1)如图1所示,把△ABP 绕点A 逆时针旋转到△ACQ ,求证:P ,C ,Q 三点在同一条直线上.(2)如图2所示,连结PC ,若∠BAC=60°,试探究PA ,PB ,PC 之间的关系,并说明理由.(3)若∠BAC=120°,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出它们之间的数量关系,不需证明.(第22题) 图1图2(第22题答图)【答案】(1)如答图1所示,连结PC.∵把△ABP 绕点A 逆时针旋转到△ACQ,∴∠ABP=∠ACQ. ∵四边形ABPC 为⊙O 的内接四边形,∴∠ABP+∠ACP=180°.∴∠ACQ+∠ACP=180°.∴P,C ,Q 三点在同一条直线上.(2)PA=PB+PC.理由如下:如答图2所示,把△ABP 绕点A 逆时针旋转到△ACQ.∴P,C ,Q 三点在同一条直线上,∠BAP=∠CAQ,AP=AQ ,PB=CQ.∵∠BAC=60°,即∠BAP+∠PAC=60°,∴∠PAC+∠CAQ=60°,即∠PAQ=60°.∴△APQ 为等边三角形.∴PQ=PA.∴PA=PC+CQ=PC+PB.(3)(2)中的结论不成立.3PA=PB+PC.23.(12分)某班学习小组对无盖的纸杯进行制作与探究,所要制作的纸杯如图1所示,规格要求:杯口直径AB=6cm ,杯底直径CD=4cm ,杯壁母线AC=BD=6cm.请你和他们一起解决下列问题:(1)小顾同学先画出了纸杯的侧面展开示意图(如图2所示,忽略拼接部分),得到图形是圆环的一部分.①图2中的长为 6πcm ,的长为 4πcm ,ME=NF= 6cm .②要想准确画出纸杯侧面的设计图,需要确定MN 所在圆的圆心O ,如图3所示.小顾同学发现之间存在以下关系:,请你帮她证明这一结论.③根据②中的结论,求所在圆的半径r 及它所对的圆心角的度数n°.(2)小顾同学计划利用矩形、正方形纸各一张,分别按如图4、图5所示的方式剪出这个纸杯的侧面,求矩形纸片的长和宽以及正方形纸片的边长.(第23题)【答案】(1)6πcm 4πcm 6cm②设MN 所在圆的半径为r ,所对的圆心角度数为n°,则, ∴.③∵,解得r=12.∵=180r n π,∴180r n π=4π, 解得n=60.∴所在圆的半径r 为12cm ,它所对的圆心角的度数为60°.(2)如答图所示,连结EF ,延长EM ,FN 交于点O ,。
浙教版九年级上册同步检测试卷(含答案)卷十:圆的基本性质(综合A,含答案)
浙教版初中九年级同步检测卷(含答案)卷十:圆的基本性质(综合A)一、选择题(每小题3分,共30分)1.在直角坐标系中,以原点O 为圆心,5为半径的⊙O 与点P (3,4)的位置关系是……( ) A .P 在⊙O 内 B .P 在⊙O 外 C .P 在⊙O 上 D .无法确定 2.⊿ABC 的外心在三角形内部,则⊿ABC 的形状是…… ( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 3.圆内接平行四边形一定是…… ( )A .矩形B .正方形C .菱形D .无法确定 4.下列结论正确的是…… ( )A .长度相等的两条弧是等弧B .度数相等的两条弧是等弧C .垂直平分弦的直线必经过圆心D .平分弦的直径必垂直于弦 5.如图,A ,B ,C 在⊙O 上,且∠AOB =100°,则∠ACB 的度数是…… ( ) A .80° B .100° C .120° D .130°6. 如图所示,圆O 的弦AB 垂直平分半径OC .则四边形OACB 的形状是( ) A .正方形 B .长方形 C .菱形 D .以上答案都不对7. 如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内,则∠APB 等于……( ) A .30° B .45° C .60° D .90°8. 圆内接四边形ABCD 中,∠A ∶∠B ∶∠C ∶∠D 可以是……()C第5题图 第7题图第9题图第6题图AA .1∶2∶3∶4B .1∶3∶2∶4C .4∶2∶3∶1D .4∶2∶1∶39.如图,在△ABC 中,∠BAC =90,AB =AC =2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为 ……( )A .1B .2C .1+4πD .2-4π 10.如图,格点⊿BCD 绕某一点旋转一个角度后得到'''B C D ∆,则旋转的角度为……( )A .30°B .45°C .90°D .135°二、填空题(每小题4分,共24分)11.已知AB 所对的圆心角为60°,则AB 所对的圆周角的度数为 °.12. 如图,AB 是⊙O 的直径,AC 是弦,若∠ACO = 32°,则∠COB 的度数等于 °.13.如图,A 、B 、C 是⊙O 的三点,∠AOC =40°,则∠ABC 的大小是 °.14. 如图,AB 是⊙O 的直径,点C ,D 都在⊙O 上,连结CA ,CB ,DC ,DB .已知∠D =30°,BC =3,则AB 的长是 .15.在直角坐标系中,以P 为圆心的圆弧与x 轴交于A ,B 两点,若P (10,5),A (6,0).则点B 的坐标为 . 16.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为 .三、解答题(共46分)第16题图BOA 第12题图第14题图第15题图第10题图第13题图17.(本题6分)在原图中作出⊿ABC 的外接圆.18.(本题6分)已知:如图,在⊙O 中,弦AB =CD .求证:∠AOC =∠BOD .19.(本题6分)如图,⊙O 是△ABC 的外接圆,∠A =45°,BD 是直径,且BD =2,连接CD ,求BC 的长.第18题图20.(本题6分) 如图所示,⊙O 的直径AB 和弦CD 交于E ,已知AE =6cm ,EB =2cm ,∠CEA =30°,求CD 的长.21.(本题6分)如图,BC 为⊙O 的直径,AD ⊥BC ,垂足为D .AB 等于AF ,BF 和AD 相交于E .证明:AE =BE .BCD第21题图AD22.(本题8分)如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上点F 处,点C 落在点A 处.再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG . (1)求证:EF ∥CG ;(2)求点C ,点A 在旋转过程中形成的AC ,AG 与线段CG 所围成的阴影部分的面积.23.(本题8分)如图,已知△ ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于点E ,F 是OE 上的一点,使CF ∥ BD . (1)求证:BE =CE ;(2)试判断四边形BFCD 的形状,并说明理由; (3)若BC =8,AD =10,求CD 的长.附加题(本题10分)如图,OA,OB是⊙O的半径,OA=2且∠AOB=120°.(1)点O到弦AB的距离为;(2)若点P为优弧AB上一动点(点P不与A、B重合),设∠ABP=α,将△ABP沿BP折叠,得到A点的对称点为A′;①若∠α=30°,试判断点A′与⊙O的位置关系;②若线段BA′与优弧APB只有一个公共点,直接写出α的取值范围.参考答案一、选择题二、填空题11.3012.6413.1 2π14.615.(14,0)16.三、解答题17.略18.利用圆心角定理证明20.(1)可证BC平分∠ABD,再得到角相等;(2)此时CD∥OB,四边形OBDC首先是平行四边形,又邻边相等,∴四边形OBDC是菱形21.可证BAE ABE∠=∠折可知:∠P A′B=90°,∴点A′在⊙O上.②α的取值范围为0°<α<30°或60°≤α<120°.。
2019秋浙教版数学九年级上册同步测试试题:微专题8 圆周角定理的综合运用
