云南省昭通市昭阳区2018-2019学年八年级(下)期中数学试卷(含解析)
云南省昭通市昭阳区2018-2019学年八年级(下)期中数学试卷(含解析)
2018-2019学年八年级第二学期期中数学试卷一、填空题1.﹣的相反数是.2.分解因式:m3﹣m=.3.已知菱形的周长为20,一条对角线长为6,则边长是,它的面积是.4.若二次根式有意义,则x的取值范围是.5.一个多边形的内角和为1080°,则它的边数为.它的外角和为.6.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为.二、选择题(每题4分,共32分)7.下列计算正确的是()A.B.5=5C.D.8.下列长度的线段中,能构成直角三角形的一组是()A.,,B.6,7,8C.12,25,27D.2,2,4 9.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种10.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 11.已知:在Rt△ABC中,∠C=90°,BC=1,AC=,点D是斜边AB的中点,点E 是边AC上一点,则DE+BE的最小值为()A.2B.+1C.D.212.顺次连接矩形四边中点所形成的四边形是()A.矩形B.菱形C.正方形D.梯形13.下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形14.如图,将长方形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上点F处,已知CE=3cm,AB=8cm,图中阴影部分的面积是()A.80cm2B.50cm2C.30cm2D.20cm2三、解答题(共9题,共70分)15.计算:(1)﹣9+;(2)×﹣÷﹣|1﹣|.16.最简二次根式与是同类二次根式,求3a﹣b的值.17.解不等式组并写出它的所有整数解.18.如图,在平行四边形ABCD中,点E在AB的延长线上,且EC∥BD,求证:BE=AB.19.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?20.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,求△ABE的面积和周长.21.如图,矩形ABCD的对角线相交于点O,PB∥AC,PC∥BD,PB、PC相交于点P.(1)猜想四边形PCOB是什么四边形,并说明理由;(2)当矩形ABCD满足什么条件时,四边形PCOB是正方形.22.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF =BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.23.观察下列格式,﹣,,,…(1)化简以上各式,并计算出结果;(2)以上格式的结果存在一定的规律,请按规律写出第5个式子及结果(3)用含n(n≥1的整数)的式子写出第n个式子及结果,并给出证明的过程.参考答案一、填空题(每题3分,共18分)1.﹣的相反数是.【分析】根据相反数的定义进行填空即可.解:∵﹣的相反数是,故答案为.【点评】本题考查了实数的性质以及算术平方根,掌握相反数的定义是解题的关键.2.分解因式:m3﹣m=m(m+1)(m﹣1).【分析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:m3﹣m,=m(m2﹣1),=m(m+1)(m﹣1).【点评】本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.3.已知菱形的周长为20,一条对角线长为6,则边长是5,它的面积是24.【分析】菱形对角线互相垂直平分,所以OA2+OB2=AB2,已知AB=5,AO=3,即可求得BO,即可求得BD的长,根据AC、BD即可求菱形ABCD的面积,即可解题.解:AC=8,则AO=CO=3,∵菱形周长为20,∴AB=5,∵菱形对角线互相垂直平分,∴OA2+OB2=AB2,∴BO=4,∴DB=8,∴菱形的面积S=×6×8=24.故答案为5:24.【点评】本题考查了菱形对角线互相垂直平分的性质,菱形面积的计算,本题中根据勾股定理求BO的值是解题的关键.4.若二次根式有意义,则x的取值范围是x≥﹣.【分析】二次根式的被开方数是非负数,则4x+1≥0.解:由题意,得4x+1≥0,解得x≥﹣.故答案是:x≥﹣.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.一个多边形的内角和为1080°,则它的边数为8.它的外角和为360°.【分析】根据多边形内角和公式(n﹣2)×180°可计算出边数,再根据多边形外角和为360°可得答案.解:设它的边数为n,由题意得:(n﹣2)×180=1080,解得:n=8,它的外角和为360°;故答案为:8;360°.【点评】此题主要考查了多边形内角和公式和外角和定理,关键是熟练掌握内角和公式(n﹣2)×180°.6.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为18.【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴AC==10,∵AO=OC,∴BO=AC=5,∵AO=OC,AM=MD=4,∴OM=CD=3,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=18.故答案为18.【点评】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.二、选择题(每题4分,共32分)7.下列计算正确的是()A.B.5=5C.D.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.解:不能合并,故选项A错误,,故选项B错误,,故选项C错误,,故选项D正确,故选:D.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.8.下列长度的线段中,能构成直角三角形的一组是()A.,,B.6,7,8C.12,25,27D.2,2,4【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.解:A、()2+()2≠()2,故不是直角三角形,此选项错误;B、62+72≠82,故不是直角三角形,此选项错误;C、122+252≠272,故不是直角三角形,此选项错误;D、(2)2+(2)2=(4)2,故是直角三角形,此选项正确.故选:D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种【分析】根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.解:依题意得有四种组合方式:(1)①③,利用两组对边平行的四边形是平行四边形判定;(2)②④,利用两组对边相等的四边形是平行四边形判定;(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.故选:C.【点评】此题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.10.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 【分析】由矩形和菱形的判定方法即可得出答案.解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.11.已知:在Rt△ABC中,∠C=90°,BC=1,AC=,点D是斜边AB的中点,点E 是边AC上一点,则DE+BE的最小值为()A.2B.+1C.D.2【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=,所以最小值为.解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离=AC=,故选:C.【点评】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.12.顺次连接矩形四边中点所形成的四边形是()A.矩形B.菱形C.正方形D.梯形【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB,∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:B.【点评】本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.13.下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形【分析】根据矩形的定义知,有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,根据菱形的定义及性质知四条边都相等的四边形是菱形即可解答.解:根据矩形的定义及性质知,有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,故A,B正确;根据菱形的定义及性质知对角线互相垂直的矩形是正方形,也是菱形,故C正确;对角线相等的四边形有可能是等腰梯形,故D错误;故选:D.【点评】本题考查了菱形的判定及矩形的判定,属于基础题,关键是掌握矩形的定义及性质,菱形的定义及性质.14.如图,将长方形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上点F处,已知CE=3cm,AB=8cm,图中阴影部分的面积是()A.80cm2B.50cm2C.30cm2D.20cm2【分析】根据已知条件得到△ABF∽△FCE,根据相似三角形的性质得到=,求出AF=10,得到AD=AF=10,然后运用S阴影=S矩形ABCD﹣2S△ADE,代入数值计算即可解决问题.解:如图,∵CD=AB=8,CE=3,∴EF=DE=8﹣3=5;由勾股定理得:CF=4;由折叠的性质得:AF=AD,∠AFE=∠D=90°;∵∠B=∠C=90°;∴∠BAF+∠AFB=∠AFB+∠EFC,∴∠BAF=∠EFC,而∠B=∠C,∴△ABF∽△FCE,∴=,即=,解得:AF=10.∴AD=AF=10.∵S△AEF=S△ADE,∴S阴影=S矩形ABCD﹣2S△ADE=10×8﹣2××10×5=80﹣50=30.故选:C.【点评】该题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,相似三角形的判定与性质,勾股定理.根据△ABF∽△FCE,求出AF=10,得到AD=AF=10是解题的关键.三、解答题(共9题,共70分)15.计算:(1)﹣9+;(2)×﹣÷﹣|1﹣|.【分析】(1)先化简各二次根式化简,再合并同类二次根式即可得;(2)根据二次根式的混合运算顺序和运算法则计算可得.解:(1)原式=4﹣3+2=3;(2)原式=﹣﹣(﹣1)=﹣﹣+1=.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.16.最简二次根式与是同类二次根式,求3a﹣b的值.【分析】根据题意,它们的被开方数相同,列出方程求解.解:由最简二次根式与是同类二次根式,得,解得,则3a﹣b=2.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.17.解不等式组并写出它的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:“大小小大中间找”确定不等式组的解集,继而可得答案.解:解不等式4(x﹣1)≤3(x+2)得:x≤10,解不等式<x﹣4得:x>7,∴不等式组的解集为:7<x≤10,则该不等式组的整数解有:8、9、10.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,在平行四边形ABCD中,点E在AB的延长线上,且EC∥BD,求证:BE=AB.【分析】可根据两组对边分别平行的四边形是平行四边形证四边形BECD是平行四边形.【解答】证明:∵ABCD是平行四边形,∴AB∥CD,即BE∥CD,又∵EC∥BD,∴四边形BECD是平行四边形.∴BE=CD.∴BE=AB.【点评】此题主要考查平行四边形的判定:两组对边分别平行的四边形是平行四边形.19.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?【分析】设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出分式方程,解方程即可.解:设乙工程队每天能完成绿化的面积是xm2,根据题意得﹣=4,解得:x=50.经检验:x=50是原方程的解.所以甲工程队每天能完成绿化的面积是50×2=100(m2).答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2.【点评】本题主要考查了分式方程的应用,解题的关键是分析题意,找到合适的数量关系列出分式方程,解分式方程时要注意检验未知数的值是否符合原方程,是否符合实际意义.20.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,求△ABE的面积和周长.【分析】由矩形的性质可得BC=AD=1,∠C=∠D=90°,可证△AED与△BCE为等腰直角三角形,可求DE=AD=1,CE=BC=1,AE=BE=,AB=2,即可求解.解:∵在矩形ABCD中,BC=AD=1,∠C=∠D=90°,且∠DAE=∠CBE=45°,∴△AED与△BCE为等腰直角三角形,∴DE=AD=1,CE=BC=1,AE==,BE==,∴AB=DE+CE=1+1=2,∴△ABE的周长=AB+AE+BE=2++=2+2,∴△ABE的面积=AB•AD=×2×1=1.【点评】本题考查了矩形的性质,勾股定理,等腰直角三角形的性质,灵活运用这些性质进行推理是本题的关键.21.如图,矩形ABCD的对角线相交于点O,PB∥AC,PC∥BD,PB、PC相交于点P.(1)猜想四边形PCOB是什么四边形,并说明理由;(2)当矩形ABCD满足什么条件时,四边形PCOB是正方形.【分析】(1)由BE∥AC,EC∥BD,得出四边形OBEC是平行四边形,再由矩形的性质得出OB=OC,即可得出结论;(2)由正方形的判定方法即可得出结论.解:(1)四边形PCOB是菱形;理由如下:∵PB∥AC,PC∥BD,∴四边形PCOB为平行四边形,∵四边形ABCD为矩形,∴OBOD,OA=OC,AC=BD,∴OB=OC,∴四边形PCOB为菱形(有一组邻边相等的平行四边形为菱形);(2)当AC⊥BD时,四边形PCOB是正方形;理由如下:∵四边形PCOB为菱形,AC⊥BD,∴四边形PCOB为正方形(有一个角为90°的菱形为正方形).【点评】本题考查了正方形的判定、菱形的判定、矩形的性质;熟练掌握矩形的性质和正方形的判定方法,证明四边形是菱形是解决问题的关键.22.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF =BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)由∠BEF是120°,可得∠EBC为60°,即可得△BEC是等边三角形,求得BE=BC=CE=6,再过点E作EG⊥BC于点G,求的高EG的长,即可求得答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形;(2)解:∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点E作EG⊥BC于点G,∴EG=BE•sin60°=6×=3,∴S菱形BCFE=BC•EG=6×3=18.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.注意证得△BEC是等边三角形是关键.23.观察下列格式,﹣,,,…(1)化简以上各式,并计算出结果;(2)以上格式的结果存在一定的规律,请按规律写出第5个式子及结果(3)用含n(n≥1的整数)的式子写出第n个式子及结果,并给出证明的过程.【分析】(1)分别把每个式子的第二项进行分母有理化,观察结果;(2)根据(1)的结果写出第5个式子及结果;(3)根据(1)的规律可得﹣,然后分母有理化,求出结果即可.解:(1)﹣=﹣=﹣=﹣1,=﹣=﹣2,==﹣3,=﹣=﹣4,(2)﹣=﹣5,(3)﹣=﹣=﹣n.【点评】本题主要考查分母有理化的知识点,解答本题的关键是找出上述各式的变化规律,此题难度一般.。
云南省昭通市昭阳区2018-2019学年八年级下学期期中数学试题(含答案及解析)
2019年春季学期初中学业水平期中监测八年级数学试题卷一、填空题(每题3分,共18分)1._________.【解析】【分析】根据相反数的意义,可得答案.【详解】【点睛】本题考查相反数,掌握相反数的定义是关键.2.分解因式:3m m -=_____________;【答案】()()11m m m +-【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式利用平方差公式继续分解.【详解】解:m 3﹣m ,=m (m 2﹣1),=m (m ﹣1)(m +1).故答案为:m (m ﹣1)(m +1).【点睛】本题考查提公因式法分解因式,利用平方差公式分解因式,熟记公式是解题关键,要注意分解因式要彻底.3.菱形的周长是20,一条对角线的长为6,则它的面积为_____.【答案】24.【解析】【分析】先画出图形,根据菱形的性质可得5AD =,DO =3,根据勾股定理可求得AO 的长,从而得到AC 的长,再根据菱形的面积公式即可求得结果.【详解】由题意得2045AD =÷=,6BD =∵菱形ABCD∴3DO =,AC ⊥BD ∴224AO AD DO =-=∴28AC AO ==∴1242S AC BD =⋅=考点:本题考查的是菱形的性质【点睛】解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.4.41x +x 的取值范围是_______【答案】14x ≥-【解析】【分析】根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得, 4x +1≥0,解得x ≥﹣14. 故答案为:x ≥﹣14. 【点睛】本题考查的知识点为:二次根式的被开方数是非负数.5.已知一个多边形的内角和是1080︒,这个多边形外角和是 ___________【答案】360°【解析】【分析】根据任何多边形的外角和是360°即可求出答案.【详解】解:因为任意多边形的外角和都是360°,故答案为:360°.【点睛】本题考查了多边形的外角和定理,比较简单.6.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=6,AD=8,则四边形ABOM 的周长为_____.【答案】18.【解析】【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴2210AC AB BC=+=,∵AO=OC,∴152BO AC==,∵AO=OC,AM=MD=4,∴132OM CD==,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=18.故答案为:18.【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.二、选择题:(每小题4分,共计32分)7.下列计算正确的是()822= B. 535256=1234=325=【答案】A【解析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断.【详解】解:A ==A 选项正确;B 、52=B 选项错误;C 2==,所以C 选项错误;D D 选项错误.故选:A .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.8.下列长度的线段中,能构成直角三角形的一组是( )B. 6,7,8C. 12,25,27D. 【答案】D【解析】【分析】根据勾股定理的逆定理逐项进行判断即可得.【详解】:A 2+2≠2,故不是直角三角形,此选项错误;B 、62+72≠82,故不是直角三角形,此选项错误;C 、122+252≠272,故不是直角三角形,此选项错误;D 、(2+(2=(2,故是直角三角形,此选项正确,故选D .【点睛】本题考查了勾股定理的逆定理的应用,给出三角形的三边判断能否构成直角三角形时,只需要看较短两边的平方和是否等于长边的平方即可,等于就是直角三角形,否则就不是直角三角形..9.已知四边形ABCD ,有①//AB CD ;②AB CD =;③//BC AD ;④BC AD =.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数,共有( )A. 3种B. 4种C. 5种D. 6种 【答案】B【解析】根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.【详解】解:依题意得有四种组合方式:(1)①③,利用两组对边平行的四边形是平行四边形判定;(2)②④,利用两组对边相等的四边形是平行四边形判定;(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.故选:B.【点睛】此题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.10.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A. ∠BAC=∠DCAB. ∠BAC=∠DACC. ∠BAC=∠ABDD. ∠BAC=∠ADB【答案】C【解析】【详解】A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选C.11.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为()A. 2313D. 23【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离3故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.12.顺次连接矩形四边中点所形成的四边形是( )A. 矩形B. 菱形C. 正方形D. 梯形【答案】B【解析】【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【详解】解:连接AC、BD,在△ABD 中,∵AH=HD ,AE=EB ,∴EH=12BD , 同理FG=12BD ,HG=12AC ,EF=12AC , 又∵在矩形ABCD 中,AC=BD ,∴EH=HG=GF=FE ,∴四边形EFGH 为菱形.故选B .点睛:本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.13.下列说法中错误的是( )A. 有一个角是直角的平行四边形是矩形B. 有一组邻边相等的平行四边形是菱形C. 对角线互相垂直的矩形是菱形D. 对角线相等的四边形是矩形【答案】D【解析】【分析】根据矩形,菱形的判定方法进行判定即可.【详解】A. 有一个角是直角的平行四边形是矩形,正确.B. 有一组邻边相等的平行四边形是菱形,正确.C. 对角线互相垂直的矩形是菱形,正确.D. 对角线相等的四边形是矩形,错误,例如:等腰梯形.故选D.【点睛】要根据矩形、菱形的判定方法,进行选择.熟记矩形和菱形的判定方法是解决本题的关键. 14.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知3,8CE cm AB cm ==,则图中阴影部分面积为()A. 212cm B. 225cm C. 230cm D. 250cm【答案】C【解析】【分析】根据折叠的性质求出DE=EF=5,在Rt△CEF中,利用勾股定理求出CF=4,设AD=x,则AD=AF=BC =x,在Rt△ABF中,利用勾股定理构建方程即可解决问题.【详解】解:设AD=x,则AD=AF=BC=x,∵AB=8,∴CD=AB=8,∵CE=3,∴EF=DE=CD﹣CE=8﹣3=5,在直角△CEF中,CF22EF CE=4,∴BF=x﹣4,在直角△ABF中,AB2+BF2=AF2,即64+(x﹣4)2=x2,解得:x=10,∴S△ADE=S△AFE=12AD•DE=12×10×5=25,∵S矩形ABCD=10×8=80,∴S阴影=S矩形ABCD﹣S△ADE﹣S△AFE=80﹣25﹣25=30.故选:C.【点睛】本题考查了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②勾股定理,三角形的面积公式求解.三.解答题:(每题9分,共70分)15.计算:(12|1.【答案】(1)(2)12.【解析】【分析】(1)先化为最简二次根式,再将被开方数相同的二次根式进行合并;(2)先化为最简二次根式,再根据二次根式的乘除法法则进行计算,最后再合并同类二次根式和合并同类项.【详解】(1)原式(2)原式12-1)12=12.【点睛】二次根式的混合运算,关键是二次根式的化简.16.3a﹣b的值.【答案】2.【解析】试题分析:根据题意,它们的被开方数相同,列出方程求解.432612a b a bb+-+⎧⎨+⎩==,解得11ab==⎧⎨⎩,则3a-b=2.17.解不等式组4(1)3(2),14,2x xxx-≤+⎧⎪⎨-<-⎪⎩并写出它的所有整数解....【答案】它的整数解为7,8,9,10.【解析】【分析】分别解不等式,找出解集的公共部分,再写出整数解即可.【详解】解:解不等式4(1)3(2)x x -≤+,4436x x -≤+,10x ≤, 142x x -<-, 228x x -<-,6x ->-,6x >,∴不等式组的解集为610x <≤.∴它的整数解为7,8,9,10.18.如图,在平行四边形ABCD 中,点E 在AB 的延长线上,且EC//BD ,求证:BE=AB .【答案】证明见解析.【解析】【分析】可根据两组对边分别平行的四边形是平行四边形证四边形BECD 是平行四边形.【详解】解:∵ABCD 是平行四边形,∴AB ∥CD,即BE ∥CD ,又∵EC ∥BD ,∴四边形BECD 是平行四边形∴BE=CD∴BE=AB19.