材料力学3-扭转详解

合集下载

材料力学第3章 扭转

材料力学第3章 扭转
m n m
求图示轴n-n截面内力
解: 截面法
1、截开 取左段杆 2、代替 3、平衡
x
n
m
x
0 Mx T 0 Mx m
m
Mx
扭矩
同样取右段杆,可得: M x m
m
Mx x
左段与右段求出的扭矩等值、共线,但反向。
符合作用力与反作用力定律.
扭矩正负号的规定:
按右手螺旋法则,视Mx为矢量,若矢量的方向与横截面外法线 方向一致, Mx为正,反之为负.
材料力学
第3章 扭转
第三章 扭转
材料力学
第3章 扭转
• • • • •
本章主要内容 扭矩及扭矩图 等值圆杆扭转时横截面上的应力 等值圆杆扭转时的变形 矩形截面杆的扭转
材料力学
第3章 扭转
§3-1 概述 一、工程实际中的受扭杆 等值杆承受作用在垂直于杆轴线的平面内力偶时,杆件将发生 扭转变形,以扭转为主要变形的杆件称为轴。 (a)机械中传动轴; (b)石油钻机、灌注桩等钻杆; (c)水能发电机的主轴; (d)桥梁、厂房空间结构中的某些结构
IP
D4
(1- 4 )
3、薄壁圆环截面
δ
R
0
R0≥10
2 2 3 I P 2 dA R0 dA=R0 d A =2 R 0 A A A
3 I P 2 R0 2 WP 2 R0 R0 R0
Mx 2 2 R0
较小,可认为切应力沿厚度方向均布.
D
解: (a)实心截面
WP1
d1
d3
16

1003
16
1.96 105 mm3
d
D

材料力学 第三章 扭转

材料力学 第三章 扭转

d T dx GI p
d t r Gr dx
Tr tr Ip
Tr tr Ip
上式为等直圆杆在扭转时横截面上任一点处切 应力的计算公式。
Tr tr Ip
2
b z
t'
dx

c c'
3.4 圆轴扭转时的应力 3.4.1 横截面上的应力 1) 变形几何关系 在小变形条件下, 等直圆杆在扭转时横截面上也 只有切应力。为求得此应力, 需从几何关系、物 理关系和静力关系三个方面着手。 为研究横截面上任一点处切应变随点的位臵而 变化的规律, 先观察一个实验。
3.4 圆轴扭转时的应力 实验:预先在等截面圆杆的表面画上任意两个相 邻的圆周线和纵向线。在杆的两端施加外 力偶矩Me。
3.3 薄壁圆筒的扭转
薄壁圆筒扭转时, 横截面上 任一点处的切应力t都是相 等的, 而其方向与圆周相切。 横截面上的内力与应力间 的静力关系为:
n
r0 x
t dA
Me
n
t dA r
A
0
t r0 dA t r0 2 r d T
A
对于薄壁圆筒, r可由平均半径r0代替。
M x 0, T M e 0
T Me
取右侧为研究对象其扭矩与取左侧为研究对象 数值相同但转向相反。
3.2.2 扭矩及扭矩图 扭矩的符号规定如下: 采用右手螺旋法则, 如果 以右手四指表示扭矩的转向, 则姆指的指向离 开截面时的扭矩为正。
反之, 姆指指向截面时则扭矩为负。
3.2.2 扭矩及扭矩图
M2
M3
M1 n
A
M4
B
C
D
M2
M3
M1

材料力学-3-扭转(包含连接件)

材料力学-3-扭转(包含连接件)

3.5 圆轴扭转时的强度条件
3.5 圆轴扭转时的强度条件
为了让杆件正常工作,要对杆中的最大切应力加以限制
强度条件:
max
M x max [ ] ([ ]——许用切应力) Wp
危险截面在哪儿?
危险点在哪儿?
三类强度计算问题 强度校核 截面尺寸设计 确定许可荷载
M x max max [ ] Wp M x max Wp [ ] M x max Wp [ ]
D 2 d 2