微专题8圆周角定理的综合运用【思想方法】利用直径构造90°的圆周角;利用圆周角实现图形中角的等量转换.一.巧作辅助线求角度和线段的长度1.如图1,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为(B)图1A.15° B.18°C.20° D.28°2.如图2,AB是⊙O的直径,∠D=20°.求∠BAC的度数.图2 第2题答图解:如答图,连结BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠D=20°,∴∠B=20°,∴∠BAC =90°-∠B =70°.二.圆周角定理与等腰三角形的综合3.如图3,BC 是半圆O 的直径,AD ⊥BC 于D ,BA ︵=AF ︵,BF 与AD 交于E .求证:图3(1)∠BAD =∠ACB ;(2)AE =BE .证明:(1)∵BC 是⊙O 的直径,∴∠BAC =90°,∴∠BAD +∠CAD =90°,又AD ⊥BC ,∴∠ACB +∠CAD =90°,∴∠BAD =∠ACB ;(2)∵BA ︵=AF ︵,∴∠ACB =∠ABF ,∵∠BAD =∠ACB ,∴∠ABF =∠BAD ,∴AE =BE .三.圆周角定理与垂径定理的综合4.如图4,AB是半圆O的直径,点C,D是圆上两点,且OD∥AC,OD与BC 交于点E.图4(1)求证:E为BC的中点;(2)若BC=8,DE=3,求AB的长度.解:(1)证明:∵AB是半圆O的直径,∴∠C=90°,∵OD∥AC,∴∠OEB=∠C=90°,∴OD⊥BC,∴BE=CE,∴E为BC的中点;(2)设⊙O的半径为x,则OB=OD=x,OE=x-3,∵BE=12BC=4,在Rt△BOE中,OB2=BE2+OE2,∴x2=42+(x-3)2,解得x=256,∴AB=2x=253.。
浙教版九年级上册同步检测卷(含答案)卷十:圆的基本性质(综合A,含答案)
浙教版初中九年级同步检测卷(含答案)卷十:圆的基本性质(综合A)一、选择题(每小题3分,共30分)1.在直角坐标系中,以原点O 为圆心,5为半径的⊙O 与点P (3,4)的位置关系是……( ) A .P 在⊙O 内 B .P 在⊙O 外 C .P 在⊙O 上 D .无法确定 2.⊿ABC 的外心在三角形内部,则⊿ABC 的形状是…… ( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 3.圆内接平行四边形一定是…… ( )A .矩形B .正方形C .菱形D .无法确定 4.下列结论正确的是…… ( )A .长度相等的两条弧是等弧B .度数相等的两条弧是等弧C .垂直平分弦的直线必经过圆心D .平分弦的直径必垂直于弦 5.如图,A ,B ,C 在⊙O 上,且∠AOB =100°,则∠ACB 的度数是…… ( ) A .80° B .100° C .120° D .130°6. 如图所示,圆O 的弦AB 垂直平分半径OC .则四边形OACB 的形状是( ) A .正方形 B .长方形 C .菱形 D .以上答案都不对7. 如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内,则∠APB 等于……( ) A .30° B .45° C .60° D .90°8. 圆内接四边形ABCD 中,∠A ∶∠B ∶∠C ∶∠D 可以是……()C第5题图 第7题图第9题图第6题图AB CA .1∶2∶3∶4B .1∶3∶2∶4C .4∶2∶3∶1D .4∶2∶1∶39.如图,在△ABC 中,∠BAC =90,AB =AC =2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为 ……( )A .1B .2C .1+4πD .2-4π 10.如图,格点⊿BCD 绕某一点旋转一个角度后得到'''B C D ∆,则旋转的角度为……( )A .30°B .45°C .90°D .135°二、填空题(每小题4分,共24分)11.已知AB 所对的圆心角为60°,则AB 所对的圆周角的度数为 °.12. 如图,AB 是⊙O 的直径,AC 是弦,若∠ACO = 32°,则∠COB 的度数等于 °.13.如图,A 、B 、C 是⊙O 的三点,∠AOC =40°,则∠ABC 的大小是 °.14. 如图,AB 是⊙O 的直径,点C ,D 都在⊙O 上,连结CA ,CB ,DC ,DB .已知∠D =30°,BC =3,则AB 的长是 .15.在直角坐标系中,以P 为圆心的圆弧与x轴交于A ,B 两点,若P (10,5),A (6,0).则点B 的坐标为 . 16.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为 .三、解答题(共46分)第16题图BOA 第12题图第14题图第15题图第10题图第13题图17.(本题6分)在原图中作出⊿ABC 的外接圆.18.(本题6分)已知:如图,在⊙O 中,弦AB =CD .求证:∠AOC =∠BOD .19.(本题6分)如图,⊙O 是△ABC 的外接圆,∠A =45°,BD 是直径,且BD =2,连接CD ,求BC 的长.第18题图20.(本题6分) 如图所示,⊙O 的直径AB 和弦CD 交于E ,已知AE =6cm ,EB =2cm ,∠CEA =30°,求CD 的长.21.(本题6分)如图,BC 为⊙O 的直径,AD ⊥BC ,垂足为D .AB 等于AF ,BF 和AD 相交于E .证明:AE =BE .BCD第21题图AD22.(本题8分)如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上点F 处,点C 落在点A 处.再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG . (1)求证:EF ∥CG ;(2)求点C ,点A 在旋转过程中形成的AC ,AG 与线段CG 所围成的阴影部分的面积.23.(本题8分)如图,已知△ ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于点E ,F 是OE 上的一点,使CF ∥ BD . (1)求证:BE =CE ;(2)试判断四边形BFCD 的形状,并说明理由; (3)若BC =8,AD =10,求CD 的长.附加题(本题10分)如图,OA,OB是⊙O的半径,OA=2且∠AOB=120°.(1)点O到弦AB的距离为;(2)若点P为优弧AB上一动点(点P不与A、B重合),设∠ABP=α,将△ABP沿BP折叠,得到A点的对称点为A′;①若∠α=30°,试判断点A′与⊙O的位置关系;②若线段BA′与优弧APB只有一个公共点,直接写出α的取值范围.参考答案一、选择题二、填空题11.3012.6413.1 2π14.615.(14,0)16.三、解答题17.略18.利用圆心角定理证明20.(1)可证BC平分∠ABD,再得到角相等;(2)此时CD∥OB,四边形OBDC首先是平行四边形,又邻边相等,∴四边形OBDC是菱形21.可证BAE ABE∠=∠折可知:∠P A′B=90°,∴点A′在⊙O上.②α的取值范围为0°<α<30°或60°≤α<120°.。
浙教版九年级上册数学同步检测卷九:圆的基本性质3.6~3.8(含答案)