某校为美化校园,计划对某一区域进行绿化,安排甲.乙 两个工程队完成;已知甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为4002m 区域的绿化时,甲队比乙队少用4天,求甲.乙两工程队每天能完成绿化的面积分别是多少2m .【答案】甲、乙两工程队每天能完成绿化的面积分别是1002m ,502m .【解析】【分析】设乙工程队每天能完成绿化的面积是x 2m ,则甲工程队每天能完成绿化的面积是2x 2m ,根据题意列出方程求解即可.【详解】设乙工程队每天能完成绿化的面积是x 2m ,则甲工程队每天能完成绿化的面积是2x 2m , 根据题意得:40040042x x-=, 解得:x=50,经检验,x=50是原方程的解,且符合题意,甲工程队每天能完成的绿化的面积是50×2=100(2m ),答:甲、乙两工程队每天能完成绿化的面积分别是1002m ,502m ,【点睛】本题考查了分式方程的实际应用—工程问题,掌握分式方程的实际应用是解题的关键. 20.如图,在长方形ABCD 中,45DAE CBE ∠=∠=︒,1AD =,求ABE ∆的面积和周长.【答案】周长为222,面积为1 【解析】【分析】(1)根据矩形性质和等腰直角三角形的性质可求BC ,DE ,CE ,AE ,BE ,进一步得到CD 和AB 的长,再根据三角形周长的定义即可求解;(2)先根据矩形的面积公式求出长方形ABCD 的面积,再根据等底等高的三角形面积是长方形面积的一半即可求解.【详解】 解:(1)∵四边形ABCD 是长方形,∴BC=AD=1,∠C=∠D=90∘,∵∠DAE=∠CBE=45∘,∴22∴AB=CD=1+1=2,∴△ABE 的周长=2+2+2=2+22.(2)△ABE 的面积=2×1÷2=1.【点睛】本题考查了长方形的面积和周长的计算,熟练掌握其计算公式是解题的关键.21.如图,矩形ABCD 的对角线相交于点O ,PB ∥AC ,PC ∥BD ,PB 、PC 相交于点P .(1)猜想四边形PCOB 是什么四边形,并说明理由;(2)当矩形ABCD 满足什么条件时,四边形PCOB 是正方形.【答案】(1)四边形PCOB 为菱形,理由见解析;(2)AC ⊥BD【解析】【分析】(1)由BE ∥AC ,EC ∥BD ,得出四边形OBEC 是平行四边形,再由矩形的性质得出OB=OC ,即可得出结论;(2)由正方形的判定方法即可得出结论.【详解】解:(1)四边形PCOB 是菱形;理由如下:∵PB ∥AC ,PC ∥BD ,∴四边形PCOB 为平行四边形,∵四边形ABCD 为矩形,∴OBOD ,OA=OC ,AC=BD ,∴OB=OC ,∴四边形PCOB 为菱形(有一组邻边相等的平行四边形为菱形);(2)当AC ⊥BD 时,四边形PCOB 是正方形;理由如下:∵四边形PCOB 为菱形,AC ⊥BD ,∴四边形PCOB 为正方形(有一个角为90°的菱形为正方形).【点睛】本题考查了正方形的判定、菱形的判定、矩形的性质;熟练掌握矩形的性质和正方形的判定方法,证明四边形是菱形是解决问题的关键.22.如图,在ABC ∆中,DE 分别是AB ,AC 的中点,2D BE E =,延长DE 到点F ,使得EF BE =,连结CF .(1)求证:四边形BCFE 是菱形;(2)若5CE =,120BEF ︒∠=,求菱形BCFE 的面积.【答案】(1)见解析;(2253 【解析】【分析】(1)从所给的条件可知,DE 是△ABC 的中位线,所以DE ∥BC 且2DE =BC ,所以BC 和EF 平行且相等,所以四边形BCFE 是平行四边形,又因为BE =EF ,所以是菱形;(2)由∠BEF 是120°,可得∠EBC 为60°,即可得△BEC 是等边三角形,求得BE =BC =CE =5,再过点E 作EG ⊥BC 于点G ,求出高EG 的长,即可求得答案.【详解】解:(1)∵D 、E 分别是AB 、AC 的中点,∴DE ∥BC 且2DE =BC ,又∵BE =2DE ,EF =BE ,∴EF =BC ,EF ∥BC ,∴四边形BCFE 是平行四边形,又∵BE =EF ,∴四边形BCFE 是菱形;(2)∵∠BEF =120°,∴∠EBC =60°,∴△EBC 是等边三角形,∴BE =BC =CE =5,过点E 作EG ⊥BC 于点G ,∴EG =BE•sin60°=5×353, ∴S 菱形BCFE =BC•EG =5×53253.【点睛】本题考查菱形的判定和性质、三角形中位线定理、三角函数的应用以及菱形的面积计算等知识点.证得△BEC 是等边三角形是关键.23.观察下列各式:5182133204 (22225182133201)---- ()1化简以上各式,并计算出结果;()2以上式子与其结果存在一定的规律.请按规律写出第5个式子及结果.()3猜想第n 个式子及结果(用含n (1n ≥的整数)的式子写出),并对猜想进行证明.【答案】()11,2,3,4----;(29525295-=--;()3第n 个式子为及结果为2244n n n n n+-=-+-,证明见解析 【解析】【分析】(1)分别把每个式子的第二项进行分母有理化,观察结果;(2)根据(1)结果写出第5个式子及结果;(3)根据(12244n n n n+-+-,然后分母有理化,求出结果即可. 【详解】解: (51151-- ()()25151515115151--+===--+ ()()2828282828282--=--+2 ==-=3==-····4==-()5252=-()3第n个式子为及结果为n=-证明:左边=2n=2nn===--=右边2nn=-成立【点睛】本题主要考查分母有理化的知识点,解答本题的关键是找出上述各式的变化规律,此题难度一般.。
云南省昭通市昭阳区2018-2019学年八年级(下)期中数学试卷
2018-2019学年八年级第二学期期中数学试卷一、填空题1.﹣的相反数是.2.分解因式:m3﹣m=.3.已知菱形的周长为20,一条对角线长为6,则边长是,它的面积是.4.若二次根式有意义,则x的取值范围是.5.一个多边形的内角和为1080°,则它的边数为.它的外角和为.6.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为.二、选择题(每题4分,共32分)7.下列计算正确的是()A.B.5=5C.D.8.下列长度的线段中,能构成直角三角形的一组是()A.,,B.6,7,8C.12,25,27D.2,2,4 9.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种10.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 11.已知:在Rt△ABC中,∠C=90°,BC=1,AC=,点D是斜边AB的中点,点E 是边AC上一点,则DE+BE的最小值为()A.2B.+1C.D.212.顺次连接矩形四边中点所形成的四边形是()A.矩形B.菱形C.正方形D.梯形13.下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形14.如图,将长方形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上点F处,已知CE=3cm,AB=8cm,图中阴影部分的面积是()A.80cm2B.50cm2C.30cm2D.20cm2三、解答题(共9题,共70分)15.计算:(1)﹣9+;(2)×﹣÷﹣|1﹣|.16.最简二次根式与是同类二次根式,求3a﹣b的值.17.解不等式组并写出它的所有整数解.18.如图,在平行四边形ABCD中,点E在AB的延长线上,且EC∥BD,求证:BE=AB.19.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?20.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,求△ABE的面积和周长.21.如图,矩形ABCD的对角线相交于点O,PB∥AC,PC∥BD,PB、PC相交于点P.(1)猜想四边形PCOB是什么四边形,并说明理由;(2)当矩形ABCD满足什么条件时,四边形PCOB是正方形.22.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF =BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.23.观察下列格式,﹣,,,…(1)化简以上各式,并计算出结果;(2)以上格式的结果存在一定的规律,请按规律写出第5个式子及结果(3)用含n(n≥1的整数)的式子写出第n个式子及结果,并给出证明的过程.参考答案一、填空题(每题3分,共18分)1.﹣的相反数是.【分析】根据相反数的定义进行填空即可.解:∵﹣的相反数是,故答案为.【点评】本题考查了实数的性质以及算术平方根,掌握相反数的定义是解题的关键.2.分解因式:m3﹣m=m(m+1)(m﹣1).【分析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:m3﹣m,=m(m2﹣1),=m(m+1)(m﹣1).【点评】本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.3.已知菱形的周长为20,一条对角线长为6,则边长是5,它的面积是24.【分析】菱形对角线互相垂直平分,所以OA2+OB2=AB2,已知AB=5,AO=3,即可求得BO,即可求得BD的长,根据AC、BD即可求菱形ABCD的面积,即可解题.解:AC=8,则AO=CO=3,∵菱形周长为20,∴AB=5,∵菱形对角线互相垂直平分,∴OA2+OB2=AB2,∴BO=4,∴DB=8,∴菱形的面积S=×6×8=24.故答案为5:24.【点评】本题考查了菱形对角线互相垂直平分的性质,菱形面积的计算,本题中根据勾股定理求BO的值是解题的关键.4.若二次根式有意义,则x的取值范围是x≥﹣.【分析】二次根式的被开方数是非负数,则4x+1≥0.解:由题意,得4x+1≥0,解得x≥﹣.故答案是:x≥﹣.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.一个多边形的内角和为1080°,则它的边数为8.它的外角和为360°.【分析】根据多边形内角和公式(n﹣2)×180°可计算出边数,再根据多边形外角和为360°可得答案.解:设它的边数为n,由题意得:(n﹣2)×180=1080,解得:n=8,它的外角和为360°;故答案为:8;360°.【点评】此题主要考查了多边形内角和公式和外角和定理,关键是熟练掌握内角和公式(n﹣2)×180°.6.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为18.【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴AC==10,∵AO=OC,∴BO=AC=5,∵AO=OC,AM=MD=4,∴OM=CD=3,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=18.故答案为18.【点评】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.二、选择题(每题4分,共32分)7.下列计算正确的是()A.B.5=5C.D.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.解:不能合并,故选项A错误,,故选项B错误,,故选项C错误,,故选项D正确,故选:D.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.8.下列长度的线段中,能构成直角三角形的一组是()A.,,B.6,7,8C.12,25,27D.2,2,4【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.解:A、()2+()2≠()2,故不是直角三角形,此选项错误;B、62+72≠82,故不是直角三角形,此选项错误;C、122+252≠272,故不是直角三角形,此选项错误;D、(2)2+(2)2=(4)2,故是直角三角形,此选项正确.故选:D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种【分析】根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.解:依题意得有四种组合方式:(1)①③,利用两组对边平行的四边形是平行四边形判定;(2)②④,利用两组对边相等的四边形是平行四边形判定;(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.故选:C.【点评】此题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.10.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 【分析】由矩形和菱形的判定方法即可得出答案.解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.11.已知:在Rt△ABC中,∠C=90°,BC=1,AC=,点D是斜边AB的中点,点E 是边AC上一点,则DE+BE的最小值为()A.2B.+1C.D.2【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=,所以最小值为.解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离=AC=,故选:C.【点评】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.12.顺次连接矩形四边中点所形成的四边形是()A.矩形B.菱形C.正方形D.梯形【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB,∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:B.【点评】本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.13.下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形【分析】根据矩形的定义知,有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,根据菱形的定义及性质知四条边都相等的四边形是菱形即可解答.解:根据矩形的定义及性质知,有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,故A,B正确;根据菱形的定义及性质知对角线互相垂直的矩形是正方形,也是菱形,故C正确;对角线相等的四边形有可能是等腰梯形,故D错误;故选:D.【点评】本题考查了菱形的判定及矩形的判定,属于基础题,关键是掌握矩形的定义及性质,菱形的定义及性质.14.如图,将长方形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上点F处,已知CE=3cm,AB=8cm,图中阴影部分的面积是()A.80cm2B.50cm2C.30cm2D.20cm2【分析】根据已知条件得到△ABF∽△FCE,根据相似三角形的性质得到=,求出AF=10,得到AD=AF=10,然后运用S阴影=S矩形ABCD﹣2S△ADE,代入数值计算即可解决问题.解:如图,∵CD=AB=8,CE=3,∴EF=DE=8﹣3=5;由勾股定理得:CF=4;由折叠的性质得:AF=AD,∠AFE=∠D=90°;∵∠B=∠C=90°;∴∠BAF+∠AFB=∠AFB+∠EFC,∴∠BAF=∠EFC,而∠B=∠C,∴△ABF∽△FCE,∴=,即=,解得:AF=10.∴AD=AF=10.∵S△AEF=S△ADE,∴S阴影=S矩形ABCD﹣2S△ADE=10×8﹣2××10×5=80﹣50=30.故选:C.【点评】该题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,相似三角形的判定与性质,勾股定理.根据△ABF∽△FCE,求出AF=10,得到AD=AF=10是解题的关键.三、解答题(共9题,共70分)15.计算:(1)﹣9+;(2)×﹣÷﹣|1﹣|.【分析】(1)先化简各二次根式化简,再合并同类二次根式即可得;(2)根据二次根式的混合运算顺序和运算法则计算可得.解:(1)原式=4﹣3+2=3;(2)原式=﹣﹣(﹣1)=﹣﹣+1=.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.16.最简二次根式与是同类二次根式,求3a﹣b的值.【分析】根据题意,它们的被开方数相同,列出方程求解.解:由最简二次根式与是同类二次根式,得,解得,则3a﹣b=2.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.17.解不等式组并写出它的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:“大小小大中间找”确定不等式组的解集,继而可得答案.解:解不等式4(x﹣1)≤3(x+2)得:x≤10,解不等式<x﹣4得:x>7,∴不等式组的解集为:7<x≤10,则该不等式组的整数解有:8、9、10.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,在平行四边形ABCD中,点E在AB的延长线上,且EC∥BD,求证:BE=AB.【分析】可根据两组对边分别平行的四边形是平行四边形证四边形BECD是平行四边形.【解答】证明:∵ABCD是平行四边形,∴AB∥CD,即BE∥CD,又∵EC∥BD,∴四边形BECD是平行四边形.∴BE=CD.∴BE=AB.【点评】此题主要考查平行四边形的判定:两组对边分别平行的四边形是平行四边形.19.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?【分析】设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出分式方程,解方程即可.解:设乙工程队每天能完成绿化的面积是xm2,根据题意得﹣=4,解得:x=50.经检验:x=50是原方程的解.所以甲工程队每天能完成绿化的面积是50×2=100(m2).答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2.【点评】本题主要考查了分式方程的应用,解题的关键是分析题意,找到合适的数量关系列出分式方程,解分式方程时要注意检验未知数的值是否符合原方程,是否符合实际意义.20.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,求△ABE的面积和周长.【分析】由矩形的性质可得BC=AD=1,∠C=∠D=90°,可证△AED与△BCE为等腰直角三角形,可求DE=AD=1,CE=BC=1,AE=BE=,AB=2,即可求解.解:∵在矩形ABCD中,BC=AD=1,∠C=∠D=90°,且∠DAE=∠CBE=45°,∴△AED与△BCE为等腰直角三角形,∴DE=AD=1,CE=BC=1,AE==,BE==,∴AB=DE+CE=1+1=2,∴△ABE的周长=AB+AE+BE=2++=2+2,∴△ABE的面积=AB•AD=×2×1=1.【点评】本题考查了矩形的性质,勾股定理,等腰直角三角形的性质,灵活运用这些性质进行推理是本题的关键.21.如图,矩形ABCD的对角线相交于点O,PB∥AC,PC∥BD,PB、PC相交于点P.(1)猜想四边形PCOB是什么四边形,并说明理由;(2)当矩形ABCD满足什么条件时,四边形PCOB是正方形.【分析】(1)由BE∥AC,EC∥BD,得出四边形OBEC是平行四边形,再由矩形的性质得出OB=OC,即可得出结论;(2)由正方形的判定方法即可得出结论.解:(1)四边形PCOB是菱形;理由如下:∵PB∥AC,PC∥BD,∴四边形PCOB为平行四边形,∵四边形ABCD为矩形,∴OBOD,OA=OC,AC=BD,∴OB=OC,∴四边形PCOB为菱形(有一组邻边相等的平行四边形为菱形);(2)当AC⊥BD时,四边形PCOB是正方形;理由如下:∵四边形PCOB为菱形,AC⊥BD,∴四边形PCOB为正方形(有一个角为90°的菱形为正方形).【点评】本题考查了正方形的判定、菱形的判定、矩形的性质;熟练掌握矩形的性质和正方形的判定方法,证明四边形是菱形是解决问题的关键.22.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF =BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)由∠BEF是120°,可得∠EBC为60°,即可得△BEC是等边三角形,求得BE=BC=CE=6,再过点E作EG⊥BC于点G,求的高EG的长,即可求得答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形;(2)解:∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点E作EG⊥BC于点G,∴EG=BE•sin60°=6×=3,∴S菱形BCFE=BC•EG=6×3=18.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.注意证得△BEC是等边三角形是关键.23.观察下列格式,﹣,,,…(1)化简以上各式,并计算出结果;(2)以上格式的结果存在一定的规律,请按规律写出第5个式子及结果(3)用含n(n≥1的整数)的式子写出第n个式子及结果,并给出证明的过程.【分析】(1)分别把每个式子的第二项进行分母有理化,观察结果;(2)根据(1)的结果写出第5个式子及结果;(3)根据(1)的规律可得﹣,然后分母有理化,求出结果即可.解:(1)﹣=﹣=﹣=﹣1,=﹣=﹣2,==﹣3,=﹣=﹣4,(2)﹣=﹣5,(3)﹣=﹣=﹣n.【点评】本题主要考查分母有理化的知识点,解答本题的关键是找出上述各式的变化规律,此题难度一般.。
2018-2019学年八年级数学下册期中考试试卷及答案
2019年春学期期中考试八年级数学试卷 第 1 页 共 3 页密 封 线学校 班级 姓名 学号2019年春学期期中考试试卷八年级数学(满分:150分 时间:120分钟)一、相信你的选择。
(每小题3分,共30分)1.是一种电子计分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是( )2.已知x y >,则下列不等式不成立的是 ( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+3.如图,将一个含30°角的直角三角板ABC 绕点A 旋转,得点B ,A ,C ′,在同一条直线上,则旋转角∠BAB ′的度数是( ) A .60° B .90° C .120° D .150°4.一份工作,甲单独做需a 天完成,乙单独做需b 天完成,则甲乙两人合作一天的工作量是( )A a+b;B b a +1;C 2b a +;D ba 11+5.如图,数轴上所表示关于x 的不等式组的解集是( )A .x ≥2B .x >2C .x >﹣1D .﹣1<x ≤26.下列多项式中不能用公式分解的是( )A. a 2+a+41B.-a 2+b 2-2abC.-a 2+25b 2D.-4+b 27.如果把分式yx xy+中的x 和y 都扩大2倍,即分式的值 ( )A 扩大4倍;B 扩大2倍;C 不变;D 缩小2倍8. 下列分解因式正确的是( )A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)29.分式x--11可变形为( )A .﹣B .C .﹣D .10.直线l 1:y=k 1x +b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x <k 1x +b 的解集为( ) A .x <﹣1 B .x >﹣1 C .x >2D .x <2二、耐心填一填,你能行!(每题4分,共32分)11.不等式930x ->的正整数解是 .12.若分式1x -1有意义,则x 的取值范围是_______________.13.若222121,2y xy x y x ++=+则代数式的值是__________.14.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将ΔBCE 绕点C 顺时针方向旋转90°得到ΔDCF ,连接EF ,若∠BEC=60°,则∠EDF 的度数为 .15.已知(a -2)x |a|-1+3>5是关于x 的一元一次不等式,则a的值为____.16.若一个正方形的面积是9m 2+24mn+16n 2,则这个正方形的边长是 . 17.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 方向平移2个单位后得到△DEF ,连接DC ,则DC 的长为_________.18.已知不等式组⎩⎨⎧≥≥-ax x 112的解集是错误!未找到引用源。
2018-2019学年度八年级(下)期中考试数学试卷(五四学制)含答案解析
