ApoE-Directed Therapeutics Rapidly Clear-Amyloid and Reverse Deficits in AD

合集下载

关节内注射高渗性葡萄糖治疗轻中度膝关节骨性关节炎的疗效分析

关节内注射高渗性葡萄糖治疗轻中度膝关节骨性关节炎的疗效分析

第20卷第3期2021年6月Vol.20No.3Jun.2021浙江医学教育Zhejiang Medical Education•基础与临床研究・关节内注射高渗性葡萄糖治疗轻中度膝关节骨性关节炎的疗效分析楼珏翔,陈俊,徐国红,申屠国建,赵晓刚,王维凯@(温州医科大学附属东阳医院,浙江东阳322100)摘要:目的:探讨关节内注射高渗性葡萄糖治疗轻中度膝关节骨性关节炎的治疗效果。

方法:膝关节Kellgren-Lawrence分级I~III级的轻中度膝关节骨性关节炎患者,每个月关节内注射一次高渗性葡萄糖(25%),连续注射3次。

通过观察注射前、注射结束后第4周、8周、12周、24周、48周根据疼痛视觉模拟评分(VAS)、西安大略和麦克马斯特大学(WOMAC)骨关节炎指数来评估临床疗效。

结果:在第48周末,膝关节VAS评分由(6.29±1.42)分下降至(2.57±1.03)分(P<0.05)o WOMAC总分由(50.05±18.00)分下降至(14.86±13.79)分(P<0.05)。

结论:高渗性葡萄糖关节内注射能有效减轻患者膝关节疼痛并改善膝关节活动功能。

关键词:膝关节骨关节炎;高渗性葡萄糖;关节腔注射中图分类号:R684.3文献标识码:B文章编号:1672-0024(2021)03-0058-03Efficacy of Intra-Articular Injection of Hypertonic Dextrose in the Treatment of Knee OsteoarthritisLOU Juexiang,CHEN Jun,XU Guohong,SHENTU Guojian,ZHAO Xiaogang,WANG Weikai@(Dongyang Hospital of Wenzhou Medical University,Zhejiang322100,China)Abstract:[Objective]To explore the effect of intra-articular injection of hypertonic dextrose on knee osteoarthritis.[Method] Patients with knee osteoarthritis of Kellgren Lawrence grade I-HI were included.Hypertonic dextrose(25%)was injected into the joint once a month for three times.The clinical efficacy was evaluated by visual analogue scale(VAS)and Western Ontario and McMaster University(WOMAC)osteoarthritis index before injection and4,8,12,24and48weeks after injection.[Re­sult]At the end of the48th week,the knee VAS score decreased from(6.29±1.42)to(2.57±1.03)(P<0.05).The total score of WOMAC decreased from(50.05±18.00)to(14.86±13.79)(P<0.05).[Conclusion]Hypertonic dextrose intra-ar­ticular injection can effectively reduce the pain of knee joint and improve the function of knee joint.Key words:knee osteoarthritis;hypertonic dextrose;intra-articular injection膝关节骨性关节炎(knee osteoarthritis,KOA)是由关节软骨下组织和骨软骨的退行性和愈合过程引起的一种疾病。

贝伐珠单抗联合奥沙利铂和卡培他滨在晚期直肠癌治疗中的效果分析

贝伐珠单抗联合奥沙利铂和卡培他滨在晚期直肠癌治疗中的效果分析

药物与临床China &Foreign Medical Treatment 中外医疗贝伐珠单抗联合奥沙利铂和卡培他滨在晚期直肠癌治疗中的效果分析石贤清溧阳市人民医院肿瘤内科,江苏常州 213300[摘要] 目的 分析贝伐珠单抗+奥沙利铂+卡培他滨联合用药方式对于直肠癌晚期患者的临床疗效。

方法 选取2019年1月—2022年1月溧阳市人民医院收治的40例直肠癌晚期患者为研究对象,以随机数表法分为对照组和观察组,每组20例。

对照组使用奥沙利铂+卡培他滨方案,观察组使用奥沙利铂+贝伐珠单抗+卡培他滨方案,对比两组患者的临床效果。

结果 两组各项不良反应总发生率对比,差异无统计学意义(P >0.05)。

观察组实际治疗有效率略高于对照组,但差异无统计学意义(P >0.05)。

观察组患者的血清癌胚抗原水平为(10.81±1.04)ng/mL 低于对照组的(14.96±3.85)ng/mL ,差异有统计学意义(t =4.654,P <0.05)。

观察组CD4+、自然杀伤细胞及CD4+/CD8+水平高于对照组,而CD8+低于对照组,差异有统计学意义(P <0.05)。

结论 将卡培他滨片+奥沙利铂+贝伐珠单作为晚期直肠癌的治疗方案,效果显著。

[关键词] 贝伐珠单抗;奥沙利铂;卡培他滨;直肠癌晚期[中图分类号] R735.37 [文献标识码] A [文章编号] 1674-0742(2023)11(b)-0125-04Effectiveness Analysis of Bevacizumab Combined with Oxaliplatin and Capecitabine in the Treatment of Advanced Rectal CancerSHI XianqingDepartment of Medical Oncology, Liyang People's Hospital, Changzhou, Jiangsu Province, 213300 China[Abstract] Objective To analyze the clinical therapeutic efficacy of the combination of bevacizumab + oxaliplatin + capecitabine for patients with advanced rectal cancer. Methods 40 patients with advanced rectal cancer admitted to Liyang People's Hospital from January 2019 to January 2022 were selected as the study objects. They were randomly divided into a control group and an observation group by the method of chaotic number table, with 20 cases in each group. The control group centered on oxaliplatin + capecitabine treatment program, while the observation group inter⁃vened with the help of oxaliplatin + bevacizumab + capecitabine program, and the clinical effects of the two groups were compared. Results There was no statistically significant difference in the incidence of adverse reactions between the control group and the observation group (P >0.05). The actual treatment efficiency of the observation group was bet⁃ter than that of the control group, but the difference was not statistically significant (P>0.05). The carcinoembryonic antigen level of patients in the observation group was (10.81±1.04) ng/mL, which was lower than (14.96±3.85) ng/mL of the control group, and the difference was statistically significant (t =4.654, P <0.05). The levels of CD4+, natural kill⁃ing cells, and CD4+/CD8+ indexes in the observation group were higher than those in the control group, while CD8+ was lower than that in the control group, and the differences were statistically significant (P <0.05). Conclusion The ap⁃plication of capecitabine tablets + oxaliplatin + bevacizumab as an application program for the treatment of advanced rectal cancer is very effective.[Key words] Bevacizumab; Oxaliplatin; Capecitabine; Advanced rectal cancer直肠癌在临床中有较高的发病率,属于常见的恶性肿瘤,根据以往研究资料显示,直肠癌好发于DOI :10.16662/ki.1674-0742.2023.32.125[作者简介] 石贤清(1984-),女,硕士,副主任医师,研究方向为胃肠道肿瘤、肺部肿瘤。

依达拉奉右莰醇联合阿替普酶治疗急性缺血性脑卒中的疗效观察

依达拉奉右莰醇联合阿替普酶治疗急性缺血性脑卒中的疗效观察

J Apoplexy and Nervous Diseases, October 2023, Vol 40,No. 10依达拉奉右莰醇联合阿替普酶治疗急性缺血性脑卒中的疗效观察李春颖1, 鞠东升1, 潘澍潇1, 朱辉2, 靳颖1摘要: 目的 观察依达拉奉右莰醇联合阿替普酶治疗急性缺血性脑卒中(AIS )的疗效性和安全性。

方法 收集2020年11月―2022年4月松原吉林油田医院收治的AIS 患者共计124例,随机分为实验组(阿替普酶静脉溶栓+依达拉奉右莰醇组)和对照组(阿替普酶静脉溶栓组),对比治疗效果。

结果 实验组治疗总有效率为82.3%,高于对照组的64.5%,差异有统计学意义(P < 0.05)。

其溶栓后不同阶段NIHSS 评分结果(5.40 ± 3.82)分、(4.14 ± 3.44)分、(0.57 ± 0.99)分均低于对照组,差异有统计学意义(P < 0.05)。