浙教版初中九年级同步检测卷(含答案)卷九:圆的基本性质(3.6~3.8)一、选择题(每小题3分,共30分)1. 如图,A ,B ,C ,D 在⊙O 上,若∠D =70°,则∠B 的度数是…… ( ) A .70° B .90° C .110° D .130° 2. 平行四边形的四个顶点在同一圆上,则该平行四边形一定是( ) A .正方形 B .菱形 C .矩形 D .以上都不是 3.一个多边形的每一个外角都等于45°,则这个多边形的边数是…… ( ) A .6 B .8 C .10 D .124. 如图,CA 和CE 是正六形ABCDEF 的对角线,则∠ACE 的大小是…… ( ) A .50° B .60° C .70° D .80° 5. 已知⊙O 的内接正六边形周长为36cm ,则这个圆的半径是( ) A .3cm B .6cm C .9cm D .12cm6. 弦心距为4 ,弦长为8 的弦所对的劣弧长是……( ) A . 8π B . 4π C .D.7. 如图,AB 为半圆O 的直径,C 是半圆上一点,且∠COA =60°,设扇形AOC 、△COB 、弓形BmC 的面积为S 1、S 2、S 3,则它们之间的关系是( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 1<S 3<S 2D .S 3<S 2<S 18. 如图,一把折扇展开后是一个扇形,其中圆心角为120°,OB =2,AB =3,则折扇纸面部分的面积第1题图为( )A .1B .πC .7D .7π9. 如图,扇形AOB 的半径为1,∠AOB =90°,以AB 为直径画半圆,则图中阴影部分的面积为( ) A .14π B .12π- C .12 D .1142π+10. 如图,在扇形OAB 中,∠AOB =90°,点C 是AB 上的一个动点(不与A ,B 重合),OD ⊥BC ,OE ⊥AC ,垂足分别为D ,E .若DE =1,则扇形OAB 的面积为( ) A .2πB .23πC .πD .2π二、填空题(每小题3分,共18分) 11.半径为6cm 的半圆的弧长为 cm .12. 扇形的弧长是12πcm ,其圆心角是90°,则扇形的扇形的面积是 cm 2. 13.已知弧长公式是180n rl π=,若已知弧长l 和半径r ,则求圆心角的公式是 . 14.AB 是一个正n 边形的一条边,O 是正多边形外接圆的圆心,若⊿AOB 的一个内角等于 70°,则n = .15. 如图,以正三角形ABC 的AB 边为直径画⊙O ,分别交AC ,BC 于点D , E , AB =6cm , 则DE 的长是 .16.如图,半圆O 的直径AB =2,弦CD ∥AB ,∠COD =90°,则图中阴影部分的面积为 .第15题图第10题图第9题图第16题图三、解答题(共52分)17.(本题6分)一个扇形的圆心角为100°,弧长为10cm ,求这个扇形的面积.18.(本题6分)如图,在正方形网格图中建立直角坐标系,一条圆弧经过网格点A 、B 、C ,圆弧所在圆的圆心为点D .(1)请在图中确定D 点的位置,D 点坐标为 ; (2)连接AD 、CD ,求∠DAC 的大小.19.(本题6分)如图,将一个含有45°且直角边为1的三角板绕顶点C 顺时针旋转135°,求⊿ABC 在旋转过程中扫过的区域的面积.第19题图20.(本题8分)如图,矩形ABCD中,AB=1,BC=2,以点B为圆心,BC长为半径的圆交BA的延长线于点E,求图中阴影部分面积.21.(本题8分)在⊿ABC中,AB=4cm,∠A=30°,∠B=45°,以点A为圆心,AC长为半径画弧分别与AB和BC交于点E和点F.(1)求BE的长;(2)求CF的长.CAB第21题图第20题图22.(本题8分) 已知:如图,AB 为O ⊙的直径,AB AC BC =,交O ⊙于点D ,AC 交O ⊙ 于点45E BAC ∠=,°. (1)求EBC ∠的大小; (2)求证:BD CD =.23.(本题10分) 如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点P 在⊙O 上,PB 与CD 交于点F ,∠PBC =∠C . (1)求证:CB ∥PD ;(2)若∠PBC =22.5°,⊙O 的半径R =2,求劣弧AC 的长度.第22题图附加题(本题10分)如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.AC⊥OA与大圆相交于点D,且CO平分∠ACB.(1)求证:点O到直线BC的距离等于OA;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π)参考答案一、选择题二、填空题:11.6π12.144π13.180lr rπ= 14.9 15.π16.14π 三、解答题 17. 118,902r S lr π=== 18. (1)图略;D (2,0)(2)作CE ⊥x 轴,垂足为E .∵△AOD ≌△DEC ,∴∠OAD =∠CDE ,又∵∠OAD +∠ADO =90°,∴∠CDE +∠ADO =90°,∴扇形DAC 的圆心角为90°;19.3+42π20. 23S π=21.(1)73π;(2)过A 作AH ⊥BC 于H ,则BH =FH =而BC =∴CF ==22.(1) 22.5︒;(2)连接AD ,则AD ⊥BC . ∵AB =AC ∴BD =CD24.(1)过O 作OH ⊥BC ,利用全等证明; (2)BC =AC +AD(3)由勾股定理得AC =6,∴CH =6,BH =4,由(2)知AD =4.而圆环的面积为22()R r π-= 2AD π= 16π。
2019年浙教新版九年级上册数学《第3章圆的基本性质》单元测试卷(解析版)
2019年浙教新版九年级上册数学《第3章圆的基本性质》单元测试卷一.选择题(共10小题)1.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°2.如图,⊙O的半径为5,圆心O到弦AB的距离为3,则AB的长为()A.4B.5C.6D.83.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,点D是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A.25m B.24m C.30m D.60m4.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()A.1B.2C.3D.45.⊙O的弦AB等于半径,那么弦AB所对的圆周角一定是()A.30°B.150°C.30°或150°D.60°6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移7.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68°B.20°C.28°D.22°8.如图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()A.B.C.D.9.如图,将△ABC绕点B(0,1)旋转180°得到△A1BC1,设点C的坐标为(m,n),则点C1的坐标为()A.(﹣m,﹣n﹣2)B.(﹣m,﹣n﹣1)C.(﹣m,﹣n+1)D.(﹣m,﹣n+2)10.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A.B.C.D.二.填空题(共8小题)11.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长是.12.在⊙O中,弦AB=24cm,圆心O到弦AB的距离为5cm,则⊙O的半径为cm.13.某居民区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图,污水水面宽度为60cm,水面到管道顶部距离为10cm,则修理人员应准备cm内径的管道(内径指内部直径).14.如图,⊙C经过原点且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°.⊙C的半径和圆心C的坐标分别是,.15.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了.16.