2018-2019学年度八年级(下)期中数学试卷(五四学制)一、选择题(本大题共10小题,共30.0分)1.下列各式:,,,(a>0),其中是二次根式的有()A. 1个B. 2个C. 3个D. 4个2.将-a中的a移到根号内,结果是()A. B. C. D.3.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A. B. C. D.4.若关于x的一元二次方程(m-1)x2+5x+m2-5m+4=0有一个根为0,则m的值等于()A. 1B. 4C. 1或4D. 05.若方程ax2+bx+c=0(a≠0)中,a,b,c满足a+b+c=0和a-b+c=0,则方程的根是()A. 1,0B. ,0C. 1,D. 无法确定6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C. 5D. 47.用因式分解法解方程,下列方法中正确的是()A. ,或B. ,或C. ,或D. ,8.菱形ABCD的一条对角线长为6,边AB的长为方程y2-7y+10=0的一个根,则菱形ABCD的周长为()A. 8B. 20C. 8或20D. 109.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A. B. C. D. b10.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A. 12厘米B. 16厘米C. 20厘米D. 28厘米二、填空题(本大题共10小题,共30.0分)11.计算()=______.12.以正方形ABCD的边BC为边做等边△BCE,则∠AED的度数为______.13.若|b-1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是______.14.化简的结果为______.15.如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为______.16.观察下列各式:,,…请你将发现的规律用含自然数n(n≥1)的代数式表达出来______.17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连结DE,则DE的最小值为______.18.如果二次三项式x2-2(m+1)x+16是一个完全平方式,那么m的值是______.19.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为______.20.如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为______度.三、计算题(本大题共2小题,共10.0分)21.计算(1)(-)2+2•3;(2)(5-6+4)÷.22.解方程(1)2x2-4x-5=0.(公式法)(2)x2-4x+1=0.(配方法)(3)(y-1)2+2y(1-y)=0.(因式分解法)四、解答题(本大题共4小题,共30.0分)23.如下表,方程1、方程2、方程3…是按照一定的规律排列的一列方程,解方程3,(2)用你探究的规律解方程x2-8x-20=0.24.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.25.在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(1)请用不同的方法化简;(2)化简:.26.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.答案和解析1.【答案】B【解析】解:是三次根式;,符合二次根式的定义,所以它们是二次根式;∵a>0,-6a<0,(a>0)不是二次根式.综上所述,二次根式的个数是2个.故选:B.二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.本题考查了二次根式的定义.注意,二次根式的被开方数是非负数.2.【答案】B【解析】解:由题意得a<0,原式==故选:B.根据二次根式的运算即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.3.【答案】B【解析】解:A、∵四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当 ∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,当 ∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,当 ∠ABC=90°时,平行四边形ABCD是矩形,当AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选:B.利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.此题主要考查了正方形的判定以及矩形、菱形的判定方法,正确掌握正方形的判定方法是解题关键.4.【答案】B【解析】解:把x=0代入方程得m2-5m+4=0,解得m1=4,m2=1,而a-1≠0,所以m=4.故选:B.先把x=0代入方程求出m的值,然后根据一元二次方程的定义确定满足条件的m的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.5.【答案】C【解析】解:在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是-1.则方程的根是1,-1.故选:C.本题根据一元二次方程的根的定义、一元二次方程的定义求解,代入方程的左右两边,看左右两边是否相等.本题就是考查了方程的解的定义,判断一个数是否是方程的解的方法,就是代入方程的左右两边,看左右两边是否相等.6.【答案】A【解析】【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.本题考查了勾股定理和菱形的性质的应用,能根据菱形=是解此题的关键.的性质得出S菱形ABCD【解答】解:∵四边形ABCD是菱形,AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S=,菱形ABCD,DH=,故选:A.7.【答案】A【解析】解:用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是x=0,x+2=0.所以第一个正确.故选:A.用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是x=0,x+2=0.此题考查了学生对因式分解方法应用的条件的理解,提高了学生学以致用的能力.8.【答案】B【解析】解:∵解方程y2-7y+10=0得:y=2或5∵对角线长为6,2+2<6,不能构成三角形;菱形的边长为5.菱形ABCD的周长为4×5=20.故选:B.边AB的长是方程y2-7y+10=0的一个根,解方程求得y的值,根据菱形ABCD 的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.9.【答案】A【解析】解:由图可知:a<0,a-b<0,则|a|+=-a-(a-b)=-2a+b.故选:A.直接利用数轴上a,b的位置,进而得出a<0,a-b<0,再利用绝对值以及二次根式的性质化简得出答案.此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.10.【答案】C【解析】解:设斜线上两个点分别为P、Q,∵P点是B点对折过去的,∠EPH为直角,△AEH≌△PEH,∠HEA=∠PEH,同理∠PEF=∠BEF,∠PEH+∠PEF=90°,四边形EFGH是矩形,△DHG≌△BFE,HEF是直角三角形,BF=DH=PF,∵AH=HP,AD=HF,∵EH=12cm,EF=16cm,FH===20cm,FH=AD=20cm.故选:C.先求出△EFH是直角三角形,再根据勾股定理求出FH=20,再利用全等三角形的性质解答即可.本题考查的是翻折变换及勾股定理、全等三角形的判定与性质,解答此题的关键是作出辅助线,构造出全等三角形,再根据直角三角形及全等三角形的性质解答.11.【答案】【解析】解:原式=÷(+)=÷=×=,故答案为:先计算括号内的加法,再计算除法即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.12.【答案】150°或30°【解析】解:如图(1)∠ABE=90°+60°=150°,AB=BE, ∠AEB=15°=∠DEC, ∠AED=30°如图(2)BE=BA,∠ABE=30°, ∠BEA=75°=∠CED∠AED=360°-75°-75°-60°=150°.故答案为30或150.等边△BCE可能在正方形,外如图(1),也可在正方形内如图(2),应分情况讨论.本题考查了正方形的性质及等边三角形的性质.13.【答案】k≤4且k≠0【解析】解:∵|b-1|+=0,b-1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,△=a2-4kb≥0且k≠0,即16-4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.首先根据非负数的性质求得a、b的值,再由二次函数的根的判别式来求k的取值范围.本题主要考查了非负数的性质、根的判别式.在解答此题时,注意关于x的一元二次方程的二次项系数不为零.14.【答案】2-【解析】解:原式=[(-2)(+2)]2015•(-2)=(3-4)2015•(-2)=-(-2)=2-.故答案为2-.先利用积的乘方得到原式=[(-2)(+2)]2015•(-2),然后根据平方差公式计算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.【答案】(0,-)【解析】解:由折叠的性质可知,∠B′AC=∠BAC,∵四边形OABC为矩形,OC∥AB,∠BAC=∠DCA,∠B′AC=∠DCA,AD=CD,设OD=x,则DC=6-x,在Rt△AOD中,由勾股定理得,OA2+OD2=AD2,即9+x2=(6-x)2,解得:x=,点D的坐标为:(0,),故答案为:(0,-).由折叠的性质可知,∠B′AC=∠BAC,∠BAC=∠DCA,易得DC=DA,设OD=x,则DC=6-x,在Rt△AOD中,由勾股定理得OD,得OD的坐标.本题主要考查了翻折变换的性质及其应用问题,灵活运用有关定理来分析、判断、推理或解答是解题的关键.16.【答案】(n≥1)【解析】解:∵=(1+1);=(2+1);=(n+1)(n≥1).故答案为:=(n+1)(n≥1).观察分析可得:=(1+1);=(2+1);…则将此题规律用含自然数n(n≥1)的等式表示出来本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到=(n+1)(n≥1).17.【答案】4.8【解析】解:∵Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,连接CP,∵PD⊥AC于点D,PE⊥CB于点E,四边形DPEC是矩形,DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,DE=CP==4.8,故答案为:4.8.连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE的最小值转化为其相等线段CP的最小值.18.【答案】3或-5【解析】解:中间一项为加上或减去x和4积的2倍,故-2(m+1)=±8,解得m=3或-5,故答案为:3或-5.这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍,故-2(m+1)=±8,求解即可.本题考查了完全平方式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.19.【答案】【解析】解:延长AB至M,使BM=AE,连接FM,∵四边形ABCD是菱形,∠ADC=120°AB=AD,∠A=60°,∵BM=AE,AD=ME,∵△DEF为等边三角形,∠DAE=∠DFE=60°,DE=EF=FD,∠MEF+∠DEA═120°,∠ADE+∠DEA=180°-∠A=120°,∠MEF=∠ADE,在△DAE和△EMF中,△DAE≌EMF(SAS),AE=MF,∠M=∠A=60°,又∵BM=AE,△BMF是等边三角形,BF=AE,∵AE=t,CF=2t,BC=CF+BF=2t+t=3t,∵BC=4,3t=4,t=故答案为:.或连接BD.根据SAS证明△ADE≌△BDF,得到AE=BF,列出方程即可.延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.本题主要考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质等知识,解题的关键是运用三角形全等得出△BMF是等边三角形.20.【答案】32【解析】解:∵∠ABC=∠ADC=90°,点A,B,C,D在以E为圆心,AC为直径的同一个圆上,∵∠BAD=58°,∠DEB=116°,∵DE=BE=AC,∠EBD=∠EDB=32°,故答案为:32.根据已知条件得到点A,B,C,D在以E为圆心,AC为直径的同一个圆上,根据圆周角定理得到∠DEB=116°,根据直角三角形的性质得到DE=BE=AC,根据等腰三角形的性质即可得到结论.本题考查了直角三角形斜边上的中线的性质,圆周角定理,推出A,B,C,D 四点共圆是解题的关键.21.【答案】解:(1)原式=2-2+3+×3=5-2+2=5;(2)原式=(20-18+4)÷=(2+4)÷=2+4.【解析】(1)先利用完全平方公式和二次根式的乘法法则运算,然后把各二次根式化简为最简二次根式后合并即可;(2)先把各二次根式化简为最简二次根式,然后把括号内合并后进行二次根式的除法运算.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.【答案】解:(1)2x2-4x-5=0,a=2,b=-4,c=-5,△=b2-4ac=(-4)2-4×2×(-5)=16+40=56,x===,x1=,x2=,(2)x2-4x+1=0,x2-4x+4=3,(x-2)2=3,x=2,x1=2+,x2=2-,(3)(y-1)2+2y(1-y)=0,y2-1=0,(y+1)(y-1)=0,y1=1,y2=-1.【解析】本题考查的是一元二次方程的解法,掌握公式法、配方法、因式分解法解一元二次方程的一般步骤是解题的关键.(1)先确定a、b、c的值,根据公式法解方程;(2)根据配方法解方程;(3)先化为一般式,根据平方差公式分解因式后解方程.23.【答案】3;-9【解析】解:x2+6x-27=0,(x-3)(x+9)=0,所以,x1=3,x2=-9.故答案为:3,-9;(1)第m个方程为:x2+2mx-3•m2=0,方程的解是x1=m,x2=-3m;(2)∵x2-8x-20=0可化为(x-10)(x+2)=0,方程的解是x1=10,x2=-2.利用因式分解法将方程3变形为(x-3)(x+9)=0,进而求解即可;(1)观察图表,一次项系数为从2开始的连续偶数,常数项是从1开始的连续自然数的平方的3倍的相反数,然后写方程,再根据方程的第一个解是连续自然数,第二个解是3的倍数的相反数写出即可;(2)利用因式分解法将方程3变形为(x-10)(x+2)=0,进而求解即可.本题考查了因式分解法解一元二次方程,读懂图表信息,理解一元二次方程的解与一次项系数和常数项的关系是解题的关键.24.【答案】(1)证明:∵AF∥BC,∠AFE=∠DBE,∵E是AD的中点,AE=DE,在△AFE和△DBE中,∠ ∠∠ ∠△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线DB=DC,AF=CD.∵AF∥BC,四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,AD=DC=BC,四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,四边形ABDF是平行四边形,DF=AB=5,∵四边形ADCF是菱形,S菱形ADCF=AC▪DF=×4×5=10.【解析】(1)利用平行线的性质及中点的定义,可利用AAS证得结论;(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.25.【答案】解:(1).(2)原式==.【解析】(1)分式的分子和分母都乘以-,即可求出答案;把2看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.本题考查了分母有理化,平方差公式的应用,主要考查学生的计算和化简能力.26.【答案】①证明:过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵正方形ABCD∠BCD=90°,∠ECN=45°∠EMC=∠ENC=∠BCD=90°且NE=NC,四边形EMCN为正方形∵四边形DEFG是矩形,EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°∠DEN=∠MEF,又∠DNE=∠FME=90°,∠ ∠在△DEN和△FEM中,,∠ ∠△DEN≌△FEM(ASA),ED=EF,矩形DEFG为正方形,②解:CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,DE=DG,∠EDC+∠CDG=90°∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°∠ADE=∠CDG,在△ADE和△CDG中,∠ ∠ ,△ADE≌△CDG(SAS),AE=CGAC=AE+CE=AB=×2=4,CE+CG=4 是定值.【解析】(1)作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;(2)同(1)的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=4即可.此题是四边形综合题,主要考查了正方形的性质,矩形的性质,矩形的判定,三角形的全等的性质和判定,勾股定理,解本题的关键是作出辅助线,判断三角形全等.。
云南省2018-2019年八年级下册期中数学试卷含答案
八年级下学期期中数学试卷一、选择题(每题3分,共30分)1.下列二次根式中,x的取值范围是x≥2的是( )A.B.C.D.2.对角线互相垂直平分的四边形是( )A.平行四边形B.矩形C.菱形D.正方形3.下列几组数据中,能作为直角三角形三边长的是( )A.2,3,4 B.32,42,52C.1,,D.5a,12a,13a(a>0)4.菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )A.6 B.8 C.10 D.126.下列二次根式中属于最简二次根式的是( )A.B.C.D.7.下面正确的命题中,其逆命题不成立的是( )A.同旁内角互补,两直线平行B.全等三角形的对应边相等C.角平分线上的点到这个角的两边的距离相等D.对顶角相等8.能判定四边形ABCD为平行四边形的条件是( )A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB∥CD,∠C=∠A D.AB=AD,CB=CD9.等腰三角形的一腰长为13,底边长为10,则它的面积为( )A.65 B.60 C.120 D.13010.若一直角三角形两边长分别为12和5,则第三边长为( )A.13 B.13或C.13或15 D.15二、填空题(每题3分,共30分)11.计算:=__________.12.一只蚂蚁从长为4cm、宽为3cm,高是5cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是__________cm.13.若,则ab=__________.14.若=3﹣x,则x的取值范围是__________.15.直角三角形两直角边长分别为6和8,则它斜边上的高为__________.16.▱ABCD中一条对角线分∠A为35°和45°,则∠B=__________度.17.如图,▱ABCD中,AB、BC长分别为12和24,边AD与BC之间的距离为5,则AB 与CD间的距离为__________.18.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于__________.19.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.20.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来__________.三、解答题(本大题共60分)21.计算:(1)+﹣;(2)÷×;(3)3×().22.如图网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积;(2)判断△ABC是什么形状?并说明理由.23.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.24.实数a、b、c在数轴上的位置如图所示,化简:﹣|a+c|+﹣|﹣2b|.25.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.26.小明想知道学校的旗杆有多高,他发现旗杆顶上的绳子BD垂到地面还多CD=1米,当他把绳子的下端D拉开5米到后,发现下端D刚好接触地面A.你能帮他把旗杆的高度求出来吗?27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=__________时,四边形MENF是正方形(只写结论,不需证明).参考答案一、选择题(每题3分,共30分)1.下列二次根式中,x的取值范围是x≥2的是( )A.B.C.D.考点:二次根式有意义的条件;分式有意义的条件.分析:根据分式有意义的条件为:分母不等于0;二次根式有意义的条件:被开方数大于或等于0,即可求解.解答:解:根据二次根式有意义的条件可知A、当2﹣x≥0时,二次根式有意义,即x≤2,不符合题意;B、当x+2≥0时,二次根式有意义,即x≥﹣2,不符合题意;C、当x﹣2≥0时,二次根式有意义,即x≥2,符合题意;D、当≥0且x﹣2≠0时,二次根式有意义,即x>2,不符合题意.故选C.点评:本题考查的知识点为:分式有意义的条件为:分母不等于0;二次根式有意义的条件为:被开方数大于或等于0.2.对角线互相垂直平分的四边形是( )A.平行四边形B.矩形C.菱形D.正方形考点:多边形.分析:根据平行四边形、矩形、菱形和正方形的对角线的性质进行判断即可.解答:解:平行四边形对角线不一定互相垂直,A不正确;矩形对角线不一定互相垂直,B不正确;菱形对角线互相垂直平分,C正确;正方形对角线互相垂直平分,D正确.故选:CD.点评:本题考查的是多边形的对角线的性质,掌握不同的四边形的对角线的性质是解题的关键.3.下列几组数据中,能作为直角三角形三边长的是( )A.2,3,4 B.32,42,52C.1,,D.5a,12a,13a(a>0)考点:勾股定理的逆定理.分析:根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.因此,只需要判断两个较小的数的平方和是否等于最大数的平方即可判断.解答:解:A、22+32≠42,根据勾股定理的逆定理可知不是直角三角形,故选项错误;B、(32)2+(42)2≠(52)2,根据勾股定理的逆定理可知不是直角三角形,故选项错误;C、()2+()2≠12,根据勾股定理的逆定理可知不是直角三角形,故选项错误;D、(5a)2+(12a)2=(13a)2,根据勾股定理的逆定理可知是直角三角形,故选项正确.故选D.点评:本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:计算两个较小的数的平方和是否等于最大数的平方即可判断.4.菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分考点:菱形的性质;矩形的性质.分析:根据矩形的对角线的性质(对角线互相平分且相等),菱形的对角线性质(对角线互相垂直平分)可解.解答:解:菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.故选:D.点评:此题主要考查矩形、菱形的对角线的性质.熟悉菱形和矩形的对角线的性质是解决本题的关键.5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )A.6 B.8 C.10 D.12考点:翻折变换(折叠问题).分析:因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.解答:解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S=•AF•BC=10.△AFC故选C.点评:本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.6.下列二次根式中属于最简二次根式的是( )A.B.C.D.考点:最简二次根式.分析:B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.解答:解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.点评:在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.7.下面正确的命题中,其逆命题不成立的是( )A.同旁内角互补,两直线平行B.全等三角形的对应边相等C.角平分线上的点到这个角的两边的距离相等D.对顶角相等考点:命题与定理.分析:分别求出各个命题的逆命题,再结合相关定理即可作出判断.解答:解:A、根据平行线的性质,两直线平行,同旁内角互补,故A选项正确;B、符合全等三角形的判定,故B选项正确;C、符合角平分线的性质,故C选项正确;D、其逆命题是:相等的角一定是对顶角,故D选项不正确.故选:D.点评:要准确把握平行线的性质,全等三角形的判断,角平分线的性质和对顶角的定义.8.能判定四边形ABCD为平行四边形的条件是( )A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB∥CD,∠C=∠A D.AB=AD,CB=CD考点:平行四边形的判定.分析:根据已知条件结合平行四边形的性质直接作出判断即可.解答:解:根据平行四边形的判定可知:A、若AB∥CD,AD=BC,则可以判定四边形是梯形,故A错误,B、两组邻角相等也有可能是等腰梯形,故B错误.C、可判定是平行四边形的条件,故C正确.D、此条件下无法判定四边形的形状,还可能是等腰梯形,故D错误.故选D.点评:本题主要考查平行四边形的判定的知识点,解答本题的关键是熟练掌握平行四边形的判定定理,此题基础题,比较简单.9.等腰三角形的一腰长为13,底边长为10,则它的面积为( )A.65 B.60 C.120 D.130考点:勾股定理;等腰三角形的性质.专题:探究型.分析:根据题意画出图形,先根据勾股定理求出等腰三角形底边上的高,再求出其面积即可.解答:解:如图所示:∵等腰△ABC中,AB=AC=13,BC=10,AD⊥BC于点D,∴BD=BC=×10=5,∴AD===12,=BC•AD=×10×12=60.