两组患者治疗期间均未发生药物不良反应。

结论 依达拉奉右莰醇联合阿替普酶治疗AIS 患者临床疗效确切。

关键词: 依达拉奉右莰醇; 阿替普酶; 急性缺血性脑卒中; 疗效中图分类号:R743.3 文献标识码:AEfficacy of edaravone dexborneol combined with alteplase in treatment of acute ischemic stroke LI Chunying ,JU Dongsheng , PAN Shuxiao , et al. (Songyuan Jilin Oilfield Hospital , Songyuan 138000, China )Abstract : Objective To investigate the efficacy and safety of edaravone dexborneol combined with alteplase in the treatment of acute ischemic stroke (AIS ).Methods The data were collected from 124 patients with AIS who were admitted to our hospital from November 2020 to April 2022. The patients were randomly divided into experimental group (intravenous thrombolysis with alteplase + treatment with edaravone dexborneol ) and control group (intravenous thrombolysis with al‑teplase ), and the two groups were compared for efficacy.Results The overall response rate in the experimental group was sig‑nificantly higher than that in the control group (82.3% vs 64.5%, P < 0.05). The National Institutes of Health Stroke Scale scores at different stages after thrombolysis were significantly lower in the experimental group (5.40 ± 3.82, 4.14 ± 3.44, and 0.57 ± 0.99) than in the control group (P < 0.05). No adverse drug reactions were observed in the two groups during the treat‑ment.Conclusion Edaravone dexborneol combined with alteplase has definite clinical efficacy in the treatment of AIS.Key words : Edaravone dexborneol ; Alteplase ; Acute ischemic stroke ; Efficacy 脑卒中是全球致残的主要原因和第二大死亡原因[1],至少50%幸存者将遗留残疾[2]。

转移性肾透明细胞癌分子靶向及新型免疫治疗进展

转移性肾透明细胞癌分子靶向及新型免疫治疗进展

转移性肾透明细胞癌分子靶向及新型免疫治疗进展高硕泽,范光锐,杨恩广,王志平(兰州大学第二医院泌尿系疾病研究所甘肃省泌尿系疾病研究重点实验室甘肃省泌尿系统疾病临床医学中心,兰州730030)中图分类号:R737.11文献标识码:A 文章编号:1006/084(2020)20/032/6摘要:近年来,转移性肾透明细胞癌(ccRCC)的治疗模式发生了转变,传统疗法已被靶向血管生成、哺乳动物雷帕霉素靶蛋白(mTOR)途径和免疫应答等疗法所取代。

而这一转变是由于对导致肿瘤发生、发展的潜在突变和分子机制的理解有所改善。

目前有包括小分子酪氨酸激酶抑制剂、单克隆抗体和mTOR抑制剂等形式的靶向药物。

此外,以免疫反应为靶点的疗法提供了一类从根本上改变治疗选择的新药物,增加了总体存活率。

新的治疗策略正在迅速发展,基于机制的靶向治疗是未来研究和临床试验中有前途的方法。

而随着新疗法的出现,也有必要制订新疗法和已有疗法的排序策略。

关键词:肾透明细胞癌;靶向治疗;血管生成;哺乳动物雷帕霉素靶蛋白抑制剂;免疫疗法Progress in Molecular Targeting and Novel Immunotherapy for Metastatic Clear Cell Renal Cell Carcinoma GAO Shuozz,FAN Guaogrui,YANG Eoguaog,WANG ZhipiogInstitute f Urologichl Diseases,Lanhf University Secood Hospiihl/Gansp Provincial Key Lhborhtorg f Urological Diseases/ Gaosu Provincial Urology System Disc a sp Clioical MeCicino Ceotss,Lanzhov730030,ChinaCorrespovdiog au t hos:WANG Zhipiog,Email%waogzplzu@Abstract:In recent years,the treatment model foe metastatic cleao cell renal cell carcinoma(ccRCC)has changed.Tradidonal therapies have been replaced by targeted angiogenesis,mammalian target of mpamycin(mTOR), and immune responses therapy.This change is due W an improved understanding of the underlying mutations and moleculae mechanisms that cause tumorigenesis and development.At present,there are targeted drugs including small molecuO tyrosine kinase inhibitors,monoclonal antibodus and mTOR inhibitors.In addition,therapus that target immune response provide a new class of drugs that radically change treatment options,increasing the overall survival rate.New thera­peutic stmtegies are rapidly developing,and mechanism-based targeted therapy is a promising approach for the future research and clinical trials.With the emergence of new therapies, it is aOc necessay W formulate stmtegies for sequencing new and existing therapies.Key worls:Clear cell renct cell carcinoma;Targeted therapy;An/oaenesis;Mammalian target of rapamycin inhibitor;Immu n otherapy肾细胞癌是最常见的肾脏肿瘤,特别是晚期的肾细胞癌仍是具性和致命性的疾病,而肾透明细胞癌(cleyr cell renal cell corcinomy,ccRCC)是最和最具侵略性的肾癌类型,约占所有肾的75%'I/(°在诊断时,癌的无症状DOI:10.3969/j.imn.1006-2084.2020.20.015基金项目:国家自然科学基金(81874088%通信作者:王志平,Email:wangzplzu@ 特征,转移通常已经存在,且肾切除术后复发很常[3])除细胞癌转移)转性肾细胞癌对放疗和全身疗法具有抗性,包括激素疗法、化疗以及基于白细胞介素(interleukin,IL)-2的免疫疗法⑷。

阿卡波糖与格列吡嗪对降低2_型糖尿病患者血糖的疗效对比

阿卡波糖与格列吡嗪对降低2_型糖尿病患者血糖的疗效对比

阿卡波糖与格列吡嗪对降低2型糖尿病患者血糖的疗效对比朱为国,梁鸣,贾强强江苏省连云港市灌云县人民医院药学部,江苏连云港222200[摘要]目的研究2型糖尿病患者采用阿卡波糖、格列吡嗪治疗的治疗效果和药理价值。

方法选取2022年1—12月于连云港市灌云县人民医院中就诊的2型糖尿病患者120例为研究对象,采用随机数表法分为两组,每组60例。

采用格列吡嗪治疗的为格列吡嗪组,采用阿卡波糖治疗的为阿卡波糖组,比较两组血糖水平、治疗效果、不良反应发生率。

结果阿卡波糖组的糖化血红蛋白、空腹血糖、餐后2 h血糖优于格列吡嗪组,差异有统计学意义(P<0.05)。

阿卡波糖组总有效率为96.67%高于格列吡嗪组的88.33%,差异有统计学意义(χ2=5.689,P<0.05)。

两组不良反应发生率比较,差异无统计学意义(P>0.05)。

结论将阿卡波糖用于2型糖尿病患者治疗中,可更好地稳定血糖,在用药安全性上亦满足了患者需求。

[关键词] 阿卡波糖;格列吡嗪;2型糖尿病;血糖;效果分析[中图分类号] R4 [文献标识码] A [文章编号] 1672-4062(2023)05(b)-0112-04 Comparsion of Acarbose and Glipizide in Reducing Blood Glucose in Pa⁃tients with Type 2 Diabetes MellitusZHU Weiguo, LIANG Ming, JIA QiangqiangDepartment of Pharmacy, Guanyun County People´s Hospital, Lianyungang, Jiangsu Province, 222200 China [Abstract] Objective To study the therapeutic effect and pharmacological value of acarbose and glipizide in patients with type 2 diabetes. Methods A total of 120 patients with type 2 diabetes who received medical treatment in Guanyun County People´s Hospital of Lianyungang City from January to December 2022 were selected as the research objects and divided into two groups with 60 patients in each group by random number table method. Glipizide group was treated with glipizide group, and acarbose group was treated with acarbose group. Blood glucose level, therapeutic effect and incidence of adverse reactions were compared between the two groups. Results The glycated hemoglobin, fasting blood glucose, and 2-hour postprandial blood glucose of the acarbose group were better than those of glipizide group, and the difference was statistically significant (P<0.05). The total effective rate of the acarbose group was 96.67%, which was higher than 88.33% of the glipizide group, and the difference was statistically significant (χ2= 5.689, P<0.05). There was no statistically significant difference in the incidence of adverse reactions between the two groups (P>0.05). Conclusion When acarbose is used in the treatment of type 2 diabetes mellitus, it can better stabi⁃lize blood glucose and other related test values, and also meet the needs of patients in terms of drug safety.[Key words] Acarbose; Glipizide; Type 2 diabetes mellitus; Blood glucose; Effect analysis在中老年人群中,2型糖尿病的发病率极高[1],临床症状非常典型,极易诱发肾病、视网膜病等多种并发症[2]。

安进—阿法达贝泊汀 PPT课件

安进—阿法达贝泊汀 PPT课件

1992年安进公司首次跻身财富500强,当年 公司产品销售首次突破10亿美元。2000年 财富500强排名,安进公司排在455位。 2000年在全球医药50强中排在21位。 目前,安进公司已拥有数千名员工,公司 分部遍布全球。强大的资金支持,换来公 司井然有序、储备充足、前景光明的产品 链条,更进一步推动公司优势发展。
不良反应

高血压、低血压、胸痛、疲劳、发热、头 痛、头晕、胃肠功能紊乱、肌痛、关节痛、 肢痛、皮肤反应、高钾血症、呼吸困难、 咳嗽、支气管炎、感染、血小板一过性升 高、流感样症状,周围水肿,注射部位疼 痛。
二 商品信息