如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转一定角度后得△EDC,点D在AB边上,斜边DE交AC于点F,则图中阴影部分面积为.17.等边三角形至少旋转度才能与自身重合.18.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.三.解答题(共8小题)19.如图:A、B、C是⊙O上的三点,∠AOB=50°,∠OBC=40°,求∠OAC的度数.20.如图,AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连结AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=2cm,CD=8m,求⊙O的直径.21.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB 为⊙O的直径,弦CD⊥AB于点E,AE=1寸,CD=10寸,求直径AB的长.请你解答这个问题.22.如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.23.(1)计算:+﹣2﹣1;(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是;在前16个图案中有个;第2008个图案是.24.已知:点P是正方形内一点,△ABP旋转后能与△CBE重合.(1)△ABP旋转的旋转中心是什么?旋转了多少度?(2)若BP=2,求PE的长.25.如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?26.如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4﹣b)与点Q(2a,2b﹣3)也是通过上述变换得到的对应点,求a、b的值.2019年浙教新版九年级上册数学《第3章圆的基本性质》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°【分析】首先由AD∥OC可以得到∠AOC=∠DAO,又由OD=OA得到∠ADO=∠DAO,由此即可求出∠AOD的度数.【解答】解:∵AD∥OC,∴∠AOC=∠DAO=70°,又∵OD=OA,∴∠ADO=∠DAO=70°,∴∠AOD=180﹣70°﹣70°=40°.故选:D.【点评】此题比较简单,主要考查了平行线的性质、等腰三角形的性质,综合利用它们即可解决问题.2.如图,⊙O的半径为5,圆心O到弦AB的距离为3,则AB的长为()A.4B.5C.6D.8【分析】过O作OC⊥AB于C,连接OA,关键勾股定理求出AC长,根据垂径定理得出AB=2CA,代入求出即可.【解答】解:过O作OC⊥AB于C,连接OA,则OC=3,OA=5,由勾股定理得:AC==4,∵OC⊥AB,OC过圆心O,∴AB=2AC=8,故选:D.【点评】本题考查了勾股定理和垂径定理等知识点的应用,关键是①正确作辅助线,②求出AC的长,题目比较典型,难度不大.3.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,点D是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A.25m B.24m C.30m D.60m【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.【解答】解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m故选:A.【点评】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度.4.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()A.1B.2C.3D.4【分析】如图连接OB、OD,只要证明Rt△OMB≌Rt△OND,Rt△OPM≌Rt△OPN即可解决问题.【解答】解:如图连接OB、OD;∵AB=CD,∴=,故①正确∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正确,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正确,∵AM=CN,∴PA=PC,故③正确,故选:D.【点评】本题考查垂径定理、圆心角、弧、弦的关系、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.5.⊙O的弦AB等于半径,那么弦AB所对的圆周角一定是()A.30°B.150°C.30°或150°D.60°【分析】先由弦和两条半径得到等边三角形,则弦所对的圆心角为60度,要求这条弦所对的圆周角分两种情况:圆周角的顶点在弦所对的劣弧或优弧上,利用圆周角定理和圆内接四边形的性质即可求出两种类型的圆周角.【解答】解:如图,AB为⊙O的弦,且AB=OA,则△ABO为等边三角形,∴∠AOB=60°,∴∠P=30°,∴∠P′=180°﹣∠P=180°﹣30°=150°.∠P、∠P′都是弦AB所对的圆周角.所以圆的弦长等于半径,则这条弦所对的圆周角是30°或150°.故选:C.【点评】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了一条弦所对的圆周角有两种情形:圆周角的顶点在弦所对的劣弧或优弧上.6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【分析】根据旋转和平移的性质即可解答.【解答】解:屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,可以先逆时针旋转90°,再向左平移.故选:A.【点评】本题结合游戏,考查了旋转和平移的性质:(1)旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.(2)平移的性质:①对应点之间的连线平行且相等,对应角相等,对应线段平行且相等;②平移方向为前后对应点射线的方向,距离为对应点之间线段的长度;③平移前后图形的形状与大小都没有发生变化,即为全等形.7.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68°B.20°C.28°D.22°【分析】先根据矩形的性质得∠BAD=∠ABC=∠ADC=90°,再根据旋转的性质得∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,然后根据四边形的内角和得到∠3=68°,再利用互余即可得到∠α的大小.【解答】解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,∵∠2=∠1=112°,而∠ABC=∠D′=90°,∴∠3=180°﹣∠2=68°,∴∠BAB′=90°﹣68°=22°,即∠α=22°.故选:D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.如图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()A.B.C.D.【分析】根据旋转对称图形的概念解答.【解答】解:A.此图案绕中心旋转36°或36°的整数倍能与原来的图案重合,此选项不符合题意;B.此图案绕中心旋转45°或45°的整数倍能与原来的图案重合,此选项符合题意;C.此图案绕中心旋转60°或60°的整数倍能与原来的图案重合,此选项不符合题意;D.此图案绕中心旋转72°或72°的整数倍能与原来的图案重合,此选项不符合题意;故选:B.