∴S△ABC故选B.点评:本题考查的是勾股定理及等腰三角形的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.10.若一直角三角形两边长分别为12和5,则第三边长为( )A.13 B.13或C.13或15 D.15考点:勾股定理.分析:本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.解答:解:当12是斜边时,第三边是=;当12是直角边时,第三边是=13.故选B.点评:如果给的数据没有明确,此类题一定要分情况求解.二、填空题(每题3分,共30分)11.计算:=3.考点:二次根式的加减法.分析:本题是二次根式的减法运算,二次根式的加减运算法则是合并同类二次根式.解答:解:=5﹣2=3.点评:合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.12.一只蚂蚁从长为4cm、宽为3cm,高是5cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是cm.考点:平面展开-最短路径问题.分析:先将图形展开,再根据两点之间线段最短,再由勾股定理求解即可.解答:解:将长方体展开,如图1所示,连接A、B,根据两点之间线段最短,AB==cm;如图2所示,=4cm,∵<4,∴蚂蚁所行的最短路线为cm.故答案为:点评:本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.13.若,则ab=﹣12.考点:非负数的性质:算术平方根.专题:计算题.分析:根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解答:解:∵若,∴可得:,解得:,∴ab=﹣12.故填﹣12.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.若=3﹣x,则x的取值范围是x≤3.考点:二次根式的性质与化简.分析:根据二次根式的性质得出3﹣x≥0,求出即可.解答:解:∵=3﹣x,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.点评:本题考查了二次根式的性质的应用,注意:当a≥0时,=a,当a<0时,=﹣a.15.直角三角形两直角边长分别为6和8,则它斜边上的高为.考点:勾股定理;三角形的面积.分析:根据勾股定理求出斜边的长,再根据面积法求出斜边上的高.解答:解:设斜边长为c,高为h.由勾股定理可得:c2=62+82,则c=10,直角三角形面积S=×6×8=×10×h,可得:h=.故答案为:.点评:本题考查了利用勾股定理求直角三角形的边长及利用面积法求直角三角形的高,是解此类题目常用的方法.16.▱ABCD中一条对角线分∠A为35°和45°,则∠B=100度.考点:平行四边形的性质.分析:求出∠BAD度数,根据平行四边形性质得出AD∥BC,推出∠B+∠BAD=180°即可.解答:解:∵▱ABCD中一条对角线分∠A为35°和45°,∴∠BAD=80°,∵四边形BACD是平行四边形,∴BC∥AD,∴∠B+∠BAD=180°,∴∠B=100°,故答案为:100.点评:本题考查了平行四边形性质和平行线性质的应用,关键是求出∠BAD度数和得出∠B+∠BAD=180°.17.如图,▱ABCD中,AB、BC长分别为12和24,边AD与BC之间的距离为5,则AB与CD间的距离为10.考点:平行四边形的判定与性质.分析:根据平行四边形的面积=AE×BC=CD×AF,即可求出AD与BC之间的距离.解答:解:如图,过点A作AE⊥BC于点E、AF⊥CD于点F.=AE×BC=CD×AF,由题意得,S四边形ABCD∴24×5=12×AF,∴AF=10,即AB与CD间的距离为10.故答案是:10.点评:本题考查了平行四边形的性质,解答本题的关键是熟练平行四边形的面积公式.18.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于13.考点:勾股定理.分析:首先根据勾股定理求得AB的长,再根据勾股定理求得AD的长.解答:解:在直角三角形ABC中,AC=4,BC=3,根据勾股定理,得AB=5.在直角三角形ABD中,BD=12,根据勾股定理,得AD=13.点评:熟练运用勾股定理进行计算.19.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是8.考点:菱形的判定与性质;矩形的性质.分析:先证明四边形CODE是平行四边形,再根据矩形的性质得出OC=OD,然后证明四边形CODE是菱形,即可求出周长.解答:解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴OC=AC=2,OD=BD,AC=BD,∴OC=OD=2,∴四边形CODE是菱形,∴DE=CEOC=OD=2,∴四边形CODE的周长=2×4=8;故答案为:8.点评:本题考查了菱形的判定与性质以及矩形的性质;证明四边形是菱形是解决问题的关键.20.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来.考点:算术平方根.专题:规律型.分析:根据所给例子,找到规律,即可解答.解答:解:=(1+1)=2,=(2+1)=3,=(3+1)=4,…,故答案为:.点评:本题考查了实数平方根,解决本题的关键是找到规律.三、解答题(本大题共60分)21.计算:(1)+﹣;(2)÷×;(3)3×().考点:二次根式的混合运算.分析:(1)先化成最简二次根式,再合并同类二次根式即可;(2)把被开方数相乘、相除,再化成最简即可;(3)先算括号里面的,再算乘法,最后化成最简二次根式即可.解答:解:(1)原式=3+3﹣2+5=8+;(2)原式===1.(3)原式=6×(3﹣5﹣2)=6×(﹣5)=12﹣60.点评:本题考查了二次根式的混合运算的应用,主要考查学生的计算能力,题目比较典型,难度适中.22.如图网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积;(2)判断△ABC是什么形状?并说明理由.考点:勾股定理的逆定理;三角形的面积;勾股定理.专题:网格型.分析:(1)用正方形的面积减去三个小三角形的面积即可求出△ABC的面积;(2)根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.解答:解:(1)△ABC的面积=4×4﹣1×2÷2﹣4×3÷2﹣2×4÷2=16﹣1﹣6﹣4=5.故△ABC的面积为5;(2)∵小方格边长为1,∴AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC为直角三角形.点评:本题考查了三角形的面积,勾股定理和勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.23.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.考点:菱形的性质.分析:(1)由在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm,可求得△ABO是含30°角的直角三角形,AB=2cm,继而求得AC与BD的长;(2)由菱形的面积等于其对角线积的一半,即可求得答案.解答:解:(1)∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC与∠BAD的度数比为1:2,∴∠ABC=×180°=60°,∴∠ABO=∠ABC=30°,∵菱形ABCD的周长是8cm.∴AB=2cm,∴OA=AB=1cm,∴OB==,∴AC=2OA=2cm,BD=2OB=2cm;(2)S=AC•BD=×2×2=2(cm2).菱形ABCD点评:此题考查了菱形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.24.实数a、b、c在数轴上的位置如图所示,化简:﹣|a+c|+﹣|﹣2b|.考点:二次根式的性质与化简;实数与数轴.分析:根据数轴上的点与实数的一一对应关系得到c<a<0<b,则a﹣b<0,a+c <0,c﹣b<0,﹣2b<0,再根据二次根式的性质进行化简,即可解答.解答:解:由数轴可得:c<a<0<b,则a﹣b<0,a+c<0,c﹣b<0,﹣2b<0,原式=|a﹣b|﹣|a+c|+|c﹣b|﹣|﹣2b|=b﹣a+a+c+b﹣c﹣2b=0点评:本题考查了二次根式的性质与化简=|a|.也考查了绝对值的意义以及数轴上的点与实数的一一对应关系.25.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.考点:菱形的性质;全等三角形的判定与性质.专题:证明题.分析:根据菱形的性质可得AB=BC,∠A=∠C,再证明△ABF≌△CBE,根据全等三角形的性质可得BF=BE.解答:证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴BF=BE.点评:此题主要考查了菱形的性质,以及全等三角形的判定与性质,关键是掌握菱形的四条边都相等.26.小明想知道学校的旗杆有多高,他发现旗杆顶上的绳子BD垂到地面还多CD=1米,当他把绳子的下端D拉开5米到后,发现下端D刚好接触地面A.你能帮他把旗杆的高度求出来吗?考点:勾股定理的应用.分析:首先根据题意可得AC=5米,AB=(BC+1)米,再根据勾股定理可得BC2+52=(BC+1)2,解方程即可.解答:解:由题意得:AC=5米,AB=(BC+1)米,∵BC2+AC2=AB2,∴BC2+52=(BC+1)2,解得:BC=12.答:旗杆的高度是12米.点评:此题主要考查了勾股定理的应用,关键是掌握勾股定理:两直角边的平方和等于斜边的平方.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=2:1时,四边形MENF是正方形(只写结论,不需证明).考点:矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.分析:(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.解答:(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.点评:此题主要考查了矩形的性质,以及菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法.。
云南省2018-2019年八年级下册期中数学试卷含答案
八年级下学期期中数学试卷一、选择题(每题3分,共30分)1.下列二次根式中,x的取值范围是x≥2的是( )A.B.C.D.2.对角线互相垂直平分的四边形是( )A.平行四边形B.矩形C.菱形D.正方形3.下列几组数据中,能作为直角三角形三边长的是( )A.2,3,4 B.32,42,52C.1,,D.5a,12a,13a(a>0)4.菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )A.6 B.8 C.10 D.126.下列二次根式中属于最简二次根式的是( )A.B.C.D.7.下面正确的命题中,其逆命题不成立的是( )A.同旁内角互补,两直线平行B.全等三角形的对应边相等C.角平分线上的点到这个角的两边的距离相等D.对顶角相等8.能判定四边形ABCD为平行四边形的条件是( )A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB∥CD,∠C=∠A D.AB=AD,CB=CD9.等腰三角形的一腰长为13,底边长为10,则它的面积为( )A.65 B.60 C.120 D.13010.若一直角三角形两边长分别为12和5,则第三边长为( )A.13 B.13或C.13或15 D.15二、填空题(每题3分,共30分)11.计算:=__________.12.一只蚂蚁从长为4cm、宽为3cm,高是5cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是__________cm.13.若,则ab=__________.14.若=3﹣x,则x的取值范围是__________.15.直角三角形两直角边长分别为6和8,则它斜边上的高为__________.16.▱ABCD中一条对角线分∠A为35°和45°,则∠B=__________度.17.如图,▱ABCD中,AB、BC长分别为12和24,边AD与BC之间的距离为5,则AB 与CD间的距离为__________.18.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于__________.19.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.20.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来__________.三、解答题(本大题共60分)21.计算:(1)+﹣;(2)÷×;(3)3×().22.如图网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积;(2)判断△ABC是什么形状?并说明理由.23.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.24.实数a、b、c在数轴上的位置如图所示,化简:﹣|a+c|+﹣|﹣2b|.25.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.26.小明想知道学校的旗杆有多高,他发现旗杆顶上的绳子BD垂到地面还多CD=1米,当他把绳子的下端D拉开5米到后,发现下端D刚好接触地面A.你能帮他把旗杆的高度求出来吗?27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=__________时,四边形MENF是正方形(只写结论,不需证明).参考答案一、选择题(每题3分,共30分)1.下列二次根式中,x的取值范围是x≥2的是( )A.B.C.D.考点:二次根式有意义的条件;分式有意义的条件.分析:根据分式有意义的条件为:分母不等于0;二次根式有意义的条件:被开方数大于或等于0,即可求解.解答:解:根据二次根式有意义的条件可知A、当2﹣x≥0时,二次根式有意义,即x≤2,不符合题意;B、当x+2≥0时,二次根式有意义,即x≥﹣2,不符合题意;C、当x﹣2≥0时,二次根式有意义,即x≥2,符合题意;D、当≥0且x﹣2≠0时,二次根式有意义,即x>2,不符合题意.故选C.点评:本题考查的知识点为:分式有意义的条件为:分母不等于0;二次根式有意义的条件为:被开方数大于或等于0.2.对角线互相垂直平分的四边形是( )A.平行四边形B.矩形C.菱形D.正方形考点:多边形.分析:根据平行四边形、矩形、菱形和正方形的对角线的性质进行判断即可.解答:解:平行四边形对角线不一定互相垂直,A不正确;矩形对角线不一定互相垂直,B不正确;菱形对角线互相垂直平分,C正确;正方形对角线互相垂直平分,D正确.故选:CD.点评:本题考查的是多边形的对角线的性质,掌握不同的四边形的对角线的性质是解题的关键.3.下列几组数据中,能作为直角三角形三边长的是( )A.2,3,4 B.32,42,52C.1,,D.5a,12a,13a(a>0)考点:勾股定理的逆定理.分析:根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.因此,只需要判断两个较小的数的平方和是否等于最大数的平方即可判断.解答:解:A、22+32≠42,根据勾股定理的逆定理可知不是直角三角形,故选项错误;B、(32)2+(42)2≠(52)2,根据勾股定理的逆定理可知不是直角三角形,故选项错误;C、()2+()2≠12,根据勾股定理的逆定理可知不是直角三角形,故选项错误;D、(5a)2+(12a)2=(13a)2,根据勾股定理的逆定理可知是直角三角形,故选项正确.故选D.点评:本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:计算两个较小的数的平方和是否等于最大数的平方即可判断.4.菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分考点:菱形的性质;矩形的性质.分析:根据矩形的对角线的性质(对角线互相平分且相等),菱形的对角线性质(对角线互相垂直平分)可解.解答:解:菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.故选:D.点评:此题主要考查矩形、菱形的对角线的性质.熟悉菱形和矩形的对角线的性质是解决本题的关键.5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )A.6 B.8 C.10 D.12考点:翻折变换(折叠问题).分析:因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.解答:解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S=•AF•BC=10.△AFC故选C.点评:本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.6.下列二次根式中属于最简二次根式的是( )A.B.C.D.考点:最简二次根式.分析:B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.解答:解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.点评:在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.7.下面正确的命题中,其逆命题不成立的是( )A.同旁内角互补,两直线平行B.全等三角形的对应边相等C.角平分线上的点到这个角的两边的距离相等D.对顶角相等考点:命题与定理.分析:分别求出各个命题的逆命题,再结合相关定理即可作出判断.解答:解:A、根据平行线的性质,两直线平行,同旁内角互补,故A选项正确;B、符合全等三角形的判定,故B选项正确;C、符合角平分线的性质,故C选项正确;D、其逆命题是:相等的角一定是对顶角,故D选项不正确.故选:D.点评:要准确把握平行线的性质,全等三角形的判断,角平分线的性质和对顶角的定义.8.能判定四边形ABCD为平行四边形的条件是( )A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB∥CD,∠C=∠A D.AB=AD,CB=CD考点:平行四边形的判定.分析:根据已知条件结合平行四边形的性质直接作出判断即可.解答:解:根据平行四边形的判定可知:A、若AB∥CD,AD=BC,则可以判定四边形是梯形,故A错误,B、两组邻角相等也有可能是等腰梯形,故B错误.C、可判定是平行四边形的条件,故C正确.D、此条件下无法判定四边形的形状,还可能是等腰梯形,故D错误.故选D.点评:本题主要考查平行四边形的判定的知识点,解答本题的关键是熟练掌握平行四边形的判定定理,此题基础题,比较简单.9.等腰三角形的一腰长为13,底边长为10,则它的面积为( )A.65 B.60 C.120 D.130考点:勾股定理;等腰三角形的性质.专题:探究型.分析:根据题意画出图形,先根据勾股定理求出等腰三角形底边上的高,再求出其面积即可.解答:解:如图所示:∵等腰△ABC中,AB=AC=13,BC=10,AD⊥BC于点D,∴BD=BC=×10=5,∴AD===12,=BC•AD=×10×12=60.∴S△ABC故选B.点评:本题考查的是勾股定理及等腰三角形的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.10.若一直角三角形两边长分别为12和5,则第三边长为( )A.13 B.13或C.13或15 D.15考点:勾股定理.分析:本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.解答:解:当12是斜边时,第三边是=;当12是直角边时,第三边是=13.故选B.点评:如果给的数据没有明确,此类题一定要分情况求解.二、填空题(每题3分,共30分)11.计算:=3.考点:二次根式的加减法.分析:本题是二次根式的减法运算,二次根式的加减运算法则是合并同类二次根式.解答:解:=5﹣2=3.点评:合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.12.一只蚂蚁从长为4cm、宽为3cm,高是5cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是cm.考点:平面展开-最短路径问题.分析:先将图形展开,再根据两点之间线段最短,再由勾股定理求解即可.解答:解:将长方体展开,如图1所示,连接A、B,根据两点之间线段最短,AB==cm;如图2所示,=4cm,∵<4,∴蚂蚁所行的最短路线为cm.故答案为:点评:本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.13.若,则ab=﹣12.考点:非负数的性质:算术平方根.专题:计算题.分析:根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解答:解:∵若,∴可得:,解得:,∴ab=﹣12.故填﹣12.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.若=3﹣x,则x的取值范围是x≤3.考点:二次根式的性质与化简.分析:根据二次根式的性质得出3﹣x≥0,求出即可.解答:解:∵=3﹣x,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.点评:本题考查了二次根式的性质的应用,注意:当a≥0时,=a,当a<0时,=﹣a.15.直角三角形两直角边长分别为6和8,则它斜边上的高为.考点:勾股定理;三角形的面积.分析:根据勾股定理求出斜边的长,再根据面积法求出斜边上的高.解答:解:设斜边长为c,高为h.由勾股定理可得:c2=62+82,则c=10,直角三角形面积S=×6×8=×10×h,可得:h=.故答案为:.点评:本题考查了利用勾股定理求直角三角形的边长及利用面积法求直角三角形的高,是解此类题目常用的方法.16.▱ABCD中一条对角线分∠A为35°和45°,则∠B=100度.考点:平行四边形的性质.分析:求出∠BAD度数,根据平行四边形性质得出AD∥BC,推出∠B+∠BAD=180°即可.解答:解:∵▱ABCD中一条对角线分∠A为35°和45°,∴∠BAD=80°,∵四边形BACD是平行四边形,∴BC∥AD,∴∠B+∠BAD=180°,∴∠B=100°,故答案为:100.点评:本题考查了平行四边形性质和平行线性质的应用,关键是求出∠BAD度数和得出∠B+∠BAD=180°.17.如图,▱ABCD中,AB、BC长分别为12和24,边AD与BC之间的距离为5,则AB与CD间的距离为10.考点:平行四边形的判定与性质.分析:根据平行四边形的面积=AE×BC=CD×AF,即可求出AD与BC之间的距离.解答:解:如图,过点A作AE⊥BC于点E、AF⊥CD于点F.=AE×BC=CD×AF,由题意得,S四边形ABCD∴24×5=12×AF,∴AF=10,即AB与CD间的距离为10.故答案是:10.点评:本题考查了平行四边形的性质,解答本题的关键是熟练平行四边形的面积公式.18.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于13.考点:勾股定理.分析:首先根据勾股定理求得AB的长,再根据勾股定理求得AD的长.解答:解:在直角三角形ABC中,AC=4,BC=3,根据勾股定理,得AB=5.在直角三角形ABD中,BD=12,根据勾股定理,得AD=13.点评:熟练运用勾股定理进行计算.19.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是8.考点:菱形的判定与性质;矩形的性质.分析:先证明四边形CODE是平行四边形,再根据矩形的性质得出OC=OD,然后证明四边形CODE是菱形,即可求出周长.解答:解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴OC=AC=2,OD=BD,AC=BD,∴OC=OD=2,∴四边形CODE是菱形,∴DE=CEOC=OD=2,∴四边形CODE的周长=2×4=8;故答案为:8.点评:本题考查了菱形的判定与性质以及矩形的性质;证明四边形是菱形是解决问题的关键.20.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来.考点:算术平方根.专题:规律型.分析:根据所给例子,找到规律,即可解答.解答:解:=(1+1)=2,=(2+1)=3,=(3+1)=4,…,故答案为:.点评:本题考查了实数平方根,解决本题的关键是找到规律.三、解答题(本大题共60分)21.计算:(1)+﹣;(2)÷×;(3)3×().考点:二次根式的混合运算.分析:(1)先化成最简二次根式,再合并同类二次根式即可;(2)把被开方数相乘、相除,再化成最简即可;(3)先算括号里面的,再算乘法,最后化成最简二次根式即可.解答:解:(1)原式=3+3﹣2+5=8+;(2)原式===1.(3)原式=6×(3﹣5﹣2)=6×(﹣5)=12﹣60.点评:本题考查了二次根式的混合运算的应用,主要考查学生的计算能力,题目比较典型,难度适中.22.如图网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积;(2)判断△ABC是什么形状?并说明理由.考点:勾股定理的逆定理;三角形的面积;勾股定理.专题:网格型.分析:(1)用正方形的面积减去三个小三角形的面积即可求出△ABC的面积;(2)根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.解答:解:(1)△ABC的面积=4×4﹣1×2÷2﹣4×3÷2﹣2×4÷2=16﹣1﹣6﹣4=5.故△ABC的面积为5;(2)∵小方格边长为1,∴AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC为直角三角形.点评:本题考查了三角形的面积,勾股定理和勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.23.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.考点:菱形的性质.分析:(1)由在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm,可求得△ABO是含30°角的直角三角形,AB=2cm,继而求得AC与BD的长;(2)由菱形的面积等于其对角线积的一半,即可求得答案.解答:解:(1)∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC与∠BAD的度数比为1:2,∴∠ABC=×180°=60°,∴∠ABO=∠ABC=30°,∵菱形ABCD的周长是8cm.∴AB=2cm,∴OA=AB=1cm,∴OB==,∴AC=2OA=2cm,BD=2OB=2cm;(2)S=AC•BD=×2×2=2(cm2).菱形ABCD点评:此题考查了菱形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.24.实数a、b、c在数轴上的位置如图所示,化简:﹣|a+c|+﹣|﹣2b|.考点:二次根式的性质与化简;实数与数轴.分析:根据数轴上的点与实数的一一对应关系得到c<a<0<b,则a﹣b<0,a+c <0,c﹣b<0,﹣2b<0,再根据二次根式的性质进行化简,即可解答.解答:解:由数轴可得:c<a<0<b,则a﹣b<0,a+c<0,c﹣b<0,﹣2b<0,原式=|a﹣b|﹣|a+c|+|c﹣b|﹣|﹣2b|=b﹣a+a+c+b﹣c﹣2b=0点评:本题考查了二次根式的性质与化简=|a|.也考查了绝对值的意义以及数轴上的点与实数的一一对应关系.25.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.考点:菱形的性质;全等三角形的判定与性质.专题:证明题.分析:根据菱形的性质可得AB=BC,∠A=∠C,再证明△ABF≌△CBE,根据全等三角形的性质可得BF=BE.解答:证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴BF=BE.点评:此题主要考查了菱形的性质,以及全等三角形的判定与性质,关键是掌握菱形的四条边都相等.26.小明想知道学校的旗杆有多高,他发现旗杆顶上的绳子BD垂到地面还多CD=1米,当他把绳子的下端D拉开5米到后,发现下端D刚好接触地面A.你能帮他把旗杆的高度求出来吗?考点:勾股定理的应用.分析:首先根据题意可得AC=5米,AB=(BC+1)米,再根据勾股定理可得BC2+52=(BC+1)2,解方程即可.解答:解:由题意得:AC=5米,AB=(BC+1)米,∵BC2+AC2=AB2,∴BC2+52=(BC+1)2,解得:BC=12.答:旗杆的高度是12米.点评:此题主要考查了勾股定理的应用,关键是掌握勾股定理:两直角边的平方和等于斜边的平方.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=2:1时,四边形MENF是正方形(只写结论,不需证明).考点:矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.分析:(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.解答:(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.点评:此题主要考查了矩形的性质,以及菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法.。
