高等数学第九章(二重积分)
大一高等数学第九章第二节二重积分的计算法.
第二节二重积分的计算法• 一、二重积分在直角坐标系中的计算法 • 二、二重积分在极坐标系中的计算法 •三、小结思考题练习题一、二重积分在直角坐标系中的计 算法a < x <^h 9 (p t (x) V y V (pAx).—型]其中函数©(劝、02(兀)在区间[“,6上连续・如果积分区域为:1 1J = <p 2(x)」_屮心)1 1 ab的值等于以。
为底,以曲面z =f(x,y)为曲顶柱体的体积.应用计算“平行截 面面积为已知的立 体求体积”的方法,SRcy=fdyr 2>f(x,y)dx.兴 切(丿)y =©(x)y =^(x)A(x (JX型区域的特点:穿过区域且平行于y轴的直线与区域边界相交不多于两个交点.Y型区域的特点:穿过区域且平行于x轴的直线与区域边界相交不多于两个交点.若区域如图,则必须分割.在分割后的三个区域上分别使用积分公式n 勿+u •D D、D2 D、例1 改变积分f(x y y)dy的次序.解例2改变积分’/(X 』)心的次序.解积分区域如图2J = 2-x X、»= \ 2x -5^• ■ 70.91\ *・53原式=』dy J二缶f f(x,y)dx.例 3 改变积分j ^-p/(x,j)Jy (« >0) 的次序.f(x^y)dx+他(:丹八3)必+f"dy0gy)必.x 2 =>x =a ± x a 2 -y 2=\ 2ax —::2例4求jj(x 2 + y )dxdy ,其1=1©是由抛物线解两曲线的交点 产二=>(0,0) ,(1,1), 1兀=厂+ y)dxdy {x 1+y)dyD=x - x 2) + ^(x-x 4)]rfx =豊・Jo2 140例5 求JJ x 2e'y2dxdy ,其中 D 是以0,0),(1,1),(<M)为顶点的三角形.x 2e~ydxdy =^dy^ x 2e ydx D□□y =,和兀=b 所围平面闭区域.解・・・“》心无法用初等函数表示・・・积分时必须考虑次序- 卩 f 了 -e x dx^ \dy \ e x dx.y解^e xdx 不能用初等函数表示・•・先改变积分次序. =f x(e —e x)dx = -e — -<e.码 8 2例7求由下列曲面所围成的立体体积, z = x +j, z = xy 9 x+ ‘=l, x =0, j =0.原式=I = e^dy例6计算积分成的立体如图.所围立体在xoy 面上的投影是•・• 0< x4-j < 1, x + y> xy 9 所求 =JJ(x +j- xy)daD(x-hy-xy)dy訂:住(1 一兀)+ £(1-兀尸血=召二、二重积分在极坐标系中计算 法 1 ^1 .Aa,=-(巧 + ZV;$ ・一 乙叮・=-(2r ; + zXr f )Ar ; •2-"+叫・M “A2=片• Ar z•〃亍△o \JJ f (x9y)dxdy = f (rcosG3rsinO)rdrd0.D D二重积分化为二次积分的公式(1)区域特征如图a<0<. p y(p\O}<r < 02(&)・JJ f(rcos0^rsin0)rdrd0D=f (r cos^,r sin^)rJr.JaJ 卩i (0)区域特征如图a V & V 0,0(&)<厂 V 02(&)・JJ f (rcos09rsin0)rdrdO =\p dor O}Ja J®©) 01 (0)f (rcosG yrsin0)rdr.CQE二重积分化为二次积分的公式(2 )JJ f (r cos^,r sin0)rdrdOD“r (p2、=J do] f(r cos^,rsin^)rJr.二重积分化为二次积分的公式(3)|| f (r cos^,r sinff)rdrd0 D极坐标系下区域的面积a = \\rdrdO./(rcos^,rsin^)rJr.区域特征如图0 < r < 0(&)・SB区域特征如图0 V & V 2眄例8写出积分\\f(x.y)dxdy 的极坐标二次积分形 式,其中积分注域D = {(x 9y)\ 1-x < y < \ l-x\O<x<l}.所以圆方程为厂=1,直线方程为厂=^―1—-sin& + cos &SR例9 计算^e~x ^ydxdy ,其中D 是由中心在 原点,半径站的圆周所围成的闭区域. 解在极坐标系下D : 0<r <« , 0<0<2兀・\\e~x ~ydxdy= J 冷町:”皿解在极坐标系下{X = rcos 0 y= rsin &\\f(x.y)dxdy= [}dd^ xf (r cos G^rsinG)rdr.豈」A ^e~x2~y :dxdy<帖宀怙心 ffe'^ dxdy.D tSD 2又•・• 1 = ^e~x dxdys=e~xl dx e~y dy =([ e~' dx)2; =jje~xydxdyD\同理笃=fj e~x' ydxdy=^(\-e~1R");UH例10 求广义积分Jx ・ 解9={(%』)1云 +,2<尺2}D 2={(x 9y)\x 2^y 2<2R 2}S = {(2)\0<x<Rfi<y<R}{x 5:0, j >0}显然有 D] u S u 。
高等数学第九章课件.ppt
z
用若干个小平
顶柱体体积之
和近似表示曲
o
顶柱体的体积,
x
曲顶柱体的体积
n
i
V
lim 0 i1
f (i ,i ) i .
y
(i ,i )
(二) 平面薄片的质量
设有一平面薄片,占有 xoy 面上的闭区域
D ,在点( x, y)处的面密度为 ( x, y) ,假定 ( x, y)在D 上连续,平面薄片的质量为多少?
o 12 x
立体在第一卦限部分可以看 成是一个曲顶柱体,它的曲 顶为
它的底为
于是,
y
1 y 1 4x2
D
o 12 x
所求立体的体积
例2 求两个圆柱面 的立体在第一卦限部分的体积。
解 所求立体 可以看成 是一个曲 顶柱体, 它的曲顶为
它的底为
所围
它的曲顶为
它的底为 于是,立体体积为
例3 求球体 x2 y2 z2 4a2 被圆柱面 x2 y2 2ax 所截得的(含在圆柱面内的部分)立体的体积。(a 0)
第一节 二重积分的概念及其性质
一、二重积分的概念 二、二重积分的性质
一、二重积分的概念
(一) 曲顶柱体的体积
z f (x, y) D
柱体体积=底面积*高 特点:平顶. 柱体体积=? 特点:曲顶.
求曲顶柱体的体积采用 “分割、求和、取极限”的方 法,如下动画演示.
步骤如下:
先分割曲顶柱体的底,并 取典型小区域,
间的关系:
x=rcos , y=rsin ,
(1)若极点O在区域D*之外,且D*由射线=,=和两 条连续曲线r=r1(),r=r2()围成.
(2)若r1()=0,即极点O在区域D*的边界上,且D*由射 线=,=和连续曲线r=r ()围成.
高等数学 第九章 第2节 二重积分的计算法(1)(中央财经大学)
第二节 二重积分的计算法(1)一、利用直角坐标系计算二重积分一、利用直角坐标系(right angle 计算二重积分)(2x y ϕ=abD)(1x y ϕ=Dba)(2x y ϕ=)(1x y ϕ=y yy x f x S x x d ),()()()(21∫=ϕϕy )(1x ϕ=)(2x y ϕ= d d ),(d )( )()(21∫∫∫⎟⎠⎞⎜⎝⎛==ba x x ba x y y x f x x S V ϕϕyy x f x S x x d ),()()()(21∫=ϕϕx ϕ=)(1y ϕDcdcd(2x ϕ=)(1y ϕ=DX 型区域的特点: 穿过区域且平行于y 轴的直线与区域边界相交不多于两个交点.Y 型区域的特点:穿过区域且平行于x 轴的直线与区域边界相交不多于两个交点.若区域如图,3D 2D 1D 在分割后的三个区域上分别使用积分公式.321∫∫∫∫∫∫∫∫++=D D D D则必须分割.,X=YY=2X=1YX 2112dxdyy dy2x2xy=y=−y e2−dyey 2∵2d y=2x y =xy =xy −=1例6 改变积分 ∫d x10的次序.原式∫∫−=y dxy x f dy 101),(.解积分区域如图例xy −=222x x y −=例7 改变积分∫∫∫∫−−+xxx dy y x f dx dy y x f dx 20212010),(),(2的次序.原式∫∫−−−=12112),(yy d xy x f d y .解积分区域如图例x+ =−d x y y )二重积分在直角坐标下的计算公式(在积分中要正确选择积分次序)二、小结.),(),()()(21∫∫∫∫=Dbax x dy y x f dx d y x f ϕϕσ.),(),()()(21∫∫∫∫=Ddcy y dx y x f dy d y x f ϕϕσ[Y -型][X -型]谢谢大家!。
9山东专升本高等数学第九章二重积分.
第九章二重积分【考试要求】1.理解二重积分的概念、性质及其几何意义.2.掌握二重积分在直角坐标系及极坐标系下的计算方法.【考试内容】一、二重积分的相关概念1.二重积分的定义设f(x,y)是有界闭区域D上的有界函数.将闭区域D任意分成n个小闭区域∆σ1,∆σ2,,∆σn,其中∆σi表示第i个小区域,也表示它的面积.在每个∆σi上任取一点n(ξiη,i),作乘积f(ξi,ηi∆)σii(i=1,2, ,n),并作和∑f(ξ,η)∆σiii=1.如果当各小闭区域的直径中的最大值λ趋于零时,这和的极限总存在,则称此极限为函数f(x,y)在闭区域D上的二重积分,记作⎰⎰f(x,y)dσ,即Dniii⎰⎰f(x,y)dσ=lim∑f(ξ,η)∆σDλ→0. i=1其中f(x,y)叫做被积函数,f(x,y)dσ叫做被积表达式,dσ叫做面积元素,x与y叫做积分变量,D叫做积分区域,∑f(ξ,η)∆σiii=1ni叫做积分和.说明:在直角坐标系中,有时也把面积元素dσ记作dxdy,而把二重积分记作⎰⎰f(x,y)dxdy,其中dxdy叫做直角坐标系中的面积元素.D2.二重积分的几何意义一般地,如果被积函数f(x,y)可解释为曲顶柱体的顶在点(x,y)处f(x,y)≥0,的竖坐标,所以二重积分的几何意义就是曲顶柱体的体积.如果f(x,y)是负的,柱体就在xOy面的下方,二重积分的绝对值仍等于柱体的体积,但二重积分的值是负的.如果而在其他的部分区域上是负的,那么f(x,y)在f(x,y)在D的若干部分区域上是正的,D上的二重积分就等于xOy面上方的柱体体积减去xOy面下方的柱体体积所得之差.3.二重积分的性质(1)设α、β为常数,则⎰⎰[αf(x,y)+βg(x,y)]dσ=α⎰⎰f(x,y)dσ+β⎰⎰g(x,y)dσ. DDD(2)如果闭区域D被有限条曲线分为有限个部分闭区域,则在D上的二重积分等于在各部分闭区域上的二重积分的和.例如D分为两个闭区域D1和D2,则⎰⎰f(x,y)dσ=⎰⎰f(x,y)dσ+⎰⎰f(x,y)dσ.DD1D2(3)如果在D上,f(x,y)=1,σ为D的面积,则.σ=⎰⎰1⋅dσ=⎰⎰dσDD(4)如果在D上,f(x,y)≤ϕ(x,y),则有⎰⎰f(x,y)dσ≤⎰⎰ϕ(x,y)dσ.DD特殊地,由于 -f(x,y)≤f(x,y)≤f(x,y),故又有⎰⎰f(x,y)dσ≤⎰⎰DDf(x,y)dσ.(5)设M、m分别是有 f(x,y)在闭区域D上的最大值和最小值,σ是D的面积,则mσ≤⎰⎰f(x,y)dσ≤Mσ.D(6)(二重积分的中值定理)设函数f(x,y)在闭区域D上连续,σ是D的面积,则在D上至少存在一点(ξ,η),使得⎰⎰f(x,y)dσ=f(ξ,η)⋅σ.D二、二重积分的计算(一)利用直角坐标计算二重积分1.X-型积分区域X-型积分区域是指积分区域D可以用不等式a≤x≤b,ϕ1(x)≤y≤ϕ2(x)来表示的闭区域,其中函数ϕ1(x)、ϕ2(x)在区间[a,b]上连续.