32 D 4 (1 4 ) 32
(D4 d 4 )
(
d ) D
3.4 圆轴扭转时横截面上的切应力
(4)应力分布
M x IP
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重 量轻,结构轻便,应用广泛。
3.4 圆轴扭转时横截面上的切应力
(3)尽管由实心圆截面杆推出,但同样适用于空心圆截面杆, 只是Ip值不同。 对于实心圆截面:
I p A 2 dA 2 2 d
D 2 0
D 4
32
3.4 圆轴扭转时横截面上的切应力
对于空心圆截面:
I p A 2 dA 2 2 d
3.5 圆轴扭转时的强度条件
例题3

解:
圆轴受扭时,里、外层之间无相对滑动,这表明二者 形成一个整体,同时产生扭转变形。因此,在里、外层交 界处二者具有相同的切应变。 剪切弹性模量(G1=2G2)
G
3.5 圆轴扭转时的强度条件
例题4
3
如图所示的传动机构中,功率从轮B输入,通过锥形齿轮将一 半传递给铅垂C轴,另一半传递给水平H轴。已知输入功率P1= 14kW, 水平轴(E和H)转速n1= n2= 120 r/min;锥齿轮A和D的齿数 分别为z1=36, z3=12;各轴的直径分别为d1=70mm, d 2 =50mm, d3=35mm。 求:各轴横截面上的最大切应力。

工程力学之扭转

工程力学之扭转

x
②计算并校核剪应力强度
max
T Wt
1.55 103
0.073 16
23MPa
[ ]
③此轴满足强度要求。
材料力学讲义(扭 转 )
§3–5 圆轴扭转时旳变形
一、扭转时旳变形
由公式
d T
dx GI p
知:长为 l一段杆两截面间相对扭转角φ 为
l
d
T
dx
0 GI p
Tl (若T 值不变) GI p
[]=30MPa,试设计杆旳外径;若[φ]=2º/m ,试校核此杆旳刚
度,并求右端面转角。
解:①设计杆旳外径
Wt
Tmax
[ ]
Wt 1D6(3 1 4)
1
D
16Tmax
(1义(扭 转 )
T 40Nm
1
D
16Tmax
(1 4)[
]
3
代入数值得: D 0.0226m。
tg
G1G dx
d
dx
d
dx
距圆心为 任一点处旳与到圆心旳距离成正比。
d —— 扭转角沿长度方向变化率。
dx
材料力学讲义(扭 转 )
2. 物理关系:
虎克定律:
G
代入上式得:
G
G
d
dx
G
d
dx
G
d
dx
材料力学讲义(扭 转 )
3. 静力学关系:
T A dA
A
G
2
d
dx
dA
G
2 0
0.033 (弧度)
T
40Nm
x
材料力学讲义(扭 转 )
[例4] 某传动轴设计要求转速n = 500 r / min,输入功率N1 = 500 马力, 输出功率分别 N2 = 200马力及 N3 = 300马力,已知:

材料力学-扭转问题解读

材料力学-扭转问题解读

d1 86.4mm
4.直径d2的选取 按强度条件:
3 3
d1
A
M e1

C
M e2
d2
B M e3
16T 16 4580 d2 π[ ] π 70106 69.3 103 m 69.3mm
4580 N m 7640 N m
按刚度条件 :
32T 180 32 4580 180 3 d2 76 10 m 76mm 2 9 2 Gπ [ ] 80 10 π 1
§3.7 非圆截面杆扭转 矩形截面杆扭转
变 形 特 征
T Wt
T
12100
x
max
Wt
D 3
16

T [ ]
-1590
D3
16 Mn

58.7 mm
刚度条件:
T 180 G Ip
D 4 T 180 Ip 32 G
32 Mn 180 D4 49mm G
4
圆轴扭转的强度条件:
max
T T T R I Ip Wt p R Wt 抗扭截面系数
Wt Wt
D 3
16 16
实心圆
4
D 3
1
d 空心圆 D
d
对阶梯轴,因各段的Wt不同 ,最大切应 力不一定在最大T所在截面,须综合考 虑T和Wt,确定T/ Wt极值。
1 G1 2 G2
2) 在下述三种情况下的切应力分布情况: (1)G1 > G2; (2) G1=G2 ; (3) G1<G2
G2Ip2
R2
G1Ip1