云南省昭通市八年级下学期数学期中考试试卷
云南省昭通市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分)在,,,,中,是分式的有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2017八下·泉山期末) 要使分式有意义,必须满足的条件是().A .B .C .D .3. (2分)在平面直角坐标系中,点A(1,3)关于原点O对称的点A′的坐标为()A . (-1,3)B . (1,-3)C . (3,1)D . (-1,-3)4. (2分)下列因式分解完全正确的是()A . ﹣2a2+4a=﹣2a(a+2)B . ﹣4x2﹣y2=﹣(2x+y)2C . a2﹣8ab+16b2=(a+4b)2D . 2x2+xy﹣y2=(2x﹣y)(x+y)5. (2分)下列分式,,的最简公分母为()A . (x2+1)(x﹣1)B . (x﹣1)2C . (x﹣1)2(x2+1)D . (x2﹣1)(x2+1)6. (2分)下列式子从左到右的变形一定正确的是().A . =B . =C . =D . =7. (2分)(2017·百色) 二次函数的图象如图,则反比例函数y=﹣与一次函数y=bx+c的图象在同一坐标系内的图象大致是()A .B .C .D .8. (2分)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,)剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长)是()A . 2+B . 2+2C . 12D . 189. (2分)甲、乙两同学从A地出发,骑自行车在同一条路上行驶到距A地18千米的B地,他们离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系的图象如图所示,根据图中提供的信息,下列不符合图象描述的说法是()A . 甲同学比乙同学先出发半小时B . 乙比甲先到达B地C . 乙在行驶过程中没有追上甲D . 甲的行驶速度比乙的行驶速度慢10. (2分)(2019·瓯海模拟) 在平面直角坐标系中,若有一点P(2,1)向上平移3个单位或向左平移4个单位,恰好都在直线y=kx+b上,则k的值是()A .B .C .D . 211. (2分) (2017八下·滦县期末) 已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A .B .C .D .12. (2分)已知反比例函数,下列结论不正确的是()A . 图象经过点(1,1)B . 图象在第一、三象限C . 当时,D . 当时,y随着x的增大而增大13. (2分)下列说法正确的是()A . x2+3x=0是二项方程B . xy﹣2y=2是二元二次方程C . 是分式方程D . x2-=1是无理方程14. (2分)(2017·邵阳模拟) 下列函数中,当x>0时,y的值随x的值增大而减小的函数是()A . y=3xB . y=x﹣1C . y=D . y=2x215. (2分)(2017·江阴模拟) 下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A . y=﹣x+1B . y=x2﹣1C .D .二、填空题 (共9题;共9分)16. (1分) (2016八上·桂林期末) 用科学记数法表示0.000028的结果是________.17. (1分)(2016·镇江模拟) 若代数式的值为零,则x=________.18. (1分) (2017九下·沂源开学考) 写出一个反比例函数的解析式,使它的图象不经过第一、第三象限:________.19. (1分) (2017七上·大石桥期中) 按图所示的程序计算,若开始输入的值为x=5,则最后输出的结果是________.20. (1分)(2016·长沙模拟) 已知A(﹣1,y1)、B(3,y2)为一次函数y=﹣2x+3图象上的两点,则y1与y2的大小关系是________.21. (1分) (2020八上·温州期末) 在平面直角坐标系中,点B(1,2)是由点A(-1,2)向右平移a个单位长度得到,则a的值为________。
2018年云南省昭通市昭阳区中考数学模拟试卷(解析版)
2018年云南省昭通市昭阳区中考数学模拟试卷一、选择题(本大题共8小题,每小题4分,共32分)1.(4分)下列二次根式中,是最简二次根式的为()A.B.C. D.2.(4分)若一直角三角形两边长分别为12和5,则第三边长为()A.13 B.13或C.13或15 D.153.(4分)在▱ABCD中,∠B+∠D=260°,那么∠A的度数是()A.130°B.100°C.50°D.80°4.(4分)矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分对角5.(4分)要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2 B.m=2,n=2 C.m≠2,n=2 D.m=2,n=06.(4分)甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均环数及方差S2如下表所示:若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员()A.甲B.乙C.丙D.丁7.(4分)如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()A.16 B.14 C.26 D.248.(4分)函数y=kx+b的图象如图所示,则()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0二、填空题(每小题3分,共18分)9.(3分)一名学生军训时现需射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7,8.则这名学生射击环数的众数是.10.(3分)函数y=的自变量x的取值范围是.11.(3分)一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是.12.(3分)如图,三个正方形围成一个直角三角形,字母C所表示的正方形面积是100,字母B所表示的正方形面积是36,则字母A所表示的正方形面积为.13.(3分)如图,在△MBN中,已知:BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,则四边形ABCD的周长是.14.(3分)如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b<ax+3的解集为.三、解答题(70分)15.(5分)计算:÷﹣×+.16.(6分)先化简,再求值:(1﹣)÷,其中x=+2.17.(6分)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.18.(10分)某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创利润进行统计,并绘制如图1,图2统计图.(1)将图2补充完整;(2)本次共抽取员工人,每人所创年利润的众数是万元,平均数是万元,中位数是万元;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?19.(8分)已知一次函数y=kx+b,当x=2时,y=﹣3,当x=1时,y=﹣1.(1)求一次函数的解析式;(2)若该一次函数的图形交x轴y轴分别于A、B两点,求△ABO的面积.20.(7分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.21.(8分)如图,E、F分别为△ABC的边BC、AB的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.(1)求证:四边形ACED是平行四边形;(2)若AB=AC,试说明四边形AEBD是矩形.22.(10分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?23.(10分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.2018年云南省昭通市昭阳区中考数学模拟试卷参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分)1.(4分)下列二次根式中,是最简二次根式的为()A.B.C. D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、=,被开方数含分母,不是最简二次根式;B、=2,被开方数含能开得尽方的因数,不是最简二次根式;C、是最简二次根式;D、=5,被开方数含能开得尽方的因数,不是最简二次根式.故选:C.2.(4分)若一直角三角形两边长分别为12和5,则第三边长为()A.13 B.13或C.13或15 D.15【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:当12是斜边时,第三边是=;当12是直角边时,第三边是=13.故选:B.3.(4分)在▱ABCD中,∠B+∠D=260°,那么∠A的度数是()A.130°B.100°C.50°D.80°【分析】直接利用平行四边形的对角相等,邻角互补即可得出答案.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=260°,∴∠B=∠D=130°,∴∠A的度数是:50°.故选:C.4.(4分)矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分对角【分析】利用特殊四边形的性质进而得出符合题意的答案.【解答】解:矩形、菱形、正方形都具有的性质是对角线互相平分.故选:B.5.(4分)要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2 B.m=2,n=2 C.m≠2,n=2 D.m=2,n=0【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m﹣2≠0,n﹣1=1,可得答案.【解答】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选:C.6.(4分)甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均环数及方差S2如下表所示:若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员()A.甲B.乙C.丙D.丁【分析】根据平均环数比较成绩的好坏,根据方差比较数据的稳定程度.【解答】解:∵乙、丙射击成绩的平均环数较大,∴乙、丙成绩较好,∵乙的方差<丙的方差,∴乙比较稳定,∴成绩较好状态稳定的运动员是乙,故选:B.7.(4分)如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()A.16 B.14 C.26 D.24【分析】首先由在▱ABCD中,AD=8,BE=3,求得CE的长,然后由DE平分∠ADC,证得△CED是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵在▱ABCD中,AD=8,∴BC=AD=8,AD∥BC,∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠CED,∴CD=CE=5,∴▱ABCD的周长是:2(AD+CD)=26.故选:C.8.(4分)函数y=kx+b的图象如图所示,则()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【分析】根据函数y=kx+b的图象所经过的象限与单调性回答.【解答】解:根据图象知,函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0.故选:C.二、填空题(每小题3分,共18分)9.(3分)一名学生军训时现需射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7,8.则这名学生射击环数的众数是8.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:数据8出现了三次最多为众数.故答案为:8.10.(3分)函数y=的自变量x的取值范围是x≥.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,2x﹣5≥0,解得x≥.故答案为:x≥.11.(3分)一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是m>﹣2.【分析】根据图象的增减性来确定(m+2)的取值范围,从而求解.【解答】解:∵一次函数y=(m+2)x+1,若y随x的增大而增大,∴m+2>0,解得,m>﹣2.故答案是:m>﹣2.12.(3分)如图,三个正方形围成一个直角三角形,字母C所表示的正方形面积是100,字母B所表示的正方形面积是36,则字母A所表示的正方形面积为64.【分析】利用勾股定理可得出a2的值,继而可得出字母A所表示的正方形的面积.【解答】解:由题意得,c2=100,b2=36,从而可得a2=c2﹣b2=64,即字母A所表示的正方形的面积为:64.故答案为:64.13.(3分)如图,在△MBN中,已知:BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,则四边形ABCD的周长是13.【分析】由点A,C,D分别是MB,NB,MN的中点,根据中位线定理可知CD,AD是△MBN的中位线,故四边形的周长可求.【解答】解:∵A,C,D分别是各边中点,∴AB=BM=×6=3;BC=BN=×7=;AD=BN=×7=;CD=BM=×6=3.四边形ABCD的周长是AD+AB+BC+CD=+3++3=13.故答案为13.14.(3分)如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b<ax+3的解集为x<1.【分析】此题可根据两直线的图象以及两直线的交点坐标来进行判断.【解答】解:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b <ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;故答案为:x<1.三、解答题(70分)15.(5分)计算:÷﹣×+.【分析】先计算乘法和除法,再合并即可得.【解答】解:原式=﹣+2=4+16.(6分)先化简,再求值:(1﹣)÷,其中x=+2.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1﹣)÷===,当x=+2时,原式===.17.(6分)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.【分析】由平行四边形的对边平行可得AE∥CF,又因为AE=CF,所以四边形AECF 是平行四边形,再根据平行四边形的对边得出AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,∴AE∥CF,又∵AE=CF,∴四边形AECF是平行四边形,∴AF=CE.18.(10分)某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创利润进行统计,并绘制如图1,图2统计图.(1)将图2补充完整;(2)本次共抽取员工50人,每人所创年利润的众数是8万元,平均数是8.12万元,中位数是8万元;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?【分析】(1)根据扇形中各部分所占的百分比的和是1,即可求得3万元的员工所占的百分比,然后根据百分比的意义求得直方图中缺少部分的人数;(2)利用3万元的员工除以它的百分比就是抽取员工总数,再根据众数、中位数以及平均数的定义求解;(3)利用总数1200乘以对应的比例即可求解.【解答】解:(1)3万元的员工的百分比为:1﹣36%﹣20%﹣12%﹣24%=8%,抽取员工总数为:4÷8%=50(人),5万元的员工人数为:50×24%=12(人),8万元的员工人数为:50×36%=18(人),如图所示:;(2)抽取员工总数为:4÷8%=50(人),每人所创年利润的众数是8万元,平均数是:(3×4+5×12+8×18+10×10+15×6)=8.12(万元).每人所创年利润的中位数是8万元;(3)1200×=384(人).答:在公司1200员工中有384人可以评为优秀员工.故答案为:50,8,8.12,8.19.(8分)已知一次函数y=kx+b,当x=2时,y=﹣3,当x=1时,y=﹣1.(1)求一次函数的解析式;(2)若该一次函数的图形交x轴y轴分别于A、B两点,求△ABO的面积.【分析】(1)根据一次函数解析式的特点,可得出方程组,求k,b的值,从而得出这个函数的解析式;(2)根据函数的解析式,先分别求出函数与x轴、y轴分别相交于A、B两点的坐标,再运用三角形的面积公式求解.【解答】解:(1)把(2,﹣3)与(1,﹣1),代入y=kx+b,得:,解得:,所以这个函数的解析式为:y=﹣2x+1;(2)当x=0时,y=1;当y=0时,x=,即与x轴、y轴分别相交于A、B两点的坐标是A(,0),B(0,1),=×1×=.所以△ABO的面积是S△ABO20.(7分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.【分析】根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【解答】解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD===15,=BC•AD=(BD+CD)•AD=×21×8=84,∴S△ABC因此△ABC的面积为84.答:△ABC的面积是84.21.(8分)如图,E、F分别为△ABC的边BC、AB的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.(1)求证:四边形ACED是平行四边形;(2)若AB=AC,试说明四边形AEBD是矩形.【分析】(1)由已知可得:EF是△ABC的中位线,则可得EF∥AB,EF=AB,又由DF=EF,易得AB=DE,根据有一组对边平行且相等的四边形是平行四边形,即可证得四边形ABED是平行四边形;(2)由(1)可得四边形AECD是平行四边形,又由AB=AC,AB=DE,易得AC=DE,根据对角线相等的平行四边形是矩形,可得四边形AECD是矩形.【解答】证明:(1)∵E、F分别为△ABC的边BC、BA的中点,∴EF∥AC,EF=AC,∵DF=EF,∴EF=DE,∴AC=DE,∴四边形ACED是平行四边形;(2)∵DF=EF,AF=BF,∴四边形AEBD是平行四边形,∵AB=AC,AC=DE,∴AB=DE,∴四边形AEBD是矩形.22.(10分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?【分析】(1)由图可知第20天的总用水量为1000m 3;(2)设y=kx+b.把已知坐标代入解析式可求解;(3)令y=7000代入方程可得.【解答】解:(1)第20天的总用水量为1000米3(3分)(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴(5分)解得∴y与x之间的函数关系式为:y=300x﹣5000(7分)(3)当y=7000时,由7000=300x﹣5000,解得x=40答:种植时间为40天时,总用水量达到7000米3(10分)23.(10分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.【分析】(1)首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD,即可判定四边形CODE 是菱形,=S矩形ABCD以及四边形OCED的面积=2S△ODC即可解决问题.(2)根据S△ODC【解答】解:(1)证明:∵DE∥OC,CE∥OD,∵四边形OCED是平行四边形.∴OC=DE,OD=CE∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴CE=OC=BO=DE.∴四边形OCED是菱形;(2)如图,连接OE.在Rt△ADC中,AD=4,CD=3由勾股定理得,AC=5∴OC=2.5=4OC=4×2.5=10,∴C菱形OCED在菱形OCED中,OE⊥CD,又∵OE⊥CD,∴OE∥AD.∵DE∥AC,OE∥AD,∴四边形AOED是平行四边形,∴OE=AD=4.=.∴S菱形OCED。
云南省昭通市八年级下学期期中数学试卷
云南省昭通市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2019八下·南海期中) 下列图形中,既是轴对称图形又是中心对称的是()A .B .C .D .2. (2分) (2018七下·玉州期末) 在下列四项调查中,方式正确的是A . 了解本市中学生每天学习所用的时间,采用全面调查的方式B . 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C . 了解某市每天的流动人口数,采用全面调查的方式D . 了解全市中学生的视力情况,采用抽样调查的方式3. (2分)下列各代数式中是分式的是()A . 2+xB .C .D .4. (2分) (2020八下·洛宁期末) 如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=12,AB=10,则AE的长为()A . 16B . 15C . 14D . 135. (2分)(2020·温州模拟) 如图,某中学调查制作了“我最喜欢的校本课程情况扇形统计图”,棋类其中选择摄影的学生有50人,则选择短跑的学生人数为()A . 48人B . 20人C . 16人D . 14人6. (2分) (2017八下·吴中期中) 将一个长为10cm、宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的膀(如图①)剪下,将剪下的图形打开,得到的菱形ABCD(如图②)的面积为()A . 10 cm2B . 20 cm2C . 40 cm2D . 80 cm2二、填空题 (共10题;共12分)7. (1分)(2019·徐州模拟) 代数式在实数范围内有意义,则x的取值范围是________.8. (2分)某中学要了解八年级学生的视力情况,在全校八年级中抽取了30名学生进行检测,在这个问题中,总体是________ ,样本是________9. (1分) (2018八下·黄浦期中) 在公式中,已知正数R、R1(R≠R1),那么R2=________.10. (1分) (2019九上·香坊期末) 如图,在平行四边形ABCD中,于点E ,于点F ,若,,,则平行四边形ABCD的面积为________.11. (1分)(2016·扬州) 当a=2016时,分式的值是________.12. (1分)化简的结果是________ .13. (1分) (2019九上·松滋期末) 如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=(k≠0)的图象恰好经过A′,B,则k的值为________.14. (2分)平行四边形的________分别平行且________.15. (1分) (2015八上·平邑期末) 若关于x的分式方程无解,则m的值是________.16. (1分) (2016九上·盐城开学考) 如果m是自然数,且分式的值是整数,则m的最大值是________.三、解答题 (共11题;共117分)17. (10分)(2020·重庆B) 计算:(1)(x+y)2+y(3x﹣y);(2)( +a)÷ .18. (5分)(2018·秀洲模拟) 解方程:小嘉同学的解题过程如下:将方程两边同乘以(x+1),得:x=1+1-x所以,x=1.判断小嘉同学的解题过程是否正确,若不正确,请给出正确的解题过程。