此时二重积分可化为如下二次积分的形式:⎰⎰Dϕ2(x)⎡f(x,y)dσ=⎰⎰f(x,y)dy⎤dx,这个先对y、后对x的⎥a⎢ϕ(x)⎣1⎦b二次积分也常记作如下形式:⎰⎰f(x,y)dσ=⎰dx⎰Dabϕ2(x)ϕ1(x)f(x,y)dy.2.Y-型积分区域Y-型积分区域是指积分区域D可以用不等式c≤y≤d,φ1(y)≤x≤φ2(y)来表示的闭区域,其中函数φ1(y)、φ2(y)在区间[c,d]上连续.此时二重积分可化为如下二次积分的形式:⎰⎰f(x,y)dσ=⎰Ddc⎡φ2(y)f(x,y)dx⎤dy,这个先对x、后对y⎢⎥⎣⎰φ1(y)⎦dc的二次积分也常记作如下形式:⎰⎰f(x,y)dσ=⎰Ddy⎰φ2(y)φ1(y)f(x,y)dx.(二)利用极坐标计算二重积分要把二重积分中的变量从直角坐标变换为极坐标,只要把被积函数中的x、y分别换成ρcosθ、ρsinθ,并把直角坐标系中的面积元素dxdy换成极坐标系中的ρdρdθ.这样二重积分从直角坐标变换为极坐标的变换公式如下:⎰⎰f(x,y)dxdy=⎰⎰f(ρcosθ,ρsinθ)ρdρdθ.DD假设积分区域D可以用不等式α其中ϕ1(θ)、≤θ≤β,ϕ1(θ)≤ρ≤ϕ2(θ)来表示,ϕ2(θ)在区间[α,β]上连续.此时极坐标系中的二重积分化为二次积分的公式为:⎰⎰f(ρcosθ,ρsinθ)ρdρdθ=⎰Dβα⎡ϕ2(θ)f(ρcosθ,ρsinθ)ρdρ⎤dθ.⎢⎥⎣⎰ϕ1(θ)⎦这个先对ρ、后对θ的二次积分也常记作如下形式:⎰⎰f(ρcosθ,ρsinθ)ρdρdθ=⎰Dβαdθ⎰ϕ2(θ)ϕ1(θ)f(ρcosθ,ρsinθ)ρdρ.【典型例题】【例9-1】计算⎰⎰xydσ,其中D是由直线y=1、x=2及y=x所围成的闭区域.D解法1:积分区域D可看作X-型区域,1≤x≤2,1≤y≤x,故22x⎰⎰xydσ=⎰D4221dx⎰x132x⎡y⎤xxydy=⎰⎢x⋅⎥dx=⎰(-)dx 1122⎣2⎦1⎡xx⎤9=⎢-⎥= . 4⎦18⎣8 解法2:积分区域D可看作Y2-型区域,1≤y≤2,y≤x≤2,故⎰⎰xydσ=⎰D421dy⎰2y2⎡x⎤y3xydx=⎰⎢y⋅⎥dy=⎰(2y-)dy 112⎣2⎦y222⎡y⎤9=⎢y2-⎥= . 8⎦18⎣【例9-2】求σ,其中D是由直线y=x、x=-1及y=1所围⎰⎰D2成的闭区域.解:将积分区域D看作X-型区域,-1≤x≤1,x≤y≤1,故113221⎤11⎡2σ=⎰dx⎰=-⎰⎢(1+x-y)⎥dx⎰⎰-1x3-1⎣⎦xD=-⎤122⎡x133(x-1)dx=-(x-1)dx=--x= .⎢⎥⎰⎰-10333⎣4⎦021141说明:此题若把积分区域D看作Y1-型区域,-1≤y≤1,-1≤x≤y,就有yσ=dy,其中关于x的积分计算比较麻⎰⎰⎰⎰D-1-1烦,所以此题把积分区域D看作X-型区域求解.【例9-3】求2,其中D是由抛物线y=x及直线y=x-2所围成的闭区域.xydσ⎰⎰D解:将积分区域D看作Y-型区域,因抛物线y2=x和直线y=x-2的交点坐标为(1,-1)和(4,2),故-1≤y≤2,y2≤x≤y+2,⎰⎰xydσ=⎰D42-1dy⎰2yy+2⎡x2⎤1225⎤xydx=⎰⎢⋅y⎥dy=⎰⎡y(y+2)-ydy⎣⎦-1-12⎣2⎦y2262y+21⎡y43y⎤452=⎢+y+2y-⎥= . 2⎣436⎦-18说明:此题若把积分区域D看作X线x-型区域,则要用经过交点(1,-1)且平行于y轴的直=1把区域D分成D1和D2两部分,其中D1=(x,y)0≤x≤1,≤y≤{,D2=(x,y)≤x≤4,x-2≤y≤因此根据二重积分对积分区域的可加性,就有 {.⎰⎰xydσ=⎰⎰xydσ+⎰⎰xydσDD1D2=⎰dx01xydy+⎰dx14x-2xydy.由此可见,此题把积分区域D看作X-型区域来计算较为繁琐.x22y=x所围成y=Dy=x【例9-4】计算,其中是由直线、dxdy2⎰⎰Dy的闭区域.解:将积分区域D看作Y2-型区域,1≤y≤,y≤x≤y2,故2yx⎡x⎤xdxdy=⎰dx=⎢2⎥dy 22⎰⎰1yy1⎣3y⎦yDy23y2=1yy1⎡yy-2-)dy=⎢-⎥= . 333⎣52⎦15-xe⎰⎰D2452【例9-5】计算-y2dxdy,其中D是由中心在原点、半径为a(a>0)的圆周所围成的闭区域.解:将积分区域D表示为极坐标,0≤-xe⎰⎰D2ρ≤a,0≤θ≤2π,故 2-y2⎡1⎤dxdy=⎰dθ⎰e-ρρdρ=⎰⎢-e-ρ⎥dθ000⎣2⎦02πa2π2a2π1-a2-a2=(1-e)⎰dθ=π(1-e) . 022222,其中D是由圆周x+y=1及坐标轴所围成ln(1+x+y)dσ⎰⎰【例9-6】计算D的在第一象限内的闭区域.解:将积分区域D表示为极坐标,0≤π01ρ≤1,0≤θ≤π2,故π01222222ln(1+x+y)dσ=dθln(1+ρ)ρdρ=dθln(1+ρ)d(⎰⎰⎰⎰⎰⎰D00122⎧⎫1ρπ⎪⎡ρ2ρ⎪2⎤ =⋅dρ⎬⎨⎢ln(1+ρ)⎥-⎰022⎪21+ρ⎦0⎪⎩⎣2⎭ρ22)ρ3=ln2-⎰ρ 20421+ρππ1ρ(1+ρ2)-ρ=ln2-⎰ρ 20421+ρππ1ρ=ln2-⎰(ρ-)dρ 20421+ρ1ππππ⎡ρ212⎤=ln2-⎢-ln(1+ρ)⎥ 42⎣22⎦0=1π4ln2-π11(-ln2)=(2ln2-1) . 2224σ,其中D是圆环形闭区域1≤x2+y2≤4.π【例9-7】计算D解:将积分区域D表示为极坐标,1≤ρ≤2,0≤θ≤2π,故2211Dσ=⎰dθ⎰ρ⋅ρdρ=2π⎰ρ2dρ 02π⎡ρ3⎤8114π=2π⎢⎥=2π(-)=333⎣3⎦1【例9-8】交换下列二重积分的积分次序.1.2 .⎰21dy⎰lny0f(x,y)dx .-型区域,1≤y≤2,0≤x≤lny.将此积分区域看解:由题意,积分区域D为Y 成X-区域,可得0≤x≤ln2,ex≤y≤2,故交换积分次序后⎰2.21dy⎰lny0f(x,y)dx=⎰ln20dx⎰xf(x,y)dy . e2⎰dx⎰012-xxf(x,y)dy .-型区域,0≤x≤1,x≤y≤2-x.将此积分区域解:由题意,积分区域D为X 看成Y-区域时,该区域需用直线y=1分成D1和D2两部分,其中D1={(x,y)0≤y≤1,0≤x≤y},D2={(x,y)≤y≤2,0≤x≤2-y},故交换积分次序后12-x1y22-y⎰dx⎰0xf(x,y)dy=⎰dy⎰f(x,y)dx+⎰dy⎰0010f(x,y)dx . 3.⎰dx122-xf(x,y)dy .-型区域,1≤x≤2,2-x≤y≤解:由题意,积分区域D为X积分区域看成Y次序后-型区域,可得0≤y≤1,2-y≤x≤1+11⎰dx122-xf(x,y)dy=⎰dy⎰02-yf(x,y)dx .4.⎰π0dx⎰sinxx2-sinf(x,y)dy .解:由题意,积分区域D为X分区域看成Y-型区域,0≤x≤π,-sinx≤y≤sinx.将此积2-区域时,该区域需用直线y=0(即x轴)分成D1和D2两部分,其中D1={(x,y)0≤y≤1,arcsiny≤x≤π-arcsiny}, D2={(x,y)-1≤y≤0,-2arcsiny≤x≤π},故交换积分次序后⎰πdx⎰sinxx2-sinf(x,y)dy=⎰dy⎰1π-arcsinyarcsinyf(x,y)dx+⎰dy⎰-10π-2arcsinyf(x,y)dx.【历年真题】一、选择题1.(2008年,3分)设D:x2+y2≤1,则⎰⎰dxdy等于()Dx3y3+C (B)+C (C)π (D)2π (A)33解:二重积分当被积函数为1时,其值就等于积分区域的面积,而积分区域D为圆域x2+y2≤1,故⎰⎰dxdy=π⋅12=π.选项(C)正确.D2.(2006年,2分)交换积分次序⎰dx⎰10f(x,y)dy=()101(A)⎰⎰-10dy01f(x,y)dx (B)⎰dy⎰00f(x,y)dx(C)-1dy⎰f(x,y)dx (D)⎰0⎰f(x,y)dx解:原积分区域为X域,得-1≤-型区域,0≤x≤1,≤y≤0,将其看作Y-型区y≤0,0≤x≤⎰dx⎰010f(x,y)dy=⎰dy-100f(x,y)dx.选项(A)正确.ydxdy=() 3.(2005年,3分)设D:0≤x≤1,0≤y≤2,则⎰⎰D1+x(A)ln2 (B)2+ln2 (C)2 (D)2ln2 解:由题意可知,积分区域为矩形区域,此时便可把原二重积分化成两个定积分的乘积的形式,故12112yydxdy=⎰dx⎰dy=⎰dx⋅⎰ydy ⎰⎰00001+x1+xD1+x22⎡y⎤4⎤=⎡ln(1+x⋅=ln2⋅=2ln2.选项(D)正确.⎣⎦0⎢2⎥2⎣⎦01二、计算题1.(2010年,5分)求二重积分成的闭区域.解:画出积分区域,将其看成X2x2⎰⎰Dx,其中D是由y=1,y=x2,x=2所围y-型区域,1≤x≤2,1≤y≤x2,故二重积分 2x222xx2⎡⎤=dx=xlnydx=2xlnxdx=lnxd(x) ⎣⎦⎰⎰⎰⎰⎰⎰⎰111111yDy 222=⎡x⎣lnx⎤⎦1-⎰1⎡x2⎤3xdx=4ln2-⎢⎥=4ln2-. 2⎣2⎦12,其中D是由抛物线y=x及直线y=x-2所围xydσ⎰⎰22.(2009年,5分)计算成的闭区域.解:画出图形,抛物线分区域看作YDy2=x与直线y=x-2的交点坐标为(1,-1)和(4,2),将积-型区域,-1≤y≤2,y2≤x≤y+2,则二重积分2-1⎰⎰xydσ=⎰Ddy⎰2yy+2y2+4y+4y4xydx=⎰y(-)dy -1222436⎡⎤11y4yy453252=⎰(y+4y+4y-y)dy=⎢++2y-⎥=. -122⎣436⎦-1822 3.(2007年,5分)计算所围成的闭区域. 2cosydxdy,其中D是由直线x=1,y=2与y=x-1⎰⎰D解:画出图形,根据被积函数的特点,只能将积分区域看作Y-型区域,0≤y≤2,1≤x≤y+1,则二重积分⎰⎰cosydxdy=⎰dy⎰2D02y+11cosy2dx⎡1⎤1=⎰ycosy2dy=⎢siny2⎥=sin4. 0⎣2⎦02224.(2006年,4分)求2,D由x=0,y=1,x=y(y>0)围成. edxdy⎰⎰xyD解:画出图形,将积分区域看作Yxyy2xy-型区域,0≤y≤1,0≤x≤y2,则二重积分 1xyy2⎰⎰eD1dxdy=⎰dy⎰0y110⎡⎤1edx=⎰⎢ye⎥dy=⎰(yey-y)dy 00⎣⎦0y1121y⎡y⎤11y1⎤⎡⎤=⎰yd(e)-⎰ydy=⎡ye-edy-=e-e-⎢2⎥⎣⎦0⎰0⎣⎦02=2. 00⎣⎦0 5.(2005年,5分)计算二重积分域的公共部分.解:画出图形,积分区域为半圆域,故用极坐标,其中0≤θπ2coθs2222,D为x+y≤2x与y≥0两个区xydxdy⎰⎰D≤π2,0≤ρ ≤2cosθ,故⎰⎰xydxdy=⎰dθ⎰222D0022ρ2cosθ⋅ρsinθ2⋅ρdρ⎡ρ⎤=⎰2sin2θcos2θ⎢⎥0⎣6⎦0π62cosθπdθ=⎰2(1-cos2θ)cos2θ⋅032cos6θdθ3 32π327531π97531π=⎰2(cos8θ-cos10θ)dθ=(⋅⋅⋅⋅-⋅⋅⋅⋅⋅) 303864221086422327531π17π. =⋅⋅⋅⋅⋅⋅=3864221048。
高等数学 第九章 第2节 二重积分的计算法(2)(中央财经大学)
第二节 二重积分的计算法(2)
一、利用极坐标系计算二重积分
二、广义二重积分
一、利用极坐标计算二重积分 (polar coordinates)
D α
D
o
D
α
β
f
1=+y x 1
22=+y x θ
c o n 1
+
x
1
D 2
D S S
2
D R
R
2
y
d x
+ x2+
y
D D ,
D
1
(2x 2
y≥4
D
D
1
)
在一元函数中有无穷限广义积分(积分区间为无穷区间),如果二重积分的积分区域为无穷区域时该如何积分呢?
