求曲线的轨迹方程(二)

合集下载

关于全国卷(新课标)中轨迹方程的研究(二)

关于全国卷(新课标)中轨迹方程的研究(二)

关于全国卷(新课标)中轨迹方程的研究(二)本文主要研究圆锥曲线和极坐标与参数方程中关于轨迹方程的几种解法;本文分两篇,其中(一)为讲义,(二)为配套练习。

选题主要是全国卷近10年的真题和各地诊断考试真题。

练习题配置:每套题包含(一)中的五种方法的练习题各2-3个题,共12个题。

本文一共3套题(练习1—练习3) 练习1:1.(2018成都三诊文)在平面直角坐标系xOy 中,已知点()1,0A -,()1,0B ,动点M 满足4MA MB +=.记动点M 的轨迹方程为曲线C ,求曲线C 的方程;2.如图所示,在△ABC 中,已知A (-22,0)B (22,0),且三内角A 、B 、C 满足2sinA+sinC=2sinB ,建立适当的坐标系,求顶点C 的轨迹方程.3、已知1,02A ⎛⎫- ⎪⎝⎭,B 是圆221:()42M x y -+=上一动点,线段AB 的垂直平分线交BF 于P ,求动点P 的轨迹方程。

4.(2015湖北)一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.求曲线C 的方程;5.(2011广东)设圆C 与两圆2222(4,(4x y x y ++=-+=中的一个内切,另一个外切.求C 的圆心轨迹L 的方程;6.(浙江理)已知曲线C 是到点P (83,21-)和到直线85-=y 距离相等的点的轨迹,求曲线C 的方程;7.(福建文)如图,已知点F (1,0),直线l :x =-1,P 为平面上的动点,过P 作l 的垂线,垂足为点Q ,且··,求动点P 的轨迹C 的方程;8、点A,B 的坐标分别是(-2,0),(2,0),直线AM ,BM 相交于点M,且直线AM 的斜率与直线BM 的斜率的积是34-,求点M 的轨迹方程.9、(2018新课标Ⅲ)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.10、已知12,A A 为22194x y +=的长轴的两端点,12,P P 是垂直于12A A 的弦的两端点,则11A P 与22A P 的交点M 的轨迹方程为 .11、已知椭圆22194x y +=,过点()21Q ,作一条直线交椭圆于A,B 两点,求弦AB 中点M 的轨迹方程.12、若,M N 是两定点,6MN =,动点P 满足1PM PN ⋅=,则P 的轨迹方程为 .练习2:1、点A,B 的坐标分别是(-1,0),(1,0),直线AM ,BM 相交于点M,且直线AM 的斜率与直线BM 的斜率的商是2,则点M 的轨迹是什么?2、在平面直角坐标系xOy 中,动点M 到点()2,0F 的距离与到定直线8x =的距离的比是12.求动点M 的轨迹方程。

高二数学求曲线的方程2

高二数学求曲线的方程2

思考2
例2、已知 ABC 中,A(-2,0),B(0,-2),第三顶点C在曲
线 y 3x2 1上移动,求 ABC 的重心轨迹方程。
例3、已知G是 ABC 的重心,A(0,-1),B(0,1),在x轴上
有一点M满足 MA MC ,GM AB( R). 求点C的
轨迹方程。
轨迹方程为

例 1.△ABC 的顶点 B、C 的坐标分别为(0,0)、(4,0),AB 边上的中线的长为 3,求顶点 A 的轨迹方程.
解:设 A 的坐标分别为 (x, y) ,AB 的中点 D 的坐标为 (x1, y1)
y ( x, y) 由中点坐标公式可知

x1 y1

x 2 y 2
(B) (x 3)2 y 2 1
(C) (2x 3)2 4 y 2 1
(D) (x 3)2 y 2 1
2
2
2.点 M (x, y) 与定点 F (1, 0) 距离和它到直线 x 8 的距离
的比为 1 ,则动点 M 的轨迹方程为( D )
2
(A) x2 y2 1
B A 则 由方xy 程xy11组22xy22
设直线
y kx x2 y2
l
6
的方程为
x 4 y 10
y


0
kx
消去 y 得 (1 k 2 )x2 (6 4k)x 9 0
M
0
C
x

x y

3 1
k
x1
2k k2 3 2k
6 4k x2 1 k 2
消去参数
, k
x1 得

求曲线的轨迹方程的方法

求曲线的轨迹方程的方法
求曲线的轨迹方程
成都市新都香城中学数学组
李发林
2014年2月25日星期二
几种常见求轨迹方程的方法
1.直接法
由题设所给(或通过分析图形的几何性 质而得出)的动点所满足的几何条件列 出等式,再用坐标代替这等式,化简 得曲线的方程,这种方法叫直接法.
例1:已知一曲线是与两个定 点O(0,0)、A(3,0)距离的比为 1/2 的点的轨迹,求此曲线 的方程。教材P.86例5
3、过点P(2,4)作两条互 相垂直的直线l1,l2, l1交x轴 于A点,l2交y轴于点B,求 线段AB的中点M的轨迹方 程。
4、已知方程
x y 2(m 3) x 2(1 4m ) y 16m 9 0
2 2 2 4
表示一个圆。求圆心的轨迹方程。
结论:到两个定点A、B的距离之比等于常 数的点的轨迹:当=1时,轨迹是线段AB的 垂直平分线;当 1时,轨迹是圆。
练习:设两点A、B的距离 为8,求到A、B两点距离 的平方和是50的动点的轨 迹方程。
2.相关点法
若动点P(x,y)随已知曲线上的点 Q(x0,y0)的变动而变动,且x0、y0可 用x、y表示,则将Q点坐标表达式代 入已知曲线方程,即得点P的轨迹方 程.这种方法称为相关点法(或代换 法).
Y
p
o
A
X
变式2:如图,已知点P是圆x2+ y2=16上的一个动点,点A是x轴上的 定点,坐标为(12,0).若D点是AOP 的平分线与PA的交点,当点P在圆上 运动时,求点D的轨迹方程。Y Nhomakorabeap
o
A
X
练习:三角形ABC的两个顶点A, B的坐标分别是A(0,0),B (6,0)顶点C在曲线y=x2+3上 运动,求三角形ABC的重心G的 轨迹方程。