材料力学第三章 扭转

材料力学第三章 扭转

n
250
横截面上的最大切应力为
max
T Wt
T (D4 d 4)
16D
16 0.55573000 Pa 19.2MPa [ ] 50MPa (0.554 0.34 )
满足强度要求。
跟踪训练 7.机车变速箱第II轴如图所示,轴所传递的功率为
p 5.5KW,转速n 200r / min,材料为45钢,
(3)主动轮放在两从动轮之间可使最大扭矩取最小值
B
A
C
Me2
Nm
M e1
Me3
4220
2810
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
P M e 9549 n (N m)
2.圆轴扭转切应力公式的建立
τρ
Tρ Ip
强度条件的应用
max
Tmax Wt
[ ]
刚度条件的应用
' max
T
180 [']
(3)主动轮和从动轮应如何安排才比较合理。
再根据平衡条件,可得 Me1 Me2 Me3 (2810 4220)N m 7030N m
所作扭矩图如右图
(1)试确定AB段的直径d1和BC段的直径d2。
根据强度条件确定AB直径d1
AB
TAB Wt
16TAB
d12
[ ]
根据刚度条件确定AB直径d1
mB
(a)
1
350 2
C
1
2
T1
11463
446
A
D
3
mB
(b)
(c) mB
mC
T2
mC
mA T3
mD
T1 350N m 350 1 350 2

材料力学-第三章扭转

材料力学-第三章扭转

3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件

0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析




圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16


强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3

4
3
d 0.886 d
2
Mn
a
2

Mn 0.208 0.886 d
b
6.913

材料力学第3章扭转

材料力学第3章扭转

试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。

材料力学第3章扭转

材料力学第3章扭转

τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx

dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy

τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理

材料力学第3章 扭转

材料力学第3章 扭转
第3章 扭转
第一节 概 述 扭转是杆件变形的基本形式之一。在日常生活 和工程中,以扭转变形为主的杆件比较常见,如钥 匙、汽车转向轴、螺丝刀、钻头、皮带传动轴或齿 轮传动轴、门洞上方的雨篷梁、主梁等。
1
图3.1
图3.2
2
图3.3
3
第二节 外力偶矩计算 扭矩与扭矩图 一、外力偶矩计算 作用在扭转杆件上的外力偶矩Me,常可以由 外力向杆的轴线简化而得。但是,对于传动轴,通 常知道它所传递的功率P(常用单位为kW)和转 速n(常用单位为r/min)。由理论力学知识
11
图3.9
图3.10
12
三、剪切胡克定律 对于线弹性材料,试验表明,当切应力不超过 材料的剪切比例极限τp时,切应力τ与切应变γ保持 线性关系。如图3.10所示为低碳钢试件测得的τγ图, 可得
13
第四节 圆轴扭转时横截面上的切应力 对于实心圆轴和空心圆轴(非薄壁圆筒),扭 转时不能再假设切应力沿半径方向为均匀分布。这 时需要从圆轴的变形入手,综合考虑几何、物理、 静力学3个方面,推导圆轴扭转时横截面上切应力 的计算公式。
14
一、扭转试验及假设 取一等截面圆轴,在其表面等间距地画上纵向 线和圆周线,形成大小相同的矩形网格,如图3.11 (a)所示。在两端施加力偶Me后,从试验中观察到 的现象与薄壁圆筒相同。根据这些试验现象,由表 及里,可以推断:横截面上无正应力;横截面上必 有切应力存在,其方向垂直于半径。
15
图3.11
若圆轴的扭矩和抗扭刚度分段为常数,则
27
二、刚度条件 机械工程中某些受力较大的主轴,除了满足扭 转强度条件以外,还需要对其扭转变形加以限制, 这就是扭转刚度条件。工程中常限制轴的单位长度 扭转角θ不超过其许用值,刚度条件表述为

材料力学-第三章

材料力学-第三章

21
第三章 扭转
3.5 圆轴扭转强度计算
22
扭转失效与扭转极限应力
扭转屈服应力:s 扭转强度极限:b 扭转强度极限:b 扭转屈服应力(s )和扭转强度极限(b ),统 称为材料的扭转极限应力u。
23
圆轴扭转强度条件
材料的扭转许用应力为:


u
n
n为安全系数。
强度条件为:
max
(2) 若将轮1与轮2的位置对调,试求轴内的最大扭矩。
(3) 若将轮1与轮3的位置对调,试求轴内的最大扭矩。
33
提高圆轴扭转时强度和刚度的措施
• 提高轴的转速 • 合理布局主动轮和被动轮的位置 • 采用空心轴 • 选用优质材料,提高剪切模量
34
例3-8:图示圆柱形密圈螺旋弹簧,承受轴向载荷F作用。 所谓密圈螺旋弹簧,是指螺旋升角α很小(例如小于5º )的 弹簧。设弹簧的平均直径D,弹簧丝的直径d,试分析弹簧 丝横截面上的应力并建立相应的强度条件。
第三章 扭转
3.1 扭转的概念
1
扭转的概念
以横截面绕轴 线作相对旋转为 主要特征的变形 形式,称为扭转。
2
受力特点: 变形特点:
受到垂直于构件轴线的外力偶 矩的作用。
构件的轴线保持不变,各横截面绕 轴线相对转动 截面间绕轴线的相对角位移,称为扭转角
使杆发生扭转变形的外力偶,称为扭力偶,其矩 称为扭力偶矩。 凡是以扭转为主要变形的直杆,称为轴。
公式的适用条件:以平面假设为基础;适用胡克定律。
18
圆轴截面的极惯性矩和抗扭截面模量
IP
d4
32
WP
d3
16
19
空心圆截面的极惯性矩和抗扭截面模量

《材料力学》课件——第三章 扭转

《材料力学》课件——第三章 扭转

F
Me
F
M'e
汽车的转向操纵杆
3.1 扭转的概念和实例
Me
A'
A
B
B'
Me
扭转:在一对大小相等、转向相反、作用面垂直于 直杆轴线的外力偶Me作用下,直杆的相邻横截面将 绕轴线发生相对转动,杆件表面纵向线将成斜线, 而轴线仍维持直线。
3.1 扭转的概念和实例
Me
A'
g
A
B
j
B'
Me
外力偶作用平面和杆件横截面平行
M2
M3
M1
M4
解:①计算外力偶矩
M1
9.55
P1 n
9.55 500 300
A
15.9(kN m)
B
C
M2
M3
9.55
P2 n
9.55 150 300
4.78
(kN m)
M4
9.55
P4 n
9.55 200 300
6.37
(kN m)
n D
3.2 外力偶矩的计算 扭矩和扭矩图
②求扭矩(扭矩按正方向设)
M 0 , C
T1 M 2 0
T1 M 2 4.78kN m
M2 1 M2
A1 M2
M3
M1
2
3M4
n B 2 C 3D
T2 M 2 M 3 0 ,
T2 M 2 M 3
A
(4.78 4.78)
9.56kN m
T3-M4=0
T3=M4=6.37KN·m
T1
T2
T3
3.2 外力偶矩的计算 扭矩和扭矩图
代入上式得:
G g

材料力学 第三章 扭转

材料力学  第三章  扭转

为一很小的量,所以
tan 1.0103rad
G
(80 109 Pa)(1.0 103rad) 80 MPa
注意: 虽很小,但 G 很大,切应力 不小
例 3-3 一薄壁圆管,平均半径为R0,壁厚为,长度为l, 横截面上的扭矩为T,切变模量为G,试求扭转角。
解:
T
2πR02
G
T
2πGR02
塑性材料:[] =(0.5~0.6)[s] 脆性材料:[] = (0.8~1.0)[st]
例 3-1 已知 T=1.5 kN . m,[τ] = 50 MPa,试根据强度条 件设计实心圆轴与 a = 0.9 的空心圆轴,并进行比较。 解:1. 确定实心圆轴直径
max [ ]
max
T Wp
T πd 3
表示扭矩沿杆件轴线变化的图线(T-x曲线)-扭矩图
Tmax ml
[例3-1]已知:一传动轴, n =300r/min,主动轮输入 P1=500kW, 从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
解:1、计算外力偶矩
m2
m3
m1
m4
m1
9.55
P1 n
9.55
一、薄壁圆筒扭转时的应力
t
1、试验现象
壁厚
t
1 10
r0(r0:平均半径)
rO
各圆周线的形状不变,仅绕轴线作相对转动,距离不变。 当变形很小时,各纵向平行线仍然平行,倾斜一定的角度。
由于管壁薄,可近似认 为管内变形与管表面相 同,均仅存在切应变γ 。
2、应力公式 微小矩形单元体如图所示:
´
①无正应力
d T
dx GI p