在一元函数中有无穷限广义积分(积分区间为无穷区间),如果二重积分的积分区域为无穷区域时该如何积分呢?
∞
),(y
1 a 2
z
z
三、小结
1.二重积分在极坐标下的计算公式(在积分中注意使用对称性)
2.广义二重积分基本解法:
先在有界区域内积分,然后令有界区域趋于原无界区域时取极限求解.
谢谢大家!。
高等数学-二重积分
高等数学-二重积分二重积分作为高等数学的一部分,是积分学的重要内容之一,也是微积分的一个重要分支。
它可以用来求解平面图形的面积、质心、转动惯量等问题,同时也是理解三重积分和曲线积分的基础。
一、二重积分的定义对于平面直角坐标系中一个有界区域D,若在D内存在一个连续函数f(x,y),则在D 上的二重积分值记为:∬Df(x,y)dxdy其中,dxdy表示对于(x,y)在D上的每一个点,都有一个微小的面积dxdy。
通常情况下,积分区域D是一个闭合区域,即被有限多条曲线所包围的区域。
1、线性性若f(x,y)和g(x,y)在D上可积,则对于任意实数a和b,有:∬D[af(x,y)+bg(x,y)]dxdy=a∬Df(x,y)dxdy+b∬Dg(x,y)dxdy2、积分的可加性若D可表示成D1和D2的并集,且D1和D2没有交集,则有:4、积分与面积的关系对于常数函数f(x,y)=1,在D上的二重积分值就是D的面积S。
即有:∬D1dxdy=S1、利用基本公式对于二重积分中的f(x,y),若其为一元函数,则参照一元函数积分的公式进行计算即可。
若其为二元函数,则按照二元函数积分的公式计算。
2、极坐标法当积分区域D具有极轴对称性或者其中的许多边界方程可以转化为极坐标方程时,可以使用极坐标公式来求解。
即有:∬Df(x,y)dxdy=∫θ1θ2dθ∫r1r2f(r,θ)rdr其中,r为极径,θ为极角。
3、换元法当积分区域D无法采用基本公式或者极坐标法求解时,可以采用换元法来简化计算。
具体而言,可以通过将坐标系进行转化,将D映射为一个较为简单的区域,从而进行二重积分的计算。
1、面积计算二重积分可以用来计算平面图形的面积。
对于平面图形D,可设其边界方程为:g1(x)=a, g2(x)=b, h1(y)=c, h2(y)=d则D的面积可以表示为:S=∬Ddxdy=∫a^b∫c^d1dydx2、质心计算x0=∬Dxdxdy/M, y0=∬Dy dxdy/M其中,M为D的面积,x0和y0分别称为D的一阶矩。
高等数学 第九章 第1节 二重积分的概念与性质(中央财经大学)
第一节 二重积分的概念与性质一、问题的提出二、二重积分的概念三、二重积分的性质),(y x f z =D求曲顶柱体的体积采用 “分割、近似、 求和、取极限”的方法,先看动画演示.刚才大家看到是曲顶 柱体的底面网格划分比较稀的情况,下面请大家继续观看网格划分较密时的情况.小平顶柱体近似代替.),(>=y x f z2、非均匀分布时平面薄板质量问题非均匀分布时平面薄板质量问题设平面薄板 D 上非均匀地分布着质量, 其分 .),(y x µµ=布密度为将区域 D 任意分割成 n 个小块,D i 每小块的面积记为.i σ∆∈∀),(i i ηξ,D i 则每小块上的质量可近似地表示为≈∆i m .),(i i i σηξµ∆令,}{max 1i ni σλ∆=≤≤求和并取极限便得薄板D 的质量为ini i i σηξµλ∆=∑=→1),(lim m以上讨论的问题的共同点:定义 设,(yxf是有界闭区域D上的有界函数,将闭区域D任意分成n个小闭区域,,,其中表示第i个小闭区域,也表示它的面积,在每个上任取一点, 作乘积 , , 并作和 ,二、二重积分的概念(1) 在二重积分的定义中,对闭区域的划分是任意的.(2)当,(yx f 在闭区域上连续时,定义中和式的极限必存在,即二重积分必存在. 对二重积分定义的说明:二重积分的几何意义:当被积函数大于零时,二重积分是柱体的体积.当被积函数小于零时,二重积分是柱体的体积的负值.如何划分?如何划分?D性质1∫∫±Dd y x g y x f σβα)],(),([.),(),(∫∫∫∫±=DD d y x g d y x f σβσα(二重积分与定积分有类似的性质)三、二重积分的性质设 、 为常数,则βα该性质可以推广至有限个函数的线性组合情形设函数在闭区域 上连续,为 的面积,则在D 上至少存在一点使得性质6(二重积分中值定理)σηξσ⋅=∫∫),(),(f d y x f D啊!a谢谢大家!。
二重积分知识点
二重积分知识点一、引言二重积分是高等数学中的重要内容,是对二元函数在有限区域上的积分运算。
二重积分的概念与求解技巧是深入理解、掌握多元函数的必备工具,也为解决实际问题提供了数学方法。
本文将从二重积分的概念、性质、计算方法和应用等方面,全面详细地介绍二重积分的知识点。
二、概念1. 二重积分的定义设f (x,y )在闭区域D 上有定义,D 由有向闭曲线C 围成,且f (x,y )在D 上有界。
若存在数I ,对于任意给定的正数ε,都存在正数δ,使得对于D 内任意满足Δσ<δ的任意分割σ,对应的任意代点ξij ,总有|∑∑f mj=1n i=1(ξij )Δσij −I|<ε则称I 为函数f (x,y )在闭区域D 上的二重积分,记作I =∬f D(x,y )dσ其中,Δσij 表示第(i,j )个小区域的面积,Δσ表示整个区域D 的面积。
2. 二重积分的几何意义二重积分的几何意义是对二元函数在闭区域上的面积进行逐点求和,即将闭区域D 分割成无穷多个小面积区域,并对每个小面积区域上的函数值进行乘积再求和,最终得到二重积分。
三、性质1. 线性性质设闭区域D上有二重积分∬fD(x,y)dσ,若c为常数,则有∬(cf(x,y)) D dσ=c∬fD(x,y)dσ∬(f(x,y)±g(x,y)) D dσ=∬fD(x,y)dσ±∬gD(x,y)dσ2. 区域可加性设闭区域D可分为非重叠的两部分D1和D2,则有∬fD (x,y)dσ=∬fD1(x,y)dσ+∬fD2(x,y)dσ3. Fubini定理(累次积分)设函数f(x,y)在闭区域D上连续,则有∬f D (x,y)dσ=∫(∫fβ(x)α(x)(x,y)dy)badx=∫(∫fδ(y)γ(y)(x,y)dx)dcdy其中,(x,y)∈D,α(x)≤y≤β(x),γ(y)≤x≤δ(y)。
4. 值定理设函数f(x,y)在闭区域D上一致连续,则存在(ξ,η)∈D,使得∬fD (x,y)dσ=f(ξ,η)∬dDσ=f(ξ,η)σ(D)其中,σ(D)表示闭区域D的面积。
高等数学 课件 PPT 第九章 重积分
若函数ρ(x,y)=常数,则薄片的质量可用公式 质量=面密度×面积 来计算.现在面密度ρ(x,y)是变化的,故不能用上述公式来求. 这时仍可采用处理曲顶柱体体积的方法来求薄片的质量.分为下列 几个步骤:
一、二重积分的概念
(1)分割将D分成n个小闭区域Δσ1,Δσ2,…,Δσn(小区域 的面积也用这些符号表示),第i个小块的质量记为 ΔMi(i=1,2,…,n),则平面薄片的质量
于是
一、在直角坐标系下计算二重积分
图 9-11
一、在直角坐标系下计算二重积分
【例3】
计算
,D是由抛物线y2=2x与直线y=x-4所
围成的区域.
解 画出积分区域D的草图如图9-12所示.若先对x积分,
则有
一、在直角坐标系下计算二重积分
图 9-12
一、在直角坐标系下计算二重积分
若先对y积分,则需将D分为两个区域D1和D2, 于是
一、在直角坐标系下计算二重积分
【例1】
试将
化为两种不同次序的累次积分,其中
D是由y=x,y=2-x和x轴所围成的区域.
解 积分区域D如图9-9所示.首先说明如何用“穿线法”
确定累次积分的上、下限.如果先积x后积y,即选择Y型积
分区域,将区域D投影到y轴,得区间[0,1],0与1就是对y
积分的下限与上限,即0≤y≤1,在[0,1]上任意取一点y,
二、二重积分的性质
二重积分与定积分有类似的性质.假设 下面所出现的积分是存在的.
二、二重积分的性质
性质1
设c1,c2为常数,则
性质2
若闭区域D分为两个闭区域D1与D2,则
二、二重积分的性质
性质3
(σ为D的面积).