云南省昭通市八年级下学期数学期中考试试卷
云南省昭通市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·东莞模拟) 观察下列图形,其中既是轴对称又是中心对称图形的是()A .B .C .D .2. (2分) (2017八上·上城期中) 下列关于不等式的解的命题中,属于假命题的是().A . 不等式有唯一的正整数解B . 是不等式的一个解C . 不等式的解集是D . 不等式的整数解有无数个3. (2分)如图,已知等边△AEB和等边△BDC在线段AC同侧,则下面错误的是()A . △ABD≌△EBCB . △NBC≌△MBDC . DM=DCD . ∠ABD=∠EBC4. (2分) (2019八下·广东月考) 若,则下列不等式中正确的是()A .B .C .D .5. (2分) (2019八下·杭州期末) 一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是()A .B .C .D .6. (2分)若与是同类项,则x、y的值为()A .B .C .D .7. (2分) (2020七下·大兴月考) 已知A(1,﹣3),B(2,﹣1)现将线段AB平移至A1B1 ,如果点A1(a,﹣1),B1(﹣2,b),那么a+b的值是()A . 6B . ﹣1C . 2D . ﹣28. (2分)(2020·平遥模拟) 如图,点的坐标是,点的坐标是,为的中点,将绕点逆时针旋转后得到,若反比例函数的图象恰好经过的中点,则的值是()A . 24B . 25C . 26D . 309. (2分)一个三角形的两边分别为5cm、11cm,那么第三边只能是()A . 3cmB . 4cmC . 5cmD . 7cm10. (2分) (2020八下·湘桥期末) 在菱形ABCD中,∠ADC=60°,点E为AB边的中点,DE是线段AP的垂直平分线,连接DP、BP、CP,下列结论:①DP=CD;②AP2+BP2=CD2;③∠DCP=75°;④∠CPA=150°,其中正确的是()A . ①②B . ①②③C . ①②④D . ①②③④二、填空题 (共8题;共9分)11. (1分) (2020七下·张掖期末) 在中,AB=6,AC=9,则第三边BC的值可以是________ .12. (2分) (2015八下·伊宁期中) 在△ABC中,∠B=90度,BC=6,AC=8,则AB=________13. (1分)(2019·武汉模拟) 如图,O是△ABC内一点,∠OBC=60°,∠AOC=120°,OA=OC=,OB=1,则AB边的长为________.14. (1分) (2020七下·金寨月考) 如果a>b ,则-ac2________-bc2(c≠0).15. (1分)(2017·松江模拟) 如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC 的延长线于点E,则CE的长为________.16. (1分) (2020八上·邳州期末) 如图,在坐标系中,一次函数与一次函数的图像交于点,则关于的不等式的解集是________.17. (1分) (2020七下·西城期中) 若不等式组的解集是x>3,则a的取值范围是________.18. (1分) (2019八下·江城期末) 如图,在5×5的边长为1的小正方形组成的网格中,格点上有A、B、C、D四个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接________。
云南省昭通市八年级下学期期中数学模拟试卷
云南省昭通市八年级下学期期中数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各式中正确的是()A . =﹣5B . ﹣ =﹣3C . (﹣)2=4D . ﹣ =32. (2分)关于x的方程(a -5)x²-4x-1=0有实数根,则a满足()A . a≥1B . a>1且a≠5C . a≥1且a≠5D . a≠53. (2分)在反比例函数y=的图像上有三点A1(x1 , y1)、A2(x2 , y2)、A3(x3 , y3),已知x1<x2<0<x3,则下列各式中,正确的是()A . y1 <y2<y3B . y3< y2< y1C . y2< y1< y3D . y3< y1< y24. (2分)下列结论正确的是()A . 5a2b-3a2b=2B . 单项式-x4的系数是-1C . 使式子有意义的x的取值范围是x>-5D . 若分式的值等于0,则m=±15. (2分) (2017九下·东台开学考) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .6. (2分)关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1 , x2 ,且x1+x2>0,x1x2>0,则m的取值范围是()A . m≤B . m≤ 且m≠0C . m<1D . m<1且m≠07. (2分)一元二次方程x(x-2)=2-x的解是()A . -1B . 2C . 1和2D . -1和28. (2分)一个多边形的内角中,锐角的个数最多有()A . 3个B . 4个C . 5个D . 6个9. (2分)如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的()A . 平均数和方差都不变B . 平均数不变,方差改变C . 平均数改变,方差不变D . 平均数和方差都改变10. (2分)(2017·兰州模拟) 图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A . y=﹣2x2B . y=2x2C . y=﹣ x2D . y= x2二、填空题 (共6题;共6分)11. (1分) (2015八下·萧山期中) 当x=﹣5时,二次根式的值为________.12. (1分) (2017八下·南通期中) 一组数据2,x,4,3,3的平均数是3,则这组数据的方差是________.13. (1分) (2019九上·遵义月考) 把方程化为一般形式为________.14. (1分) (2017八下·三门期末) 从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:,则小麦长势比较整齐的试验田是________(填“甲”或“乙”)。
云南省昭通地区2018—2019学年下学期期末考试八年级数学试卷
云南省昭通地区2018—2019学年下学期期末考试八年级数学试卷(全卷三个大题,共23个小题,共6页;满分120分,考试时间120分钟)注意事项:1.本卷为试题卷。
考试解题作答必须在答题卡上,将答案书写在答题卡相应位置上,答案书写在试题卷、草稿纸上无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、填空题(本大题共6个小题,每小题3分,共18分) 1. 若二次根式1-a 有意义,则a 的取值范围是 .2. 正比例函数kx y =(0≠k )的图象过点(-1,3),则k = .3.一个五边形的内角和等于 .4. 分解因式:12-a = .5. 如图,在平行四边形ABCD 中,AB =5cm , BC =7cm ,BE 平分∠ABC 交AD 边于点E , 则线段DE 的长度为 cm .6. 若一次函数m x m y --=)1(的图象经过第二、三、四象限,则m 的取值范围 是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7. 下列二次根式中,属于最简二次根式的是( ) A . 7 B .31C .8D . 98. 以下列各组数为边长,不能构成直角三角形的是( )A . 5,12,13B . 1,2C .12 D . 4,5,69. 甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是s 2甲=5,s 2乙=12,则甲、乙两个同学的数学成绩比较稳定的是( )A . 甲B .乙C .甲和乙一样D .无法确定 10.下列各式中,运算正确的是( ) A .532=+ B .336)2(a a = C . 1)2019(0=- D .2)2(2-=-11.如图,已知:函数b x y +=2和2-=ax y 的图象交于点P (﹣3,﹣4),则根据图象可得不等式b x +2>2-ax 的解集是( ) A .x >﹣4 B .x >﹣3D2-axC .x >﹣2D .x <﹣312. 如图,四边形ABCD 的对角线AC 和BD 交于点O ,则下列不能判断四边形ABCD 是平行四边形的条件是( ) A . OC OA =,AD ∥BC B . ∠ABC =∠ADC ,AD ∥BC C . DC AB =,AD =BC D .∠ABD =∠ADB ,∠BAO =∠DCO13. 在某市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s (米)与时间t (分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是( )A .这次比赛的全程是500米B .乙队先到达终点C .比赛中两队从出发到1.1分钟时间段,乙队 的速度比甲队的速度快D .乙与甲相遇时乙的速度是375米/分钟14. 如图,D 、E 分别是AB 、AC 的中点,过点C 作F ,则下列结论正确的是 ( )A .CF EF =B . DE EF =C .CF <BD D .EF >DE 三、解答题(本大题共9个小题,共70分) 15.(本小题6分)计算:218÷2112⨯-2)3(24-+16. (本小题6分)如图,一根竹子高0.9丈,折断后竹子顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?(这是我国古代数学著作《九章算术》中的一个问题,其中的丈、尺是长度单位,1丈=10尺)./分钟 DABCOA BCD E F 地面?尺3尺17.(本小题7分)如图,ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OA ,OC 的中点.求证△ADE ≌△CBF18.(本小题7分)某同学参加“希望之星”英语口语大赛,7名评委给该同学的打分(单位:分)情况如下表: (1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数.19.(本小题7分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.B FCAD EO20.(本小题8分)如图,直线1l 的解析式为2+-=x y ,1l 与x 轴交于点B ,直线2l 经过点D (0,5),与直线1l 交于点C (﹣1,m ),且与x 轴交于点A .(1)求点C 的坐标及直线2l 的解析式;(2)求△ABC 的面积.21.(本小题8分)如图,已知点E ,F 分别是 ABCD 的边BC ,AD 上的中点,且∠BAC =90°.(1)求证:四边形AECF 是菱形;(2)若AC =4,AB =5,求菱形AECF 的面积.22.(本小题9分)为了满足市场需求,某厂家生产A 、B 两种款式的环保购物袋,每天共生产5000个,两种购物袋的成本和售价如下表:设每天生产A 种购物袋x 个,每天共获利y 元. (1)求y 与x 的函数解析式;A DCEFB(2)如果该厂每天最多投入成本12000元,那么每天最多获利多少元?23.(本小题12分)如图,在四边形AOCB中,AB∥OC,顶点O是原点,顶点A的坐标为(0,8),OC=26,AB=24,点D从点A出发,以每秒1个单位长度的速度向点B运动,点E从点C同时出发,以每秒3个单位长度的速度沿折线C-O-A运动.规定其中一个动点到达端点时,另一个动点也随之停止运动;从运动开始,设D(E)点运动的时间为t秒.(1)求直线BC的函数解析式;(2)当t为何值时,四边形AOED是矩形?(3)连接OD,若△ODE的面积为S,求S与t的函数关系式.备用图2018—2019学年末学业水平检测 八年级 数学参考答案一、填空题(本大题共6个小题,每小题3分,满分18分)1.a ≥12.-33.540°4. )1)(1(-+a a5.26. 0<m <1 二、选择题 (本大题共8个小题,每小题4分,满分32分)7.A 8.D 9.A 10.C 11. B 12.D 13.C 14.B三、解答题(本大题共9个小题,满分70分) 15.(本小题6分)解:原式=36263-+-………4分 =6………6分16.(本小题6分)解:设杆子折断处离地面x 尺,则斜边为(9-x )尺,……1分根据勾股定理得:222)9(3x x -=+……4分解得:x =4答:折断处离地面的高度是4尺.……6分17.(本小题7分)证明:证明:∵四边形ABCD 是平行四边形 ∴AD=BC, AD ∥BC,OA=OC ∴∠DAE=∠BCF ………2分又∵E ,F 分别是OA ,OC 的中点 ∴AE=CF ………4分在△ADE 和△CBF 中⎪⎩⎪⎨⎧=∠=∠=CF AE BCF DAE CDAD ………6分∴△ADE ≌△CBF (SAS )………7分18.(本题7分)解:(1)众数:9.4 中位数:9.3………4分 (2)3.9734.923.92.91.9=⨯+⨯++=x ………7分19.(本题7分) 设甲车的速度是x 千米/时,乙车的速度为(x +30)千米/时.1分308020080+-=x x …………4分解得,x=60BFC ADE O经检验,x=60是原方程的解,且符合实际…………6分 则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.……7分 (其它做法同理给分)20.(本题8分) 解:(1)∵直线1l : 2+-=x y 经过点C (﹣1,m ),∴m =1+2=3,∴C (﹣1,3), ……2分设直线2l 的解析式为b kx y +=, ∵经过点D (0,5),C (﹣1,3),∴⎩⎨⎧+-==bk b35,解得:⎩⎨⎧==52b k∴直线2l 的解析式为52+=x y ;……5分(2)当y =0时,2x +5=0,解得25-=x , 则A (25-,0),当y =0时,﹣x +2=0 解得x =2, 则B (2,0),∴4273)252(21=⨯+⨯=∆ABC S .……8分(其它做法同理给分)21.(本题8分)(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC.∵点E ,F 分别是边BC ,AD 上的中点 ∴AF ∥EC ,AF=EC∴四边形AECF 是平行四边形. …………2分 在Rt △ABC 中,∠BAC=90°,点E 是BC 边的中点, ∴AE =21BC=CE ∴平行四边形AECF 是菱形.…………4分 (2)连接EF 交于点O ,∵四边形AECF 是菱形ADC EFBO∴AC ⊥EF 于点O ,点O 是AC 中点. 又∵E 边BC 的中点 ∴OE=2521=AB . ∴EF=5.…………6分 ∴菱形AECF 的面积是21AC ·EF=5421⨯⨯=10.……………8分 (其它做法同理给分)22.(本题9分) 解:(1)由题意得:)5000)(36.3()24.2(x x y --+-= =30002.0+-x ………4分(2)由题意得:)5000(32x x -+≤12000………6分 解得:x ≥3000………7分在函数30002.0+-=x y 中,2.0-=k <0 ∴y 随x 的增大而减小∴当x =3000时,每天可获利最多,最大利润300030002.0+⨯-=y =2400 ∴该厂每天最多获利2400元. ………9分23.(本小题12分)解:(1)∵顶点A 的坐标为(0,8),AB=24,OC=26, ∴C (26,0),B (24,8),……………1分 设直线BC 的函数解析式是)0(≠+=k b kx y则⎩⎨⎧=+=+026824b k b k , 解得⎩⎨⎧=-=1044b k , ∴直线BC 的函数解析式是y = -4x +104. ……………4分(2)根据题意得:AD=t ,CE=3t ,则OE=OC-CE=26-3t ,6分当AD=OE 时,四边形AOED 是矩形………7分 ∴t =26-3t , 解得t =6.5,∴当t 为6.5时,四边形AOED 是矩形. ………8分 (3)当点E 在OC 上时,OE =26-3t ,则10412)326(821+-=-⨯=t t S (3260≤≤t 当点E 在OA 上时,AE=34-3t∴ OE =8-(34-3t )=3t-26,则t t t t S 1323)263(212-=-⨯=(334326≤<t )………12分。
云南省昭通市八年级下学期期中数学试卷
云南省昭通市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2018·南山模拟) 下列图形既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分) (2019八下·淮安月考) 以下说法合理的是:()A . “打开电视,正在播放新闻节日”是必然事件B . “抛一枚硬币,正面朝上的概率为”表示每抛两次就有一次正面朝上C . “抛掷一枚均匀的骰子,出现点数6的概率是”表示随着抛掷次数的增加“出现点数6”这一事件发生的频率稳定在附近D . 为了解某品牌火腿的质量,选择全面检测3. (2分)下列统计活动中,适合用问卷调查方法收集数据的是()①班级同学的身高;②近五年清华大学招生数;③学生对数学学科教师的满意程度;④1小时某路口通过的车辆数。
A . ①②B . ②③C . ①③D . ③④4. (2分)(2018·丹棱模拟) 下列说法正确的是()A . 打开电视,它正在播放广告是必然事件B . 要考察一个班级中的学生某天完成家庭作业的情况适合抽样调查C . 甲、乙两人射中环数的方差分别为,说明乙的射击成绩比甲稳定D . 在抽样调查中,样本容量越大,对总体的估计就越准确5. (2分)已知四边形ABCD,对角线AC与BD互相垂直. 顺次连接其四条边的中点,得到新四边形的形状一定是()A . 梯形B . 矩形C . 菱形D . 正方形6. (2分) (2017八下·重庆期中) 如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是()A . 4B . 2C . 4D . 27. (2分) (2015八下·临沂期中) 如图,已知AD是三角形纸片ABC的高,将纸片沿直线EF折叠,使点A 与点D重合,给出下列判断:①EF是△ABC的中位线;②△DEF的周长等于△ABC周长的一半;③若四边形AEDF是菱形,则AB=AC;④若∠BAC是直角,则四边形AEDF是矩形,其中正确的是()A . ①②③B . ①②④C . ②④D . ①③④8. (2分)根据下列条件,能作出平行四边形的是()A . 两组对边的长分别是3和5B . 相邻两边的长分别是3和5,且一条对角线长为9C . 一边的长为7,两条对角线的长分别为6和8D . 一边的长为7,两条对角线的长分别为6和5二、填空题 (共8题;共11分)9. (3分)据国家教育部、卫生部最新调查表明:我国小学生近视率超过25%,初中生近视率达到70%,每年以8%的速度增长,居世界第一位.某市为调查中学生视力情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成统计表和扇形统计图如下:被抽取学生视力在4.9以下的人数变化情况统计表年份201420152016人数300500800解答下列问题:(1)扇形统计图中x=________ ;(2)该市共抽取了九年级学生________ 名;(3)若该市今年共有九年级学生约8.5万名,请你估计该市九年级学生视力不良(4.9以下)的学生大约有________ 名。
昭通市八年级下学期期中数学试卷
昭通市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)某市为了分析全市1万名初中毕业生的数学毕业成绩,共随机抽取40本试卷,每本30份,则这个问题中()A . 个体是每个学生B . 样本是抽取的1200名初中毕业生的数学毕业成绩C . 总体是40本试卷的数学毕业成绩D . 样本是30名学生的数学毕业成绩2. (2分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为A . (1,4)B . (5,0)C . (6,4)D . (8,3)3. (2分)课间操时,小华、小军、小刚的位置如图,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示成()A . (4,3)B . (4,5)C . (3,4)D . (5,4)4. (2分)(2017·哈尔滨模拟) 在哈市地铁2号线的建设中,甲、乙两个建设公司同时挖掘两段长度相等的隧道,如图是甲、乙两公司挖掘隧道长度y(米)与挖掘时间x(时)之间关系的部分图象.如果甲队施工速度始终不变,乙队在开挖6小时后,施工速度每小时增加了7米,结果两队同时完成了任务,那么甲队从开挖到完工所挖隧道的总长度为()米.A . 100B . 110C . 120D . 1305. (2分) (2018九上·丹江口期末) 如图,直线y= x与双曲线y= (x>0)交于点A,将直线y= x向右平移3个单位后,与双曲线y= (x>0)交于点B,与x轴交于点C,若 =2,则k=()A .B . 4C . 6D .6. (2分)若|a|=5,|b|=4,且点M(a,b)在第三象限,则点M的坐标是()A . (5,4)B . (-5,4)C . (-5,-4)D . (5,-4)7. (2分)如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则BF:BE的值为()A . 2:3B . 3:5C . 1:2D . 5:88. (2分) (2016八上·临安期末) 若点A(x1 , y1)和点B(x2 , y2)在正比例函数y=-3x的图象上,当x1<x2时,y1与y2的大小关系为()A . y1>y2B . y1<y2C . y1=y2D . y1与y2的大小不一定9. (2分)一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A . 汽车在高速公路上的行驶速度为100km/hB . 乡村公路总长为90kmC . 汽车在乡村公路上的行驶速度为60km/hD . 该记者在出发后4.5h到达采访地10. (2分)(2017·高唐模拟) 下列函数中,当x>0时,y的值随x的值增大而增大的是()A . y=﹣x2B . y=x﹣1C . y=﹣x+1D . y=11. (2分)点A(-4,0),B(2,0)是坐标平面上两定点,C是y=-x+2的图像上的动点,则满足上述条件的直角△ABC可以画出()个A . 1B . 2C . 3D . 412. (2分)生活中处处有数学,下列原理运用错误的是()A . 建筑工人砌墙时拉的参照线是运用“两点之间线段最短”的原理B . 修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理C . 测量跳远的成绩是运用“垂线段最短”的原理D . 将车轮设计为圆形是运用了“圆的旋转对称性”原理13. (2分)(2013·百色) 如图,在平行四边形ABCD中,AB>BC,按以下步骤作图:以A为圆心,小于AD 的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长半径画弧,两弧交于点G;作射线AG交CD于点H.则下列结论:①AG平分∠DAB,②CH= DH,③△ADH是等腰三角形,④S△ADH= S 四边形ABCH .其中正确的有()A . ①②③B . ①③④C . ②④D . ①③14. (2分)如图,直线y=kx+b经过点A,B,则不等式kx+b<0的解集是()A . x>1B . x<1C . x<0D . 0<x<115. (2分)(2020·遵化模拟) 某工厂加工一批零件,为了提高工人工作的积极性,工厂规定每名工人每次获得的薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的是()A . a=20B . b=4C . 若工人甲一天获得薪金180元,则他共生产50件D . 若工人乙一天生产m件,则他获得薪金4m元16. (2分) (2017八下·遂宁期末) 已知一次函数的图象与直线平行,且过点(8,2),那么此一次函数的解析式为()A .B .C .D .二、填空题 (共4题;共4分)17. (1分)(2017·鹤岗模拟) 函数的自变量x的取值范围是________.18. (1分)(2018·云南模拟) 若正比例函数 y =(k - 1)x 图象经过一、三象限,则 k 的取值范围是________.19. (1分)(2019·葫芦岛) 如图,点P是正方形ABCD的对角线BD延长线上的一点,连接PA,过点P作PE⊥PA 交BC的延长线于点E,过点E作EF⊥BP于点F,则下列结论中:①PA=PE;②CE= PD;③BF﹣PD= BD;④S△PEF=S△ADP ,正确的是________(填写所有正确结论的序号)20. (1分)在平面直角坐标系中,以原点为中心,把点A(1,4)顺时针旋转90°,得到的点A′的坐标为________.三、解答题 (共6题;共74分)21. (14分)随着车辆的增加,交通违规的现象越来越严重,交警对人民路某雷达测速区检测到的一组汽车的时速数据进行整理(速度在30﹣40含起点值30,不含终点值40),得到其频数及频率如表:数据段频数频率30﹣40100.0540﹣5036c50﹣60a0.3960﹣70b d70﹣80200.10总计2001(1)表中a、b、c、d分别为:a=________; b=________; c=________; d=________.(2)补全频数分布直方图;(3)如果某天该路段约有1500辆通过,汽车时速不低于60千米即为违章,通过该统计数据估计当天违章车辆约有多少辆?22. (10分) (2018八上·自贡期末) 如图,(1)画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1的各顶点坐标;(2)求△A1B1C1的面积.23. (15分)2015•武汉)如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.24. (5分) (2019八下·如皋月考) 如图,的对角线,相交于,点、分别是线段、的中点.若厘米,的周长是厘米,求的长.25. (15分) (2017八下·邵阳期末) 某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.空调彩电进价(元/台)54003500售价(元/台)61003900设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?26. (15分)(2017·中山模拟) 如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B,C两点,且B,C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根.(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标.参考答案一、选择题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共4题;共4分)17-1、18-1、19-1、20-1、三、解答题 (共6题;共74分)21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、25-1、25-2、25-3、26-1、26-2、26-3、。