贫血治疗市场目前几乎全被促红细胞生成 药物主导。这类药物靶向促红细胞生成素 (EPO)这一生长因子受体,能够刺激机体产 生红细胞。受长效EPO需求驱动,Amgen公 司开发了阿法达贝泊汀,该药自2001年在 美国首次获得批准后,其市场份额稳步升 高。

儿童: >11岁:初始剂量:0.45 mcg/kg,皮
下/静脉注射,每周1次,然后根据患者反应, 至少间隔4周增加初始剂量的25%。血红蛋 白升高>2.5 g/dL/月:减少剂量25-50%;血 红蛋白>14 g/dL:暂停治疗,直到降至<12 g/dL,然后以原剂量的75%重新开始。

阿法达贝泊汀给安进公司带来的业 绩

受到拳头产品贫血症治疗药阿法达贝泊 汀销售强劲的推动作用,安进公司2006年 第三季度净收益增长14%,为11亿美元。 第四季度销售收入增长15%,为36.1亿美元。 为安进公司更大的发展带来了希望。
三 药物研发历史

安进公司在销售阿法依泊汀的同时,又开 始致力于研究阿法达贝泊汀。阿法达贝泊 汀实际是阿法依泊汀的改进型产品,其结 构较之阿法依泊汀的重要差异在于它带有 两个含烃链唾液酸,故半衰期无论是静脉、 抑或皮下注射都延长了2倍,十分有利于简 化给药方案,临床上可每2周、甚或每3周 用药1次。

theranostics under review -回复

theranostics under review -回复

theranostics under review -回复Theranostics: A ReviewTheranostics, a term derived from the combination of therapeutics and diagnostics, refers to the development and use of diagnostic tools that can simultaneously provide therapeutic benefits. This emerging field holds great promise in revolutionizing modern medicine by tailoring individualized treatments for patients. In this article, we will delve into the concept of theranostics, its potential applications, and the challenges it faces in becoming a mainstream practice.First and foremost, the rationale behind theranostics lies in the idea of personalized medicine. Traditional medicine often employs a one-size-fits-all approach, where patients receive a generic treatment protocol based on their diagnosis. However, individuals differ greatly in their response to drugs, with some experiencing adverse reactions while others fail to derive any therapeutic benefit. Theranostics aims to overcome these limitations by providing clinicians with a diagnostic tool that can not only identify the disease but also assess the patient's individual response to available treatment options. Armed with thisknowledge, clinicians can tailor a personalized treatment plan that is optimized for their patient's unique biology.To understand how theranostics functions, it is essential to explore its underlying methodologies. Molecular imaging, a key component of theranostics, plays a pivotal role in providing real-time, non-invasive visualization of disease processes and treatment response. Techniques such as positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), and computed tomography (CT) offer a range of imaging modalities that can be coupled with therapeutic agents. The use of targeted probes designed to accumulate specifically in diseased tissues further enhances the specificity and accuracy of these imaging techniques. By tracking the distribution and efficacy of therapeutic agents in real-time, clinicians can not only assess treatment response but also modify the treatment plan as necessary.The potential applications of theranostics span across various medical specialties. In oncology, theranostics has gained significant attention due to its ability to identify specific cancer biomarkers and deliver targeted therapies. Nuclear imagingtechniques, such as PET or SPECT, coupled with radiopharmaceuticals, can help identify cancer cells that express specific receptors or antigens. By combining diagnostic imaging and therapeutic agents, theranostics can precisely target and destroy cancer cells while sparing healthy tissues. This heralds a paradigm shift in cancer treatment, potentially replacing traditional chemotherapy with more efficient and less toxic therapies.Beyond oncology, theranostics can also revolutionize the treatment of cardiovascular diseases, neurodegenerative disorders, and infectious diseases. For instance, in cardiovascular diseases, molecular imaging can identify atherosclerotic plaques, indicating the areas at highest risk for rupturing and causing heart attacks or strokes. By utilizing targeted therapeutic agents, clinicians can intervene at an early stage and prevent such catastrophic events. Similarly, in neurodegenerative disorders like Alzheimer's disease, theranostics can help diagnose the disease at an early stage and guide the development of targeted therapies.While the potential benefits of theranostics are vast, there are several challenges that need to be addressed before it canbecome routine practice. One major hurdle lies in the development of suitable diagnostic and therapeutic agents. These agents should selectively accumulate in diseased tissues, possess high imaging contrast, and demonstrate therapeutic efficacy without significant side effects. Additionally, the cost and availability of such agents may pose challenges for widespread adoption.Another challenge lies in the integration of theranostics into clinical workflows. The successful implementation of theranostics necessitates the collaboration between radiologists, nuclear medicine physicians, oncologists, and other specialists. Integrated platforms that seamlessly combine diagnostic imaging, therapeutic planning, and treatment delivery need to be developed to ensure efficient and coordinated patient care. Furthermore, regulatory agencies need to establish guidelines and standards for theranostics to ensure its safe and effective use.In conclusion, theranostics represents a promising approach that combines the best of diagnostics and therapeutics. By providing real-time insights into disease processes and personalizedtreatment options, it holds the potential to revolutionize medicine and improve patient outcomes. While there are still challenges to overcome, such as the development of suitable agents and the integration into clinical workflows, the strides made in theranostics thus far are undeniably impressive. With continued research and development, it is plausible that theranostics will become an indispensable tool in the arsenal of modern medicine.。

2024版:《治疗性血液成分单采技术发展》专家共识(第1版)

2024版:《治疗性血液成分单采技术发展》专家共识(第1版)

2024版:《治疗性血液成分单采技术发展》专家共识(第1版)1. 背景治疗性血液成分单采技术(Therapeutic Plasma Exchange, TPE)是一种有效的血液净化方法,广泛应用于临床治疗各种疾病。

近年来,随着我国医疗技术的不断发展,治疗性血液成分单采技术得到了越来越多的关注和推广。

为了进一步规范和推动我国治疗性血液成分单采技术的发展,本专家共识应运而生。

本共识旨在对治疗性血液成分单采技术在临床应用中的操作规范、技术要点、临床适应症、并发症及处理等方面进行总结和阐述,为我国临床医生提供一份权威、实用的参考指南。

2. 治疗性血液成分单采技术操作规范2.1 设备与耗材治疗性血液成分单采技术需使用专业的血液成分单采设备,并根据患者体重、年龄及治疗需求选择合适的耗材。

2.2 患者准备术前对患者进行全面的检查,评估患者一般状况、出血风险及过敏史等。

对符合条件的患者进行治疗前教育,取得患者及家属的知情同意。

2.3 操作步骤按照设备说明书和操作规范进行操作,包括血管穿刺、血液引流、成分分离、成分收集及结束治疗等步骤。

2.4 监测与护理在治疗过程中,密切观察患者生命体征、穿刺部位有无出血、感染等并发症,并做好相应的护理措施。

3. 治疗性血液成分单采技术临床应用3.1 适应症治疗性血液成分单采技术适用于多种疾病,如重症肌无力、免疫性血小板减少性紫癜、自身免疫性溶血性贫血等。

3.2 禁忌症治疗性血液成分单采技术禁忌症包括严重心功能不全、出凝血功能障碍、严重感染等。

3.3 疗效评估根据患者病情、治疗次数及治疗后实验室指标变化评估治疗效果。

4. 并发症及处理4.1 常见并发症治疗性血液成分单采技术常见并发症包括穿刺部位出血、感染、低血压、过敏反应等。

4.2 并发症处理针对不同并发症,采取相应的处理措施,如止血、抗感染、升压、抗过敏等。

5. 结论治疗性血液成分单采技术作为一种有效的血液净化方法,在临床治疗中具有重要价值。

多肽 二级质谱 非特异切割

多肽 二级质谱 非特异切割

多肽二级质谱及非特异切割1.多肽二级质谱多肽二级质谱是一种常用的分析多肽的方法,其通过将多肽离子化并使其在电场和磁场中运动,得到多肽的质谱图。

通过这种质谱图,我们可以得知多肽的分子量、氨基酸序列和部分修饰信息等。

在多肽二级质谱中,常用的有碰撞诱导解离(CID)和离子喷雾解离(ISD)两种方式。

2.非特异切割非特异切割是多肽制备过程中常见的一种方式,它指的是在非特定位置对多肽链进行切割。

与特异切割相比,非特异切割通常不需要特定的切割位点,而是通过一定的物理或化学条件使多肽链断裂。

3.切割机制非特异切割的机制主要包括化学切割和物理切割两种方式。

化学切割主要依赖于化学试剂与多肽链的作用,使肽键断裂。

而物理切割则主要依靠物理力(如机械力)使多肽链断裂。

4.切割应用非特异切割在多肽研究中有广泛的应用,如多肽库的构建、多肽药物的研发等。

通过非特异切割,我们可以获得多肽的不同片段,从而得到更多的生物学信息。

此外,非特异切割还可以用于蛋白质组学的研究,帮助我们更深入地理解蛋白质的功能和修饰。

5.切割影响因素影响非特异切割的因素有很多,包括切割试剂的种类和浓度、切割温度、切割时间等。

此外,多肽的氨基酸序列和二级结构也会影响切割效果。

6.切割技术比较在多肽制备过程中,除了非特异切割外,还有许多其他的切割技术,如特异切割、酶解等。

这些技术各有优缺点,适用于不同的应用场景。

非特异切割具有操作简单、适用范围广等优点,但也有切割位点不确定、切割效率低等缺点。

特异切割具有切割位点明确、切割效率高等优点,但需要识别特定的切割位点,对实验条件的要求较高。

酶解法具有专一性强、切割效率高等优点,但需要使用特定的酶,成本较高。

7.未来发展趋势随着生物技术的发展,非特异切割技术也在不断进步和完善。

未来,非特异切割技术将朝着更加高效、准确和便捷的方向发展。

同时,随着蛋白质组学研究的深入,非特异切割技术在生物学研究和药物研发等领域的应用也将更加广泛。

深圳市新产业医学工程有限公司(产品介绍)