性质4
高等数学讲义第九章重积分
性质6:(二重积分的中值 ) 定理
设函数 f (x, y)在闭区D域上连续 ,是D的面,积 则(,)D,使得
f(x,y)d f(,)
D
a
4
§2. 二重积分的计算法
1。利用直角坐标计算二重积分 z
A(x) y2(x) f(x,y)dy y1(x)
A(x)
o
a
yy1(x)
x
b x
a
y yy2(x)
5
d dr r
则极坐标下二重积分可化为二次积分
f(x,y)d f(rco ,rs si)n rdrd
D
D
dr2()f(rco ,srsin )rdrd r1()
a
11
设积分区域是由不等式
0rr(),
r r()
来表示r, ()在 其 [,中 ]上连0 续 β α。
则极坐标下二重积分可化为二次积分
z z=z2(x,y)
1 : z z1 ( x , y ),
2 : z z 2 ( x , y ),
其中 z1 ( x , y ), z 2 ( x , y ) 都是 D xy 上的连续函数,
z=z1(x,y)
o
y
且 z1(x, y) z2 (x, y)
Dxy
(如图所示 )
x
F(x,y) z2(x,y) f(x,y,z)dz z1(x,y)
a
13
例 11.计算二重积 R2分 x2y2d,
D
其中区 D:x域 2y2Rx
例 12.计算二重 ln积 1(x分 2y2)d,
D
其中区 D:x域 2y21,x0,y0
a
14
§3. 三重积分的计算法
高等数学第九章重积分
第9章 重积分典型例题一、二重积分的概念、性质 1、二重积分的概念:d 01(,)lim(,)niiii Df x y f λσξησ→==∆∑⎰⎰其中:D :平面有界闭区域,λ:D 中最大的小区域的直径(直径:小区域上任意两点间距离的最大值者), i σ∆:D 中第i 个小区域的面积2、几何意义:当(,)0f x y ≥时,d (,)Df x y σ⎰⎰表示以曲面(,)z f x y =为曲顶,D 为底的曲顶柱体的体积。
所以d 1Dσ⎰⎰表示区域D 的面积。
3、性质(与定积分类似)::线性性、对积分区域的可加性、比较性质、估值性质、二重积分中值定理二、二重积分的计算1、在直角坐标系下计算二重积分(1) 若D 为X 型积分区域:12,()()a x b y x y y x ≤≤≤≤,则21()()(,)(,)by x ay x Df x y dxdy dx f x y dy =⎰⎰⎰⎰(2)若D 为Y 型积分区域:12,()()c y d x y x x y ≤≤≤≤,则21()()(,)(,)dx y cx yf x y dxdy dy f x y dx =⎰⎰(3X -型或者Y -型区域之和,如图,则123(,)(,)(,)(,)D D D f x y d x d y f x y d x d y f x y d x d y f x y d x d y=++⎰⎰⎰⎰⎰⎰⎰(4(5)对称性的应用1(,)2(,),(,)0(,)DD f x y dxdy f x y dxdy f x y y D x f x y y ⎧=⎪⎨⎪⎩⎰⎰⎰⎰关于为偶函数区域关于轴对称, 关于为奇函数1(,)2(,),(,)0(,)D D f x y dxdy f x y dxdy f x y x D y f x y x ⎧=⎪⎨⎪⎩⎰⎰⎰⎰关于为偶函数区域关于轴对称, 关于为奇函数(6)积分顺序的合理选择:不仅涉及到计算繁简问题,而且又是能否进行计算的问题。
高等数学下册复习第九章(二重积分)
1 x2 0 0
典型例题
13 把下列积分化为极坐标形式 并计算积分值 (2) dx x y dy (4) dy (x y )dx 14 利用极坐标计算下列各题
a x 2 2 0 0
a
a2 y2
2
2
0
0
(2) ln(1 x y )d , 其中 D 是由圆周 x2y2 1 及坐标轴
(x2
y 2 )]d
y 轴上半平面部分
定理3
设 f x, y 在有界闭区域 D 上连续,若 D
关于原点对称,则
D
0 f x,y d 2 f x,y d D3
f x,-y = f x,y , x,y D f x,-y f x,y , x,y D
第九章 二重积分
内容要点 一、二重积分的概念与性质 1. 二重积分的定义: 和式的极限
n
f ( i ,i ) i D f ( x , y )d lim 0
i 1
2.曲顶柱体的体积: V f ( x, y )d
D
平面薄片的密度: M ( x, y )d
将D分割, 如图. 则 2 2 xyf ( x y )d 0, D2 xd 0. D
D xd D1 xd
2
0 x3 xdx x 3 dy 1
0 4 dx x 1
2 , 5 2 . 5
所以, D x[1 yf
x 2 ( y )
D
c
c
x 2 ( y )
f ( x, y )d f ( x, y )dxdy
高等数学第九章习题课二重积分的计算
习题课二重积分的计算一、主要内容二重积分的计算方法是累次积分法,化二重积分为累次积分的步骤是:①作出积分区域的草图②选择适当的坐标系③选定积分次序,定出积分限1。
关于坐标系的选择这要从积分区域的形状和被积函数的特点两个方面来考虑看图定限 —穿越法定限 和不等式定限先选序,后定限①直角坐标系ⅰ。
先 y 后 x ,过任一x ∈ [ a , b ],作平行于 y 轴的直线穿过D 的内部从D 的下边界曲线)(1x y ϕ=穿入—内层积分的下限从上边界曲线)(2x y ϕ=穿出—内层积分的上限ⅱ。
先 x 后 yy 过任一 yy ∈[ c , d ] 作平行于 x 轴的直线定限左边界)(1y x ψ=——内层积分的下限右边界)(2y x ψ=——内层积分的上限则将D 分成若干个简单区域再按上述方法确定每一部分的上下限分片计算,结果相加②极坐标系积分次序一般是θ后先r 过极点O 作任一极角 为 θ]),[(βαθ∈的射线从D 的边界曲线 )(1θr 穿入从 )(2θr 穿出ⅲ。
如D 须分片)(1θr ——内下限)(2θr —内上限具体可分为三种情况)()(,21θθβθαr r r ≤≤≤≤⑵极点在D 的边界上)()(,21θθβθαr r r ≤≤≤≤是边界在极点处的切线的极角βα,)(1θr 绝大多数情况下为0⑶极点在D 的内部)(0,20θπθr r ≤≤≤≤化累次积分后外限是常数内限是外层积分变量的函数或常数极坐标系下勿忘 r⑴极点在D 的外部∫∫∫∫=D Ddxdy x y f dxdy y x f ),(),(——称为关于积分变量的轮换对称性是多元积分所独有的性质奇函数关于对称域的积分等于0,偶函数关于对称域的积分等于对称的部分区域上积分的两倍,完全类似于 对称区间上奇偶函数的定积分的性质简述为“你对称,我奇偶”①、②、③简单地说就是④若 DD 关于直线 y = x 对称。
二重积分的概念和计算
二重积分的概念和计算
一、二重积分的概念
二重积分也叫做双重积分,是一类高等数学中的一种重要的概念,它
是指将函数关于两个变量进行积分运算,而且是先计算外层的积分,再计
算内层的积分,也可以称之为“先积分后积分”。
所以,二重积分是指把一个二元函数关于x先积分,再把f(x,y)
关于y积分的过程,最后能够得到B(x,y)函数,通常我们可以采用它
来对双变量函数进行积分运算。
二、二重积分的计算
1、在坐标系上绘制图像,判断积分的界限,即a和b的值,以及R
的值;
2、根据及题目要求,写出积分表达式;
3、根据外层和内层的分界,写出外层的积分表达式;
4、根据内层的分界,写出内层的积分表达式;
5、外层积分根据公式进行求解,把外层积分结果代入到内层积分中,计算内层积分的值;
6、把外层积分的值和内层积分的值相乘,得到最终的二重积分的结果。
此外,在积分运算中,我们还可以通过Green-Haddam公式来把二重
积分转化为一次积分,计算更加快捷方便。
Green-Haddam公式:∫ab∫f(x,y)dxdy=∫(R∫f(x,y)dxdy)dR
三、示例说明
下面通过举例来详细讲解一下二重积分的计算:求解:∫0,3∫0,2x2dy dx。
高等数学二重积分总结
第九章二重积分【本章逻辑框架】【本章学习目标】⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。
⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。
熟练掌握直角坐标系和极坐标系下重积分的计算方法。
⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。
9.1 二重积分的概念与性质【学习方法导引】1.二重积分定义为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。
从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。
在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ∆∆∆的分法要任意,二是在每个小区域i σ∆上的点(,)i i i ξησ∈∆的取法也要任意。
有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。
2.明确二重积分的几何意义。
(1) 若在D 上(,)f x y ≥0,则(,)d Df x y σ⎰⎰表示以区域D 为底,以(,)f x y 为曲顶的曲顶柱体的体积。
特别地,当(,)f x y =1时,(,)d Df x y σ⎰⎰表示平面区域D 的面积。
(2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d Df x y σ⎰⎰的值是负的,其绝对值为该曲顶柱体的体积(3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d Df x y σ⎰⎰表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积).3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。
高等数学-第九章 二重积分部分
一. 二重积分的计算 二. 三重积分的计算 三. 重积分的运用
一. 二重积分的计算
1. 二重积分的性质
例. 比较下列积分值的大小关系:
I1 xy dxdy I2 xy dxdy
x2y21
11
xy1
y
I3 xy dxdy
11
1
解: I1,I2,I3被积函数相同, 且非负,
D f (x, y)d
Dr2()
Df(cos,sin) d d
r1()
o
注:若积分区域为圆域、扇形域、环形域、或由 极坐标曲线围成的区域,可考虑选择极坐标;
若 被 积 函 数 为 f( x 2 y 2 ) 或 f(y ) 型 可 考 虑 选 择 极 坐 标 x
例. 计算二重积分
R2x2y2d,
0
2 0
h 1 2
d
h
2 4
d
z
202 h12(h42)d
[1 (4h)ln 1(4h)4h]
4
o x
y
4、球坐标代换
设 M (x,y,z) R 3,其柱坐(标 ,,为 z),令OM r,
ZOM , 则(r,,) 就称为点M 的球坐标.
xrsinco s yrsin sin
zrco s
0 r
z { ( x ,y ,z ) |a z b ,( x ,y ) D z }b
f(x,y,z)dv
b
z a
adzD Zf(x,y,z)dxdy
x
Dz
y
适用范围:
积分区域介于两个平行于坐标面的平面之间;
在平行于坐标面的截面上二重积分易算 典型题目: 被积函数只为某一变量的函数;且截面面积易求
高等数学第9章知识点
z
Fx
k
D
x(x, y)
(x2
y2
a2
3
)2
d,
Fy
k
D
(x2
y(x, y)
y2 a2
)
3 2
d
,
M0(0,0,a)
O
y
x
(x, y,0)
D
Fz
k
D
a(
(x2 y2
x,
y) a2
)
3 2
d
,
k为引力常数
第九章 重积分习题课—天津大学 数学学院
22
二、三重积分的主要内容
1、三重积分的定义
b) 若f (x, y, z)关于x是偶函数,即 f (x, y, z) f (x, y, z),
则 f (x, y, z)dV 2 f (x, y, z)dV.
1
第九章 重积分习题课—天津大学 数学学院
32
a) 若f (x, y, z)关于y是奇函数,即 f (x, y, z) f (x, y, z),
z
(1) 直角坐标系下
先投影,再穿区域
a) 投影法(“先一后二”、“穿针法”)
z z2( x, y)
z2 S2
z1 S1
z z1( x, y)
上下型: : z1(x, y) z z2(x, y);
O a
穿入曲面 a x b,
穿出曲面 b
y1 ( x) y y2 ( x).
x
(投影区域)
1
r1 ( , )
第九章 重积分习题课—天津大学 数学学院
30
4、三重积分的对称性
z
a) 若f (x, y, z)关于z是奇函数, 即 f (x, y,z) f (x, y, z),
高等数学(本科)第九章课后习题解答