昭通市八年级下学期期中数学试卷
昭通市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)在△ABC中, ∠A的相邻外角是70°,要使△ABC为等腰三角形, 则∠B为()A . 70°B . 35°C . 110° 或35°D . 110°2. (2分) (2019九上·江夏期末) 已知正△ABC的中心为O,边长为1.将其沿直线l向右不滑动的翻滚一周时,其中心O经过的路径长是()A . πB . πC . 4πD . 2π3. (2分) (2019七下·北京期末) 如图,点A表示的实数是()A . -B .C . 1-D . -14. (2分) (2018七上·大石桥期末) 下列说法中正确的是()A . 两点之间,直线最短B . 圆是立体图形C . -125与93是同类项D . 方程的解是x=35. (2分) (2019七下·重庆期中) 下列说法中,正确的是()A . 直线外一点到这条直线的垂线段,叫做点到直线的距离;B . 已知线段,轴,若点的坐标为(-1,2),则点的坐标为(-1,-2)或(-1,6);C . 若与互为相反数,则;D . 已知关于的不等式的解集是,则的取值范围为 .6. (2分) (2019八上·香洲期末) 如图,设k=(a>b>0),则有()A . 0<k<B . <k<1C . 0<k<1D . 1<k<27. (2分)(2018七上·黄陂月考) 下列说法:①如果,则为负数;②;③四条直线相交,最多有6个交点;④某种商品每件的进价为100元,按标价的8折销售时,利润率为12%,则该商品每件标价为140元。
这四种说法其中正确的是()A . ①②③B . ②③④C . ②③D . ①②③④8. (2分)下列命题:①圆周角等于圆心角的一半;②是方程的解;③平行四边形既是中心对称图形又是轴对称图形;④的算术平方根是4。
云南省昭通市八年级下学期期中数学试卷
云南省昭通市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2019七下·镇平期末) 下列图形中,既是轴对称图形又是中心对称图形的是)A .B .C .D .【考点】2. (2分) (2017七下·博兴期末) 下列调查中,适合采用全面调查方式的是()A . 对我县某学校某班50名同学体重情况的调查B . 对我县幸福河水质情况的调查C . 对我县某类烟花爆竹燃放安全情况的调查D . 对我县端午节期间市场上粽子质量情况的调查【考点】3. (2分)下列各式:,,, +m ,其中分式共有().A . 1个B . 2个C . 3个D . 4个【考点】4. (2分) (2019八下·温岭期末) 定义:在同一平面内画两条相交、有公共原点的数轴x轴和y轴,交角a≠90°,这样就在平面上建立了一个斜角坐标系,其中w叫做坐标角,对于坐标平面内任意一点P,过P作y轴和x轴的平行线,与x轴、y轴相交的点的坐标分别是a和b,则称点P的斜角坐标为(a,b).如图,w=60°,点P 的斜角坐标是(1,2),过点P作x轴和y轴的垂线,垂足分别为M、N,则四边形OMPN的面积是()A .B .C .D . 3【考点】5. (2分)(2017·槐荫模拟) 若宇宙中一块陨石落在地球上,它落在陆地上的概率是0.3,那么用扇形统计图反映地球上陆地面积与海洋面积所占的比例时,陆地面积所对应的圆心角是()A . 54°B . 72°C . 108°D . 114°【考点】6. (2分) (2017八下·辉县期末) 如图,将一个长为10cm,宽为8cm的矩形纸片从下向上,从左到右对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的四边形的面积为()A . 10cm2B . 20cm2C . 40cm2D . 80cm2【考点】二、填空题 (共10题;共10分)7. (1分)(2020·呼和浩特模拟) 代数式有意义时,x应满足的条件是________.【考点】8. (1分)某厂生产A,B,C三种不同型号的产品,产品数量之比依次为2∶3∶5.分型号按同样的比例随机抽取一个容量为n的样本,样本中A种型号产品有16件,则可以推断n理论上是________.【考点】9. (1分)分式,,的最简公分母为________.【考点】10. (1分) (2017八下·河北期末) 已知一个平行四边形的一条对角线将其分为全等的两个等腰直角三角形,且这条对角线的长为8,则另一条对角线长为________.【考点】11. (1分) (2020八上·昌平月考) 若分式的值为正,则的取值范围是________.【考点】12. (1分)将分式化为最简分式,所得结果是________ .【考点】13. (1分)(2017·西华模拟) 如图,矩形ABCD中,AB=2cm,BC=6cm,把△ABC沿对角线AC折叠,得到△AB′C,且B′C与AD相交于点E,则AE的长为________cm.【考点】14. (1分) (2018八上·长春期末) □ 中,是对角线,且,,则________度.【考点】15. (1分) (2017八上·天津期末) 若关于x的方程无解,则m的值是________.【考点】16. (1分) (2017八下·遂宁期末) 已知,则分式 = ________.【考点】三、解答题 (共11题;共114分)17. (5分) (2019八下·电白期末) 先化简,再求值:()(x2-4),其中x= .【考点】18. (10分) (2019八上·响水期末) 解方程:(1)=4;(2)=.【考点】19. (10分)(2019·银川模拟) 如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.【考点】20. (5分) (2018九上·安陆月考) 先化简,再求值:,其中m是方程x2+2x﹣3=0的根.【考点】21. (12分) (2018九上·东台月考) 为了提高科技创新意识,我市某中学在“2018年科技节”活动中举行科技比赛,包括“航模”、“机器人”、“环保”、“建模”四个类别(每个学生只能参加一个类别的比赛),各类别参赛人数统计如图:请根据以上信息,解答下列问题:(1)全体参赛的学生共有________人,“建模”在扇形统计图中的圆心角是________°;(2)将条形统计图补充完整;(3)在比赛结果中,获得“环保”类一等奖的学生为1名男生和2名女生,获得“建模”类一等奖的学生为1名男生和1名女生,现从这两类获得一等奖的学生中各随机选取1名学生参加市级“环保建模”考察活动,请用列表或画树状图的方法求选取的两人中恰为1男生1女生的概率.【考点】22. (15分) (2017八上·双柏期末) 根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.【考点】23. (10分)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠BAO=∠DAO.(1)求证:平行四边形ABCD是菱形;(2)请添加一个条件使菱形ABCD为正方形.【考点】24. (15分)(2016·云南) 有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.【考点】25. (7分) (2019七上·苍南期中) 如图1,在一条可以折叠的数轴上,点A,B分别表示数-9和4.(1) A,B两点之间的距离为________.(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C 表示的数是________.(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A、B两点相距4个单位长度?【考点】26. (10分) (2020八下·惠安期末) 疫情发生后,口罩成了人们生活的必需品.某药店销售A,B两种口罩,今年3月份的进价如下表:(1)已知B种口罩每包售价比A种口罩贵20元,用64元购买到A种口罩的数量和144元购买到B种口罩的数量相同,求A种口罩和B种口罩每包售价.(2)为满足不同顾客的需求,该药店准备4月份新增购进进价为每包10元的C种口罩,A种和B种口罩仍按需购进,进价与3月份相同,A种口罩的数量是B种口罩的5倍,共花费12000元,则该店至少可以购进三种口罩共多少包?【考点】27. (15分) (2019八上·三台月考) 如图1,点M为直线AB上一动点,,都是等边三角形,连接BN(1)求证:;(2)分别写出点M在如图2和图3所示位置时,线段AB、BM、BN三者之间的数量关系不需证明;(3)如图4,当时,证明:.【考点】参考答案一、选择题 (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题 (共10题;共10分)答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共11题;共114分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、考点:解析:答案:27-1、答案:27-2、答案:27-3、考点:解析:第21 页共21 页。
云南昭通市初中数学八年级下期中习题(提高培优)
一、选择题1.(0分)[ID :9932]下列运算正确的是( ) A .347+=B .1232=C .2(-2)2=-D .142136= 2.(0分)[ID :9929]如右图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角△ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .3.(0分)[ID :9927]如图,四边形ABCD 是长方形,AB=3,AD=4.已知A (﹣32,﹣1),则点C 的坐标是( )A .(﹣3,32) B .(32,﹣3) C .(3,32) D .(32,3) 4.(0分)[ID :9913]一次函数1y ax b 与2y bx a 在同一坐标系中的图像可能是( )A.B.C.D.5.(0分)[ID:9899]下列条件中,不能判断△ABC为直角三角形的是A.21a=,22b=,23c=B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:56.(0分)[ID:9875]下列说法正确的有几个()①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A.1个B.2个C.3个D.4个7.(0分)[ID:9871]如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°8.(0分)[ID:9858]菱形ABCD中,AC=10,BD=24,则该菱形的周长等于()A.13B.52C.120D.2409.(0分)[ID:9848]星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是()A.从家出发,休息一会,就回家B.从家出发,一直散步(没有停留),然后回家C.从家出发,休息一会,返回用时20分钟D.从家出发,休息一会,继续行走一段,然后回家10.(0分)[ID:9926]如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是( )A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃11.(0分)[ID:9917]如图所示,▱ABCD的对角线AC,BD相交于点O,AE EB=,3OE=,5AB=,▱ABCD的周长()A.11B.13C.16D.2212.(0分)[ID:9841]下列运算正确的是()A235+=B 36 2=C235=D1333=13.(0分)[ID:9834]下列运算正确的是()A532=B822=C114293=D()22525-=-14.(0分)[ID:9910]小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A.2.7 米B.2.5 米C.2.1 米D.1.5 米15.(0分)[ID:9898]下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直二、填空题16.(0分)[ID:10029]某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表:植树棵数(单位:棵)456810人数(人)302225158则这100名学生所植树棵数的中位数为_____.17.(0分)[ID :10025]如图,在矩形ABCD 中,2AB =,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为__________.18.(0分)[ID :10014]函数21x y x +=-中,自变量x 的取值范围是 . 19.(0分)[ID :9995]已知一个三角形的周长是48cm ,以这个三角形三边中点为顶点的三角形的周长为_______cm .20.(0分)[ID :9977]如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的周长为_____.21.(0分)[ID :9968]化简()213-=_____________;22.(0分)[ID :9964]已知菱形ABCD 的两条对角线长分别为12和16,则这个菱形ABCD 的面积S=_____.23.(0分)[ID :9962]如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,30ACB ∠=,则AOB ∠的大小为______ .24.(0分)[ID :9936]如图,已知一次函数y=kx+b 的图象与x 轴交于点(3,0),与y 轴交于点(0,2),不等式kx+b≥2解集是_______.25.(0分)[ID :9935]如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,PO =2,则菱形ABCD 的周长是_________.三、解答题26.(0分)[ID:10088]请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,在图中画出分割线,拼出如图②所示的新正方形.请你参考.上述做法,解决如下问题:(1)现有10个边长为1的正方形,排列形式如图③,请把它们分割后拼接成一个新的正方形,在图③中画出分割线,并在图④的正方形网格中用实线画出拼接成的新正方形;(图中每个小正方形的边长均为1)(2)如图⑤,现有由8个相同小正方形组成的十字形纸板,请在图中画出分割线,拼出一个新正方形.27.(0分)[ID:10066]如图,直线L:y=﹣12x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,请直接写出此时t值和M点的坐标.28.(0分)[ID :10059]如图,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.29.(0分)[ID :10051]已知,如图,BD 平分ABC ∠交AC 于点D ,点E 、F 分别是AB 、BC 的中点,连接DE ,且// DE BC . (1) 求证:BE CF =;(2)连接DF ,若5AB BC ==,6AC =,求四边形BEDF 的面积.30.(0分)[ID :10045]某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.D4.C5.D6.C7.A8.B9.D10.D11.D12.D13.B14.C15.C二、填空题16.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排17.【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA=OB=AB=2得出BD=2OB=4由勾股定理求出AD即可【详解】解:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵A18.x≠1【解析】x≠119.【解析】【分析】根据三角形中位线定理得到DE=BCDF=ACEF=AB根据三角形的周长公式计算得到答案【详解】解:根据题意画出图形如图所示点DEF分别是ABACBC的中点∴DE=BCDF=ACEF=20.16【解析】【分析】首先证明四边形ADEF是平行四边形根据三角形中位线定理求出DEEF即可解决问题【详解】解:∵BD=ADBE=EC∴DE=AC=5DE∥AC∵CF=FACE=BE∴EF=AB=3E21.【解析】22.【解析】【分析】根据菱形的性质菱形的面积=对角线乘积的一半【详解】解:菱形的面积是:故答案为96【点睛】本题考核知识点:菱形面积解题关键点:记住根据对角线求菱形面积的公式23.【解析】【分析】根据矩形的性质可得∠ABC的度数OA与OB的关系根据等边三角形的判定和性质可得答案【详解】∵ABCD是矩形∴∠ABC=90°∵∠ACB=30°∴∠BAO=90°﹣∠ACB=60°∵O24.x≤0【解析】【分析】由一次函数y=kx+b的图象过点(02)且y随x的增大而减小从而得出不等式kx+b≥2的解集【详解】解:由一次函数的图象可知此函数是减函数即y随x的增大而减小∵一次函数y=kx25.16【解析】【分析】根据菱形的性质可得AC⊥BDAB=BC=CD=AD再根据直角三角形的性质可得AB=2OP进而得到AB长然后可算出菱形ABCD的周长【详解】∵四边形ABCD是菱形∴AC⊥BDAB=三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】根据二次根式的加减法对A进行判断;根据二次根式的性质对B、C进行判断;根据分母有理化和二次根式的性质对D进行判断.【详解】A2,所以A选项错误;B、原式=B选项错误;C、原式=2,所以C选项错误;=,所以D选项正确.D3故选D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.A解析:A【解析】【分析】先做出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,作AD∥x轴,作CD⊥AD于点D,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,∠AOB=∠ADC,∠OAB=∠DAC,AB=AC∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.3.D解析:D【解析】【分析】由矩形的性质可知CD=AB= 3,BC=AD= 4,结合A点坐标即可求得C点坐标.【详解】∵四边形ABCD是长方形,∴CD=AB= 3,BC=AD= 4,∵点A(﹣32,﹣1),∴点C的坐标为(﹣32+3,﹣1+4),即点C的坐标为(32,3),故选D.【点睛】本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.4.C解析:C【解析】【分析】可用排除法,对各选项中函数图象的特点逐一分析即可.【详解】A.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a>0,b>0,两结论相矛盾,故错误;B.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a=0,b<0,两结论相矛盾,故错误;C. 正确;D.由y 1的图象可知a> 0,b> 0;由y 2的图象可知a<0,b<0,两结论相矛盾,故错误; 故选:C.【点睛】此题考查一次函数的图象,熟记一次函数的图象与k 及b 值的关系是解题的关键.5.D解析:D【解析】【分析】【详解】试题分析:A 、根据勾股定理的逆定理,可知222+=a b c ,故能判定是直角三角形; B 、设a=3x ,b=4x ,c=5x ,可知222+=a b c ,故能判定是直角三角形;C 、根据三角形的内角和为180°,因此可知∠C=90°,故能判定是直角三角形;D 、而由3+4≠5,可知不能判定三角形是直角三角形.故选D考点:直角三角形的判定6.C解析:C【解析】【分析】根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3个,故选C .此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.7.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.8.B解析:B【解析】试题解析:菱形对角线互相垂直平分,∴BO=OD=12,AO=OC=5,∴==,AB13故菱形的周长为52.故选B.9.D解析:D【解析】【分析】利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.【详解】由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.故选:D.【点睛】本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.10.D解析:D【解析】【分析】根据气温T如何随时间t的变化而变化图像直接可解答此题.【详解】A.根据图像4时气温最低,故A错误;B.最低气温为零下3℃,故B错误;C.0点到14点之间气温先下降后上升,故C错误;D描述正确.【点睛】本题考查了学生看图像获取信息的能力,掌握看图像得到有用信息是解决此题的关键.解析:D【解析】【分析】根据平行四边形性质可得OE是三角形ABD的中位线,可进一步求解.【详解】因为▱ABCD的对角线AC,BD相交于点O,AE EB=,所以OE是三角形ABD的中位线,所以AD=2OE=6所以▱ABCD的周长=2(AB+AD)=22故选D【点睛】本题考查了平行四边形性质,熟练掌握性质定理是解题的关键.12.D解析:D【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A、原式+=,故错误;B2C、原式,故C错误;=,正确;D3故选:D.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.13.B解析:B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A.≠A错误;B.=,故B正确;=,故C错误;C.3D.2=,故D错误.故选:B.【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.14.C解析:C【解析】【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【详解】=2.1(米).故选C.【点睛】本题考查了勾股定理的应用.善于提取题目的信息是解题以及学好数学的关键.15.C解析:C【解析】【分析】矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.【详解】A、菱形、矩形的内角和都为360°,故本选项错误;B、对角互相平分,菱形、矩形都具有,故本选项错误;C、对角线相等菱形不具有,而矩形具有,故本选项正确D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,故选C.【点睛】本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.二、填空题16.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5【解析】【分析】直接利用中位数定义求解.