材料力学 第 三 章 扭转

材料力学 第 三 章 扭转
扭转平面假设:变形前的横截面,变形后仍为平面,且形状 、大小
以及间距不变,半径仍为直线。
定性分析横截面上的应力
(1)∵ε = 0∴σ = 0
(2)∵ γ ≠ 0∴τ ≠ 0
因为同一圆周上切应变相同,所以同 一圆周上切应力大小相等,并且方向 垂直于其半径方向。
切应变的变化规律:
D’
取楔形体
O1O2ABCD 为 研究对象
γ ≈ tgγ = DD' = Rdϕ
dx dx
微段扭转
变形 dϕ
γ ρ ≈ tgγ ρ = dd′ = ρ ⋅ dϕ
dx dx
γ
ρ
=
ρ

dx
dϕ / dx-扭转角变化率
圆轴横截面上任一点的切应变γρ
与该点到圆心的距离ρ成正比。
(二)物理关系:由应变的变化规律→应力的分布规律
弹性范围内 τ max ≤ τ P
τ max
=
T
2π r 2t
=
180 ×103
2π × 0.132× 0.03
= 56.5MPa
(2) 利用精确的扭转理论可求得
τ max
=
π D3
T
(1−α 4 )
16
=
180 ×103
π×
0.293
⎡ ⎢1 −
⎜⎛
230
⎟⎞
4
⎤ ⎥
16 ⎢⎣ ⎝ 290 ⎠ ⎥⎦
= 62.2MPa
思考题
由两种不同材料组成的圆轴,里层和外层材料的 切变模量分别为G1和G2,且G1=2G2。圆轴尺寸如 图所示。圆轴受扭时,里、外层之间无相对滑动。 关于横截面上的切应力分布,有图中(A)、(B)、 (C)、(D)所示的四种结论,请判断哪一种是正 确的。

材料力学 第3章扭转

材料力学 第3章扭转
d 90 ×10 −3 m − 2 × 2.5 × 103 m α= = D 90 × 10 −3 m = 0.944
Wt =
ቤተ መጻሕፍቲ ባይዱ
πD 3
16 = 29400 × 10
(1 − α 4 ) =
−9
π ( 90 × 10
16 m3
−3
m )3
(1 − 0 . 944
4
)
2)校核计算:
τ max
T 1500 N ⋅ m = = = 51×106 Pa < [τ ] Wt 29400 ×10 −9 m3
(3.28)
α , ν 由 h b 数值查
3、扭转角公式
ϕ=
Tl Tl = G β hb3 GI t
β 由 h b 数值查
四、横截面上切应力分布的两点规律 • 边缘切应力的方向与截 面边线向切。 •凸角处的切应力为零。 五、矩形截面杆扭转计算
1、切应力分布规律: 切应力分布规律: 切应力公式: 2、切应力公式:
τ m ax
τ 1 = ντ max
T = α hb 2
( 3 .2 6 )
(3.27)
P 96 表 3 . 2
(3.1)
二、扭矩与扭矩图
1.扭矩: 1.扭矩: 扭矩
•横截面分布内力系轴向合力偶矩。 •符号: T。 •正负规定:矢量方向离开截面 为正,指向截面为负。 •计算方法:截面法。
2、扭矩图: 扭矩图:
•表示扭矩沿杆轴线变化情况的 图形。 •扭矩图形式及画法:同轴力图。 •作图应注意的问题:求截面扭 矩时应采用设正法。
2、应力分布推断: 应力分布推断:
•横截面上只有切应力而无正应力。 •横截面上切应力方向与半径正交大小 相等(由于薄壁)。