求轨迹方程的基本步骤

求轨迹方程的基本步骤

求轨迹方程的基本步骤求轨迹方程是数学中的一个重要问题,它涉及到确定物体的运动路径。

下面将介绍求轨迹方程的基本步骤。

第一步:确定坐标系在求解轨迹方程之前,我们首先需要确定一个合适的坐标系。

坐标系可以是直角坐标系、极坐标系或其他合适的坐标系。

选择合适的坐标系有利于简化问题和计算。

第二步:确定物体的运动规律在求解轨迹方程之前,我们需要明确物体的运动规律。

物体可以做直线运动、曲线运动或其他形式的运动。

根据物体的运动规律,我们可以确定物体在不同时刻的位置和速度。

第三步:建立物体位置与时间的关系根据物体的运动规律,我们可以建立物体位置与时间的关系。

这个关系可以是一个方程或一组方程。

通过解这个方程或一组方程,我们就可以求解物体在不同时刻的位置。

第四步:根据物体位置与时间的关系求解轨迹方程在第三步中,我们建立了物体位置与时间的关系。

根据这个关系,我们可以求解轨迹方程。

轨迹方程可以是一个参数方程、一条直线方程或其他形式的方程。

根据具体的情况,我们可以选择合适的方法来求解轨迹方程。

第五步:验证轨迹方程的正确性在求解轨迹方程之后,我们需要验证轨迹方程的正确性。

可以通过将轨迹方程代入原物体的运动规律方程,检查是否满足物体的运动规律。

如果轨迹方程满足物体的运动规律,那么它就是正确的轨迹方程。

通过以上五个步骤,我们可以求解物体的轨迹方程。

求解轨迹方程在物理学、工程学、计算机图形学等领域都有广泛的应用。

它可以帮助我们了解物体的运动规律,预测物体的轨迹,优化物体的运动路径等。

因此,掌握求解轨迹方程的方法是非常重要的。

希望本文所介绍的基本步骤能够对读者有所帮助。

数学高中双曲线轨迹方程

数学高中双曲线轨迹方程

在高中数学中,双曲线是一种常见的曲线形式。

它的轨迹方程可以表示为:
1.水平轴的双曲线:(a^2)(x^2) - (b^2)(y^2) = c^2
其中,a、b和c是正实数,并且a > b > 0。

这个方程描述了一个在x轴上开口的双曲线。

2.垂直轴的双曲线:(a^2)(y^2) - (b^2)(x^2) = c^2
同样地,a、b和c是正实数,并且a > b > 0。

这个方程描述了一个在y轴上开口的双曲线。

在这些方程中,a控制着双曲线的扁平度,b决定了双曲线的开口大小,c是双曲线的焦距。

需要注意的是,这里给出的是标准形式的双曲线轨迹方程。

在实际问题中,可能会遇到其他形式的双曲线方程,例如顶点形式或极坐标形式,具体的表达式取决于问题的背景和要求。

轨迹方程的求法

轨迹方程的求法

轨迹方程求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法。

求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、已知直角坐标系中,点Q (2,0),圆C 的方程为221x y +=,动点M 到圆C 的切线长与MQ 的比等于常数()0λλ>,求动点M 的轨迹。

◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得PM . 试建立适当的坐标系,并求动点P 的轨迹方程.2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。

例2、动圆过定点,02p ⎛⎫ ⎪⎝⎭,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程.◎◎ 已知圆C 的方程为 (x-2)2+y 2=100,点A 的坐标为(-2,0),M 为圆C 上任一点,AM 的垂直平分线交CM 于点P ,求点P 的方程。

◎◎已知A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.三、代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x ’,y ’)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x ’,y ’表示为x,y 的式子,再代入Q 的轨迹方程,然而整理得P 的轨迹方程,代入法也称相关点法。

例3、P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 求PD 中点的轨迹方程.◎◎已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT 求点T 的轨迹C 的方程.练习:1、方程y=122+--x x 表示的曲线是: ( )A 、双曲线B 、半圆C 、两条射线D 、抛物线2. 抛物线的准线l 的方程是y =1, 且抛物线恒过点P (1,-1), 则抛物线焦点弦的另一个端点Q 的轨迹方程是( ).A. (x -1)2=-8(y -1)B. (x -1)2=-8(y -1) (x ≠1)C. (y -1)2=8(x -1)D. (y -1)2=8(x -1) (x ≠1)3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( )A 、x 2+y 2=1B 、x 2+y 2=1(x ≠±1)C 、x 2+y 2=1(x ≠1)D 、y=21x -4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y)5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆B 、中心在(5,0)的椭圆C 、中点在原点的双曲线D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( )A 、(x -2)2+y 2=4B 、(x -2)2+y 2=4(0≤x <1)C 、(x -1)2+y 2=4D 、(x -1)2+y 2=4(0≤x <1)7 . P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 则PD 中点的轨迹方程为( ). A. 116922=+y x B. 196422=+y x C. 14922=+y x D. 19422=+y x 8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( )A 、抛物线B 、圆C 、双曲线的一支D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( )A 、y 2=12xB 、y 2=12x(x>0)C 、y 2=6xD 、y 2=6x(x>0)10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( )A 、x 2+y 2=21B 、x 2+y 2=41C 、x 2+y 2=21(x<21)D 、x 2+y 2=41(x<41) 11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A 、(x -2)2+(y+4)2=16 (0)y ¹B 、(x -2)2+4(y+2)2=16 (0)y ¹C 、(x -2)2-(y+4)2=16D 、(x -2)2+4(y+4)2=1612、中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 ( ) 222222222222A. 1 B. 1 C. 1 D.12575752525757525x y x y x y x y +=+=+=+= 13、已知⊙O :x 2+y 2=a 2, A(-a, 0), B(a, 0), P 1, P 2为⊙O 上关于x 轴对称的两点,则直线AP 1与直线BP 2的交点P 的轨迹方程为 ( )A 、x 2+y 2=2a 2B 、x 2+y 2=4a 2C 、x 2-y 2=4a 2D 、x 2-y 2=a 214、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整理求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考.求轨迹方程的一般方法:1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。

设点。

列式。

化简。

说明等,圆锥曲线标准方程的推导。

1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,求点P 的轨迹。

26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅ (1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二、定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.1、 若动圆与圆4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为焦点,直线x =4为准线的抛物线,并且p =6,顶点是(1,0),开口向左,所以方程是)1(122--=x y .选(B ).2、一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M ,半径为r ,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支3、在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠.注意:求轨迹方程时要注意轨迹的纯粹性与完备性.4、设Q 是圆x 2+y 2=4上动点另点A (3。

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

求轨迹方程问题—6大常用方法

求轨迹方程问题—6大常用方法

求轨迹方程问题—6大常用方法知识梳理:(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。

4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。

来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。

求曲线轨迹方程的方法

求曲线轨迹方程的方法

四、参数法求曲线方程
若过点 P(1,1)且互相垂直的两条直线 l1,l2 分别与 x 轴,y 轴交于 A,B 两点,则 AB 中点 M 的轨迹方程为________.
四、参数法求曲线方程
【审题】 斜率存在时,点斜式设l1的方程→得l2的方程→ 联立方程→求交点坐标→消去参数→得结果→斜率不存在时将
三、相关点法求曲线轨迹方程
基本思路:
①设点:设被动点的坐标 M (x, y),主动点的坐标 P(x0, y0;) ②求关系式:用被动点的坐标M (x, y) 表示主动点的坐标 P(x0, y0 ),即
得关系式
xy00
g(x, h(x,
y) y)
③代换:将上述关系式带入主动点满足的方程,化简整理可得所求动 点的轨迹方程。
三、相关点法求曲线轨迹方程
x 例 在圆 x2 y2 4上任取一点P,过点P作 轴的垂线段PD,
D为垂足。当点P在圆上运动时,线段PD的中点M的轨迹方程。
解析:设M (x, y), P(x0 , y0 ),则x
x0 , y
y0 2
.
因为点P在圆上,所以x02 y02 4 。
把 x0 x, y0 2x带入上式得:x2 4 y2 4.
二:定义法求轨迹方程
思路:如果动点的轨迹满足某种已知曲线定义,则可由曲 线的定义直接写出方程,利用定义法求轨迹方程要善于抓 住曲线定义的特征。 要点:四种曲线定义及成立条件
方法:建系设点 定型(思考几何关系,进而寻求数量关系) 定方程 定范围
二:定义法求轨迹方程
圆的定义: |PC|=r (r>0) 椭圆的定义:
一:直接法(直译法)求轨迹方程
例 已知一条直线 l 和它上方的一个点F,点F到l 的距离是2.一条曲线 也 l 在的上方,它上面的每一点到F的距离减去到 l 的距离的差都是2,

石家庄市选修一第三单元《圆锥曲线的方程》测试题(包含答案解析)

石家庄市选修一第三单元《圆锥曲线的方程》测试题(包含答案解析)