习题9.11.二元函数()y x f ,在有界闭区域D 可积的充分与必要条件是什么?它的几何意义和物理意义是什么?【答】几何意义表曲顶柱体的体积的代数和;物理意义表平面薄片的质量. 2.设()(){}11|,22≤+-=y x y x D ,则二重积分⎰⎰=Ddxdy π.【解】根据二重积分的性质,⎰⎰Ddxdy 等于积分区域D 的面积.而此处积分区域D 是半径为1的圆域,因此其面积为π. 3.求⎰⎰Ddxdy 4,其中(){}1|,≤+=y x y x D .【解】⎰⎰Ddxdy 4()()824442=⨯===⎰⎰D S dxdy D.4.如果闭区域D 被分成区域1D 、2D 且()5,1⎰⎰=D dxdy y x f ,()1,2⎰⎰=D dxdy y x f ,求()⎰⎰Ddxdy y x f ,.【解】根据二重积分的性质()⎰⎰Ddxdy y x f ,()⎰⎰+=1,D dxdy y x f ()615,2=+=⎰⎰D dxdy y x f .5.设()⎰⎰+=13221D d y x I σ, (){}22,11|,1≤≤-≤≤-=y x y x D ;()⎰⎰+=23222D d y x I σ,其中(){}20,10|,2≤≤≤≤=y x y x D .试利用二重积分的几何意义说明1I 与2I 之 间的关系.【解】因为积分区域2D 关于x 轴及y 轴均对称,且被积函数()()322,y x y x f +=为偶函数,故根据二重积分的对称性知214I I =. 6.估计下列积分的值. (1)⎰⎰+=Dy xd e I σ22,其中(){}41|,22≤+≤=y x y x D ;【解】积分区域D 的面积πσ3=.显然被积函数()32,y x e y x f +=在积分区域D 内有最小值e e m ==1及最大值4e M =,因此由估值定理知 433e I e ππ≤≤.(2)⎰⎰=Dyd x I σ22sin sin ,其中(){}ππ≤≤≤≤=y x y x D 0,0|,.【解】积分区域D 的面积2πσ=.显然被积函数()x x y x f 22sin sin ,=在积分区域D 内有最小值()00,0==f m 及最大值12,2=⎪⎭⎫⎝⎛=ππf M ,因此由估值定理知20π≤≤I .7.设函数()y x f ,在点()b a ,的某个邻域内连续,D 表示以点()b a ,为圆心且完全含在上述邻域内的圆域(半径为R ).求极限 ()⎰⎰→DR d y x f R σπ,1lim20.【解】积分区域D 的面积2R πσ=.由积分中值定理知 ()⎰⎰Dd y x f σ,()()ηξπσηξ,.,2f R f ==.显然当0→R 时,()()b a ,,→ηξ,所以 ()⎰⎰→DR d y x f R σπ,1lim20()()b a f f R ,,lim 0==→ηξ.8.设区域(){}1|,22≤+=y x y x D ,()y x f ,为区域D 上的连续函数,且 ()()dxdy y x f y x y x f D⎰⎰---=,11,22π. ① 求()y x f ,.【解】记 ()dxdy y x f a D⎰⎰=,. ②则①成为()πay x y x f ---=221,. ③由③得()⎰⎰⎰⎰⎰⎰---=DDDdxdy adxdy y x dxdy y x f π221,. ④其中,根据几何意义及性质可知32134211322ππ=⎪⎭⎫ ⎝⎛⨯=--⎰⎰dxdy y x D.π=⎰⎰Ddxdy .所以由④式得到 3.32ππππ=⇒-=a a a . 将3π=a 代入③即得到()311,22---=y x y x f .习题9.21.在化二重积分时,选择坐标系的原则是什么?【解】选择坐标系的原则主要是根据积分区域的形状,具体地讲,积分区域的边界曲线是用直角坐标方程表示方便还是用极坐标方程表示简洁.当然,被积函数的特征也要考虑,如形如()22y xf+的积分就首选极坐标系来计算.2.先画出积分区域,再计算二重积分.(1)()⎰⎰+Dd y x σ22,其中D 是矩形区域:1,1≤≤y x ;【解】记(){}10,10|,1≤≤≤≤=y x y x D .由对称性知()⎰⎰+Dd y xσ22()⎰⎰+=1224D d y x σ()dy y x dx ⎰⎰+=101224⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=101032|314dx y y x 3831314314101032|=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎰x x dx x .(2)()⎰⎰++Dd y y x x σ3233,其中D 是矩形区域:10,10≤≤≤≤y x ;【解】()⎰⎰+Dd y xσ22()dy y y x x dx ⎰⎰++=10103233⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=10104223|4123dx y y x y x1412141412310103423|=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=⎰x x x dx x x .(3)()⎰⎰+Dd y x σ23,其中D 是由两坐标轴及直线2=+y x 所围成的区域;【解】()⎰⎰+Dd y x σ23()dy y x dx x⎰⎰-+=202023()⎰⎥⎦⎤⎢⎣⎡+=-20202|3dx y xy x()()[]()3204324222232020232022|=⎪⎭⎫ ⎝⎛++-=++-=-+-=⎰⎰x x x dx x x dx x x x .(4)()⎰⎰+Dd y x x σcos ,其中D 是顶点分别为()0,0,()0,π,()ππ,的三角形区域;【解】()⎰⎰+Dd y x x σcos ()dy y x x dx x ⎰⎰+=π00cos ()⎰⎥⎦⎤⎢⎣⎡+=π00|sin dx y x x x()⎰⎰⎰-=-=πππ0sin 2sin sin 2sin xdx x xdx x dx x x x()()⎰⎰+-=ππ00cos 2cos 21x xd x xd 【分部】()⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--=⎰⎰ππππ0000cos cos 22cos 212cos 21||xdx x x x xd x xπππππππ2321sin 2sin 2121||00-=--=⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡--=x x .(5)⎰⎰Dxy dxdy ye ,其中D 是由曲线2,2,1===y x xy 所围成的区域; 【解】⎰⎰Dxydxdy ye dy ye dx x xy⎰⎰=22121()x d e yd x x xy ⎰⎰⎥⎦⎤⎢⎣⎡=221211x d dy e ye x x xy x xy ⎰⎰⎪⎪⎭⎫ ⎝⎛-=2212121|1x d e x x e e x x xy x⎰⎪⎪⎭⎫ ⎝⎛--=221212|1121 x d e x e x x x ⎰⎪⎭⎫ ⎝⎛-=22122212x d e x x⎰=221212x d e xx ⎰-221221其中=⎰x d e x x 221221⎪⎭⎫ ⎝⎛-⎰x d e x 12212【分部】()⎥⎦⎤⎢⎣⎡--=⎰2212221211|x x e d x e x ++-=e e 2214x d e xx ⎰221212.所以⎰⎰Dxydxdy ye -=⎰x d e x x 221212e e dx e x e e x22112221422214-=⎥⎦⎤⎢⎣⎡++-⎰. (6)()⎰⎰+Ddxdy y x sin ,其中D 是矩形区域:ππ20,0≤≤≤≤y x .【解】以直线π=+y x 及π2=+y x 将区域D 分成三个子区域:321D D D D ⋃⋃=.其中,⎩⎨⎧≤≤-≤≤,0,0:1ππx x y D , ⎩⎨⎧≤≤-≤≤-,0,2:2πππx x y x D ,⎩⎨⎧≤≤≤≤-,0,22:3πππx y x D ()dy y x dx I x⎰⎰-+=ππ0sin ()dy y x dx x x ⎰⎰--+-+πππ02sin ()dy y x dx x⎰⎰-++πππ022sin其中()dy y x dx x⎰⎰-+ππ0sin ()dx y x x ⎰⎥⎦⎤⎢⎣⎡+-=-ππ00|cos ()()πππ=+=+=⎰|0sin cos 1x x dx x ;()dy y x dx xx⎰⎰--+-πππ02sin ()dx y x xx ⎰⎥⎦⎤⎢⎣⎡+=--πππ02|cosππ220==⎰dx ;()dy y x dx x ⎰⎰-+πππ022sin ()dx y x x ⎰⎥⎦⎤⎢⎣⎡+-=-πππ022|cos ()()πππ=-=-=⎰|0sin cos 1x x dx x .所以 .42ππππ=++=I3.化二重积分()⎰⎰Dd y x f σ,为二次积分,且二次积分的两个变量的积分次序不同,其中积分区域D 为:(1)由直线x y =及抛物线x y 42=所围成的区域;【解】联立⎩⎨⎧==,4,2x y x y 解得⎩⎨⎧==,0,0y x 或⎩⎨⎧==.4,4y x 所以直线x y =及抛物线x y 42=的交点为()0,0及()4,4.(i )若视区域D 为-X 型区域,则⎩⎨⎧≤≤≤≤.40,2:x x y x D()⎰⎰Dd y x f σ,()⎰⎰=402,xxdy y x f dx .(ii )若视区域D 为-Y 型区域,则⎪⎩⎪⎨⎧≤≤≤≤.40,41:2y y x y D()⎰⎰Dd y x f σ,()⎰⎰=40412,y y dx y x f dy .(2)半圆形区域222r y x ≤+,0≥y .(i )若视区域D 为-X 型区域,则⎪⎩⎪⎨⎧≤≤--≤≤.,0:22r x r x r y D()⎰⎰Dd y x f σ,()⎰⎰--=rrx r dy y x f dx 320,.(ii )若视区域D 为-Y 型区域,则⎪⎩⎪⎨⎧≤≤-≤≤--.0,:3222r y y r x y r D()⎰⎰Dd y x f σ,()⎰⎰---=ry r y r dx y x f dy 03222,.4.交换下列积分次序 (1)()⎰⎰--21222,x x xdy y x f dx ;【解】D 是由圆周曲线()1122=+-y x ,2=+y x 【两曲线交于点()1,1】所围成的区域.故()⎰⎰--21222,x x xdy y x f dx ().,11122⎰⎰-+-=y ydy y x f dy(2)()⎰⎰e xdy y x f dx 1ln 0,;【解】积分区域D 由曲线x y ln =,及x 轴和直线e x =所围成. 若改变积分次序,即将区域D 视为-Y 型区域,则⎩⎨⎧≤≤≤≤,10:1y ex e D y ,所以()⎰⎰e xdy y x f dx 1ln 0,().,10⎰⎰=eey dx y x f dy(3)()⎰⎰102,x xdy y x f dx ;【解】积分区域D 由抛物线x y 42=及两直线x y =和直线1=x 所围成.若改变积分次序,即将区域D 视为-Y 型区域,则需要将D 分块: 21D D D ⋃=.其中⎪⎩⎪⎨⎧≤≤≤≤,1041:21y yx y D ,⎪⎩⎪⎨⎧≤≤≤≤,21141:22y x y D .所以 ()⎰⎰102,xxdy y x f dx()⎰⎰=10412,y y dx y x f dy ()⎰⎰+211412,y dx y x f dy .(4)()⎰⎰--0121,ydx y x f dy ()⎰⎰++1021,ydx y x f dy .【解】积分区域21D D D ⋃=.其中⎩⎨⎧≤≤-≤≤-,0121:1y x y D ,⎩⎨⎧≤≤≤≤+,1021:2y x y D 因此积分区域D 是由三直线1,1=-=+y x y x 及2=x 所围成的三角形区域.若改变积分次序,即将区域D 视为-X 型区域,则⎩⎨⎧≤≤-≤≤-21,11:x x y x D所以 ()⎰⎰--0121,y dx y x f dy ()⎰⎰++1021,ydx y x f dy ()⎰⎰--=2111,x x dy y x f dx .5.计算⎰⎰-10122xy dy e dx x .【解】积分区域D 是由直线x y =、1=y 及y 轴所围成的三角形区域. 改变积分次序得⎰⎰-10122x y dy e dx x ⎰⎰-=10022y y dx x dy e ⎰⎪⎭⎫ ⎝⎛=-1003|312dy x e y y⎰-=103231dy e y y ()⎰--=102261y ed y 【分部】 ()⎥⎦⎤⎢⎣⎡-+-=⎰--10210222|61y d e e y y y ⎥⎦⎤⎢⎣⎡+-=--|101261y e e 6131+-=e .6.求由平面0,0==y x 及1=+y x 所围成的柱体被平面0=z 及抛物面z y x -=+622截得的立体的体积.【解】根据二重积分的几何意义知()⎰⎰--=Ddxdy y x V 226.其中积分区域D 是xoy 面内由直线1=+y x 及x 轴、y 轴所围成的平面区域.V ()dy y x dx x⎰⎰---=1010226⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=-101032|316dx y y x y x()()()⎰⎰⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡-----=101023323175234131116dx x x x dx x x x x .617317253231|10234=⎪⎭⎫ ⎝⎛+--=x x x x . 7.利用极坐标计算下列各题. (1)⎰⎰+Dy xd e σ22,其中D 是圆形区域:422≤+y x ; 【解】⎰⎰+Dy xd e σ22⎰⎰+=1224D y xd e σ【极坐标】()121244202020|22-=⎪⎭⎫⎝⎛==⎰⎰e e rdr e d r r ππθπ.(2)()⎰⎰++Dd y x σ221ln ,其中D 是圆周122=+y x 及坐标轴在第一象限内所围成的区域;【解】()⎰⎰++Dd y x σ221ln 【极坐标】()=+=⎰⎰rdr r d 20121ln πθ【令t r =2】()dt t ⎰+=11ln 4π【分部】()⎥⎦⎤⎢⎣⎡+-+=⎰dt t t t t 101011ln 4|π()⎥⎦⎤⎢⎣⎡+-+-=⎰dt t t 101112ln 4π []()12ln 241ln 42ln 4|10-=+--=πππt t .(3)σd x yD⎰⎰arctan ,其中D 是由圆周122=+y x ,422=+y x 及直线xy y ==,0在第一象限内所围成的区域;【解】rdr r r d dxdy x y I D.cos sin arctan arctan 4021⎰⎰⎰⎰==πθθθ==⎰⎰rdr d .421πθθ .64321.21.22124024021||πθθθππ=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎰⎰r dr r d(4)⎰⎰Dxdxdy ,(){}x y x y x D 22|,22≤+≤=;【解】⎰⎰Dxdxdy ⎰⎰=12D xdxdy 【极坐标】⎥⎦⎤⎢⎣⎡+=⎰⎰⎰⎰24cos 204020.cos .cos 2ππθπθθθθrdr r d rdr r d⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎰⎰⎰24cos 20340202|31cos .cos 2ππθπθθθθd r dr r d ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰24420340cos 3831sin 2||πππθθθd r θθππd ⎰+=244cos 3163424132331634ππ=⎥⎦⎤⎢⎣⎡-+=.