【点评】本题主要考查旋转对称图形,解题的关键是掌握如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.9.如图,将△ABC绕点B(0,1)旋转180°得到△A1BC1,设点C的坐标为(m,n),则点C1的坐标为()A.(﹣m,﹣n﹣2)B.(﹣m,﹣n﹣1)C.(﹣m,﹣n+1)D.(﹣m,﹣n+2)【分析】利用中点坐标公式计算即可.【解答】解:设C1(x,y),由题意:BC=BC1,∴=0,=1,∴x=﹣m,y=2﹣n,∴C1(﹣m,2﹣n),故选:D.【点评】本题考查坐标与图形的变化﹣旋转,中点坐标公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A.B.C.D.【分析】根据旋转的性质,△AOB绕点O旋转180°得到△DOE,点A与点D、B与E 关于点O成中心对称解答.【解答】解:∵△AOB绕点O旋转180°得到△DOE,∴作图正确是C选项图形.故选:C.【点评】本题考查了利用旋转变换作图,熟记旋转的性质,判断出对应点关于点O对称是解题的关键.二.填空题(共8小题)11.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长是10.【分析】先连接OC,在Rt△ODC中,根据勾股定理得出OC的长,即可求出AB的长.【解答】解:连接OC,∵CD=4,OD=3,在Rt△ODC中,∴OC===5,∴AB=2OC=10,故答案为:10.【点评】此题考查了圆的认识,解题的关键是根据勾股定理求出圆的半径,此题较简单.12.在⊙O中,弦AB=24cm,圆心O到弦AB的距离为5cm,则⊙O的半径为13cm.【分析】先画图,由于OC⊥AB,根据垂径定理可知AC=BC=AB=12,再利用勾股定理易求OA.【解答】解:如图所示,O到弦AB的距离为OC,连接OA,∵OC⊥AB,∴AC=BC=AB=12,在Rt△AOC中,OA===13.故答案是13.【点评】本题考查了垂径定理、勾股定理,解题的关键是求出AC(知道垂直于弦的直径平分弦).13.某居民区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图,污水水面宽度为60cm,水面到管道顶部距离为10cm,则修理人员应准备100cm内径的管道(内径指内部直径).【分析】连接OA作弦心距,就可以构造成直角三角形.设出半径弦心距也可以得到,利用勾股定理就可以求出了.【解答】解:如图,过O作OC⊥AB于C,连接AO,∴AC=AB=×60=30,CO=AO﹣10,在Rt△AOC中,AO2=AC2+OC2,AO2=302+(AO﹣10)2,解得AO=50cm.∴内径为2×50=100cm.故答案为:100.【点评】考查了垂径定理的应用和勾股定理,本题的难点在于构造出直角三角形,内径指的是直径,这一点学生可能会出错.14.如图,⊙C经过原点且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°.⊙C的半径和圆心C的坐标分别是4,(,2).【分析】连接AB,OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BCO及∠BAO的度数,由直角三角形的性质可求出∠ABO的度数,再根据等腰三角形的性质及等边三角形的判定定理即可求出⊙C的半径;由△AOB是直角三角形可求出OB的长,过O作OD⊥OB于D,由垂径定理可求出OD的长,进而得出D点的坐标,再根据直角三角形的性质可求出CD的长,从而求出C点坐标.【解答】解:连接AB,OC,∵∠AOB=90°,∴AB为⊙C的直径,∵∠BMO=120°,∴∠BCO=120°,∠BAO=60°,∵AC=OC,∠BAO=60°,∴△AOC是等边三角形,∴⊙C的半径=OA=4;过C作CD⊥OB于D,则OD=OB,∵∠BAO=60°,∴∠ABO=30°,∴OD===2,CD=BC=×4=2,∴D点坐标为(﹣2,0),∴C点坐标为(﹣2,2).故答案为:4,C(﹣2,2).【点评】本题考查的是圆心角、弧、弦的关系及圆周角定理、直角三角形的性质、坐标与图形的性质及特殊角的三角函数值,根据题意画出图形,作出辅助线,利用数形结合求解是解答此题的关键.15.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了120°.【分析】钟表的分针匀速旋转一周需要60分,分针旋转了360°;求经过20分,分针的旋转度数,列出算式,解答出即可.【解答】解:根据题意得,×360°=120°.故答案为:120°.【点评】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.16.如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转一定角度后得△EDC,点D在AB边上,斜边DE交AC于点F,则图中阴影部分面积为.【分析】先根据已知条件求出AC的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判断出DF是△ABC的中位线,由三角形的面积公式即可得出结论.【解答】解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AB=2BC=4,AC=2,∵△EDC是△ABC旋转而成,∴BC =CD =BD =AB =2,∵∠B =60°,∴△BCD 是等边三角形,∴∠BCD =60°,∴∠DCF =30°,∠DFC =90°,即DE ⊥AC ,∴DE ∥BC ,∵BD =AB =2,∴DF 是△ABC 的中位线,∴DF =BC =×2=1,CF =AC =×2=,∴S 阴影=DF ×CF =×=. 【点评】考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等. 17.等边三角形至少旋转 120 度才能与自身重合.【分析】等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.【解答】解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,所以,旋转角为360°÷3=120°,故至少旋转120度才能与自身重合.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.18.如图,在平面直角坐标系xOy 中,直线y =x 经过点A ,作AB ⊥x 轴于点B ,将△ABO 绕点B 逆时针旋转60°得到△CBD ,若点B 的坐标为(2,0),则点C 的坐标为 (﹣1,) .【分析】在RT△AOB中,求出AO的长,根据旋转的性质可得AO=CD=4、OB=BD、△OBD是等边三角形,进而可得RT△COE中∠COE=60°、CO=2,由三角函数可得OE、CE.【解答】解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).【点评】本题主要考查在旋转的情况下点的坐标变化,熟知旋转过程中图形全等即对应边相等、对应角相等、旋转角都相等的应用是解题的切入点也是关键.三.解答题(共8小题)19.如图:A、B、C是⊙O上的三点,∠AOB=50°,∠OBC=40°,求∠OAC的度数.【分析】由,∠AOB=50°,∠OBC=40°,再利用圆周角定理求出∠BCA,然后由三角形的内角和得到∠OAC.【解答】解:∵OB=OC∴∠OCB=∠OBC=40°(2分)∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣40°﹣40°=100°(3分)∴∠AOC=∠AOB+∠BOC=50°+100°=150°(4分)又∵OA=OC∴∠OAC==15°(6分)【点评】本题考查了圆的有关定义及三角形的内角和定理,解题的关键是能够利用好圆周角定理,难度不大.20.