一、填空题1.已知ABC 的周长为20,且顶点()0,3B -,()0,3C ,则顶点A 的轨迹方程是___________.2.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,以A 为圆心的圆与双曲线C 的某一条渐近线交于P ,Q 两点.若60PAQ ∠=︒,且3PO OQ =(其中O 为原点),则双曲线C 的离心率为_________.3.已知双曲线M :()222210,0x y a b a b-=>>的焦距为2c ,若M 的渐近线上存在点T ,使得经过点T 所作的圆()22x c y a -+=的两条切线互相垂直,则双曲线M 的离心率的取值范围是________.4.若椭圆22221(0)x y a b a b+=>>与双曲线()2211221110,0x y a b a b -=>>有相同的焦点12,F F ,点P 是两条曲线的一个交点,122F PF π∠=,椭圆的离心率为1e ,双曲线的离心率为2e ,122e e ,则2212e e +=__________.5.已知A B 、为椭圆2214x y +=和双曲线2214x y -=的公共顶点, P Q 、分别为双曲线和椭圆上不同于两点A B 、的动点,且有()(),||1PA PB QA QBR λλλ+=+∈>,设直线AP 、BP 、AQ 、BQ 的斜率分别为1234,,,k k k k ,则1234 k k k k +++=______.6.设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过F 作C 的一条渐近线的垂线垂足为A ,且||2||OA AF =,O 为坐标原点,则C 的离心率为_________.7.已知点P 是椭圆22221(0)x y a b a b+=>>上的一点,12,F F 分别为椭圆的左、右焦点,已知12F PF ∠=120°,且12||3||PF PF =,则椭圆的离心率为___________.8.设点P 在圆22:(6)5C x y +-=,点Q 在抛物线24x y =上,则||PQ 的最小值为_________.9.已知双曲线22221(0,0)x y a b a b-=>>与方向向量为(6,6)k =的直线交于A ,B 两点,线段AB 的中点为(4,1),则该双曲线的渐近线方程是_______.10.如图所示,已知A 、B 、C 是椭圆2222:1(0)x y E a b a b+=>>上的三点,BC 过椭圆的中心O ,且,2AC BC BC AC⊥=.则椭圆的离心率为_______.11.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为____.12.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别为1F ,2F ,过1F 的直线交椭圆C 于A ,B 两点,若290ABF ∠=︒,且2ABF 的三边长2BF 、||AB 、2AF 成等差数列,则C 的离心率为___________.13.已知椭圆的对称轴为坐标轴,两个焦点坐标分别为()()0,2,0,2-,且过点35,22⎛⎫- ⎪⎝⎭,则椭圆的标准方程为____________. 二、解答题14.如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,焦距为2,点P 是椭圆上的动点,且12PF F △的面积的最大值为1.(Ⅰ)求椭圆的方程;(Ⅱ)若直线l 与椭圆有且只有一个公共点P ,且l 与直线2x =-相交于Q .点T 是x 轴上一点,若总有0PT QT ⋅=,求T 点坐标.15.已知()2,0A -,()2,0B ,直线AM ,BM 相交于点M .且它们的斜率之积是3. (1)求点M 的轨迹C 的方程.(2)过点()2,3N 能否作一条直线m 与轨迹C 交于两点,P Q ,且点N 是线段PQ 的中点?若能,求出直线m 的方程;若不能,说明理由.16.已知椭圆()222210x y a b a b+=>>的离心率为12,点31,2⎛⎫ ⎪⎝⎭在椭圆上.(1)求椭圆的方程;(2)O 是坐标原点,过椭圆的右焦点F 直线1l 交椭圆于P ,Q 两点,求OPQ △的最大值.17.已知2m >,p :方程2214x y m +=表示焦点在y 轴上的椭圆;q :方程2214x y m t m t+=--表示双曲线.若p 是q 的充分不必要条件,求实数t 的取值范围. 18.已知椭圆()2222:10x y C a b a b+=>>的右焦点为()2,0F ,且右焦点到左准线的距离为10.(1)求椭圆C 的方程;(2)O 为坐标原点,过点F 且斜率为1的直线与椭圆交于A ,B 两点,求△AOB 的面积.19.过双曲线22142x y -=的右焦点F 作斜率为2的直线l ,交双曲线于A ,B 两点.(1)求双曲线的离心率和渐近线;(2)求AB 的长.20.已知点(3,0)M -,点P 在y 轴上,点Q 在x 轴的正半轴上,点N 在直线PQ 上,且满足0MP PN ⋅=,12PN PQ =. (1)当P 点在y 轴上移动时,求动点N 的轨迹C 的方程;(2)过点()2,0T 作一直线交曲线C 于A ,B 两点,O 为坐标原点,若AOT 的面积是BOT 面积的2倍,求弦长AB .21.已知点Q 是圆M :()22116x y ++=上一动点(M 为圆心),点N 的坐标为()1,0,线段QN 的垂直平分线交线段QM 于点C ,动点C 的轨迹为曲线E .(1)求曲线E 的轨迹方程;(2)求直线1y x =-与曲线E 的相交弦长;(3)曲线E 的右顶点为B ,直线l :y kx m =+与椭圆E 相交于点S ,T ,则直线BS ,BT 的斜率分别为1k ,2k 且123k k +=,BD ST ⊥,D 为垂足,问是否存在某个定点A ,使得以AB 为直径的圆经过点D ?若存在,请求出A 的坐标;若不存在,请说明理由?22.设12,F F 为椭圆222:1(1)x C y a a+=>的两个焦点,直线l 与C 交于,A B 两点.(1)若M 为椭圆短轴上的一个顶点,且12MF F △是直角三角形,求a 的值; (2)若2a =,且14OA OB k k ⋅=-,求证:OAB 的面积为定值.23.在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹为曲线C ,直线l 过点(1,0)E -且与曲线C 交于,A B 两点.(1)求M 的轨迹方程; (2)求AOB 面积的最大值.24.已知焦点在x 轴的抛物线C 经过点()2,4-. (1)求抛物线C 的标准方程.(2)过焦点F 作直线l ,交抛物线C 于A ,B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.25.如图,椭圆E :22221(0)x y a b a b +=>>的左、右顶点分别为,A B ,离心率5e =,长轴与短轴的长度之和为10.(1)求椭圆E 的标准方程;(2)在椭圆E 上任取点P (与,A B 两点不重合),直线PA 交y 轴于点C ,直线PB 交y 轴于点D ,证明:OC OD ⋅为定值.26.已知椭圆C :()222210x y a b a b+=>>的左焦点为()1,0F -,且经过点(3.(1)求椭圆C 的标准方程;(2)过点F 的直线l 与椭圆C 交于A ,B 两点,若154AB =,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】由周长确定故轨迹是椭圆注意焦点位置和抠除不符合条件的点即可【详解】的周长为20且顶点所以点到两个定点的距离和为定值故点的轨迹是焦点在y 轴上的椭圆则顶点A 的轨迹方程是故答案为:【点睛】易错点睛解析:()22104049x y x +=≠【分析】由周长确定146AB AC +=>,故轨迹是椭圆,注意焦点位置和抠除不符合条件的点即可. 【详解】ABC 的周长为20,且顶点()0,3B -,()0,3C , 6BC ∴=,146AB AC +=>,所以点A 到两个定点的距离和为定值,故点A 的轨迹是焦点在y 轴上的椭圆,2147a a =⇒=,3c =,22249940b a c =-=-=则顶点A 的轨迹方程是()22104049x y x +=≠.