材料力学第三章扭转

材料力学第三章扭转

材料力学
中南大学土木工程学院
三、扭 矩
x 扭矩的矢量表示
Me
Me
Me
T
定义:扭转内力偶矩, 1、定义:扭转内力偶矩,用T表示 大小: 2、大小:可用截面法取局部平衡求出 扭矩大小= 截面一侧所有外扭转力偶矩之代数和 T =ΣMe 正负号: 3、正负号:扭矩矢与截面外法线一致为正 (图中T为正,必须按“设正法”画扭矩) 为正,必须按“设正法”画扭矩) 单位: 4、单位:N·m 或 kN·m
τ =τ′
切应力互等定理
在单元体相互垂直的两个平面上, 在单元体相互垂直的两个平面上,切应力必然成对出 且数值相等,两者都垂直于两平面的交线, 现,且数值相等,两者都垂直于两平面的交线,其方 向则共同指向或共同背离该交线。 向则共同指向或共同背离该交线。
材料力学
中南大学土木工程学院
单元体的四个侧面上只有切应力而无正应 纯剪切应力状态。 力作用,这种应力状态称为纯剪切应力状态 力作用,这种应力状态称为纯剪切应力状态。
O
定义内径与 外径的比值
d α= D
D d
πD πD 4 Ip = (1 − α 4 ) 32
I p π(D 4 − d 4 ) πD 3 Wp = = = (1 − α 4 ) D 16 D 16 2
特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。 特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。
材料力学 中南大学土木工程学院
分布如图所示。 横截面上各点处的切应力τ 分布如图所示 取微面积dA,则横截面上的分布 的合成其主矢为零, 力系τ dA的合成其主矢为零,主矩就 是扭矩T。
δ
r0
O
τ

材料力学第3章-扭转

材料力学第3章-扭转

第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。

2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。

又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。

规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。

3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。

(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。

γτG = G 为比例常数,称为材料的切变模量。

弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。

dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。

则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。

材料力学 第三章-扭转

材料力学 第三章-扭转
1.受力特点: 1.受力特点:承受的外力或其合力均是绕轴线转动 受力特点 的外力偶。或外力偶作用平面和杆件横截面平行。 的外力偶。或外力偶作用平面和杆件横截面平行。 2.变形特点 相邻截面绕轴相对转动。 变形特点: 2.变形特点: 相邻截面绕轴相对转动。
Me
A
扭转
Me
ϕ
B
B'
ϕ:相对扭转角 工程上称发生扭转变形的杆件称为轴。 工程上称发生扭转变形的杆件称为轴。
τ
(τdydz)dx= (τ′dxdz)dy
x
τ =τ ′
z
4.切应力互等定理 4.切应力互等定理 Reciprocal theorem of shear stresses
y
τ′
A dy B dx D dz C
τ
x
τ =τ ′
切应力互等定理
单元体上两个互垂面上切 应力的大小相等、 应力的大小相等、方向相 反,共同指向截面交线或 背离截面交线。 背离截面交线。
扭转
三、强度条件Strength condition
Tmax = ≤ [τ ] ,[τ]—许用切应力; 许用切应力; τ 许用切应力 Wp
强度条件: 强度条件:τ max
τ max --最大工作切应力 最大工作切应力
根据强度条件可进行: 根据强度条件可进行: 强度校核; 选择截面; 强度校核 选择截面 计算许可荷载。 计算许可荷载。
y
τ′
A dy D dz C
τ
怎样才能平衡? 微元能不能平衡? 怎样才能平衡? 微元能不能平衡 哪些力互相平衡?? 哪些力互相平衡?
x
B dx
z
4.切应力互等定理 4.切应力互等定理 Reciprocal theorem of shear stresses
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
'
d


b
'
c
§3-4 圆轴扭转时横截面上的应力
一、圆轴扭转时横截面上的应力 一)、几何关系:由实验找出变形规律→应变的变化规律 1、实验:
观察变形规律:
圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动 了一个不同的角度。 纵向线——倾斜了同一个角度,小方格变成了平行四边形。
扭转平面假设:变形前的横截面,变形后仍为平面,且形状 、大小
A
D
T1 4.78kN m T2 9.56kN m
T3 6.37kN m
4.78
T 图(kN· m)
9.56 Tmax = 9.56 kN· m 在BC段内
§3-3 关于切应力的若干重要性质
薄壁圆筒轴的扭转 一、薄壁圆筒横截面上的应力 (壁厚 1、实验:
t
1 r0 , r0:为平均半径) 10