深圳市新产业医学工程有限公司(产品介绍)
◆ MAGIMUZYME-I磁酶免仪
MAGIMUZYME-Ⅲ型测定仪: 这是90年代末推出的机型,与Ⅰ型机比较,软件
功能得到了很大的提升,测试速度更快了,计算速 度不超过3秒,并且机器增加了汇总打印病人各项 测定项目的功能,还配有中文软件,能与计算机联 机,打印出中文报告单,通过微机修正实验结果。
免疫定量分析方法的关键技术 ---标记物和抗原、抗体特异性免疫复合
物的分离技术
◆ 纳米磁性微珠分离技术: Liaison、MAGLUMI、Bayer、Roche、
Beckman 优 点:反应速度快,重复性好,准确、
灵敏,分离简单 ◆ 非纳米磁性微珠分离技术:
Abotto、DPC、ECI 缺 点:非均相反应,反应时间长,重复 性差,灵敏度低,准确率差,分离复杂
➢ ABEI化学结构式
➢ ABEI发光反应原理 ➢ ABEI发光反应特点 ✓ 反应3秒钟完成 ✓ 产生光强度只取决于双氧水、次氯酸钠和氢氧化钠的浓
度 不受环境温度影响
✓ 系统因素仅让标准曲线平移和旋转,不改变曲线的形状 ✓ 无论酸碱缓冲液, ABEI均能稳定存在 ✓ 发光底物无需2-8度保存,室温稳定长期存放
深圳市新产业医学工程有 限公司产品介绍
技术服务部
一.磁酶免系统
磁酶免是磁分离均相酶联免疫定量测定系统 的简称。
磁酶免是瑞士Serono公司的专利技术,90年 代由深圳市新产业生物医学工程有限公司引 入中国。它是将磁性超顺磁珠免疫分离方法 与特异性免疫酶联反应技术完美结合而形成 的微量激素及肿瘤标志物等内分泌项目的快 速定量检测方法。
LIAISON (BykSangtec
)

有 180个/小

超顺磁珠
Axsym (雅培)

慢性浅表性胃炎采用艾普拉唑肠溶片治疗的临床价值

慢性浅表性胃炎采用艾普拉唑肠溶片治疗的临床价值

慢性浅表性胃炎采用艾普拉唑肠溶片治疗的临床价值发布时间:2023-06-12T07:32:27.629Z 来源:《中国医学人文》2023年1月1期作者:葛俊君[导读]慢性浅表性胃炎采用艾普拉唑肠溶片治疗的临床价值葛俊君江苏南京210000)【摘要】目的:分析艾普拉唑肠溶片治疗慢性浅表性胃炎患者的临床治疗效果。

方法:诊治时间2022年1-12月,本文选择慢性浅表性胃炎患者66例,每组33例,在观察组中以及对照组中分别采用艾普拉唑肠溶片治疗、兰索拉唑肠溶胶囊治疗。

对比组间数据,包括治疗总有效率、治疗后症状积分、不良反应发生率。

结果:对比对照组,观察组的治疗总有效率明显更高、治疗后症状积分均明显下降、不良反应发生率明显下降,P<0.05。

结论:在治疗慢性浅表性胃炎患者过程中使用药物艾普拉唑肠溶片,有效性较高,用药安全性高。

【关键词】艾普拉唑肠溶片;慢性浅表性胃炎;临床价值[Abstract] Objective: To analyze the clinical effect of eprazole enteric-coated tablets in the treatment of chronic superficial gastritis. Methods: The time of diagnosis and treatment was from January to December 2022. 66 patients with chronic superficial gastritis were selected in this paper, 33 in each group. Epprazole enteric-coated tablets and lansoprazole enteric-coated capsules were used in the observation group and the control group respectively. Compare the data between groups, including the total effective rate of treatment, symptom score after treatment, and the incidence of adverse reactions. Results: Compared with the control group, the total effective rate of treatment in the observation group was significantly higher, the symptom score after treatment was significantly decreased, and the incidence of adverse reactions was significantly decreased (P<0.05). Conclusion: The use of eprazole enteric-coated tablets in the treatment of patients with chronic superficial gastritis is highly effective and safe. [Key words] Epprazole enteric-coated tablets; Chronic superficial gastritis; Clinical value消化系统疾病中的慢性浅表性胃炎的致病因素较为复杂,疾病发生后,患者胃黏膜发生慢性炎症细胞浸润,主要是浆细胞以及淋巴细胞,分析患者发病原因,相关患者日常不良生活习惯,也相关幽门螺杆菌感染,患者的主要临床症状是隐痛、上腹部不适、恶心,伴随症状是反酸、嗳气等[1],应给予患者实施药物治疗,将药物合理选择,可以对患者的治疗总有效率进行有效提升,促进患者的不良反应发生率明显下降。

人载脂蛋白 P ApoP ELISA试剂盒北京驰明瑞使用说明书

人载脂蛋白 P ApoP ELISA试剂盒北京驰明瑞使用说明书

人载脂蛋白P ApoP使用说明书产品编号:本试剂盒仅供科研使用,不得用于临床及诊断使用!操作步骤1.取出试剂盒,于室温(20-25℃)放置15-30分钟。

实验过程应在室温(20-25℃)内进行。

2.取出酶标板,按照标准品的次序分别加入100μl的标准品溶液于空白微孔中。

3.空白微孔中加入100μl的样品,空白对照加入100μl的蒸馏水;4.在各孔中加入50μl的酶标记溶液;(不含空白对照孔)5.将酶标板用封口胶密封后,37℃孵育反应1小时;(在孵育箱中保持稳定的温度与湿度)6.充分清洗酶标板3-5次,保持各孔有充足的水压;(浓缩洗涤液以1:100的比例与蒸馏水稀释)7.酶标板洗涤后用吸水纸彻底拍干;8.各孔加入显色剂A、B液各50μl;(不含空白对照孔)9.20-25℃下避光反应10分钟;10.各孔加入50μl终止液,终止反应;结果判断1.30分钟内在波长450nm的酶标仪上读取各孔的OD值;2.百分结合率计算:设S0管计数为B0,各标准管或样品管计数为B,非特异管计数为NSB,则百分结合率计算公式如下:B/ B0=(B-NSB)/( B0-NSB)×100%3.logit计算:各标准点或样品管的logit值计算公式如下:logit=ln(B/ B0)/(1-B/ B0)4.将标准品的OD均值与标准品0点的OD均相除,为标准点的百分结合率,在log-logit坐标纸上绘图。

5.Log-logit双对数标准曲线:坐标纸上横轴从左至右第一个1-9表示为第一个10进位,第二个1-9表示为第二个10进位。

第三个1-9表示为第三个10进位。

坐标纸纵轴为百分比(1-99),即各标准吸光值的百分结合率。

取一条通过各点的直线。

要求尽可能多的点在线上,同时剩余的点均匀分布在直线的两边。

样品也同样由吸光值计算百分结合率,再从纵轴上的相应结合率找到直线上的点,此点对应的横坐标浓度即为样品的浓度,无须换算。

6.人工处理:以标准浓度取log值为横坐标,对应的logit值为纵坐标在普通坐标纸上或以标准浓度为横坐标,对应的B/B0为纵坐标在logit-log坐标纸上画出标准曲线(理想化时是一条直线)。

开启片剂完整性的窗户(中英文对照)

开启片剂完整性的窗户(中英文对照)