故答案为:()22104049x y x +=≠.【点睛】易错点睛:本题考查椭圆定义的应用,在求解过程中要注意椭圆的定义要检查两个线段的大小,看是否可以构成椭圆,还要注意要围城三角形需要排除不符合的点,考查学生的转化能力与运算能力,属于基础题.2.【分析】设由已知得由双曲线的渐近线的斜率可求得ab 的关系从而求得双曲线的离心率【详解】取PQ 的中点为B 因为所以为正三角形设则所以故答案为:【点睛】方法点睛:(1)求双曲线的离心率时将提供的双曲线的几【分析】设OQ m =,由已知得2,2BQ m PQ m ==,,AB OB m ==,由双曲线的渐近线的斜率可求得a ,b 的关系,从而求得双曲线的离心率. 【详解】取PQ 的中点为B ,因为060PAQ ∠=,3PO OQ =,所以PAQ △为正三角形,设OQ m =,则2,2BQ m PQ m ==,23,AB m OB m ==,所以23231313PQ m bk c a e m a===⇒=⇒=. 故答案为:13.【点睛】方法点睛:(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量,,a b c 的方程或不等式,利用222b c a =-和ce a=转化为关于e 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.(2)对于焦点三角形,要注意双曲线定义的应用,运用整体代换的方法可以减少计算量.3.【分析】要使得经过点所作的圆的两条切线互相垂直必有而焦点到双曲线渐近线的距离为故利用双曲线的离心率的计算公式解答【详解】解:∵所以离心率圆是以为圆心半径的圆要使得经过点所作的圆的两条切线互相垂直必有 解析:(3【分析】要使得经过点T 所作的圆的两条切线互相垂直,必有2TF a =,而焦点(),0F c 到双曲线渐近线的距离为b ,故2TF a b =≥,利用双曲线的离心率的计算公式解答.【详解】解:∵0b >,0a >,所以离心率211c b e a a ⎛⎫==+> ⎪⎝⎭,圆()22x c y a -+=是以(),0F c 为圆心,半径r a =的圆,要使得经过点T 所作的圆的两条切线互相垂直, 必有2TF a =,而焦点(),0F c 到双曲线渐近线的距离为b ,所以2TF a b =≥,即2b a 213c b e a a ⎛⎫==+ ⎪⎝⎭,所以双曲线M 的离心率的取值范围是(.故答案为:(. 【点睛】本题考查双曲线的离心率的取值范围的求法,是中档题,解题时要认真审题,注意双曲线性质的灵活运用.4.【分析】设PF1=sPF2=t 由椭圆的定义可得s+t =2a 由双曲线的定义可得s ﹣t =2a1利用勾股定理和离心率公式得到化简计算即可得出结论【详解】不妨设P 在第一象限再设PF1=sPF2=t 由椭圆的定 解析:8【分析】设PF 1=s ,PF 2=t ,由椭圆的定义可得s +t =2a ,由双曲线的定义可得s ﹣t =2 a 1,利用勾股定理和离心率公式得到2212224e e =+,化简计算即可得出结论. 【详解】不妨设P 在第一象限,再设PF 1=s ,PF 2=t ,由椭圆的定义可得s +t =2a , 由双曲线的定义可得s ﹣t =2a 1, 解得s =a +a 1,t =a ﹣a 1, 由∠F 1PF 22π=,在三角形F 1PF 2中,利用勾股定理可得22222221114()()22c s t a a a a a a =+=++-=+. ∴2212224e e =+, 化简221222221212121=e e e e e e ++=,又由e 1e 2=2,所以22221212=28e e e e +=. 故答案为:8. 【点睛】本题考查椭圆和双曲线的定义、方程和性质,主要考查离心率的求法,考查运算能力,属于中档题.在解题的过程中要合理的利用平面几何的思想,适当利用勾股定理,建立离心力的关系式,在化简的过程中根据题目的条件和结论合理构造和变形,这样解题会轻松一点.5.0【分析】可根据题的已知条件设利用斜率公式得到;同理可得结合三点共线即可得出的值【详解】由题意可知三点共线设点在双曲线上则所以①又由点在椭圆上则同理可得②三点共线由①②得故答案为:0【点睛】本题考查解析:0可根据题的已知条件,设()11,P x y 、()22,Q x y ,利用斜率公式得到11212x k k y +=; 同理可得23422x k k y +=-, 结合O P Q 、、三点共线即可得出1234k k k k +++的值. 【详解】由题意,()(),||1PA PB QA QB R λλλ+=+∈>可知O P Q 、、三点共线.()2,0A -、()2,0B设()11,P x y 、()22,Q x y ,点P 在双曲线2214x y -=上,则221144x y -=. 所以11111111222111112222442y y x y x y xk k x x x y y +=+===+--① 又由点Q 在椭圆2214x y +=上,则222242x y -=-. 同理可得23422x k k y +=-②O P Q 、、三点共线.1212x x y y ∴=. 由①、②得12340k k k k +++=. 故答案为:0 【点睛】本题考查运算求解能力、数形结合思想、化归与转化思想.主要思路为结合曲线与点的位置关系、向量关系式,根据斜率公式,列相关关系式化简求解.6.【分析】由已知求出渐近线的斜率得结合转化后可求得离心率【详解】由题意可得渐近线方程为∴故故答案为:【点睛】本题考查求双曲线的离心率解题关键是列出关于的一个等式本题中利用直角三角形中正切函数定义可得由已知求出渐近线的斜率,得ba,结合222c a b -=转化后可求得离心率. 【详解】由题意可得||||1tan ||2||2AF AF AOF OA AF ∠===, 渐近线方程为by x a=, ∴12b a =,222222222544a a c ab e a a a ++====,故2e =.. 【点睛】本题考查求双曲线的离心率,解题关键是列出关于,,a b c 的一个等式,本题中利用直角三角形中正切函数定义可得.7.【解析】设由余弦定理知所以故填【解析】设21,3,24PF x PF x a x ===,由余弦定理知22(2)13c x =,所以4c a =,故填4. 8.【分析】根据题意将问题转化为圆心到点的最小值与半径差的问题再根据两点间的距离公式求解即可【详解】解:设其中由题易知圆心圆的半径则当时所以故答案为:【点睛】本题考查两个动点间的距离最值问题解题的关键是【分析】根据题意,将问题转化为圆心C 到点Q 的最小值与半径差的问题,再根据两点间的距离公式求解即可. 【详解】解:设(,)Q x y ,其中24x y =. 由题易知圆心(0,6)C,圆的半径r =则|0)QC y ===≥∣.当4y =时,min ||QC =,所以min min ||||PQ QC r =-==本题考查两个动点间的距离最值问题,解题的关键是将问题转化为圆心与点Q 的距离最小值与半径差的问题,考查化归转化思想,是中档题.9.【分析】设代入到双曲线的方程中运用点差法可求得可得答案【详解】设则且因为线段的中点为所以由题意可得直线的斜率为1所以即故双曲线的渐近线方程为故答案为:【点睛】本题考查点差法的运用之得双曲线的渐近线方解析:12y x =±【分析】设()()1122,,,A x y B x y ,代入到双曲线的方程中,运用点差法可求得12b a =,可得答案. 【详解】设()()1122,,,A x y B x y ,则2211221x y a b -=且2222221x y a b-=,因为线段AB 的中点为(4,1),所以()()2221212221214b x x y y b x x a y y a +-==-+, 由题意可得直线AB 的斜率为1,所以2241b a=,即12b a =,故双曲线的渐近线方程为12y x =±. 故答案为:12y x =±. 【点睛】本题考查点差法的运用之得双曲线的渐近线方程,属于中档题.10.【分析】由BC 关于原点的对称性所以|BC|=2|AC|可得|OC|=|AC|由此可得C 点的横坐标由AC ⊥BC 可求出C 点的纵坐标再由点C 在椭圆上可求得abc 的一个关系式结合椭圆中a2=b2+c2即可求解析:3【分析】由B 、C 关于原点的对称性,所以|BC |=2|AC |可得|OC |=|AC |,由此可得C 点的横坐标,由AC ⊥BC 可求出C 点的纵坐标,再由点C 在椭圆上可求得a 、b 、c 的一个关系式,结合椭圆中a 2=b 2+c 2,即可求出离心率. 