2
d
T dA.r0 r0 td r0 t 2
2 A 0
2

T 2 2r0 t
薄壁圆筒横截面上的切应力计算式
二、关于切应力的若干重要性质 1、剪切虎克定律 l

为扭转角
r0 l
r0 l

做薄壁圆筒的扭转试验可得
T T—— 2 2r0 t r0 l
3
C
二、分别计算各段的扭矩
M2 A M2 A
1 1
1 1
M3
B T1 x M3 B
2 2
M1 C
3
3
M4
D
T1 M 2 4.78kN m
2 2
M2
T2
T2 M 2 M 3
x
9.56kN m
3
A
M4 D
T3 M 4 6.37kN m
T3
3
x
扭矩图 M2 M3 B M1 C 6.37 M4
P M e 7.024 (kN m) n
其中:P — 功率,马力(PS)
1PS=735.5N· m/s , 1kW=1.36PS
二、扭转杆件的内力——扭矩及扭矩图
1、扭转杆件的内力(截面法)
取左段为研究对象:
m
m
m
x
0, T m 0
m T
T m
取右段为研究对象:
x
m
m
T m
以及间距不变,半径仍为直线。
定性分析横截面上的应力 (1) 0 0 (2) 0 0 因为同一圆周上剪应变相同,所以同 一圆周上切应力大小相等,并且方向 垂直于其半径方向。
剪应变的变化规律:
D’
取楔形体 O1O2ABCD 为 研究对象
微段扭转 变形 d
DD' Rd tan dx dx
第三章
扭 转
§3-1 扭转概念和工程实例
§3-2 自由扭转杆件的内力计算 §3-3 关于切应力的若干重要性质
§3-4 圆轴扭转时横截面上的应力
§3-5 扭转变形 扭转强度和刚度计算
§3-6 圆轴扭转破坏分析
§3-1
扭转概念和工程实例
一、扭转的工程实例 1、螺丝刀杆工作时受扭。
Me
主动力偶
阻抗力偶
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
二、扭转的概念 受力特点:杆两端作用着大小相等、方向相反的力偶,且力 偶作用面垂直于杆的轴线。 变形特点:杆任意两截面绕轴线发生相对转动。
Me
mA
阻抗力偶
主动力偶
me
主要发生扭转变形的杆——轴。
§3-2
自由扭转杆件的内力计算
一、外力偶矩计算
功率、转速与外力偶矩的关系:
P Me 其中:P — 功率(W), — 角速度(1/s) 2n P Me 其中:n — 转速,转/分(rpm, r/min) 60 P 其中:P — 功率,千瓦(kW) M e 9549 (N m) n .m/s 1kW=1000N P M e 9.55 (kN m) n
x
0, m T 0
T
x
内力偶矩——扭矩 T
2、扭矩的符号规定:按右手螺旋法则判断。
右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若 其矢量方向与截面的外法线方向相同,则扭矩规定为正值,反之为
负值。
+
T
-
3、内力图(扭矩图)表示构件各横截面扭矩沿轴线变化的图形。
扭矩图作法:同轴力图: 例 1 一传动轴如图,转速n = 300r/min; 主动轮输入的功 率P1= 500kW,三个从动轮输出的功率分别为: N2= 150kW, N3= 150kW, N4= 200kW。试作轴的扭矩图。

F 0 F 0 M 0
y x z
自动满足
存在'

y
切应力互等定理
'
a dy

O ' dx
d

c x
z
b

在相互垂直的两个面上,切 应力总是成对出现,并且大小相 等,方向同时指向或同时背离两 个面的交线。

单元体在其两对互相 垂直的平面上只有切应力 而无正应力的状态称为纯 剪切应力状态。
2、变形规律:

'


圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个角度。 纵向线——倾斜了同一个角度,小方格变成了平行四边形。
结论:
横截面上
0, 0 0 0

D
t
t D, 可认为切应力沿壁厚均匀分布,
且方向垂直于其半径方向。
3、切应力的计算公式:
tan dd d
dx
dx
d dx
d / dx-扭转角变化率
二)物理关系:由应变的变化规律→应力的分布规律
解:
一、计算作用在各轮上的外力偶矩
M2 A
M3 B
M1
M4
D
500 M 1 (9.55 10 ) N m 15.9kN m 300 3 150 M 2 M 3 (9.55 10 ) N m 4.78kN m 100 200 3 M 4 (9.55 10 ) N m 6.37kN m 300
剪切虎克定律
在弹性范围内切应力 与切应变成正比关系。
p,
G
E G 2(1 )
2、切应力互等定理
单元体—— 从受扭的薄壁圆筒表面处截取一微小的正六面体 Me M
e
y a
dy b
'
d x d z
d

O '

c
d yd z
x
z
dx
d y d z d x d x d z d y
相关文档
最新文档