开启片剂完整性的窗户日本东芝公司,剑桥大学摘要:由日本东芝公司和剑桥大学合作成立的公司向《医药技术》解释了FDA支持的技术如何在不损坏片剂的情况下测定其完整性。

太赫脉冲成像的一个应用是检查肠溶制剂的完整性,以确保它们在到达肠溶之前不会溶解。

关键词:片剂完整性,太赫脉冲成像。

能够检测片剂的结构完整性和化学成分而无需将它们打碎的一种技术,已经通过了概念验证阶段,正在进行法规申请。

由英国私募Teraview公司研发并且以太赫光(介于无线电波和光波之间)为基础。

该成像技术为配方研发和质量控制中的湿溶出试验提供了一个更好的选择。

该技术还可以缩短新产品的研发时间,并且根据厂商的情况,随时间推移甚至可能发展成为一个用于制药生产线的实时片剂检测系统。

TPI技术通过发射太赫射线绘制出片剂和涂层厚度的三维差异图谱,在有结构或化学变化时太赫射线被反射回。

反射脉冲的时间延迟累加成该片剂的三维图像。

该系统使用太赫发射极,采用一个机器臂捡起片剂并且使其通过太赫光束,用一个扫描仪收集反射光并且建成三维图像(见图)。

技术研发太赫技术发源于二十世纪九十年代中期13本东芝公司位于英国的东芝欧洲研究中心,该中心与剑桥大学的物理学系有着密切的联系。

日本东芝公司当时正在研究新一代的半导体,研究的副产品是发现了这些半导体实际上是太赫光非常好的发射源和检测器。

二十世纪九十年代后期,日本东芝公司授权研究小组寻求该技术可能的应用,包括成像和化学传感光谱学,并与葛兰素史克和辉瑞以及其它公司建立了关系,以探讨其在制药业的应用。

虽然早期的结果表明该技术有前景,但日本东芝公司却不愿深入研究下去,原因是此应用与日本东芝公司在消费电子行业的任何业务兴趣都没有交叉。

这一决定的结果是研究中心的首席执行官DonArnone和剑桥桥大学物理学系的教授Michael Pepper先生于2001年成立了Teraview公司一作为研究中心的子公司。

TPI imaga 2000是第一个商品化太赫成像系统,该系统经优化用于成品片剂及其核心完整性和性能的无破坏检测。

细胞与基因治疗龙头企业

细胞与基因治疗龙头企业

细胞与基因治疗龙头企业细胞与基因治疗是一项先进的医疗技术,被认为是未来治疗各种疾病的重要手段。

而在这个领域中,有一些企业被视为龙头企业,其推动着细胞与基因治疗的发展。

在本文中,我们将介绍几家被公认为细胞与基因治疗龙头企业的公司,并分析他们的业务模式、技术优势以及在该领域中的地位。

首先,我们来介绍美国企业Moderna Therapeutics。

Moderna Therapeutics致力于开发mRNA技术,该技术可以根据身体需要自主合成所需的蛋白质。

该公司的核心技术在于将合成的mRNA注射到患者体内,使其细胞自主合成治疗所需的蛋白质。

Moderna Therapeutics通过基因编辑和基因修复等方式,治疗多种疾病,包括癌症和遗传性疾病。

该公司已与多家制药公司展开合作,共同研发基因治疗药物。

Moderna Therapeutics在细胞与基因治疗领域树立了技术领先地位,被誉为该领域的龙头企业之一。

接下来,我们介绍一家位于瑞士的公司CRISPR Therapeutics。

CRISPR Therapeutics是第一家使用CRISPR-Cas9基因编辑技术进行临床试验的公司之一。

该技术可以准确定位和编辑基因组中的特定位置,以实现基因修复或基因调控。

通过CRISPR-Cas9技术,CRISPR Therapeutics旨在治疗遗传性疾病、癌症和传染性疾病等多种疾病。

该公司已与药企Vertex Pharmaceuticals合作,共同开发针对血液病的基因治疗药物。

CRISPR Therapeutics以其领先的技术和丰富的研发经验,成为了细胞与基因治疗领域的重要参与者。

除了以上两家公司,我们还要介绍一家位于中国的企业——蓝思科技(Bluebird Bio)。

蓝思科技是一家拥有国内外的细胞及基因治疗技术的专业公司。

该公司致力于开发基于基因修复和基因调控的治疗方法,特别是针对血液病和免疫性疾病的治疗。

蓝思科技的核心技术包括CAR-T细胞疗法和基因编辑技术。

thernostics under review

thernostics under review

thernostics under reviewTitle: Understanding and Analyzing the Role of TheragnosticsIntroduction:Theragnostics, an emerging field in medicine, combines therapeutics and diagnostics to provide personalized treatment options for patients. It revolutionizes the healthcare industry by tailoring treatment plans for individuals based on their unique genetic makeup, disease characteristics, and response to treatment. This article aims to explore the concept, development, challenges, and potential applications of theragnostics.I. Defining Theragnostics:Theragnostics, often referred to as theranostics, is a fusion of therapeutics and diagnostics. It encompasses the integration of diagnostic tools, such as medical imaging and biomarker analysis, with targeted therapy interventions. By integrating diagnosis and therapy, theragnostics ensures a more precise and individualized approach to healthcare.II. Evolution of Theragnostics:The concept of theragnostics can be traced back to the late 1990swhen researchers recognized the need for personalized medicine. Advances in genomics, proteomics, and imaging techniques laid the groundwork for the development of theragnostics. It was a paradigm shift from the traditional one-size-fits-all approach to a patient-centric model.III. Key Diagnostic Modalities in Theragnostics:a. Medical Imaging: Various imaging techniques, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI), are used to visualize and diagnose diseases. Imaging agents tagged with radioisotopes or paramagnetic substances enable accurate detection and localization of targets for subsequent therapy.b. Biomarkers: These are molecular indicators that provide specific information about a disease or its response to treatment. Biomarkers play a vital role in tailoring therapies for patients.IV. Therapeutic Approaches in Theragnostics:a. Targeted Drug Delivery: Theragnostics helps in delivering drugs directly to tumor sites, minimizing side effects. This is achieved through nanoparticles, liposomes, or antibody-drug conjugates, which are designed to specifically recognize and delivertherapeutics to diseased tissues.b. Radiopharmaceutical Therapy: Radioactive isotopes are attached to specific molecules, which selectively target cancer cells. Once targeted, the radioactive isotopes emit radiation, killing or damaging cancer cells while sparing healthy tissues.V. Challenges in Theragnostics:a. Regulatory Approval: Developing and validating tests, imaging agents, and therapeutic compounds is a complex process that requires regulatory approval. Ensuring accuracy, safety, and efficacy of theragnostics is essential for widespread adoption.b. Cost and Affordability: Theragnostics, being a relatively new and advanced field, can be expensive. Widespread adoption may be hindered due to high costs, especially in resource-constrained settings.c. Technology Integration: Integration of diagnostic and therapeutic approaches requires coordination between different disciplines, including radiology, pathology, and pharmaceuticals. Coordinated efforts are essential for seamless implementation and realization of its potential.VI. Potential Applications:a. Cancer Treatment: Theragnostics plays a crucial role in identifying tumor markers, determining response to treatment, and providing targeted therapy options. It aids in monitoring treatment response and adjusting therapies accordingly.b. Neurological Disorders: Theragnostics has the potential to help in early diagnosis and monitoring the progression of neurodegenerative diseases. It enables targeted drug delivery to specific brain regions, minimizing off-target effects.c. Cardiovascular Diseases: By identifying high-risk patients, tracking disease progression, and providing personalized treatment plans, theragnostics can significantly impact cardiovascular healthcare.Conclusion:Theragnostics represents an innovative approach revolutionizing personalized medicine. By integrating diagnostics with targeted therapeutics, theragnostics provides valuable opportunities for accurate disease diagnosis, prognosis, and treatment. Further research, technological advancements, and widespread adoption are necessary for maximizing its potential and improving patient outcomes.。

涉及先兆子痫和糖尿病诊断和治疗的材料与方法[发明专利]

涉及先兆子痫和糖尿病诊断和治疗的材料与方法[发明专利]

专利名称:涉及先兆子痫和糖尿病诊断和治疗的材料与方法专利类型:发明专利
发明人:T·W·拉德梅彻,P·迈克利恩
申请号:CN97199318.1
申请日:19970911
公开号:CN1235556A
公开日:
19991117
专利内容由知识产权出版社提供
摘要:本发明涉及用于先兆子痫诊断与治疗的材料和方法,尤其涉及P型肌醇磷酸聚糖(IPG)在先兆子痫发生中的作用。