【详解】由|BC |=2|AC |可得|OC |=|AC |,所以C 点的横坐标为2a ,设C (2a,y ), 由AC ⊥BC ,则224a y =,又因为点C 在椭圆上,代入椭圆方程得:223a b=,所以22222213c b e a a ==-=,所以e 3=,. 【点睛】本题考查椭圆的离心率的求解,求得点C 坐标是关键,考查逻辑推理能力和运算能力.11.6【解析】因为双曲线的右焦点为所以解析:6 【解析】因为双曲线22145x y -=的右焦点为(3,0) ,所以3,62p p ==12.【分析】由已知设据勾股定理有;由椭圆定义知的周长为4a 由勾股定理可得选项【详解】由已知设所以根据勾股定理有解得;由椭圆定义知所以的周长为4a 所以有;在直角中由勾股定理∴离心率故答案为:【点睛】本题考解析:2【分析】由已知,设2BF x =,||AB x d =+,22AF x d =+,据勾股定理有3x d =;由椭圆定义知2ABF 的周长为4a ,由勾股定理,2224a c =,可得选项. 【详解】由已知,设2BF x =,||AB x d =+,22AF x d =+,所以根据勾股定理有()()222+2++x d x x d =,解得3x d =;由椭圆定义知1212++2AF AF BF BF a ==,所以2ABF 的周长为4a ,所以有3a d =,21BF a BF ==;在直角2BF F △中,由勾股定理,2224a c =,∴离心率2e =.故答案为:2. 【点睛】本题考查椭圆离心率,椭圆的定义,重在对问题的分析,抓住细节,同时考查计算能力,属于中档题.13.【分析】由题意可设椭圆方程为且利用椭圆定义及两点间的距离公式求得结合隐含条件求得则可求出椭圆方程【详解】解:由题意可设椭圆方程为且由椭圆的定义椭圆上一点到两焦点距离之和等于得则则椭圆方程为:故答案为解析:221106y x +=【分析】由题意可设椭圆方程为22221,(0)x y a b b a+=>>,且2c =,利用椭圆定义及两点间的距离公式求得a ,结合隐含条件求得b ,则可求出椭圆方程. 【详解】解:由题意可设椭圆方程为22221,(0)x y a b b a+=>>,且2c =,由椭圆的定义,椭圆上一点P 到两焦点距离之和等于2a .2a ∴==得a =b ==则椭圆方程为:221106y x +=.故答案为:221106y x +=.【点睛】本题考查椭圆的简单性质,考查了利用椭圆定义求椭圆的标准方程,属于基础题.二、解答题14.(Ⅰ)2212x y +=;(Ⅱ)点T 的坐标为(1,0)-.【分析】(Ⅰ)根据题意得出222121222c b c a b c ⎧⋅⋅=⎪⎪=⎨⎪=+⎪⎩,解出,a b 即可得出椭圆方程;(Ⅱ)设出直线方程,联立直线与椭圆,利用0∆=得出2221m k =+,表示出21,k P m m ⎛⎫- ⎪⎝⎭,(2,2)Q m k --,再利用0PT QT ⋅=即可得出. 【详解】解:(Ⅰ)依题意得222121222c b c a b c ⎧⋅⋅=⎪⎪=⎨⎪=+⎪⎩,解得1a b ⎧=⎪⎨=⎪⎩所以椭圆的方程为2212x y +=.(Ⅱ)当直线l 的斜率不存在时,l 与直线2x =-无交点,不符合题意, 故直线l 的斜率一定存在,设其方程为y kx m =+,由2212y kx m x y =+⎧⎪⎨+=⎪⎩,得()222214220k x kmx m +++-=, 因为直线l 与椭圆有且只有一个公共点,所以()()22221681210k m m k ∆=--+=,化简得2221m k =+, 所以214242=-=-+P km k k x m ,2-=Pk x m ,1P P y kx m m =+=,即21,k P m m ⎛⎫- ⎪⎝⎭, 因为直线l 与直线2x =-相交于Q ,所以(2,2)Q m k --,设(),0T t , 所以22(2)10k k TP TQ t t m m ⎛⎫⋅=----+-= ⎪⎝⎭, 即21(1)0k t t m ⎛⎫+++=⎪⎝⎭对任意的k ,m 恒成立, 所以10t +=,即1t =-,所以点T 的坐标为(1,0)-. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.15.(1)221(2)412x y x -=≠±;(2)不能,理由见解析.【分析】(1)设出点(),M x y ,利用斜率之积即可求出轨迹方程; (2)设出()()1122,,,P x y Q x y ,利用点差法可求出. 【详解】(1)设(),M x y ,2x ≠±,02AM y k x -=+,02BM y k x -=-, 3AM BM k k ⋅=,即00322y y x x --⋅=+-,整理得:()223122x y x -=≠±,即轨迹C 方程为:221(2)412x y x -=≠±;(2)显然直线m 的斜率存在,设为k ,设()()1122,,,P x y Q x y ,则2211222214121412x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ ,两式相减得()()()()121212120412x x x x y y y y -+-+-=,整理可得121212123y y x x x x y y -+=⨯-+,N 是线段PQ 的中点,∴12124326y y x x -=⨯=-,即2k =, 故直线m 的方程为()322y x -=-,即210x y --=,将直线代入双曲线可得24130x x -+=,()244130∆=--⨯<,此时直线与双曲线不相交.故不能作出这样的直线. 【点睛】方法点睛:解决中点弦问题的两种方法:(1)根与系数的关系法:联立直线与曲线方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;(2)点差法:设出交点坐标,利用交点在曲线上,坐标满足方程,将交点坐标代入曲线方程,然后作差,构造出中点坐标和斜率的关系.16.(1)22143x y +=;(2)32.【分析】(1)将点代入椭圆方程,并根据离心率得到,a c 关系,代入求椭圆方程;(2)首先设直线1:1l x my =+与椭圆方程联立,得到根与系数的关系,并表示OPQ △的面积1212S OF y y =⨯-,代入根与系数的关系,表示面积,最后利用换元求面积最大值. 【详解】 解:(1)由12c e a ==得2a c =,所以223b c = 由点31,2⎛⎫⎪⎝⎭在椭圆上得22914143c c+=解得1c =,b ==所求椭圆方程为22143x y +=.(2)()0,1F ,设直线1:1l x my =+, 代入方程化简得()2234690m y my ++-=, 由韦达定理得122634m y y m -+=+,122934y y m -=+, OPQ △的面积为12||||2OF y y ⋅-,所以求ABC 的最大值即求21y y -的最大值.()()()()222121212223644434m y y y y y y m+-=+-=+.令211m t +=≥,上式可表示成21441441(31)96t t t t=+++, 196y t t=++在[)1,+∞单调递增,所以当1t =时取得最大值9,此时32OPQS=. 【点睛】思路点睛:本题考查椭圆中三角形面积的最值问题,因为面积是用纵坐标表示,所以设直线x my t =+,表示直线过x 轴一点(),0t ,其中包含斜率不存在的直线,但不包含过定点,斜率为0的直线,这样联立方程后用根与系数的关系表示面积时,比较简单.17.12t ≤≤【分析】根据椭圆的焦点在y 轴上,算出命题p 对应的m 的范围,根据双曲线定义分类讨论算出命题q 对应的m 的范围,再由p 是q 的充分不必要条件,利用集合的思想求出t 的取值范围. 