【详解】第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵).故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA=OB=AB=2得出BD=2OB=4由勾股定理求出AD即可【详解】解:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵A解析:【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA=OB=AB=2,得出BD=2OB=4,由勾股定理求出AD即可.【详解】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=OB=AB=2,∴BD=2OB=4,∴AD故答案为:【点睛】此题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.18.x≠1【解析】x≠1解析:x≠1【解析】x-≠,x≠11019.【解析】【分析】根据三角形中位线定理得到DE=BCDF=ACEF=AB根据三角形的周长公式计算得到答案【详解】解:根据题意画出图形如图所示点DEF分别是ABACBC的中点∴DE=BCDF=ACEF= 解析:24【解析】【分析】根据三角形中位线定理得到DE=12BC,DF=12AC,EF=12AB,根据三角形的周长公式计算,得到答案.【详解】解:根据题意,画出图形如图所示,点D、E、F分别是AB、AC、BC的中点,∴DE=12BC,DF=12AC,EF=12AB,∵原三角形的周长为48,∴AB+AC+BC=48,则新三角形的周长=DE+DF+EF=12×(AB+AC+BC)=24(cm)故答案为:24cm.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.20.16【解析】【分析】首先证明四边形ADEF是平行四边形根据三角形中位线定理求出DEEF即可解决问题【详解】解:∵BD=ADBE=EC∴DE=AC=5DE∥AC∵CF=FACE=BE∴EF=AB=3E解析:16【解析】【分析】首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题.【详解】解:∵BD=AD,BE=EC,∴DE=12AC=5,DE∥AC,∵CF=FA,CE=BE,∴EF=12AB=3,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=16,故答案为16.【点睛】本题考查三角形中位线定理、平行四边形的判定和性质等知识,熟练掌握三角形中位线定理是解题的关键.21.【解析】1【解析】11=-=22.【解析】【分析】根据菱形的性质菱形的面积=对角线乘积的一半【详解】解:菱形的面积是:故答案为96【点睛】本题考核知识点:菱形面积解题关键点:记住根据对角线求菱形面积的公式解析:【解析】【分析】根据菱形的性质,菱形的面积=对角线乘积的一半.【详解】解:菱形的面积是:1121696 2⨯⨯=.故答案为96.【点睛】本题考核知识点:菱形面积.解题关键点:记住根据对角线求菱形面积的公式.23.【解析】【分析】根据矩形的性质可得∠ABC的度数OA与OB的关系根据等边三角形的判定和性质可得答案【详解】∵ABCD是矩形∴∠ABC=90°∵∠ACB=30°∴∠BAO=90°﹣∠ACB=60°∵O解析:60【解析】【分析】根据矩形的性质,可得∠ABC的度数,OA与OB的关系,根据等边三角形的判定和性质,可得答案.【详解】∵ABCD是矩形,∴∠ABC=90°.∵∠ACB=30°,∴∠BAO=90°﹣∠ACB=60°.∵OA=OB,∴△ABO是等边三角形,∴∠AOB=60°.故答案为:60°.【点睛】本题考查了矩形的性质,利用矩形的性质得出∠ABC的度数是解答本题的关键.24.x≤0【解析】【分析】由一次函数y=kx+b的图象过点(02)且y随x的增大而减小从而得出不等式kx+b≥2的解集【详解】解:由一次函数的图象可知此函数是减函数即y随x的增大而减小∵一次函数y=kx解析:x≤0【解析】【分析】由一次函数y=kx+b的图象过点(0,2),且y随x的增大而减小,从而得出不等式kx+b≥2的解集.【详解】解:由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤0.【点睛】本题考查的是一次函数与一元一次不等式的关系,能利用数形结合求出不等式的解集是解答此题的关键.25.16【解析】【分析】根据菱形的性质可得AC⊥BDAB=BC=CD=AD再根据直角三角形的性质可得AB=2OP进而得到AB长然后可算出菱形ABCD的周长【详解】∵四边形ABCD是菱形∴AC⊥BDAB=解析:16【解析】【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=2,∴AB=4,∴菱形ABCD的周长是:4×4=16,故答案为:16.【点睛】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等,此题难度不大.三、解答题26.(1)见解析;(2)见解析【解析】【分析】(1)根据面积为10的正方形的边长为10,可得三个并列的小正方形的对角线的长为10;(2)根据面积为8的正方形的边长为8,可得三个并列的小正方形的对角线的长为8.【详解】(1)如图所示即为所求.(2)如图所示即为所求.【点睛】本题主要考查了图形的设计,正确理解小正方形的面积的和等于拼成的正方形的面积是解题的关键.27.(1)A(4,0)、B(0,2);(2)0≤t≤4时,S△OCM=8﹣2t;t>4时,S△OCM=2t﹣8;(3)当t=2或6时,△COM≌△AOB,此时M(2,0)或(﹣2,0)【解析】【分析】(1)由直线L的函数解析式,令y=0求A点坐标,x=0求B点坐标;(2)由面积公式S=12OM•OC求出S与t之间的函数关系式;(3)若△COM≌△AOB,OM=OB,则t时间内移动了AM,可算出t值,并得到M点坐标.【详解】(1)对于直线AB:y=﹣12x+2,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t≤4时,OM=OA﹣AM=4﹣t,S△OCM=12×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=12×4×(t﹣4)=2t﹣8;(3)∵OC=OA,∠AOB=∠COM=90°,∴只需OB=OM,则△COM≌△AOB,即OM=2,此时,若M在x轴的正半轴时,t=2,M在x轴的负半轴,则t=6.故当t=2或6时,△COM≌△AOB,此时M(2,0)或(﹣2,0).【点睛】本题考查了一次函数的性质和三角形的面积公式,以及全等三角形的判定与性质,理解全等三角形的判定定理是关键.28.(1)k=-1,b=4;(2)点D的坐标为(0,-4).【解析】【分析】【详解】分析:(1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A、C的坐标,利用待定系数法即可求出k、b的值;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设点D的坐标为(0,m)(m<0),根据三角形的面积公式结合S△COD=13S△BOC,即可得出关于m的一元一次方程,解之即可得出m的值,进而可得出点D的坐标.详解:(1)当x=1时,y=3x=3,∴点C的坐标为(1,3).将A(﹣2,6)、C(1,3)代入y=kx+b,得:263k bk b-+=⎧⎨+=⎩,解得:14kb=-⎧⎨=⎩.(2)当y=0时,有﹣x+4=0,解得:x=4,∴点B的坐标为(4,0).设点D的坐标为(0,m)(m<0),∵S△COD=13S△BOC,即﹣12m=13×12×4×3,解得:m=-4,∴点D的坐标为(0,-4).点睛:本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k、b的值;(2)利用三角形的面积公式结合结合S△COD=13S△BOC,找出关于m的一元一次方程.29.(1)见解析;(2)6【解析】【分析】(1)由平行线的性质和角平分线的概念可得BE=DE,易证四边形DEFC是平行四边形,可得DE=CF,等量代换即可得出结论;(2)易证四边形BEDF是平行四边形,再由BE=DE证得四边形BEDF是菱形,由等腰三角形“三线合一”可得BD⊥EF,根据勾股定理求得BD,根据三角形中位线定理求得EF,根据菱形的面积公式即可得出答案.【详解】(1)证明:∵DE∥BC,∴∠DBC=∠BDE,∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠BDE=∠EBD,∴BE=DE,∵E、F是AB、BC的中点,∴EF∥AC,∵DE∥BC,∴四边形DEFC是平行四边形,∴DE=CF,∴BE=CF;(2)∵AB=BC=5,BD平分∠ABC,∴BD⊥AC,CD=12AC=3.在Rt△BDC中,BD∵E、F是AB、BC的中点,∴EF=12AC=3.∵F 是BC 中点,∴BF =CF ,∴DE =BF ,DE ∥BF ,∴四边形BEDF 是平行四边形,又∵BE =DE ,∴四边形BEDF 是菱形,∴S 菱形BEDF =12BD ·EF =12×4×3 =6.【点睛】本题主要考查了等腰三角形的判定和性质,平行四边形的判定和性质,菱形的判定和性质,三角形中位线定理,根据三角形中位线定理和平行四边形的判定证出平行四边形是解决(1)的关键,证出四边形BEDF 是菱形是解决(2)的关键.30.(1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.【解析】分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a )=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年八年级第二学期期中数学试卷一、填空题1.﹣的相反数是.2.分解因式:m3﹣m=.3.已知菱形的周长为20,一条对角线长为6,则边长是,它的面积是.4.若二次根式有意义,则x的取值范围是.5.一个多边形的内角和为1080°,则它的边数为.它的外角和为.6.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为.二、选择题(每题4分,共32分)7.下列计算正确的是()A.B.5=5C.D.8.下列长度的线段中,能构成直角三角形的一组是()A.,,B.6,7,8C.12,25,27D.2,2,4 9.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种10.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 11.已知:在Rt△ABC中,∠C=90°,BC=1,AC=,点D是斜边AB的中点,点E 是边AC上一点,则DE+BE的最小值为()A.2B.+1C.D.212.顺次连接矩形四边中点所形成的四边形是()A.矩形B.菱形C.正方形D.梯形13.下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形14.如图,将长方形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上点F处,已知CE=3cm,AB=8cm,图中阴影部分的面积是()A.80cm2B.50cm2C.30cm2D.20cm2三、解答题(共9题,共70分)15.计算:(1)﹣9+;(2)×﹣÷﹣|1﹣|.16.最简二次根式与是同类二次根式,求3a﹣b的值.17.解不等式组并写出它的所有整数解.18.如图,在平行四边形ABCD中,点E在AB的延长线上,且EC∥BD,求证:BE=AB.19.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?20.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,求△ABE的面积和周长.21.如图,矩形ABCD的对角线相交于点O,PB∥AC,PC∥BD,PB、PC相交于点P.(1)猜想四边形PCOB是什么四边形,并说明理由;(2)当矩形ABCD满足什么条件时,四边形PCOB是正方形.22.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF =BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.23.观察下列格式,﹣,,,…(1)化简以上各式,并计算出结果;(2)以上格式的结果存在一定的规律,请按规律写出第5个式子及结果(3)用含n(n≥1的整数)的式子写出第n个式子及结果,并给出证明的过程.参考答案一、填空题(每题3分,共18分)1.﹣的相反数是.【分析】根据相反数的定义进行填空即可.解:∵﹣的相反数是,故答案为.【点评】本题考查了实数的性质以及算术平方根,掌握相反数的定义是解题的关键.2.分解因式:m3﹣m=m(m+1)(m﹣1).【分析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:m3﹣m,=m(m2﹣1),=m(m+1)(m﹣1).【点评】本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.3.已知菱形的周长为20,一条对角线长为6,则边长是5,它的面积是24.【分析】菱形对角线互相垂直平分,所以OA2+OB2=AB2,已知AB=5,AO=3,即可求得BO,即可求得BD的长,根据AC、BD即可求菱形ABCD的面积,即可解题.解:AC=8,则AO=CO=3,∵菱形周长为20,∴AB=5,∵菱形对角线互相垂直平分,∴OA2+OB2=AB2,∴BO=4,∴DB=8,∴菱形的面积S=×6×8=24.故答案为5:24.【点评】本题考查了菱形对角线互相垂直平分的性质,菱形面积的计算,本题中根据勾股定理求BO的值是解题的关键.4.若二次根式有意义,则x的取值范围是x≥﹣.【分析】二次根式的被开方数是非负数,则4x+1≥0.解:由题意,得4x+1≥0,解得x≥﹣.故答案是:x≥﹣.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.一个多边形的内角和为1080°,则它的边数为8.它的外角和为360°.【分析】根据多边形内角和公式(n﹣2)×180°可计算出边数,再根据多边形外角和为360°可得答案.解:设它的边数为n,由题意得:(n﹣2)×180=1080,解得:n=8,它的外角和为360°;故答案为:8;360°.【点评】此题主要考查了多边形内角和公式和外角和定理,关键是熟练掌握内角和公式(n﹣2)×180°.6.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为18.【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴AC==10,∵AO=OC,∴BO=AC=5,∵AO=OC,AM=MD=4,∴OM=CD=3,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=18.故答案为18.【点评】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.二、选择题(每题4分,共32分)7.下列计算正确的是()A.B.5=5C.D.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.解:不能合并,故选项A错误,,故选项B错误,,故选项C错误,,故选项D正确,故选:D.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.8.下列长度的线段中,能构成直角三角形的一组是()A.,,B.6,7,8C.12,25,27D.2,2,4【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.解:A、()2+()2≠()2,故不是直角三角形,此选项错误;B、62+72≠82,故不是直角三角形,此选项错误;C、122+252≠272,故不是直角三角形,此选项错误;D、(2)2+(2)2=(4)2,故是直角三角形,此选项正确.故选:D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种【分析】根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.解:依题意得有四种组合方式:(1)①③,利用两组对边平行的四边形是平行四边形判定;(2)②④,利用两组对边相等的四边形是平行四边形判定;(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.故选:C.【点评】此题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.10.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 【分析】由矩形和菱形的判定方法即可得出答案.解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.11.已知:在Rt△ABC中,∠C=90°,BC=1,AC=,点D是斜边AB的中点,点E 是边AC上一点,则DE+BE的最小值为()A.2B.+1C.D.2【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=,所以最小值为.解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离=AC=,故选:C.【点评】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.12.顺次连接矩形四边中点所形成的四边形是()A.矩形B.菱形C.正方形D.梯形【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB,∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:B.【点评】本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.13.下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形【分析】根据矩形的定义知,有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,根据菱形的定义及性质知四条边都相等的四边形是菱形即可解答.解:根据矩形的定义及性质知,有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,故A,B正确;根据菱形的定义及性质知对角线互相垂直的矩形是正方形,也是菱形,故C正确;对角线相等的四边形有可能是等腰梯形,故D错误;故选:D.【点评】本题考查了菱形的判定及矩形的判定,属于基础题,关键是掌握矩形的定义及性质,菱形的定义及性质.14.如图,将长方形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上点F处,已知CE=3cm,AB=8cm,图中阴影部分的面积是()A.80cm2B.50cm2C.30cm2D.20cm2【分析】根据已知条件得到△ABF∽△FCE,根据相似三角形的性质得到=,求出AF=10,得到AD=AF=10,然后运用S阴影=S矩形ABCD﹣2S△ADE,代入数值计算即可解决问题.解:如图,∵CD=AB=8,CE=3,∴EF=DE=8﹣3=5;由勾股定理得:CF=4;由折叠的性质得:AF=AD,∠AFE=∠D=90°;∵∠B=∠C=90°;∴∠BAF+∠AFB=∠AFB+∠EFC,∴∠BAF=∠EFC,而∠B=∠C,∴△ABF∽△FCE,∴=,即=,解得:AF=10.∴AD=AF=10.∵S△AEF=S△ADE,∴S阴影=S矩形ABCD﹣2S△ADE=10×8﹣2××10×5=80﹣50=30.故选:C.【点评】该题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,相似三角形的判定与性质,勾股定理.根据△ABF∽△FCE,求出AF=10,得到AD=AF=10是解题的关键.三、解答题(共9题,共70分)15.计算:(1)﹣9+;(2)×﹣÷﹣|1﹣|.【分析】(1)先化简各二次根式化简,再合并同类二次根式即可得;(2)根据二次根式的混合运算顺序和运算法则计算可得.解:(1)原式=4﹣3+2=3;(2)原式=﹣﹣(﹣1)=﹣﹣+1=.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.16.最简二次根式与是同类二次根式,求3a﹣b的值.【分析】根据题意,它们的被开方数相同,列出方程求解.解:由最简二次根式与是同类二次根式,得,解得,则3a﹣b=2.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.17.解不等式组并写出它的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:“大小小大中间找”确定不等式组的解集,继而可得答案.解:解不等式4(x﹣1)≤3(x+2)得:x≤10,解不等式<x﹣4得:x>7,∴不等式组的解集为:7<x≤10,则该不等式组的整数解有:8、9、10.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,在平行四边形ABCD中,点E在AB的延长线上,且EC∥BD,求证:BE=AB.【分析】可根据两组对边分别平行的四边形是平行四边形证四边形BECD是平行四边形.【解答】证明:∵ABCD是平行四边形,∴AB∥CD,即BE∥CD,又∵EC∥BD,∴四边形BECD是平行四边形.∴BE=CD.∴BE=AB.【点评】此题主要考查平行四边形的判定:两组对边分别平行的四边形是平行四边形.19.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?【分析】设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出分式方程,解方程即可.解:设乙工程队每天能完成绿化的面积是xm2,根据题意得﹣=4,解得:x=50.经检验:x=50是原方程的解.所以甲工程队每天能完成绿化的面积是50×2=100(m2).答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2.【点评】本题主要考查了分式方程的应用,解题的关键是分析题意,找到合适的数量关系列出分式方程,解分式方程时要注意检验未知数的值是否符合原方程,是否符合实际意义.20.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,求△ABE的面积和周长.【分析】由矩形的性质可得BC=AD=1,∠C=∠D=90°,可证△AED与△BCE为等腰直角三角形,可求DE=AD=1,CE=BC=1,AE=BE=,AB=2,即可求解.解:∵在矩形ABCD中,BC=AD=1,∠C=∠D=90°,且∠DAE=∠CBE=45°,∴△AED与△BCE为等腰直角三角形,∴DE=AD=1,CE=BC=1,AE==,BE==,∴AB=DE+CE=1+1=2,∴△ABE的周长=AB+AE+BE=2++=2+2,∴△ABE的面积=AB•AD=×2×1=1.【点评】本题考查了矩形的性质,勾股定理,等腰直角三角形的性质,灵活运用这些性质进行推理是本题的关键.21.如图,矩形ABCD的对角线相交于点O,PB∥AC,PC∥BD,PB、PC相交于点P.(1)猜想四边形PCOB是什么四边形,并说明理由;(2)当矩形ABCD满足什么条件时,四边形PCOB是正方形.【分析】(1)由BE∥AC,EC∥BD,得出四边形OBEC是平行四边形,再由矩形的性质得出OB=OC,即可得出结论;(2)由正方形的判定方法即可得出结论.解:(1)四边形PCOB是菱形;理由如下:∵PB∥AC,PC∥BD,∴四边形PCOB为平行四边形,∵四边形ABCD为矩形,∴OBOD,OA=OC,AC=BD,∴OB=OC,∴四边形PCOB为菱形(有一组邻边相等的平行四边形为菱形);(2)当AC⊥BD时,四边形PCOB是正方形;理由如下:∵四边形PCOB为菱形,AC⊥BD,∴四边形PCOB为正方形(有一个角为90°的菱形为正方形).【点评】本题考查了正方形的判定、菱形的判定、矩形的性质;熟练掌握矩形的性质和正方形的判定方法,证明四边形是菱形是解决问题的关键.22.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF =BE,连CF(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)由∠BEF是120°,可得∠EBC为60°,即可得△BEC是等边三角形,求得BE=BC=CE=6,再过点E作EG⊥BC于点G,求的高EG的长,即可求得答案.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形;(2)解:∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6,过点E作EG⊥BC于点G,∴EG=BE•sin60°=6×=3,∴S菱形BCFE=BC•EG=6×3=18.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.注意证得△BEC是等边三角形是关键.23.观察下列格式,﹣,,,…(1)化简以上各式,并计算出结果;(2)以上格式的结果存在一定的规律,请按规律写出第5个式子及结果(3)用含n(n≥1的整数)的式子写出第n个式子及结果,并给出证明的过程.【分析】(1)分别把每个式子的第二项进行分母有理化,观察结果;(2)根据(1)的结果写出第5个式子及结果;(3)根据(1)的规律可得﹣,然后分母有理化,求出结果即可.解:(1)﹣=﹣=﹣=﹣1,=﹣=﹣2,==﹣3,=﹣=﹣4,(2)﹣=﹣5,(3)﹣=﹣=﹣n.【点评】本题主要考查分母有理化的知识点,解答本题的关键是找出上述各式的变化规律,此题难度一般.。