如图,AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连结AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=2cm,CD=8m,求⊙O的直径.【分析】(1)根据垂径定理得出弧BC=弧BD,根据圆周角定理得出∠BCD=∠CAB,根据等腰三角形的性质得出∠CAB=∠ACO,即可得出答案;(2)根据垂径定理求出CE,根据勾股定理求出BC,证△BCE和△BCA相似得出比例式,代入即可求出答案.【解答】(1)证明:∵AB⊥CD,AB过O,∴弧BC=弧BD,∴∠BCD=∠CAB,∵OA=OC,∴∠CAB=∠ACO,∴∠ACO=∠BCD;(2)解:∵AB⊥CD,AB过O,CD=8m,∴CE=DE=4m,在Rt△CEB中,由勾股定理得:BC==2(m),∵AB为直径,AB⊥CD,∴∠BCA=∠CEB=90°,∵∠B=∠B,∴△BEC∽△BCA,∴=,∴BA===10(m),即⊙O的直径是10m.【点评】本题考查了相似三角形的性质和判定,圆周角定理,垂径定理,等腰三角形性质,勾股定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.21.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB 为⊙O的直径,弦CD⊥AB于点E,AE=1寸,CD=10寸,求直径AB的长.请你解答这个问题.【分析】连接OC,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD 的长求出DE的长,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得出方程,解方程求出半径,即可得出直径AB的长.【解答】解:如图所示,连接OC.∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得:x=13,∴AB=26寸,即直径AB的长为26寸.【点评】此题考查了垂径定理,勾股定理;解答此类题常常利用垂径定理由垂直得中点,进而由弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理来解决问题.22.如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.【分析】(1)由AB=CD知=,即+=+,据此可得答案;(2)由=知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【解答】证明(1)∵AB=CD,∴=,即+=+,∴=;(2)∵=,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点评】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.23.(1)计算:+﹣2﹣1;(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是;在前16个图案中有5个;第2008个图案是.【分析】(1)根据绝对值,二次根式的性质化简原式,可得答案;(2)分析可得,图形三个一组,且依次循环;10除3的余数为1,2008除3的余数为1,故第10个图案与第2008个图案相同,都是第一个图案,即;在前16个图案中有共5组,第六组只有第一个图案;故在前16个图案中有5个.【解答】解:(1)原式==2;(2)根据分析,知应分别为,5,.【点评】本题考查代数式的化简及根据图形找规律的方法.24.已知:点P是正方形内一点,△ABP旋转后能与△CBE重合.(1)△ABP旋转的旋转中心是什么?旋转了多少度?(2)若BP=2,求PE的长.【分析】(1)根据正方形的性质得BA=BC,∠ABC=90°,然后根据旋转的性质求解;(2)根据旋转的性质得BP=BE=2,∠PBE=90°,然后根据等腰直角三角形的性质求解.【解答】解:(1)∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,∵△ABP旋转后能与△CBE重合,∴△ABP旋转的旋转中心是点B,按顺时针方向旋转90°;(2)∵△ABP旋转后能与△CBE重合,∴BP=BE=2,∠PBE=90°,∴PE=PB=2.答:(1)△ABP旋转的旋转中心是点B,按顺时针方向旋转90°;(2)PE为2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.25.如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?【分析】(1)要证明∠B=∠C,可以证明它们所在的三角形全等,即证明△ABE≌△ACD;已知两边和它们的夹角对应相等,由SAS即可判定两三角形全等.(2)因为△ABE≌△ACD,公共点A,对应线段CD与BE相交,所以要通过旋转,翻折两次完成.【解答】(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.【点评】本题主要考查全等三角形的判定方法.证明全等寻找条件时,要善于观察题目中的公共角,公共边.26.如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4﹣b)与点Q(2a,2b﹣3)也是通过上述变换得到的对应点,求a、b的值.【分析】(1)根据点的位置,直接写出点的坐标;(2)根据(1)中发现的规律,两点的横坐标、纵坐标都互为相反数,即横坐标的和为0,纵坐标的和为0,列方程,求a、b的值.【解答】解:(1)由图象可知,点A(2,3),点D(﹣2,﹣3),点B(1,2),点E(﹣1,﹣2),点C(3,1),点F(﹣3,﹣1);对应点的坐标特征为:横坐标、纵坐标都互为相反数;(2)由(1)可知,a+3+2a=0,4﹣b+2b﹣3=0,解得a=﹣1,b=﹣1.【点评】本题考查了坐标系中点的坐标确定方法,对应点的坐标特征.关键是通过观察发现规律,列方程求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对点专题提升5——圆的性质的综合运用(教材P93作业题第6题)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是弧AC上任意一点,连结AD,GD.找出图中和∠ADC相等的角,并给出证明.(教材母题图)解:∠G=∠ADC,证明:连结AC,∵AB是圆O的直径,弦CD⊥AB,︵=AD︵,∴AB垂直平分CD,∴AC∴∠G=∠ADC.垂径定理、圆心角定理圆周角定理的综合运用1.[金华校级期中]如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,则CD的长为(C)(第1题图) A.2 2 B.4C.4 2 D.8解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=22OC=22,∴CD=2CE=4 2.2.[嘉兴校级期中]如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为(C)A.95 B.215 C.185 D.52(第2题图) 第2题答图解:过C作CM⊥AB,交AB于点M,如答图所示,∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB =AC 2+BC 2=5,∵CM ⊥AB ,∴M 为AD 的中点,∵S △ABC =12AC ·BC =12AB ·CM ,且AC =3,BC =4,AB =5,∴CM =125,在Rt △ACM 中,AC 2=AM 2+CM 2,即32=AM 2+⎝ ⎛⎭⎪⎫1252,解得AM =95,∴AD =2AM =185.3.