【详解】由2m >,p :方程2214x y m +=表示焦点在y 轴上的椭圆,可得24m <<,设{}|24A m m =<<q :方程2214x y m t m t+=--表示双曲线,可得()()40m t m t --<若0t =,方程为22x y m +=表示圆,不符合; 若0t <,可得4t m t <<,与2m >矛盾,不符合; 若0t >,可得4t m t <<,设{}|4B t t m t =<<又p 是q 的充分不必要条件,可得A 是B 的真子集,利用数轴表示集合可得244t t ≤⎧⎨≥⎩,即12t ≤≤所以实数t 的取值范围是:12t ≤≤ 【点睛】关键点睛:本题考查椭圆与双曲线的标准方程,利用充分不必要条件求参数,解题的关键是先利用椭圆与双曲线的标准方程求出参数m 的范围,再利用充分必要性结合集合关系求出t 的取值范围,属于一般题.18.(1)2211612x y +=;(2242 【分析】(1)由题得2c =,210a c c+=,联解可得.(2)写出:2AB y x =-,与椭圆方程联解,利用根与系数关系及求得三角形面积得解.【详解】解(1)设椭圆的半焦距为c ,()2,0F2c ∴=,210a c c+=,216a ∴= 22216412b a c ∴=-=-=∴椭圆C 的方程为2211612x y +=(2):2AB y x =-22211612y x x y =-⎧⎪⎨+=⎪⎩2712360y y ∴+-= 设()11,A x y ,()22,B x y1212127367y y y y ⎧+=-⎪⎪∴⎨⎪⋅=-⎪⎩()21212122424y y y y y y ∴-=+-=△AOB 的面积1211242222277S OF y y =-=⨯⨯=【点睛】直线与圆锥曲线的位置关系通常是直线方程与圆锥曲线方程联解,利用根与系数关系求解,达到设而不求,简化运算.19.(1)e =,渐近线方程为2y x =±;(2)207.【分析】(1)由双曲线方程得出,a b ,再求出c ,可得离心率,渐近线方程;(2)写出直线方程,代入双曲线方程,设()11,A x y ,()22,B x y ,由韦达定理得1212,x x x x +,然后由弦长公式计算弦长.【详解】解:(1)因为双曲线方程为22142x y -=,所以2a =,b =则c ==所以62cea ,渐近线方程为2y x =±.(2)双曲线右焦点为0),则直线l 的方程为2(y x =代入双曲线22142x y -=中,化简可得27520x -+=设()11,A x y ,()22,B x y所以12x x +=,12527x x ⋅=,所以2120||||7AB x x =-==. 【点睛】方法点睛:本题考查双曲线的离心率和渐近线方程,考查直线与双曲线相交弦长.解题方法是直线方程与双曲线方程联立并消元后应用韦达定理求出1212,x x x x +,然后由弦长公式12d x =-求出弦长.20.(1)()2302y x x =>;(2. 【分析】(1)设(),N x y ,由已知向量的数量关系及位置关系得()()3,2,0y x y ⋅-=,即可知N 的轨迹C 的方程;(2)由直线与抛物线相交关系,令直线AB 的方程为:2x my =+,()11,A x y ,()22,B x y ,联立方程,应用根与系数关系有12120323y y m y y ∆>⎧⎪⎪+=⎨⎪=-⎪⎩,结合已知条件、弦长公式即可求AB . 【详解】(1)设点(),N x y ,由12PN PQ =,得()0,2P y ,(2,0)Q x , 由0MP PN ⋅=得()()3,2,0y x y ⋅-=, 所以232y x =.又因为点Q 在x 轴的正半轴上, ∴()2302y x x =>. (2)设直线AB 的方程为:2x my =+,()11,A x y ,()22,B x y ,联立2232x my y x =+⎧⎪⎨=⎪⎩,消去x 得:22360y my --=,故12120323y y m y y ∆>⎧⎪⎪+=⎨⎪=-⎪⎩,又AOT 的面积是BOT 面积的2倍,得122y y =-,联立方程解得223m =,由弦长公式可得:12AB y y =-=. 【点睛】 关键点点睛:(1)由向量的数量关系,应用向量的坐标表示求动点轨迹方程.(2)根据直线与抛物线相交,设直线方程2x my =+并联立抛物线方程,得到12y y +、12y y 结合已知求参数m ,根据弦长公式求弦长.21.(1)22143x y +=;(2)247;(3)存在;()2,1A -.【分析】(1)因为点E 在线段QN 的垂直平分线上,所以EQ EN =,再由题意得42EM EQ EM EQ MQ MN +=+==>=,所以点E 的轨迹是以M ,N 为焦点的椭圆,从而可得其方程;(2)将直线方程与椭圆方程联立,消去x ,利用根与系数的关系,然后利用弦长公式可求得答案;(3))联立223412y kx m x y =+⎧⎨+=⎩,消去y ,再利用根与系数的关系,342834km x x k +=-+,234241234m x x k-=+ ,从而得()()()3434343412224324kx x m k x x m k k x x x x +-+-+==-++,解得2m k =-或21m k =--,经验证21m k =--,则直线()21y kx m k x =+=--,且过定点()2,1-,从而可得答案【详解】解:(1)因为点E 在线段QN 的垂直平分线上, 所以EQ EN =又QM 是圆的半径,所以42EM EQ EM EQ MQ MN +=+==>= 所以点E 的轨迹是椭圆 因为24a =,所以2a =,1c = 所以23b =所以动点E 的轨迹方程为22143x y +=(2)设直线1y x =-与曲线E 相交于1122(,),(,)x y x y联立2213412y x x y =-⎧⎨+=⎩消去y 得27880x x --=,则121288,77x x x x +==-, 于是28478288∆=+⨯⨯=所以弦长122477l x x =-==(3)设3344(,),(,)S x y T x y ,联立223412y kx mx y =+⎧⎨+=⎩消去y 得()2223484120kxkmx m +++-=判别式()()2222226416483419248144k m m kkm ∆=--+=-+342834km x x k +=-+,234241234m x x k-=+ ()()()()()()344334343412222222kx m x kx m x y yk k x x x x +-++-+=+=---- ()()()34343434224324kx x m k x x mx x x x +-+-==-++化简得()()()343423264120k x x m k x x m -+-++--= 即()()()()()()2223412268412340k m m k km m k--+-+--++=也即()()2210m k m k +++= 解得2m k =-或21m k =--当2m k =-时,直线()2y kx m k x =+=-过点B ,不合题意所以21m k =--,此时直线()21y kx m k x =+=--,且过定点()2,1- 又因为D 在以AB 为直径的圆上 所以A 在直线()21y kx m k x =+=--上 所以存在定点()2,1A -满足条件. 【点睛】关键点点睛:此题考查轨迹方程的求法,考查直线与椭圆的位置关系,解题的关键是设出直线方程,与椭圆方程联立方程组,消元后利用根与系数的关系,再结合已知条件列方程求解,考查计算能力,属于中档题22.(1)a =2)证明见解析 .【分析】(1)若M 为椭圆短轴上的一个顶点,则短轴与焦距相等,即1b c ==,结合222a b c =+即可求得a 的值;(2)讨论l 存在与不存在:a.当直线l 斜率存在,通过条件解出点A 坐标,将OAB 的面积用点A 坐标算出来;b.当直线l 斜率不存在,设出直线:l y kx m =+方程,联立椭圆方程消去y ,用设而不求法将弦长AB 表示出来,将点O 到直线l 的距离d 用距离公式表示出来,根据面积公式1||2S AB d =⋅,结合14OA OB k k ⋅=-化简即可.