公开的内容包括:通过测定P型IPG水平来诊断先兆子痫的方法,以及P型IPG拮抗剂在治疗先兆子痫中的应用,此外还包括一种筛选P型IPG拮抗剂的方法。

申请人:拉德梅彻集团有限公司
地址:英国伦敦
国籍:GB
代理机构:中国国际贸易促进委员会专利商标事务所
代理人:樊卫民
更多信息请下载全文后查看。

达格列净与利拉鲁肽治疗_2_型糖尿病合并非酒精性脂肪肝的疗效对比

达格列净与利拉鲁肽治疗_2_型糖尿病合并非酒精性脂肪肝的疗效对比

DOI:10.16658/ki.1672-4062.2023.08.094达格列净与利拉鲁肽治疗2型糖尿病合并非酒精性脂肪肝的疗效对比毕婷,于添伟,武丽华大庆油田总医院全科医疗科,黑龙江大庆163000[摘要]目的比较达格列净与利拉鲁肽对2 型糖尿病合并非酒精性脂肪肝病(non-alcoholic fatty liver disease,NAFLD)患者的治疗效果。

方法随机选取2022年6—11月大庆油田总医院收治的2型糖尿病合并NAFLD患者100例,随机数字法分为达格列净组(A组)和利拉鲁肽组(B组),每组50例,均治疗12周,比较两组患者的临床治疗总有效率、治疗前后相关生化及物理指标。

结果两组患者腰臀比(WHR)、体质指数(BMI)、空腹血糖(FPG)、糖化血红蛋白(HbA1c)、胰岛素抵抗指数(HOMA-IR)、丙氨酸氨基转移酶(ALT)、天门冬氨酸氨基转移酶(AST)、谷氨酰转肽酶(GGT)、血胆固醇(TC)、血三酰甘油(TG)、低密度脂蛋白(LDL-C)、同型半胱氨酸(Hcy)均较治疗前下降,且治疗后B组WHR、BMI低于A组,A组FPG、HbA1c、UA、Hcy、肝脏脂肪含量低于B组,差异有统计学意义(P<0.05);A组治疗总有效率高于B组,差异有统计学意义(P<0.05)。

结论对于T2DM合并NAFLD患者,与利拉鲁肽比较,应用达格列净治疗能够更有效的降糖,降低尿酸、同型半胱氨酸、肝脏脂肪含量。

[关键词] 2型糖尿病;非酒精性脂肪肝;达格列净;肝脏脂肪含量[中图分类号] R587.1 [文献标识码] A [文章编号] 1672-4062(2023)04(b)-0094-04Efficacy of Dapagliflozin and Liraglutide in the Treatment of Type 2 Dia⁃betes Mellitus with Non-alcoholic Fatty Liver DiseaseBI Ting, YU Tianwei, WU LihuaDepartment of General Practice, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, 163000 China[Abstract] Objective To compare the therapeutic effects of dapagliflozin and liraglutide on type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease (NAFLD). Methods A total of one hundred patients with type 2 dia‐betes mellitus complicated with NAFLD admitted to Daqing Oilfield General Hospital from June 2022 to November 2022 were randomly selected and divided into dapagliflozin group (group A) and liraglutide group (group B) by random number method, with fifty cases in each group. All patients were treated for 12 weeks. The total effective rate of clini‐cal treatment, and related biochemical and physical indexes before and after treatment were compared between the two groups. Results Patients in the two groups waist to hip ratio (WHR), body mass index (BMI), fasting blood glucose (FPG), glycosylated hemoglobin (HbA1c), insulin resistance index (HOMA-IR), alanine aminotransferase (ALT), aspar‐tate aminotransferase (AST), glutamyl transpeptidase (GGT), blood cholesterol (TC) and blood glycerol triester (TG), low density lipoprotein (LDL-C), blood urea (UA) and homocysteine (Hcy) were all decreased compared with those be‐fore treatment, and after treatment, WHR and BMI of group B were significantly decreased compared with group A, FPG, HbA1c, UA, Hcy and the liver fat content of group A was lower than that of group B, and the difference was sta‐tistically significant (P<0.05); the total effective rate of group A was higher than that of group B for non-alcoholic liver disease, and the difference was statistically significant (P<0.05). Conclusion For T2DM patients with NAFLD, com‐pared with liraglutide, dapagliflozin treatment can more effectively reduce glucose, uric acid, homocysteine, and liver fat content in patients.[作者简介]毕婷(1986-),女,硕士,主治医师,研究方向为糖尿病。

艾伯维公司修美乐

艾伯维公司修美乐

艾伯维公司修美乐®(通用名:阿达木单抗)治疗儿童及青少年重度慢性斑块型银屑病获得欧盟人用药品委员会(CHMP)积极意见—预计将在第二季度获得欧盟委员会上市批准—伊利诺伊州,北芝加哥-- 2015年2月27日,美通社/艾伯维(NYSE:ABBV)今天宣布:修美乐®(通用名:阿达木单抗)已经获得了欧洲药品管理局(EMA)人用药品委员会(CHMP)的积极意见,用于治疗四岁以上儿童和青少年重度慢性斑块型银屑病。

如果获得欧盟委员会的批准,那么修美乐将成为首个用于局部治疗和光疗效果不佳或不适用于该治疗的四岁及以上儿童及青少年重度慢性斑块型银屑病的药物。

“在推进满足欧洲重度斑块型银屑病儿童和青少年的治疗需求方面,人用药品委员会(CHMP)的积极意见迈出了重要一步。

”艾伯维执行副总裁、研究与开发首席科学官Michael Severino博士表示,“修美乐拥有超过16年的临床研究经验,我们期待为儿童斑块型银屑病患者的生活带来积极影响。