[杭州余杭区期末]如图,已知⊙O 的半径为10,AB ⊥CD ,垂足为P ,且AB =CD =16,则OP 的长为( B )(第3题图)A .6B .62C .8D .82【解析】 作OM ⊥AB 于M ,ON ⊥CD 于N ,连结OB ,OD , ∵AB =CD =16,∴BM =DN =8,∴OM =ON =102-82=6,∵AB ⊥CD ,OM ⊥AB ,ON ⊥CD , ∴四边形MONP 是正方形,∴OP =62+62=6 2.故选B.4.[金华校级期中]如图,已知⊙O 是等腰直角三角形ABC 的外接圆,点D 是AC ︵上一点,BD 交AC 于点E ,若BC =4,AD =45,则AE 的长是( C )(第4题图)A .3B .2C .1D .1.2解:在等腰直角三角形ABC 中,BC =4, ∴AB 是⊙O 的直径,AC =4,∴∠D =90°, ∵∠D =∠C ,∠DAC =∠CBE , ∴△ADE ∽△BCE ,∴AE BE =AD BC =15,即BE =5AE ,在Rt △BCE 中,CE 2+BC 2=BE 2,即(4-AE )2+42=(5AE )2,解得AE =1.5.[杭州西湖区校级期中]有一座圆弧形的拱桥,桥下水面宽24 m ,拱顶高出水平面8 m ,现有一货船,送一箱货欲从桥下经过,已知货箱(货箱底与水平面持平)宽10 m ,至多能载货物的高为( D ) A .4 m B .5 m C .6 mD .7 m解:如答图,AB ︵表示桥拱,AB =24 m ,CD =8 m ,EF =10 m ,D 为AB ,EF 的中点,且CD ,ME ,NF 均垂直于AB ,第5题答图设AB ︵所在圆的圆心为O ,连结OA ,ON ,设OA =R , 则OD =OC -DC =R -8,AD =12AB =12 m , 又∵OA 2=AD 2+OD 2,即R 2=122+(R -8)2,解得R =13(m).在Rt △ONG 中,由勾股定理得,OG =ON 2-NG 2=12 m , ∴FN =DG =OG -OD =OG -(OC -CD )=7 m .故选D.6.[诸暨校级期中]如图,△ABC 内接于⊙O ,BC =a ,AC =b ,∠A -∠B =90°,则⊙O 的面积为__π4(a 2+b 2)__.(第6题图) 第6题答图【解析】 如答图,过点B 作圆的直径BE 交圆于点E ,则∠ECB =90°,∴∠E +∠EBC =90°,又∵圆内接四边形的对角互补,即∠E +∠A =180°,∴∠A -∠EBC =90°, ∵∠A -∠ABC =90°,∴∠CBA =∠CBE , ∴弧AC =弧CE ,∴CE =AC =b , 由勾股定理得,BE =a 2+b 2,∴⊙O 的半径=a 2+b 22, ∴圆的面积=π4(a 2+b 2).7.[湖州吴兴区期中]如图,A ,B ,C ,D 是⊙O 上的四个点,若AB ︵+CD ︵=BC ︵+AD ︵,且弦AB =8,CD =4,则⊙O 的半径为.(第7题图) 第7题答图【解析】 如答图,连结BO 并延长,与圆交于E ,连结AE , AB ︵+CD ︵=BC ︵+AD ︵,所以AB ,CD 所对圆心角之和是180°, ∴CD =AE ,∠A =90°,BE =AB 2+CD 2=82+42=45,∴半径是2 5.圆的基本性质与全等三角形的综合8.[慈溪期中]如图,BC=2,A为半径为1的圆B上一点,连结AC,在AC上方作一个正三角形ACD,连结BD,则BD的最大值为__3__.(第8题图) 第8题答图【解析】如答图,将BC绕点C顺时针旋转60°到点M,连结MD,MB,当点B,M,D共线时,BD有最大值,∵∠BCM=60°,CM=BC=2,∴△BCM是等边三角形,∴BM=2,∵∠BCM=∠ACD=60°,∴∠ACB=∠MCD,∵AC=CD,BC=CM,∴△ABC≌△DMC,∴DM=AB=1,∴BD=3.9.[杭州西湖区校级期中]如图,在⊙O中,弦AC,BD相交于点M,且∠OAC=∠OBD.(1)求证:AC =BD ;(2)若OA =4,∠OAC =30°,当AC ⊥BD 时,求: ①图中阴影部分面积; ②弧CD 的长.(第9题图) 第9题答图解:(1)连结OC ,OD ,∵OA =OC ,∴∠CAO =∠ACO , ∵OD =OB ,∴∠ODB =∠OBD ,∵ ∠OAC =∠OBD ,∴∠CAO =∠ACO =∠ODB =∠OBD , ∵⎩⎪⎨⎪⎧∠OAC =∠ODB ,∠OCA =∠OBD ,OA =OD ,∴△OAC ≌△ODB (AAS ),∴AC =BD ;(2)如答图,作ON ⊥AC 于N ,OP ⊥BD 于P ,连结OM , 由(1)可知AC =BD ,∴ON =OP ,∵AC ⊥BD ,OP ⊥BD ,ON ⊥AC ,ON =OP ,∴四边形OPMN 是正方形, ∴∠AMO =∠BMO =45°, ∵⎩⎪⎨⎪⎧∠AMO =∠BMO ,∠A =∠B ,OM =OM ,∴△AMO ≌△BMO ,∴S △AMO =S △BMO , ∵OA =4,∠OAC =30°, ∴ON =2,AN =23,MN =2, ∵∠MOA =45°+60°=105°, ∴∠AOB =360°-105°×2=150°; ①S 阴影=S 扇AOB + 2S △AOM=150360×πr 2+2×12×(23+2)×2=20π3+43+4; ②∠DOC =∠AOC +∠DOB +∠AOB -360°=30°, ∴CD ︵=30360×2πr =23π.10.[杭州江干区期末]如图,⊙O 是△ABC 的外接圆,AC 是直径,过O 作OD ∥BC 交AB 于点D .延长DO 交⊙O 于点E ,作EF ⊥AC 于点F ,连结DF 并延长交直线BC 于点G ,连结EG . (1)求证:FC =GC ;(2)四边形EDBG 是哪种特殊四边形?请说明理由.(第10题图) 第10题答图解:(1)证明:∵AC 为直径,∴∠B =90°, ∵OD ∥BC ,∴∠ADO =∠B =90°, 在△AOD 和△EOF 中, ⎩⎪⎨⎪⎧∠AOD =∠EOF ,∠ADO =∠EFO ,OA =OE ,∴△AOD ≌△EOF ,∴OD =OF , ∴∠ODF =∠OFD ,∵OD ∥BC ,∴∠FGC =∠ODF ,又∵∠GFC =∠OFD ,∴∠CFG =∠FGC , ∴FC =GC ;(2)四边形EDBG 是矩形,理由如下: 如答图,连结AE ,EC ,∵OA=OE,∴∠OAE=∠OEA,∵OD=OF,∴∠ODF=∠OFD,∴∠OAE=∠OFD,∴AE∥DG,∵AC为直径,∴∠AEC=90°,又∵CF=CG,∴CE是FG的垂直平分线,∴△EFC≌△EGC,∴∠EGC=∠EFC=90°,又∵∠EDB=90°,∠ABC=90°,∴四边形EDBG是矩形.圆与内、外角平分线问题11.[杭州萧山区校级期中]如图,AD是△ABC外角∠EAC的平分线,AD与△ABC的外接圆相交于点D,图中所有与∠DCB相等的角的个数为(C)(第11题图)A.1 B.2C.3 D.4【解析】∵A,B,C,D四点共圆,∴∠DCB=∠EAD,∵AD是△ABC外角∠EAC的平分线,∴∠EAD=∠CAD=12∠EAC,∴∠EAD=∠CAD=∠BCD=∠DBC.故选C.12.[杭州萧山区校级期中]如图,在⊙O中,AD平分圆周角∠BAC,∠BAC=60°,∠OAD =16°,∠C的度数为(C)A.50° B.30°C.44° D.45°(第12题图) 第12题答图【解析】如答图,连结OD,CD,∵OA=OD,∴∠OAD=∠ODA=16°,∴∠AOD=148°,∴∠ACD=74°,∵∠BAC=60°,AD平分圆周角∠BAC,∴∠BAD=30°,∴∠BCD=30°,∴∠ACB=∠ACD-∠BCD=44°.13.