【详解】 解:(1)由题知12MF F △是等腰直角三角形,且1b =, ∴1b c ==,所以2222a b c =+=,解得a =故a =(2)证明:当2a =时,椭圆方程2244x y +=,设()()1122,,,A x y B x y ,由14OA OB k k ⋅=-知121214y y x x ⋅=-即12124x x y y =-,①若直线l 垂直于x 轴,则OA OB k k =-,不妨设110,0x y >> 此时,2111,24OA k x y ==又221144x y +=解得1122,2x y == 122212OABS=⨯⨯⨯=②若直线l 斜率存在,设方程为y kx m =+ 由22,44,y kx m x y =+⎧⎨+=⎩整理得()222148440k x kmx m +++-=, 22Δ6416160k m =-+>,所以2121222844,1414km m x x x x k k--+==++, 所以()()()2212121212y y kx m kx m k x x km x x m =++=+++222222224484141414m km m k k km m k k k ---=++=+++, 所以2222244441414m m k k k--=-⨯++,所以22241m k -=,即22214m k =+所以()221212||14AB k x x x x =++-222222228444121141414km m k m k kk k --++⎛⎫=+-⨯== ⎪++⎝⎭因为O 到直线y kx m =+的距离21d k=+,所以221121||122||1OABk SAB d m k+=⨯⨯=⨯⨯=+,综上,AOB 面积为定值1.【点睛】直线与椭圆相交问题求解策略:(1)解答直线与椭圆相交的题目时,常用到“设而不求”的方法,即联立直线和椭圆的方程,消去y (或x )得一元二次方程,然后借助根与系数的关系,并结合题设条件,建立有关参变量的等量关系求解;(2)涉及直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.23.(1)2214x y +=;(2)32. 【分析】(1)设(,)M x y ,表示出P 点坐标代入圆的方程可得轨迹方程;(2)l 斜率不存在时求出交点坐标,得三角形面积,斜率存在时,设:(1)l y k x =+,()()1122,,,A x y B x y ,直线方程与椭圆方程联立方程组,消元后应用韦达定理得1212,x x x x +,由弦长公式求得弦长AB ,由点到直线距离公式求得O 到直线AB 的距离,求出三角形的面积,令241t k =+换元后可求得面积的范围,与斜率不存在的情形比较可得最大值. 【详解】解.(1)设(,)M x y ,则(,2)P x y ,所以2244x y +=,即曲线C 的方程为2214xy +=.(2)①当l无斜率时,交点为11,,1222S ⎛-±∴== ⎝⎭ ②当l 有斜率时,设()()1122:(1),,,,l y k x A x y B x y =+则22(1)440y k x x y =+⎧⎨+-=⎩()2222148440k x k x k ∴+++-= 0∴∆>得k ∈R ,由题意构成AOB 得0k ≠212221228144414k x x k k x x k ⎧-+=⎪⎪+∴⎨-⎪=⎪+⎩1212111||22S y y k x x ∴=⨯⨯-=⨯⨯-=令22141,1,(1)4t k t k t =+∴>=-101,02SS t ∴=<<∴<<综上所述0S ∴<≤【点睛】方法点睛:本题考查直线与椭圆相交中的三角形面积.解题方法是设而不求的思想方法,即设直线方程,设交点坐标,直线方程与椭圆方程联立方程组,消元化为一元二次方程,应用韦达定理得1212,x x x x +,然后可由弦长公式求弦长AB ,再求出高(原点到直线AB 的距离)可得三角形面积,再利用换元法求得面积的范围,讨论直线AB 斜率不存在时的三角形面积,从而可得最大值.24.(1)28y x =;(2)480x y +-=. 【分析】(1)由题意可设抛物线方程为:22y px =(0p >),再将点()2,4-代入抛物线的方程中得到p 的值,最后写出抛物线的方程即可;(2)设l 的方程为2x my =+,()11,A x y ,()22,B x y ,联立直线与抛物线的方程可得28160y my --=,由韦达定理可得128y y m +=,再由线段AB 中点的纵坐标为1-可得122y y +=-,进而求出m 的值,最后写出直线的方程即可.【详解】(1)由题意可设抛物线方程为:22y px =(0p >),∵抛物线过点()2,4-,∴1644p p =⇒=,∴28y x =;(2)设l 的方程为2x my =+,()11,A x y ,()22,B x y ,则由22881602y xy my x my ⎧=⇒--=⎨=+⎩,264640m ∆=+>, 所以128y y m +=, 由题意1212122y y y y +=-⇒+=-,121824y y m m +==-⇒=-, 故124804x y x y =-+⇒+-=, 即直线l 的方程为480x y +-=.【点睛】方法点睛:对于第二问,有两种方法:方法一:设点()11,A x y ,()22,B x y ,根据中点纵坐标即可利用点差法求得直线的斜率,再由点斜式写出直线的方程;方法二:设出直线的方程,联立直线与抛物线的方程,根据韦达定理和中点的纵坐标,即可求得直线的方程.25.(1)22194x y +=;(2)证明见解析.【分析】(1)由条件建立关于,,a b c 的方程,再写出椭圆方程;(2)解法1:设()00,P x y ,()10,C y ,()20,D y ,利用,,P C A 和,,P B D 三点共线,表示12,y y ,再利用点P 在椭圆上,化简OC OD ⋅为定值,解法2:由公式22PA PB b k k a⋅=-,写出直线PA 和PB ,并求直线与y 轴的交点,利用公式22PA PBb k k a⋅=-,化简OC OD ⋅为定值;解法3:如图所示,||||OC OD OC OD ⋅=⋅||||||||||||OC OD OA OB OA OB =⋅⋅⋅,利用公式22PA PB bk k a ⋅=-,化简OC OD ⋅为定值. 【详解】 (1)由题可知,2210,3c e a b a ==+=解得3,2a b == 故椭圆E 的标准方程为22:194x y E +=(2)解法1:设00(,)P x y ,直线PA 交y 轴于点1(0,)C y ,直线PB 交y 轴于点2(0,)D y.则2200194x y +=,即2020949y x =-.易知OC 与OD 同向,12OC OD y y ⋅=⋅因为(3,0),(3,0)A B -,所以得直线PA 的方程为00003y y x x y x --=---,令0x =,则01033y y x =+;直线PB 的方程为00003y y x x y x --=--,令0x =,则02033y y x =-所以212294,9y OC OD y y x ⋅=⋅==-为定值. 解法2:22221(0)x y a b a b+=>>的左、右顶点分别为,A B ,2200194x y +=,即2020949y x =-,∴ 2000200043399PA PB y y y k k x x x ⋅=⋅==-+--, 由(1)知,设直线,PA PB 斜率分别为12,k k ,则124.9k k ⋅=-直线PA 的方程为1(3)y k x =+,令0x =得113y k =;直线PB 的方程为2(3)y k x =- 令0x =得223y k =-.所以121294OC OD y y k k ⋅==-=解法3:22194x y +=的左、右顶点分别为,A B ,由解法2可知,4.9PA PB k k ⋅=-如题图所示,||||OC OD OC OD ⋅=⋅||||||||()33||||PA PB OC OD OA OB k k OA OB =⋅⋅⋅=⋅-⨯⨯ ()3394PA PB PA PB k k k k =⋅-⨯⨯=-⋅=.【点睛】结论点睛:本题第三问,当点P 在椭圆上,并且,A B 为长轴端点时,则22PA PBb k k a⋅=-.26.(1)22143x y +=;(2)()1+12y x =±.【分析】(1)根据已知条件求得c ,b ,再求得a ,从而求得椭圆C 的标准方程.(2)设出直线AB 的方程()+1y k x =,联立直线AB 的方程和椭圆方程,化简后写出根与系数关系,利用弦长154AB =列方程,解方程求得k ,进而求得直线AB 的方程. 【详解】(1)依题意可知1c =,b =2a ==,所以椭圆C 的标准方程为22143x y +=.。