”此次积极意见,是基于一项三期临床研究的结果。

该结果也将在即将召开的医学大会上公布。

审查上市许可申请(MAA)正在按照集中审批程序进行。

如果获得批准,将可在欧盟所有28个成员国,以及冰岛、列支敦士登和挪威国家中销售。

自从12年前获得首个上市批准后,修美乐至今已获得了超过87个国家的批准。

目前,修美乐在全球已拥有10个适应证2,治疗超过84.3万例患者1。

关于儿童慢性斑块型银屑病根据世界卫生组织(WHO)估计,儿童银屑病的发病率为0.7%3,不同性别之间无显著性差异4。

这种慢性自身免疫性疾病的特征在于皮肤细胞的快速和过度聚集,从而形成增厚的炎性、鳞状皮肤斑块5。

儿童银屑病与成人银屑病有相似的特点,但儿童的银屑病病损常更小、薄,且较少形成鳞屑。

治疗慢性皮肤疾病过程中,除了躯体症状外,也应考虑疾病所致的显著的情绪和心理影响6。

欧盟批准的修美乐适应证12修美乐被批准用于治疗下列疾病:中重度类风湿关节炎、对常规治疗反应不佳的活动性幼年特发性关节炎患者、强直性脊柱炎、中重度斑块型银屑病、活动性和进展性银屑病关节炎、中重度活动性克罗恩病和中重度活动性溃疡性结肠炎。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Alzheimer’s disease is associated with impaired clearance of β-amyloid from the brain, a process normally facilitated by apolipoprotein E (ApoE). ApoE expression is transcriptionally induced through the action of the nuclear receptors peroxisome proliferator activated receptor (PPAR γ) and liver X receptors (LXR) in coordination with retinoid X receptors (RXR). Oral administration of the RXR agonist, bexarotene, to a murine model of Alzheimer’s disease resulted in enhanced clearance of soluble A β within hours in an apoE-dependent manner. A β plaque area was reduced >50% within just 72 hours. Furthermore, bexarotene stimulated the rapid reversal of cognitive, social, and olfactory deficits and improved neural circuit function. Thus, RXR activation stimulates physiological A β clearance mechanisms resulting in the very rapid reversal of a broad range of A β-induced deficits. The most common form of Alzheimer’s disease (AD) occurs sporadically late in life and is typified by deposition of β-amyloid (A β) within the brain (1). Individuals with late-onset AD produce A β peptides at normal levels but have an impaired ability to clear them from the brain (2). Elevated levels of A β are associated with perturbations of synaptic function and neural network activity that probably underlie the cognitive deficits in AD (3). Moreover, A β accumulation leads to its deposition into plaques and is thought to drive a pathologic cascade which ultimately leads to neuronal death. The most influential genetic risk factor for sporadic AD is allelic variation in the apolipoprotein E (APOE ) gene. Possession of an APOE4 allele dramatically increases disease risk (4). ApoE acts normally to scaffold the formation of high density lipoprotein (HDL) particles which promote the proteolytic degradation of soluble forms of A β (5, 6). The expression of apoE is transcriptionally regulated by the ligand-activated nuclear receptors, peroxisome proliferator-activated receptor gamma (PPAR γ) and liver X receptors (LXRs) (7), which form obligate heterodimers with retinoid X receptors (RXRs). Transcriptional activity is regulated by ligation of either member of the pair (8). PPAR γ:RXR and LXR:RXR act in a feed-forward manner to induce the expression of apoE, its lipid transporters, ABCA1 and ABCG1, and the nuclear receptors themselves (7). Agonists of these receptors also act on macrophages and microglia to stimulate their conversion into ‘alternative’ activation states (9) and promote phagocytosis (10). Chronic administration of LXR and PPAR γ agonists reduce A β levels and improve cognitive function in mouse models of AD (10). We reasoned that an RXR agonist would enhance normal A β clearance mechanisms by activating PPAR:RXR and LXR:RXR, inducing apoE expression, facilitating A β clearance and promoting microglial phagocytosis. Bexarotene (Targretin TM ) is a highly selective, blood brain barrier-permeant (fig. S3A), FDA-approved, RXR agonist (11) with a favorable safety profile (12). Treatment of primary microglia or astrocytes with bexarotene stimulated the expression of apoE, ABCA1, and ABCG1 (fig. S1 A-B), and secretion of highly lipidated HDL particles (fig. S1 C-D). Bexarotene treatment of primary microglia and astrocytes facilitated degradation of soluble A β42 (fig. S2 A-B), in a PPAR γ, LXR (fig. S2 C-D), and apoE (fig. S2 E-F)-dependent manner. The levels of A β proteases, insulin degrading enzyme and neprilysin, were unchanged with bexarotene treatment (fig. S1 E-F).Brain interstitial fluid (ISF) A β levels were monitored by hippocampal in vivo microdialysis (13) of two month old APPswe/PS1Δe9 (APP/PS1) mice. Bexarotene rapidlylowered ISF A β40 and A β42levels within 6 hours ofApoE-Directed Therapeutics Rapidly Clear β-Amyloid and Reverse Deficits in AD Mouse ModelsPaige E. Cramer,1 John R. Cirrito,2 Daniel W. Wesson,1,3 C. Y. Daniel Lee,1 J. Colleen Karlo,1 Adriana E. Zinn,1 Brad T. Casali,1 Jessica L. Restivo,2 Whitney D. Goebel,2 Michael J. James,4 Kurt R. Brunden,4 Donald A. Wilson,3 Gary E. Landreth 1* 1Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA. 2Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA. 3Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research and the New York University School of Medicine, Orangeburg, NY 10962, USA. 4Center of Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.*To whom correspondence should be addressed. E-mail: gel2@o n F e b r u a r y 14, 2012w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o madministration, with a 25% reduction by 24 hours (Fig. 1 A, B). One dose of bexarotene significantly decreased ISF Aβ40 and Aβ42 levels by 25% for over 70 hrs (Fig. 1D), with a return to baseline by 84 hours. The suppression of ISF Aβwas due to increased clearance, as the Aβ40 half-life was reduced from 1.4 to 0.7 hours (Fig. 1C). Bexarotene reduced murine Aβ levels in the C57Bl/6 mice to a similar extent as in APP/PS1 mice; however, it had no effect on Aβ levels in apoE-null mice (Fig. 1E), demonstrating that the enhanced clearance of soluble ISF Aβ required apoE.We observed the rapid removal of both diffuse and compact Aβ plaques in the cortex and hippocampus ofAPP/PS1 mice after acute treatment with bexarotene (Fig. 2). We orally administered bexarotene or vehicle daily to 6 month old APP/PS1 mice for 3, 7 or 14 days. We observed the progressively enhanced expression of apoE, ABCA1, ABCG1 and elevated HDL levels in both the hippocampus and cortex of bexarotene-treated mice (fig. S3 B-C). There was a sustained 30% reduction in soluble Aβ levels throughout the 14 day treatment period (Fig. 2A). Insoluble Aβ levels were reduced by 40% after 72 hours and progressively decreased over the subsequent 14 days (Fig.2A). Total (Fig. 2, B-C) and thioflavin-S+ Aβ plaques (Fig. 2, E-F) were reduced by approximately 75% after 14 days of bexarotene treatment. Furthermore, we observed abundantAβ-laden microglia after 3 days of bexarotene treatment, suggesting their involvement in the phagocytic removal of Aβdeposits (Fig. 2D).To assess whether bexarotene was able to decrease Aβburden in older animals with greater plaque deposition, we treated 11 month APP/PS1 mice with bexarotene for 7 days and found significantly reduced levels of soluble and insoluble Aβ40 and Aβ42 (fig. S4C), a 50% reduction in plaque number (fig. S4 D-E), and a concurrent increase in expression of apoE, the cholesterol transporters and HDL levels (fig. S4 A-B). Thus, the efficacy of acute bexarotene treatment is evident in both early and later stages of pathogenesis in this mouse model.We also tested the effect of chronic bexarotene treatment (3 months, daily) of APP/PS1 mice starting from 6 months of age. We found elevated levels of apoE, ABCA1, ABCG1 and HDL (fig. S5 A-B). Bexarotene reduced soluble Aβ levels by approximately 30%, consistent with its ability to enhance apoE-dependent Aβ proteolysis (fig. S6C). However, amyloid plaque burden was unchanged (fig. S5 D-G).To evaluate the robustness of the effect of bexarotene, we treated an aggressive model of amyloidosis, the APPPS1-21 mouse (14) which possesses high levels of deposited Aβ at 7-8 months of age. APPPS1-21 mice treated for 20 days with bexarotene exhibited a reduction of soluble and insoluble Aβpeptides (fig. S6C) and a 35% decrease in the number of thioflavin S+ plaques (fig. S6 D-E). Bexarotene treatment enhanced the expression of ABCA1, ABCG1, apoE and its lipidated forms (fig. S6 A-B).There is persuasive evidence that the cognitive and behavioral deficits characteristic of AD arise, in part, from impaired synaptic function due to soluble forms of Aβ. Bexarotene treatment rapidly restored cognition and memory,as assessed by contextual fear conditioning in APP/PS1 mice treated for 7 days at both early (6 mo) and later (11 mo)stages of plaque pathogenesis. Similarly, chronic treatment of6 month old APP/PS1 mice treated for 90 days (analyzed at 9mo of age) (Fig. 3 A-C), showed drug-induced behavioral improvements in the contextual fear conditioning task. Additionally, APP/PS1 mice treated for 90 days andAPPPS1-21 mice treated for 20 days exhibited improved hippocampal function following bexarotene treatment, as assessed by Morris water maze performance (Fig. 3 D and F),as well as in the as contextual fear conditioning assay (Fig.3E).Nest construction is an affiliative, social behavior that becomes progressively impaired in Tg2576 mice (15).Following just 72 hours of bexarotene treatment, nest construction behavior was restored in Tg2576 mice (Fig. 3G).Finally, we explored whether bexarotene could rescue olfactory sensory impairments, (16) which are highlycorrelated with Aβ deposition in Tg2576 mice (17).Bexarotene treatment improved odor habituation behavior following 9 days of drug treatment in Tg2576 mice 12-14months of age (Fig. 3H).The improved behaviors observed in bexarotene–treatedmice