[宁波鄞州区校级期中]如图,在⊙O 中,圆周角∠BAC =60°,弦AD 平分∠BAC ,AB =4,AC =3,则AD 的长为3.(第13题图) 第13题答图【解析】 如答图,连结BD ,CD ,过点B 作BN ⊥AD 于N ,过点C 作CM ⊥AD 于M . ∵∠BAC =60°,AD 平分∠BAC , ∴∠BAD =∠CAD =30°,∵AB =4,∠BAD =30°,BN ⊥AD , ∴BN =2,AN =23,∵AC =3,∠CAD =30°,CM ⊥AD , ∴CM =32,AM =323,∴MN =123, 设DN =a ,∵∠BAD =∠CAD ,∴BD =CD ,由勾股定理得BN 2+DN 2=CM 2+DM 2,即22+a 2=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫a +1232,解得a=133,∴AD=AN+DN=73 3.圆的基本性质与相似三角形14.[杭州校级期中]如图,△ABC内接⊙O,AD⊥BC于D,AE是⊙O的直径.若AB =6,AC=9,AE=11.(第14题图)(1)求证:△ABD∽△AEC;(2)求AD的长.解:(1)证明:∵AE是⊙O的直径,AD⊥BC,∴∠ACE=∠ADB=90°,∵∠E=∠B,∴△ABD∽△AEC;(2)∵△ABD∽△AEC,∴ABAE=ADAC,∵AB=6,AC=9,AE=11,∴AD=54 11.15.[衢州校级期中]如图,已知AB为⊙O的直径,弦BE=DE,且AD,BE的延长线交于点C.(1)求证:AC=AB;(2)若CE=2,CD=32,求⊙O的直径.(第15题图) 第15题答图解:(1)证明:如答图,连结AE , ∵AB 为⊙O 的直径,∴∠AEB =90°,∴∠AEB =∠AEC =90°, ∵BE =DE ,∴DE ︵=BE ︵,∴∠DAE =∠BAE ,∵∠C =90°-∠DAE ,∠B =90°-∠BAE , ∴∠B =∠C ,∴AC =AB ; (2)∵∠C =∠C ,∠CED =∠CAB , ∴△CDE ∽△CBA ,∴CD CB =CECA , ∴CD ·CA =CB ·CE ,∴32×AC =2×4,∴AC =163.∴⊙O 的直径为163.16.[杭州校级期中]如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点G 是AD ︵上一点,连结AC ,AG ,CG .(1)在不添辅助线的前提下直接写出图中与∠AGC相等的角,不用证明;(2)求证:当AB∥DG时,△ACG与△EAC相似;(第16题图)备用图(3)若OE=BE,求∠AGC的度数.解:(1)结论:∠ACE=∠AGC.(2)证明:∵DG∥AB,第16题答图∴∠AEC=∠CDG=90°,∴CG是直径,∴∠CAG=90°,∵∠CAG=∠AEC=90°,∠AGC=∠ACE,∴△ACG∽△EAC.(3)如答图,连结OC,BC.∵OE=EB,CE⊥OB,∴CO=CB=OB,∴△OBC是等边三角形,∴∠B=60°,∴∠AGC=∠B=60°.17.[杭州校级期中]如图,已知A,P,B,C是⊙O上的四点,∠APC=∠BPC=60°,AB与PC交于Q点.(1)判断△ABC的形状,并证明你的结论;(2)直接写出所有与△APQ相似的三角形:__△CBQ和△CPB__;(3)若AP=6,AQBQ=35,求PB的长.(第17题图) 第17题答图解:(1)△ABC是等边三角形.∵∠BPC=∠APC=60°,∠BAC=∠ABC=60°,∴△ABC是等边三角形;(2)△CBQ和△CPB.(3)如答图,过B作BD∥P A交PC于D,则∠BDP=∠APC=60°.又∵∠AQP=∠BQD,∴△AQP∽△BQD,∴AQQB=APBD,∵∠BPD=∠BDP=60°,∴PB=BD.∴AQQB=APPB,∴35=6PB,∴PB=10.圆的综合探究18.[杭州余杭区期末]已知:如图,AB是圆O的直径,CD是圆O的弦,AB⊥CD,E 为垂足,AE=CD=8,F是CD延长线上一点,连结AF交圆O于G,连结AD,DG.(1)求圆O的半径;(2)求证:△ADG∽△AFD;(3)当点G是弧AD的中点时,求△ADG的面积与△AFD的面积之比.(第18题图) 第18题答图解:(1)如答图,连结OC,设⊙O的半径为R,∵AE=8,∴OE=8-R,∵直径AB⊥CD,∴∠CEO =90°,CE =12CD =4,在Rt △CEO 中,根据勾股定理得,R 2-(8-R )2=16,∴R =5, 即⊙O 的半径为5; (2)如答图,连结BG , ∴∠ADG =∠ABG ,∵AB 是⊙O 的直径,∴∠AGB =90°, ∴∠ABG +∠BAG =90°, ∴∠ADG +∠BAG =90°,∵AB ⊥CD ,∴∠BAG +∠F =90°, ∴∠ADG =∠F ,∵∠DAG =∠F AD ,∴△ADG ∽△AFD ; (3)如答图,连结OG 交AD 于H ,在Rt △ADE 中,AE =8,DE =12CD =4,根据勾股定理得,AD =45, ∵点G 是AD ︵的中点,∴AH =12AD =25,OG ⊥AD ,在Rt △AOH 中,根据勾股定理得,OH =5,在Rt △AHG 中,HG =OG -OH =5-5,根据勾股定理得,AG 2=AH 2+HG 2=50-105, 由(2)知,△ADG ∽△AFD , ∴S △ADG S △AFD =⎝ ⎛⎭⎪⎫AG AD 2=50-10580=5-58.19.[宁波北仑区期末]如图,在⊙O 中,弦AB ,CD 相交于点E ,AC ︵=BD ︵,点D 在AB ︵上,连结CO ,并延长CO 交线段AB 于点F ,连结OA ,OB ,且OA =5,tan ∠OBA =12.(1)求证:∠OBA =∠OCD ;(2)当△AOF 是直角三角形时,求EF 的长;(3)是否存在点F ,使得S △CEF =4S △BOF ,若存在,请求出EF 的长;若不存在,请说明理由.(第19题图) 备用图解:(1)证明:如答图①,连结BC ,第19题答图①∵ AC =BD ,∴∠ECB =∠EBC ,∵OB =OC ,∴∠OCB =∠OBC ,∴∠ECF =∠ECB -∠OCB =∠EBC -∠OBC =∠OBA ,即∠OBA =∠OCD ;(2)∵OA =OB ,∴∠OAF =∠OBA ,∴∠OAF =∠ECF ,①当∠AFO =90°时,∵OA =5,tan ∠OBA =12,∴OC =OA =5,OF =1,AB =4,∴EF =CF ·tan ∠ECF = CF ·tan ∠OBA =5+12;②当∠AOF =90°时,∵OA =OB ,∴∠OAF =∠OBA ,∴tan ∠OAF = tan ∠OBA =12,∵OA =5,∴OF = OA ·tan ∠OAF =52, ∴AF =52,CF =325, ∵∠OAF =∠OBA =∠ECF ,∠OF A =∠EFC ,∴△OF A ∽△EFC ,∴EF =CF AF ·OF =32552·52=32, 综上所述EF =32或5+12;(3)存在,如答图②,连结OE ,第19题答图②∵∠ECB =∠EBC ,∴CE =EB ,∵OE =OE ,OB =OC ,∴△OEC ≌△OEB ,∵ S △CEF =4S △BOF ,∴ S △CEO +S △FEO =4(S △BEO -S △EFO ),∴S △CEF S △EFO =53,∴CO FO =53,∴FO =35CO =355, ∵△OF A ∽△EFC ,∴CE FE =AO FO =CO FO =53,∴BF =BE -EF =CE -EF =23EF ,∴AF =AB -BF =4-23EF ,∵△OF A∽△EFC,∴CFF A=EFFO,即8554-23EF=EF355,解得EF=3+355>4(舍去)或EF=3-35 5.∴EF=3-35 5.。