【其中θθππd ⎰244cos θθππd 22422cos 1⎰⎪⎭⎫ ⎝⎛+=()θθθππd ⎰++=2422cos 2cos 2141⎰=2441ππθd ()⎰+2422cos 41ππθθd +⎰+2424cos 141ππθθd 413234sin 3214812sin 41441||2424-=⎥⎦⎤⎢⎣⎡+⨯++⨯=πθπθπππππ】. 【注意:此题书中答案有误】.(5)⎰⎰-Ddxdy y x ,(){}0,0,1|,22≥≥≤+=y x y x y x D ;【解】以直线x y =将积分区域D 分块:21D D D ⋃=其中1D 由圆周()0,0122≥≥=+y x y x 及x 轴和直线x y =所围成; 其中2D 由圆周()0,0122≥≥=+y x y x 及y 轴和直线x y =所围成.⎰⎰-Ddxdy y x ()+-=⎰⎰1D dxdy y x ()⎰⎰-2D dxdy x y 【极坐标】()rdr r r d ⎰⎰-=14sin cos θθθπ()rdr r r d ⎰⎰-+124cos sin θθθππ()dr r d ⎰⎰-=1240sin cos πθθθ()dr r d ⎰⎰-+1224cos sin ππθθθ()⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+=||1034031.cos sin r πθθ()⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+-+||1032431.sin cos r ππθθ ()()12311231-+-=()1232-=. (6)()⎰⎰+Ddxdy y x y 23,(){}0,4|,22≥≤+=y y x y x D .【解】()⎰⎰+Ddxdy y x y 23⎰⎰=Dydxdy ⎰⎰+Ddxdy y x 230+=⎰⎰Dydxdy【极坐标】rdr r d ⎰⎰=20.sin θθπdr r d ⎰⎰=220sin πθθ31631cos ||2030=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=r πθ. 8.把()⎰⎰+=Ddxdy y xfI 22化为单重积分,其中(){}1|,22≤+=y x y x D .【解】()⎰⎰+=Ddxdy y xfI 22【极坐标】()⎰⎰=1204rdr r f d πθ()⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰⎰1020.4rdr r f d πθ()⎰=102rdr r f π.9.把下列积分化为极坐标形式,并计算其积分值. (1)()⎰⎰-+ay a dx y xdy 002222;【解】()⎰⎰-+ay a dx y xdy 02222【极坐标】404228412|a r rdr r d aaππθπ=⎪⎭⎫ ⎝⎛==⎰⎰. (2)()⎰⎰-+ax ax dy y xdx 2020222;【解】()⎰⎰-+ax ax dy y xdx 2020222【极坐标】==⎰⎰rdr r d a 20cos 202πθθ⎰⎪⎭⎫ ⎝⎛20cos 204|41πθθd r a . 44244432.!!4!!34cos 4a a d a ππθθπ=⎪⎭⎫ ⎝⎛==⎰.(3)⎰⎰+axdy y x dx 022;【解】⎰⎰+axdy y x dx 022【极坐标】==⎰⎰rdr r d a 40sec 0.πθθ⎰⎪⎭⎫ ⎝⎛40sec 03|31πθθd r a ⎰=4033sec 31πθθd a []|403tan sec ln tan .sec 61πθθθθ++=a()[]21ln 2613++=a【其中,()⎰⎰==θθθθtan sec sec 3d d I 【分部】()⎰-=θθθθsec tan tan .sec d⎰-=θθθθθd 2tan sec tan .sec ()⎰--=θθθθθd 1sec sec tan .sec 2 I d d -++=+-=⎰⎰θθθθθθθθθθtan sec ln tan .sec sec sec tan .sec 3所以,[]C I +++=θθθθtan sec ln tan .sec 21.】 (4)⎰⎰+1222xxdx y x dx .【解】⎰⎰+10222xxdx y x dx 【极坐标】==⎰⎰rdr r d a 40sec tan 0.πθθθ⎰⎪⎭⎫ ⎝⎛40tan sec 03|31πθθθd r a ⎰=40333tan sec 31πθθθd a ()()⎰-=40223sec 1sec sec 31πθθθd a()12452sec 31sec 5131|40353+=⎥⎦⎤⎢⎣⎡-=πθθa .10.设()x f 为连续函数,且()()⎰⎰+=Ddxdy y x f t F 22,其中(){}222|,t y x y x D ≤+=,求极限()tt F t '→0lim.【解】()()⎰⎰+=Ddxdy y x f t F 22【极坐标】()rdr r f d t⎰⎰=πθ202()r dr r f t⎰=022π.故 ()()22t tf t F π='. ① 所以()t t F t '→0lim【代入 ①】()()022lim 0f t t tf t ππ==→. 【注意:怀疑此题本身有问题,故对题目本身作了合理修正】11*.设()x f 在[]1,0上连续,并设()A dx x f =⎰10,求()()⎰⎰101xdy y f x f dx .【解】 记⎩⎨⎧≤≤≤≤,10,1:1x y x D ⎩⎨⎧≤≤≤≤,10,0:2x x y D ,21D D D ⋃=.则 ()()()()dxdy y f x f dy y f x f dx I D x⎰⎰⎰⎰==1111. ①()()()()dxdy y f x f dy y f x f dx I D x⎰⎰⎰⎰==2102. ②又交换积分次序后()()==⎰⎰111x dy y f x f dx I ()()⎰⎰10y dx y f x f dy ()()⎰⎰=10xdy y f x f dx ,即21I I =.所以有 ()()()dxdy y f x f I I I D⎰⎰=+=2121211 ()()210102121A dy y f dx x f ==⎰⎰. 12*.设()x ϕ为[]1,0上的正值连续函数,证明:()()()()()b a dxdy x y x b y a D+=++⎰⎰21ϕϕϕϕ,其中b a ,为常数,(){}10,10|,≤≤≤≤=y x y x D . 【证明】因为积分区域D 关于直线x y =对称,则 ()()()=+=⎰⎰Ddxdy y x x I ϕϕϕ()()()⎰⎰+Ddxdy y x y ϕϕϕ. ① 故有()()()()212121==⎥⎦⎤⎢⎣⎡++=⎰⎰⎰⎰DD dxdy dxdy y x y x I ϕϕϕϕ. ② 所以有()()()()=++⎰⎰D dxdy x y x b y a ϕϕϕϕ()()()b dxdy y x y a D++⎰⎰ϕϕϕ()()()⎰⎰+Ddxdy y x x ϕϕϕ ).(21b a bI aI +=+= 13*.设闭区间[]b a ,上()x f 连续且恒大于零,试利用二重积分证明不等式()()()21a b dx x f dx x f baba-≥⎰⎰. 【证法一】考虑到定积分与变量的记号无关.故有: ()()⎰⎰=b a bay f dy x f dx. ① 以及()().dy y f dx x f baba⎰⎰= ②所以有()()()()..⎰⎰⎰⎰=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D b a b a dxdy y f x f x f dx dx x f ③其中,⎩⎨⎧≤≤≤≤.,:b y a b x a D 同时()()()()..⎰⎰⎰⎰=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D b a b a dxdy x f y f x f dx dx x f ④ ③+④,得()()()()()()()()()().2.2⎰⎰⎰⎰⎰⎰≥⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D Db a b a dxdy y f x f x f y f dxdy y f x f x f y f x f dx dx x f ()222.Ddxdy b a ==-⎰⎰即: ()()()2..b b a a dx f x dx b a f x ⎡⎤⎡⎤≥-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰ 【证法二】:因为()0≥x f ,所以有20b a dx ⎡⎤⎢≥⎢⎣⎰,即 ()()()220.bbaadxf x dx b a f x λλ⎡⎤+-+≥⎢⎥⎣⎦⎰⎰① ①式左边是λ的非负二次三项式,因此必有判别式()()()20b b a a dx b a f x dx f x ⎡⎤⎡⎤∆=--≤⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰. ② 故由②得到()()()2..b b a a dx f x dx b a f x ⎡⎤⎡⎤≥-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰14*.设()x f 在闭区间[]b a ,上连续.试利用二重积分证明不等式()()()dx x fa b dx x f ba ba ⎰⎰-≤⎥⎦⎤⎢⎣⎡22.【证明】由于()2⎥⎦⎤⎢⎣⎡⎰dx x f b a ()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎰⎰dx x f dx x f b a b a ()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎰⎰dy y f dx x f ba b a . ① 令 ⎩⎨⎧≤≤≤≤.,:b y a b x a D 则 由①得到()()()dxdy y f x f dx x f Dba ⎰⎰⎰=⎥⎦⎤⎢⎣⎡2. ②又 ()()()()222y fx fy f x f +≤.③故()()()dxdy y fx f dx x f Db a ][21222+≤⎥⎦⎤⎢⎣⎡⎰⎰⎰()()⎥⎦⎤⎢⎣⎡+=⎰⎰⎰⎰b a b a b a b a dy y f dx dx x f dy 2221 ()()dx x f a b b a ⎰-=221()()dy y f a b b a ⎰-+221【定积分与变量记号无关()()dx x fa b ba⎰-=2.15*.设区域(){}0,1|,22≥≤+=x y x y x D ,求二重积分⎰⎰+++Ddxdy y x xy2211.【解】⎰⎰+++Ddxdy y x xy 2211⎰⎰++=D dxdy y x 2211⎰⎰+++D dxdy yx xy221 0112122+++=⎰⎰D dxdy y x 【极坐标】rdr r d ⎰⎰+=2102112πθ ()().2ln 21ln 21112|1022102πππ=+=++=⎰rr d r习题9.31.利用定积分、二重积分和三重积分计算空间立体体积时,被积函数和积分区域各有什么不同? 【解】略.2.将三重积分()dxdydz z y x f I ⎰⎰⎰Ω=,,化为三次积分,其中空间区域分别为:(1)由曲面22y x z +=,0=x ,0=y ,1=z 所围成且在第一卦限内的区域;【解】⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤≤≤+Ω.10,10,1:222x x y z y x Ω向xoy 面上投影区域为⎪⎩⎪⎨⎧≤≤-≤≤.10,10:2x x y D xy ,所以()dz z y x f dy dx I y x x ⎰⎰⎰+-=1101222,,.(2)由双曲抛物面xy z =及平面01=-+y x ,1=z 所围成的区域;【解】⎪⎩⎪⎨⎧≤≤-≤≤≤≤Ω.10,10,0:x x y xy z Ω向xoy 面上投影区域为⎩⎨⎧≤≤-≤≤.10,10:x x y D xy ,所以()dz z y x f dy dx I xyx⎰⎰⎰-=01010,,.(3)由曲面222y x z +=及22x z -=所围成的区域. 【解】联立⎪⎩⎪⎨⎧-=+=,2,2222x z y x z 消去z ,得 Ω向xoy 面上的投影区域为 1:22≤+y x D xy . 故⎪⎪⎩⎪⎪⎨⎧≤≤--≤≤---≤≤+Ω.11,11,22:22222x x y x x z y x所以()dz z y x f dy dx I x y x x x ⎰⎰⎰-+----=22222221111,,.3.利用直角坐标系计算下列三重积分.(1)dV z xy ⎰⎰⎰Ω32,其中Ω是由平面x y =,1=x ,0=z 及曲面xy z =所围区域.【解】Ω在xoy 坐标面上的投影区域为三角形区域.10,0:⎩⎨⎧≤≤≤≤x x y D 故dz z dy y xdx dV z xy xyx⎰⎰⎰⎰⎰⎰=Ω03021032⎰⎰⎥⎦⎤⎢⎣⎡=xxy dy z y xdx 004210|41⎰⎰=x dy y dx x 0610541⎰⎥⎦⎤⎢⎣⎡=10075|7141dx y x x 3641131281281|10131012=⨯==⎰x dx x . (2)()⎰⎰⎰Ω+++31z y x dV,其中Ω是由平面0=x ,0=y ,0=z 及1=++z y x 所围成的四面体;【解】Ω在xoy 坐标面上的投影区域为三角形区域.10,10:⎩⎨⎧≤≤-≤≤x x y D 故()dxdydz z y x ⎰⎰⎰Ω+++311=()dz z y x dy dx x y x ⎰⎰⎰---+++101010311()()z y x d z y x dy dx xyx ++++++=⎰⎰⎰---1111010103()⎰⎰---⎥⎦⎤⎢⎣⎡+++-=1010102|11.21xy x dy z y x dx ()⎰⎰-⎥⎦⎤⎢⎣⎡-++=10102411121xdy y x dx ⎰-⎪⎪⎭⎫ ⎝⎛-++-=1010|411121dx y y x x⎰⎪⎭⎫⎝⎛+++-=101144321dx x x ().1652ln 21811ln 4321|102-=⎪⎭⎫ ⎝⎛+++-=x x x (3)()dxdydz z x y ⎰⎰⎰Ω+cos ,其中Ω是由抛物柱面x y =以及平面0=y ,0=z ,2π=+z x 所围成区域.