suggest global improvements of neural networkfunction. Soluble Aβ interferes with synaptic function that subserves higher-order neural network informationprocessing (3). Piriform cortex (PCX) circuit function iscritical to odor-guided behaviors, and its disruption isimplicated in impaired olfactory perception in both humanswith AD and in Tg2576 mice (18). Therefore, we evaluatedodor-evoked PCX local field potentials (LFPs) as abehaviorally-relevant synaptic read-out of neural circuitstatus. Odor-evoked high-frequency gamma band oscillations(35-75Hz) and beta band oscillations (15-35Hz), reflectinglocal circuit interactions and inter-regional network activity, respectively, are considered critical for normal olfactoryfunction (18, 19). Tg2576 mice (12-14 mo) treated withvehicle exhibited significantly less odor-evoked beta andgamma band LFP power compared to drug-treated non-transgenic mice (Fig. 4 A-B), which was restored by 3 daysof bexarotene treatment. Odor habituation followingbexarotene treatment was improved in these same mice (fig.S7 B-C), indicating a rapid drug-dependent normalization oflocal and regional circuit function in the primary olfactory pathway.onFebruary14,212www.sciencemag.orgDownloadedfromRXR activation stimulates the normal physiological processes through which Aβ is cleared from the brain. The dependence of soluble Aβ clearance on apoE validates the mechanistic linkage between the principal genetic risk factor for AD and the cognitive impairment that characterizes the disease (6, 20). Bexarotene acts rapidly to facilitate the apoE-dependent clearance of soluble forms of Aβ, accounting for the extremely rapid change in ISF Aβ metabolism. Bexarotene-mediated behavioral improvements were correlated with reduction in soluble Aβ peptide levels of approximately 30%. These observations are consistent with previous observations that learning and memory can be improved through reducing brain soluble Aβ levels, either upon the administration of beta or gamma secretase inhibitors (21, 22) or provision of anti-Aβ antibodies (23). However, the behavioral improvements were poorly correlated with the microglial- mediated removal of insoluble, deposited forms of Aβ. The dual actions of the nuclear receptors resulting in the enhanced expression and lipidation of apoE and modulation of the microglial-mediated immune response are consistent with recent genetic association analyses implicating them in the etiology of AD (24–26). The ability of bexarotene to rapidly reverse a broad range of deficits suggests that RXR agonists may be of therapeutic utility in the treatment of AD and its antecedent phases.References and Notes1. H. W. Querfurth, F. M. LaFerla, N Engl J Med362, 329(2010).2. K. G. Mawuenyega et al., Science330, 1774 (2010).3. J. J. Palop, L. Mucke, Nat Neurosci13, 812 (2010).4. A. D. Roses, A. M. Saunders, Curr Opin Biotechnol5, 663(1994).5. J. J. Donkin et al., J Biol Chem285, 34144 (2010).6. Q. Jiang et al., Neuron58, 681 (2008).7. A. Chawla et al., Mol Cell7, 161 (2001).8. P. Lefebvre, Y. Benomar, B. Staels, Trends EndocrinolMetab, (2010).9. J. I. Odegaard, A. Chawla, Annu Rev Pathol, (2010).10. S. Mandrekar-Colucci, G. E. Landreth, Expert Opin TherTargets15, 1085 (2011).11. FDA,/drugsatfda_docs/nda/99/21 055_Targretin.cfm, (1999).12. L. T. Farol, K. B. Hymes, Expert Rev Anticancer Ther4,180 (2004).13. J. R. Cirrito et al., J Neurosci23, 8844 (2003).14. R. Radde et al., EMBO Rep7, 940 (2006).15. D. W. Wesson, D. A. Wilson, Behav Brain Res, (2010).16. C. Murphy, Physiol Behav66, 177 (1999).17. D. W. Wesson, E. Levy, R. A. Nixon, D. A. Wilson, JNeurosci30, 505 (2010).18. D. W. Wesson et al., J Neurosci31, 15962 (2011). 19. N. Kopell, G. B. Ermentrout, M. A. Whittington, R. D.Traub, PNAS97, 1867 (2000).20. J. J. Donkin et al., J Biol Chem, (2010).21. H. Fukumoto et al., J Neurosci30, 11157 (2010).22. T. A. Comery et al., J Neurosci25, 8898 (2005).23. J. C. Dodart et al., Nat Neurosci5, 452 (2002).24. L. Jones et al., PLoS One5, e13950 (2010).25. P. Hollingworth et al., Nat Genet43, 429 (2011).26. A. C. Naj et al., Nat Genet43, 436 (2011).27. J. L. Jankowsky et al., PLoS Med2, e355 (2005).28. K. Hsiao et al., Science274, 99 (1996).29. J. Koenigsknecht-Talboo, G. E. Landreth, J Neurosci25,8240 (2005).30. E. G. Reed-Geaghan, J. C. Savage, A. G. Hise, G. E.Landreth, J Neurosci29, 11982 (2009).31. T. D. Schmittgen, K. J. Livak, Nat Protoc3, 1101 (2008).32. R. Paylor, L. Baskall-Baldini, L. Yuva, J. M. Wehner,Behav Neurosci110, 1415 (1996).Acknowledgments: We thank Dr. Mangelsdorf fordiscussions and M. Pendergast, G. Casadesus and I. Naglefor technical assistance. This work was supported by theBlanchette Hooker Rockefeller Foundation, ThomeFoundation, Roby and Taft Funds for Alzheimer’sResearch and the NIA, AG030482-03S1 to GEL; NIDCD,DC003906, RO1-AG037693 to D.A.W; NIA, K01AG029524, NIA, P50-AG005681, Shmerler family, theCharles F. and Joanne Knight ADRC at WashingtonUniversity to J.R.C; and Marian S. Ware AlzheimerProgram to KRB. All data is archived on \\gel-server1.PEC and GEL hold a US Provisional Patent ApplicationNo.: 61/224,709 regarding bexarotene as a potentialtherapeutic for Alzheimer's disease and are foundingscientists of ReXceptor, Inc., which has licensing optionsfrom CWRU on the use of bexarotene in the treatment ofAlzheimer's disease.Supporting Online Material/cgi/content/full/science.1217697/DC1 Materials and MethodsFigs. S1 to S7References (27–32)9 December 2011; accepted 20 January 2012Published online 9 February 2012; 10.1126/science.1217697Fig. 1. ISF levels of Aβ decrease after bexarotene treatment. Interstitial fluid Aβx-40 and Aβx-42 levels were monitored by invivo hippocampal microdialysis of 2 month old APP/PS1mice (A). Baseline Aβ levels monitored for 6 hours, followedby daily orally administered 100 mg/kg/day bexarotene (Bex)or vehicle (Veh;water) for 3. Mice were co-administered Compound E (20mg/kg i.p.) on day 3. (B) The eliminationhalf life of ISF Aβx-40 was measured (C). 2 month oldonFebruary14,212www.sciencemag.orgDownloadedfromAPP/PS1 mice, baseline ISF A β levels were sampled following administration of a single oral dose of bexarotene (100mg/kg). ISF A βx-40 and A βx-42 were sampled every 2-6 hours for 4 days after treatment (D ). Baseline ISF A β levels of non-transgenic (C57Bl/6) and apoE knockout mice (2 mo) with and without bexarotene treatment (E ). ISF A βx-40 levels were measured between hours 7 and 12 after treatment; n=5/group. (Student’s t test. mean±SEM, *p<0.05, **p<0.01, ***p<0.001). Fig. 2. A β levels and plaque burden are reduced by bexarotene treatment. APP/PS1 or non-transgenic (NonTg) mice (6 mo) orally gavaged for 3, 7 and 14 days withbexarotene (100 mg/kg/day) or vehicle (water). Soluble and insoluble A β40 and A β42 levels measured by ELISA. Fold changes based on vehicle: 7.0445 ng/mg protein and 14.529 ng/mg protein soluble A β40 and A β42, respectively and30.349 ng/mg protein and 36.8 ng/mg protein insoluble A β40 and A β42, respectively (A ). Representative cortex and hippocampus sections (B , E ) of vehicle and 14 daybexarotene treated mice stained with the anti-A β antibody, 6E10 (B) or thioflavin S (E) are shown and plaque levels quantified (C , F ); n ≥5 animals/group (Student’s t test. mean±SEM *p<0.05, **p<0.01, ***p<0.001 Scale bar:cortex 100µm, hippocampus 200 µm). Representative image of microglia in the cortex of a 6 mo APP/PS1 mouse treated for 3 days with bexarotene (D ) (Red:6E10, Green:Iba1, Blue:DAPI, Scale bar: 10µm).Fig. 3. Restoration of memory and cognition with bexarotene treatment. Contextual fear-learning assayed in 6 (A ) and 11mo old (B ) APP/PS1 mice treated for 7 days, or in 9 mo old, APP/PS1 mice treated for 90 days (C ) with vehicle or bexarotene. APPPS1-21 mice 7-8 mo of age were treated for 20 days and performance evaluated (E ). Percent time frozen was recorded in the 5 min test trial. Spatial memory was assessed using the Morris water maze (D , F ). Time spent in the NW quadrant in the retention probe of 7-8 mo old, 20 day-treated APPPS1-21 (D) and 9 mo old, 90 day-treated APP/PS1 mice (F) with vehicle or bexarotene (Bex)100mg/kg/day. (Non-transgenic littermates were controls (NonTg), n=7-14/group, Student’s t test. mean±SEM*p<0.05, **p<0.01). Nest construction was quantified in 12-14 mo NonTg and Tg2576 mice (G ). Baseline data were obtained on day 0, following daily drug treatment and addition of paper towels in clean cages. (2-tailed t test*p<0.05, **p<0.01). Odor habituation behavior in 12-14mo Tg2576 mice tested before (baseline) and after 9 days of bexarotene treatment (H) n=5/group (2-tailed t-test; mean±SEM **p<0.01, ***p<0.001 Tg2576 baseline vs. Tg2576 Bex).Fig. 4. Rescue of cortical network activity with bexarotene. LFP recordings of Tg2576 or non-transgenic (NonTg) mice(12-14mo) gavaged with bexarotene (Bex) (100mg/kg) or vehicle (H 2O) for 3 days following implantation of electrodes into PCX. PCX LFPs in response to the odor ethyl valerate in an awake non-transgenic, bexarotene treated mouse. 15-35Hz beta and 35-75Hz gamma band power traces (2nd-order band pass) (A ). PCX odor-evoked response magnitudes (2sec odor/2sec pre-odor) (B ). (n=5 mice/group, 4 odor presentations/mouse. *p<0.05, **p<0.01, ***p<0.001, mean±SEM 2-tailed t-tests of mean odor-evoked magnitudes within LFP bins). o n F e b r u a r y 14, 2012w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o m。

相关文档
最新文档