【解】Ω在xoy 坐标面上的投影区域为.20,0:⎪⎩⎪⎨⎧≤≤≤≤πx x y D 故()dxdydz z x y ⎰⎰⎰Ω+cos =()dz z x ydy dx xx⎰⎰⎰-+2020cos ππ()⎰⎰⎥⎦⎤⎢⎣⎡+=-200|2sin ππxxdy z x y dx ()⎰⎰-=200sin 1πx ydy x dx ()⎰⎥⎦⎤⎢⎣⎡-=2002|21sin 1πdx y x x ()⎰-=20sin 121πdx x x⎰=2021πxdx 21161sin 21220-=-⎰ππxdx x .【其中2202201614121|πππ==⎰x xdx ;()⎰⎰=-2020cos 21sin 21ππx xd xdx x 【分部】⎥⎦⎤⎢⎣⎡-=⎰2020cos cos 21|ππxdx x x 21sin 21|20-=-=πx .】4.利用柱面坐标计算三重积分.(1)()d V y x ⎰⎰⎰Ω+22,其中Ω是由曲面z y x 222=+及平面2=z 所围成的区域;【解】本题宜采用“切片法”计算()()dxdy y x dz dz dxdy y xzD ⎰⎰⎰⎰⎰⎰+=+Ω22222.3163242.||20320202422020πππθπ====⎰⎰⎰⎰z dz r rdr r d dz z z如采用柱面坐标系:()dz dxdy y x⎰⎰⎰Ω+22.3166.2142222.2|206420223222202πππθπ=⎥⎦⎤⎢⎣⎡-=⎪⎪⎭⎫⎝⎛-==⎰⎰⎰⎰r r dr r r dz r rdr d r (2)()d V y x ⎰⎰⎰Ω+22,其中Ω是由曲面()222254y x z +=及平面5=z 所围成的区域;【解】(柱面坐标法)Ω在xoy 坐标面上的投影区域为.4:22≤+y x D()V d y x⎰⎰⎰Ω+22dr z r dz r rdr d r r ⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛==20205253525220|.2πθπ dr r r ⎪⎭⎫ ⎝⎛-=⎰255223πππ82452|2054=⎥⎦⎤⎢⎣⎡-=r r .(3)dV xyz ⎰⎰⎰Ω,其中Ω是由球面1222=++z y x 及三个坐标面所围且在第一卦限内的区域.【解】(球面坐标法)Ω在xoy 坐标面上的投影区域为V xyzd ⎰⎰⎰Ω⎰⎰⎰=2015320cos sin cos sin ππρρϕϕϕθθθd d d48161.sin 41.sin 21|||106204202=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=ρϕθππ.5.利用球面坐标计算三重积分.(1)()d V z y x ⎰⎰⎰Ω++222,其中()(){}222223,|,,y x z z z y x z y x +≥≤++=Ω;【解】(球面坐标法)()d V z y x⎰⎰⎰Ω++222⎰⎰⎰=60cos 02220.sin πϕπρρρϕϕθd d dϕρϕππϕd ⎰⎥⎦⎤⎢⎣⎡=6cos 05|51sin 2ϕϕϕππd ⎰=605sin cos 52()ϕϕππcos cos 52605d ⎰-=πϕππ96037cos 6152|606=⎥⎦⎤⎢⎣⎡-=.(2)dxdydz z ⎰⎰⎰Ω2,其中Ω是由抛物面22y x z +=之上,球面2222=++z y x 之内的部分围成;【解】(柱面坐标法)联立⎩⎨⎧+==++22222,2y x z z y x 消z ,得Ω在xoy 坐标面上投影区域.1:22≤+y x D 所以dz dxdy z⎰⎰⎰Ω2⎰⎰⎰-=1222022r rdz z rdr d πθ⎰⎥⎦⎤⎢⎣⎡=-123|22312r r z r π()⎰⎥⎦⎤⎢⎣⎡--=10632232dr r r r π()⎰-=1032232dr r r π()πππππ121228151121232107--=-=-⎰dr r ()1323260-=π.【其中()⎰-1032232dr r r π【令t r sin 2=】⎰=404cos .sin 328ππtdt t ()()πππππ228151cos 51328cos cos 328|405404-=⎥⎦⎤⎢⎣⎡-=-=⎰t t td ; .121813232|108107πππ-=⎥⎦⎤⎢⎣⎡-=-⎰r dr r 】(3)dxdydz x ⎰⎰⎰Ω,其中()(){}0,0,0|,,2222≥≥>≤++=Ωy x a a z y x z y x .【解】(球面坐标法)⎰⎰⎰Ωxdxdydz ⎰⎰⎰=ππρρθϕρϕϕθ00220.cos sin sin ad d d ⎰⎰⎰=ππρρρϕϕθθ0222.sin cos ad d d404020841.2sin 4121.sin |||a a πρϕϕθππ=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡=.6.采用三种坐标计算三重积分dxdydz z ⎰⎰⎰Ω2,其中()2222|,,{R z y x z y x ≤++=Ω()}2,0222Rz z y x R ≤++>.【解法一】(柱面坐标法)联立⎩⎨⎧=++=++,2,222222Rz z y x R z y x 消z ,得Ω在xoy 坐标面上的投影区域为 .43:222R y x D ≤+dz dxdy z ⎰⎰⎰Ω2 dr z r dz z rdr d R R r R r R R r R r R R ⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛==------232303220|222222223.2πθπ()()⎰⎥⎦⎤⎢⎣⎡----=R dr rR R r R r 23032232232π(令t R r sin =)()[]⎰--=30333cos .cos cos sin 32ππtdt R t R R t R t R[]⎰-+-=30235cos sin cos 3cos 31cos 232ππtdt t t t t R⎰=3045sin cos 34ππtdt t R ⎰-305sin cos 32ππtdt t R⎰+3025sin cos 2ππtdt t R⎰-3035sin cos 2ππtdt t R|30555cos 34ππt R -=|30252cos 32ππt R +|30353cos 2ππt R -|30454cos 2ππt R + ⎪⎭⎫ ⎝⎛--=32311545R π⎪⎭⎫ ⎝⎛-+4335R π⎪⎭⎫ ⎝⎛--87325R π⎪⎭⎫ ⎝⎛-+161525R π .480595R π=【解法二】(球面坐标法)球面坐标计算:这时首先要把积分区域Ω分成两个子区域: .21Ω⋃Ω=Ω 其中⎪⎩⎪⎨⎧≤≤≤≤≤≤Ω,0,30,20:1R ρπϕπθ ⎪⎩⎪⎨⎧≤≤≤≤≤≤Ω,cos 20,232,20:2ϕρπϕππθR则dz dxdy z ⎰⎰⎰Ω2=dz dxdy z ⎰⎰⎰Ω12dz dxdy z ⎰⎰⎰Ω+22ρρϕρϕϕθππd d d R⎰⎰⎰=2030222.cos sinρρϕρϕϕθπππϕd d d R ⎰⎰⎰+2023cos 20222.cos sin⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰⎰R d d 04302cos .sin 2ρρϕϕϕππ ⎪⎪⎭⎫ ⎝⎛+⎰⎰ϕππρρϕϕϕπcos 204232cos .sin 2R d d ⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=||0530351cos 312R ρϕππ⎪⎪⎭⎫ ⎝⎛+⎰2375cos .sin 32512ππϕϕϕπd R 551.247.2R π=⎪⎪⎭⎫ ⎝⎛-+|2385cos 81564ππϕπR 5607R π=⎪⎭⎫ ⎝⎛+81.25615645R π5607R π=5160R π+.480595R π= 【解法三】(直角坐标系之“切片法”)将Ω分块为21Ω⋃Ω=Ω.其中()()⎪⎩⎪⎨⎧∈≤≤Ω11,,20z D y x R z :,()22212:z Rz y x D z -≤+; ()()⎪⎩⎪⎨⎧∈≤≤Ω22,,2z D y x R z R:,()22222:z R y x D z -≤+. ()()()()[]dz z Rz z dz D S z dxdy dz z dz dxdy zR z D R R z220212022022211-===⎰⎰⎰⎰⎰⎰⎰⎰Ωπ5205440151412|R z z R Rππ=⎥⎦⎤⎢⎣⎡-=;()()()()[]dz z R z dz D S z dxdy dz z dz dxdy z RR z D RR R R z222222222222-===⎰⎰⎰⎰⎰⎰⎰⎰Ωπ 52532480475131|R z z R R R ππ=⎥⎦⎤⎢⎣⎡-=. 所以dz dxdy z ⎰⎰⎰Ω2=dz dxdy z ⎰⎰⎰Ω12dz dxdy z ⎰⎰⎰Ω+225554805948047401R R R πππ=+=. 7.若柱面122=+y x 与平面0=z ,1=z 所围成的柱体内任一点()z y x ,,处的密度22y x z --=μ,试计算该柱体的质量.【解】()()⎪⎩⎪⎨⎧Ω∈-+Ω∈--=--=.,,,,,22212222y x z y x y x y x z y x z μ 其中()⎩⎨⎧∈≤≤+ΩD y x z y x ,,1221:;()⎩⎨⎧∈+≤≤ΩD y x y x z ,,0222:;1:22≤+y x D . 所以 =M ()dz dxdy y xz ⎰⎰⎰Ω--122()πππ316161222=+=-++⎰⎰⎰Ωdz dxdy z y x .【其中()dz dxdy y xz ⎰⎰⎰Ω--122【柱面坐标】()dr z r z r dz r z rdr d r r ⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛-=-=10101221220|222.2πθπ()πππ6161222|10642153=⎪⎪⎭⎫ ⎝⎛+-=+-=⎰r r r dr r r r ;()dz dxdy z y x⎰⎰⎰Ω-+222【柱面坐标】()dr z z r r dz z r rdr d r r ⎰⎰⎰⎰⎪⎭⎫ ⎝⎛-=-=110022220|2221.2πθππππ6161|10615=⎪⎭⎫ ⎝⎛==⎰r dr r .】8.分别用定积分、二重积分和三重积分求由22y x z +=和22y x z +=所围成的立体Ω的体积.【解】联立⎪⎩⎪⎨⎧+=+=,,2222y x z y x z 消z ,得Ω在xoy 坐标面上的投影区域为 .1:22≤+y x D(一)定积分过z 轴上任意一点z 作Ω的截面,则该截面的面积为 ()()()[]1,0,222∈-=-=z z z z z z A πππ所以Ω的体积为()()πππ613121|103210210=⎪⎭⎫ ⎝⎛-=-==⎰⎰z z dz z z dz z A V .(二)二重积分 ()[]d xdy y x y xV D⎰⎰+-+=2222【极坐标】()ππθπ61432|10432012=⎪⎪⎭⎫ ⎝⎛-=-=⎰⎰r r rdr r r d . (三)三重积分⎰⎰⎰Ω=dV V 【球面坐标】ρρϕϕθπϕϕππd d d ⎰⎰⎰=20sin cos 02242sin()ϕϕπϕϕϕπϕρϕπππππππϕϕcot cot 32sin cos 3231sin 2243245324sin cos 03|2d d d ⎰⎰⎰-==⎥⎦⎤⎢⎣⎡=πϕπππ61cot 4132|244=⎥⎦⎤⎢⎣⎡-=. 9.设()x f 在0=x 处可导,且()00=f ,求极限()d xdydz z y x f t t ⎰⎰⎰Ω→++22241lim,其中(){}2222|,,t z y x z y x ≤++=Ω.【解】()d xdydz z y x f tt ⎰⎰⎰Ω→++222401lim ()⎰⎰⎰=ππρρρϕϕθ00220.sin ad f d d()ρρρϕππd f a 200.cos 2|⎰⎥⎦⎤⎢⎣⎡-=()ρρρπd f a 20.4⎰=. ①所以()d xdydz z y x ft t ⎰⎰⎰Ω→++22241lim【由①】()4204lim t f tt ⎰→=ρρπ【洛必达法则】()32044lim t t t f t π→=()t t f t 0lim →=π()()00lim 0--=→t f t f t π()0f '=π. 习题9.41.求由曲线()xy y x C =+222:所围平面图形D 的面积.【解】化曲线C 为极坐标表示:θθsin cos 2=r ,⎥⎦⎤⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡∈πππθ23,2,0.由对称性知()⎰⎰=12D d D S σ【极坐标】θθπθθπθθd r dr r d ⎰⎰⎰⎥⎦⎤⎢⎣⎡==20cos sin 0220cos sin 0|2122()21sin 21sin sin cos sin |2022020====⎰⎰πππθθθθθθθd d d .2.求由曲面222y x z +=及2226y x z --=所围成的立体Ω的体积. 【解】联立⎪⎩⎪⎨⎧--=+=,26,22222y x z y x z 消去z ,得 Ω向xoy 面上的投影区域为 2:22≤+y x D xy .所以Ω的体积为 ()()[]d xdy y x y xV xyD ⎰⎰+---=2222226()d xdy y xxyD ⎰⎰--=22336()ππθπ6433236|2422022=⎥⎦⎤⎢⎣⎡-=-=⎰⎰r rrdr r d . 3.求由曲面()xyz a z y x S 332223:=++所围立体的体积.【解】做球坐标变换:⎪⎩⎪⎨⎧===,cos ,sin sin ,cos sin ϕρθϕρθϕρz y x 则S 在球坐标下的方程为θθϕϕρsin cos cos sin 3233a =ρρϕϕθθθϕϕππd d d dV V a ⎰⎰⎰⎰⎰⎰Ω==3231cos sin cos sin 3022020sin 44⎰⎰⎥⎦⎤⎢⎣⎡=2020cos sin cos sin 303|32331sin 4ππθθϕϕϕρϕθd d a ⎰⎰=22033cos sin cos sin 4ππϕϕϕθθθd d a.21sin 41sin 21432042023||a a =⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=ππϕθ4.证明:曲面2214:y x z S ++= ① 任一点处的切平面与曲面22:2y x z S +=所围立体图形Ω的体积为定值.【证明】任取曲面1S 上一点()0000,,z y x M .令 ()z y x z y x F -++=224,,.则1S 在点()0000,,z y x M 处的切平面的法向量为 ()()(){}{}1,2,2,,00000-='''=y x M F M F M F z y x .1S 在点()0000,,z y x M 处的切平面π的法平面为()()()02200000=---+-z z y y y x x x .即 ()0222:02020000=-+---+z y x z z y y x x π. ②又由于()10000,,S z y x M ∈,故402020-=-+z y x . ③ 将③式代入②式得0822:000=+--+z z y y x x π. ④ 联立⎩⎨⎧+==+--+,,082222000y x z z z y y x x 消去z ,得 ()()8020202020+-+=-+-z y x y y x x 【由③】4=,故Ω向xoy 面上的投影区域为()()4:2020≤-+-y y x x D xy . ⑤所以,Ω的体积为 ()()[]d xdy y x z y yx x V xyD ⎰⎰+-+-+=2200822()()()[]d xdy y y x x z y xxyD ⎰⎰----+-+=202002028【由③】()()[]d xdy y y x x xyD ⎰⎰----=2024令⎩⎨⎧+=+=.sin ,cos 00θθr y y r x x 则()()r r r y r y xrxr y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,所以()dr d r r V r D θθ⎰⎰-=24()ππθπ841224|20422022=⎥⎦⎤⎢⎣⎡-=-=⎰⎰r r rdr r d .从而:2S 与π所围立体图形Ω的体积为定值π8.5.形状如22y x z +=,100≤≤z (单位:米)的“碗”,计划在其上刻上刻度使其成为一个容器.求对应于容积为1立方米的液体在该容器内的高度是多少? 【解】设对应于容积为1立方米的液体在该容器内的高度是h (米). 由题意知()()σπd y xh h D⎰⎰+-⨯=222.1. ①其中222:h y x D ≤+.()⎰⎰⎰⎰=+πθσ200222.h Drdr r d d y x20421412|h r h ππ=⎥⎦⎤⎢⎣⎡=. ②将②式代入①式得2221.1h h ππ-=,即 2211h π=,解之得π2=h (米).6.求均匀密度的半椭圆平面薄片()01:2222≥≤+y by a x D 的质心.【解】设D 的质心坐标为()y x ,.由质心坐标公式得⎰⎰⎰⎰=DDxd d x σσ1; ①⎰⎰⎰⎰=DDyd d y σσ1②【其中令⎩⎨⎧==,sin ,cos θθbr y ar x 则()()abrbr b ar a y ry xrxr y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,由对称性知0=⎰⎰σd x D;()⎰⎰⎰⎰⎰⎰==πθθθθσθ0102.sin sin rdr r d ab drd J br d y r D D⎰⎥⎦⎤⎢⎣⎡=πθθ01032|31sin d r ab2020232cos 31sin 31|ab ab d ab =-==⎰ππθθθ;又 ()ab D S d Dπσ2121==⎰⎰. 故⎰⎰⎰⎰==DDxd d x 01σσ;ππσσ34213212bab ab yd d y DD===⎰⎰⎰⎰. 所以,平面薄片()01:2222≥≤+y b y a x D 的质心为⎪⎭⎫⎝⎛π34,0b .7.社平面薄片所占的区域D 由抛物线2x y =及直线x y =所围成,它在点()y x ,处的面密度()y x y x 2,=ρ,求此薄片的质心.【解】设D 的质心坐标为()y x ,.由质心坐标公式得()()⎰⎰⎰⎰=DDd y x x d y x x σρσρ,,1σσ⎰⎰⎰⎰=DDyd x yd x 321; ① ()()⎰⎰⎰⎰=D D d y x y d y x y σρσρ,,1⎰⎰⎰⎰=DDd y x yd xσσ2221②ydy x dx yd x xx D⎰⎰⎰⎰=10222σ⎰⎪⎭⎫ ⎝⎛=1022|221dx y x x x ()⎰-=106421dx x x 351715121|1075=⎪⎭⎫ ⎝⎛-=x x ; ③ydy x dx yd x x x D⎰⎰⎰⎰=10332σ⎰⎪⎭⎫ ⎝⎛=1023|221dx y x x x ()⎰-=107521dx x x 481816121|1086=⎪⎭⎫ ⎝⎛-=x x ; ④ dy y x dx d y x xx D2102222⎰⎰⎰⎰=σ⎰⎪⎭⎫⎝⎛=1032|231dx y x x x ()⎰-=108531dx x x 541916131|1096=⎪⎭⎫ ⎝⎛-=x x . ⑤故 4835351481==x ;5435351541==y .所以此薄片的质心为⎪⎭⎫⎝⎛5435,4835.8.平面薄片D 由ax y x ≥+22,222a y x ≤+确定,其上任一点处的面密度与离原点的距离成正比,求此薄片的质心.【解】由题意知,面密度()22,y x k y x +=ρ)0(>k .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y = ϕ1( x)
a
x
b
x
∫∫ f ( x,
D
y )dxdy = ∫ dx ∫
a
b
ϕ2 ( x ) ϕ1 ( x )
f ( x , y )dy
y
型区域: (2)Y-型区域: ) 型区域
D : ψ 1 ( y ) ≤ x ≤ ψ 2 ( y ), c ≤ y ≤ d ,
d
x = ψ 1 ( y)
σ 是 D 的面积, 的面积, 则在 D上至少存在一点 (ξ , η ) , 使得
∫∫ f ( x ,
D
y )dσ = f (ξ , η ) ⋅ σ .
7.奇偶对称性: 奇偶对称性: 奇偶对称性
∫∫
D
0 D关于 或y)轴对称 f(x,y)为y(或x)的奇函数 关于x(或 轴对称 轴对称, 关于 为 或 的奇函数 f ( x , y )dσ = 关于x(或 轴对称 轴对称, 2∫∫ f ( x, y)dσ D关于 或y)轴对称 f(x,y)为y(或x)的偶函数 关于 为 或 的偶函数
第九章 重积分
二重积分
一、二重积分的概念
1.定义 : .
∫∫ f ( x,
D
y )dσ = lim ∑ f (ξ i , η i )∆σ i
λ →0 i =1
n
2.几何意义:表示曲顶柱体的体积 .几何意义:
V = ∫∫ f ( x , y )dσ
D
( f ( x , y ) ≥ 0)
顶 : z = f ( x , y ) 底 : D
D
x2 dσ ,其中 D 是由直线 x = 2, y = x 其中 2 y
所围成的闭区域. 及曲线 xy = 1所围成的闭区域 的图形,然后根据图形的特点选择适 分析 首先应画出区域 D的图形 然后根据图形的特点选择适 当的坐标计算。本题可采用直角坐标计算,即框图中线路1 当的坐标计算。本题可采用直角坐标计算,即框图中线路 的方法。 既是X-型区域 又是Y-型区域 但若用Y型区域, 型区域, 的方法。注意到 D既是 型区域 又是 型区域 但若用 型区域计算, 分割成两个Y-型区域的和的形式 型区域的和的形式. 型区域计算,需把 D分割成两个 型区域的和的形式 故 积分的次序计算比较简单. 本题选择先对 y 积分后对 x 积分的次序计算比较简单
积分区域如图所示. 解: 积分区域如图所示 型区域, 积分区域 D 为X- 型区域,
1 D : ≤ y ≤ x , 1 ≤ x ≤ 2; x
y
1 y= x
(1, 1)
y= x
x
. D
0
.
1
2
的二次积分, 将二重积分转化为先对 y 对后 x 的二次积分,得
∫∫
D
2 2 x x x2 dxdy = ∫ dx ∫ 1 2 dy 2 1 y x y
的质量. 3.物理意义: M = ∫∫ ρ( x , y )dσ —— D的质量 .物理意义:
D
二、二重积分的性质
1.线性性质: .线性性质:
∫∫ [α f ( x,
D
y ) ± β g ( x , y )]dσ = α ∫∫ f ( x , y )dσ ± β ∫∫ g( x , y )dσ
D D
9dσ ≤ I = ∫∫ ( x 2 + 4 y 2 + 9)dσ ≤ ∫∫
D
D
∫∫ 25dσ ,
D
即 亦即
9 ⋅ 4π ≤ I =
( x 2 + 4 y 2 + 9)dσ ≤ 25 ⋅ 4π ∫∫
D
36π ≤ I = ∫∫ ( x 2 + 4 y 2 + 9)dσ ≤ 100π .
D
【例3】计算二重积分∫∫ 】
D1
三、二重积分的计算方法
1.利用直角坐标计算 .
∫∫ f ( x ,
D
y )dσ = ∫∫ f ( x , y )dxdy .
D
关键: 关键:选择积分次序
.
y
y = ϕ2(x)
型区域: (1)X-型区域: ) 型区域
D
D : ϕ 1 ( x ) ≤ y ≤ ϕ 2 ( x ), a ≤ x ≤ b
x x 9 = ∫ ( x 3 − x )dx = − = 1 2 1 4 4
2
4 2
2
注:若本题将二重积分转化为先对x 后对 y 的二次积分, 的二次积分 则计算相对复杂。 则计算相对复杂。
【例4 其中D = {( x , y ) | | x | + | y | ≤ 1 }.
y
D
x = ψ 2 ( y)
c
o
∫∫ f ( x,
D
y )dxdy = ∫ dy ∫
c
d
ψ 2 ( y)
ψ1( y)
f ( x , y )dx .
x
2.利用极坐标计算 .
D : ϕ 1 (θ ) ≤ ρ ≤ ϕ 2 (θ ), α ≤ θ ≤ β
∫∫ f ( x ,
D
y )dxdy = ∫∫ f ( ρ cos θ , ρ sin θ ) ⋅ ρdρdθ
解题方法流程图
No
I = ∫∫ f ( x , y )dxdy
D
f (x, y) = g(x2 + y2 )
Yes 2
D为圆域 为圆域
1
应用直角坐标
Yes No
应用极坐标
D-X型 型
a ≤ x ≤ b D: ϕ ( x ) ≤ y ≤ ψ ( x )
No
D = ∑ Di
α ≤ θ ≤ β D: ρ1 (θ ) ≤ ρ (θ ) ≤ ρ 2 (θ )
2. 可加性: 可加性:
D = D1 + D2
∫∫ f ( x,
D
y )dσ = ∫∫ f ( x , y )dσ + ∫∫ f ( x , y )dσ
D1 D2
3. 区域 D的面积: 的面积:
σ=
∫∫ dσ
D
4. 单调性: 若在 D 上, f ( x, y ) ≤ ϕ ( x, y ) ,则 单调性: 则
∫∫ f ( x,
D
y )dσ ≤ ∫∫ ϕ( x , y )dσ
D
5.估值性质: 设 m ≤ f ( x, y) ≤ M , ( x, y) ∈ D, σ是 D的面积 .估值性质: 则
m σ ≤ ∫∫ f ( x , y )dσ ≤ Mσ .
D
6.中值定理: 设函数 f ( x , y ) 在闭区域 D上连续 .中值定理: 上连续,
M=
x= 1 M
∫∫ ρ( x ,
D
D
y )dσ
1 M
∫∫ x ρ ( x, y )dσ , y =
∫∫ y ρ ( x,
D
y )dσ .
(3)转动惯量 I x = ∫∫ y 2 ρ ( x , y )dσ , I y = ∫∫ x 2 ρ ( x , y )dσ . )
D
D
2. 典型例题 【例1】根据二重积分的性质,比较积分 ∫∫ ln( x + y )dσ 与 】根据二重积分的性质,
D-X型 型 No
n
Yes
D = ∑ Di , D i − Y 型
i =1
n
D = ∑ D i , Di − X 型
i =1
a ≤ x ≤ b D : ϕ ( x ) ≤ y ≤ ψ ( x )
I = ∫ dy ∫
c
d
ψ ( y)
ϕ ( y)
fdx
ci ≤ y ≤ d i Di : ϕ i ( y ) ≤ x ≤ ψ i ( y )
D
[ln( x + y )]2 dσ 的大小;其中 D 是三角形的闭区域 三个 的大小; 是三角形的闭区域,三个 ∫∫
D
顶点分别为 (1, 0) , (1, 1) ,( 2, 0) . 由二重积分的性质可知,比较两个积分的大小, 分析 由二重积分的性质可知,比较两个积分的大小 只需 比较被积函数在积分区域上的大小即可。 比较被积函数在积分区域上的大小即可。 特点, 一般要考虑到所围成的区域 D 特点, 二要恰当运用不等式证明的方法。 二要恰当运用不等式证明的方法。 积分区域如图所示. 解: 积分区域如图所示
= I1 + I 2
由 I1 , I 2 分别确定 D1 , D2
D = D1 + D2 I = ∫∫ fdxdy
D
由 I1 , I 2 分别确定 D1 , D2
D = D1 + D2 I = ∫∫ fdxdy
D
Yes D-Y型 型 No
c ≤ y ≤ d D : ϕ ( y ) ≤ x ≤ ψ ( y )
.
y
(1, 1)
x+ y=2
D
.
0
1
2
x
的下方, 由于D 位于直线 x + y = 2 的下方 故在 D内有 x + y ≤ 2 , 所以 ln( x + y ) < 1; 又因为 D内的点满足 x ≥ 1, y ≥ 0,
2 x + y ≥ 1, 故 ln( x + y ) ≥ 0. 于是 ln( x + y ) ≥ [ln( x + y )] , 从而
改变二次积分的积分次序
I =
∫
b1 a1
dx ∫
ϕ1 ( x ) φ1 ( x )
fdy +
∫
b1 a1
dx ∫
ϕ2 ( x ) φ2 ( x )
fdy
I =
∫
d1 c1
dy ∫