几种常见求轨迹方程的方法

几种常见求轨迹方程的方法

几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1:(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P,当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0) ∵BP∶PA=1∶2,且P为线段AB 的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y 轴上,所以可设双曲线方ax2-4b2x+a2b2=0 ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=1664-4Q4b2=0,即a2=2b.(以下由学生完成) 由弦长公式得:即a2b2=4b2-a2.。

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法

4 1


E

i

求 与 定圆 (

,
) 2

+

,

4
外切

解 ①
戈 2 +



③ 便 可 求得 刀
:

,
且 经效点 A (
2
,
) 的 动 圆圆 心 的 轨 迹方 程 0
,
从 而 求 得 圆的方 程是
夕2

解 如 图 设 动 圆圆 心 为 M ( “ 的 : 设条 件
10
由题
4
x 一
10 夕 + 1 6

0
x
2
例 丫4
3
一 双 曲线 和 椭 圆 2 5
,
+
9梦

l
声卜
l母 T I + I T 对 i = 2 + I M 通 l
;
有 为 公共 的焦 点
F 士 10x
=
且 双 曲线 的 渐 近 线 方 程 为
即 召 行二玄江 不 万` 二
2
+
百 万 不叮 牙不百 了七 仍
o
,
求 此 双 曲线 的方程

已 知 曲线 上 运 动 的 动 点 尸 (
x
,

,
,
的 随 另一 在

2
=
(专)


(去 )
2

设 抛 物线 为

\
,
’ .
对 于 双 曲线 应 有

ZP

轨迹方程的五种求法

轨迹方程的五种求法

轨迹方程的五种求法一、直接法:直接根据等量关系式建立方程.例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =u u u r u u u r·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线解析:由题知(2)PA x y =---u u u r ,,(3)PB x y =--u u u r ,,由2PA PB x =u u u r u u u r·,得22(2)(3)x x y x ---+=,即26y x =+,P ∴点轨迹为抛物线.故选D .二、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 三、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题.例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ②又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把x ,y 联系起来 例4:已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OP OP '=u u u r u u u u r·,求直线AP与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta =+=--,.两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变. 五、待定系数法:当曲线的形状已知时,一般可用待定系数法解决.例5:已知A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD =u u u r ,1()2AE AB AD =+u u u r u u u r u u u r.(1)求E 点轨迹方程;(2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+u u u r u u u r u u u r知E 为BD 中点,易知(222)D x y -,.又2AD =u u u r,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,1=,解得k =.将y =(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.配套训练一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2. 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y x D.14922=-x y二、填空题3. △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________.4. 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 三、解答题5. 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6. 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7. 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-.答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0)6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。

轨迹方程的五种求法

轨迹方程的五种求法

轨迹方程的五种求法一、直接法:直接根据等量关系式建立方程 •uur uuu 例1 :已知点A( 2,0, B(3,0),动点P(x, y)满足PA-PB x 2,则点P 的轨迹是()A •圆B.椭圆C •双曲线D •抛物线uuu uuu uun UUJI 2222解析:由题知 PA ( 2 x, y) , PB (3 x, y),由 PA PB x ,得(2 x)(3 x) y x ,即 y x 6,••• P 点轨迹为抛物线•故选 D . 二、 定义法:运用有关曲线的定义求轨迹方程.例2 :在厶ABC 中,BC 24, AC, AB 上的两条中线长度之和为39,求△ ABC 的重心的轨迹方程.解:以线段BC 所在直线为x 轴,线段BC 的中垂线为2 BM | |CM 39 26 . 3• M 点的轨迹是以B, C 为焦点的椭圆,其中 c 12, a 13 . • b . a 2—』5.y 轴建立直角坐标系,如图 1 , M 为重心,则有、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题 例3 :已知A ABC 的顶点B( 3,0) C(1,0),顶点A 在抛物线y又••• A(x ), y °)在抛物线 y x 2上, •四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量与AP 的交点M 的轨迹方程.解:如图2,以线段AA 所在直线为x 轴,以线段AA 的中垂线为y 轴建立直角坐•所求△ ABC 的重心的轨迹方程为169251(y0) •解:设G(x, y) , A(x 0, y °),由重心公式,3 1 x3 Y Q 3x 0 y。

3x 3y ・2,将①,②代入③,得3y (3x 2)2(y0),即所求曲线方程是3x 24x 3(y0)•例4 :已知线段AA 2a ,直线I 垂直平分AA 于O ,在I 上取两点P, P ,使其满足uuur , OP-OP 4 ,求直线AP UUU D上运动,求△ ABC 的重心G 的轨迹方程.y 0把x , y 联系起来标系.设点 P(0, t)(t 0), 则由题意,得P 0,,-t 4由点斜式得直线AP, A P 的方程分别为y —(x a), y — (x a). a ta 两式相乘,消去t ,得4x 2a 2y 24a 2(y 0) •这就是所求点 M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变五、待定系数法: 当曲线的形状已知时,一般可用待定系数法解决(1 )求E 点轨迹方程;与E 点的轨迹相切,求椭圆方程.uuu 1 uur uuir解:(1 )设 E(x, y),由 AE -(AB AD)知 E 为 BD 中点,易知 D(2x 2,2y) • 2例5 :已知A , B , D 三点不在一条直线上,且uurA( 2,0),B(2,0), AD uuu i uuu uuir 2, AE -(AB AD) •(2 )过A 作直线交以A B 为焦点的椭圆于 M ,N 两点,线段MN的中点到y 轴的距离为 4-,且直线MN5nnr 又AD 2 22,贝U (2x 2 2) (2 y) 即E 点轨迹方程为 i(y 0);(2 )设 M (X i, yj, N(X 2,y 2),中点(心y 。

轨迹方程的求法 (2)

轨迹方程的求法 (2)

轨迹方程的求法求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法.(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程. 若曲线上的动点满足的条件是一些几何量的等量关系,则只需直接把这种关系“翻译”成关于动点的坐标y x 、的方程。

经化简所得同解的最简方程,即为所求轨迹方程。

其一般步骤为:建系——设点——列式——代换——化简——检验。

(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程.(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.可适当地选取中间变量t ,并用t 表示动点P 的坐标y x 、,从而得到动点轨迹的参数方程⎩⎨⎧==)()(t g y t f x ,消去参数t ,便可得到动点P 的轨迹普通方程。

其中应注意方程的等价性,即由t 的范围确定出y x 、范围。

(5)交轨法:通过求两个曲线的交点,得出交点的参数方程,消参后可得出普通方程。

也可以不解方程直组消参。

求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.1.若点M (x,y )满足|3|0x y -+=,则点M 的轨迹是( )1、C ;A.圆B.椭圆C.双曲线 D 抛物线.2点M 为抛物线2y x =上的一个动点,连结原点O 与动点M ,以OM 为边作一个正方形MNPO ,则动点P 的轨迹方程为( ) 2、C ;A.2y x =B. 2y x =-C. 2y x =±D. 2x y =±3.20=化简的结果是( )3、B ;A.22110036x y += B. 22110064x y += C.22136100x y += D. 22164100x y += 4一动圆M 与两定圆14)(x :221=++O y C 9)4-(:222=+O y x C 均外切,则动圆圆心M 的轨迹方程是________.)1(11522-≤=-x y x 解析:应用圆锥曲线的定义,注意只有一支. 变式:一动圆M 与两定圆14)-(x :221=+O y C 100)4(:222=++O y x C 分别外切和内切,则动圆圆心M 的轨迹方程是________.14574121x 22=+y5已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线6 .设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y 解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C 7. △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________..解析:由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a ,故方程为)4(1316162222a x a y a x >=-答案:)4(1316162222ax a y a x >=- 8 . 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 设P (x ,y ),依题意有2222)5(3)5(5y x y x +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=09 . 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0)10 已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.解:建立坐标系如图所示,设|AB |=2a ,则A (-a ,0),B (a ,0).设M (x ,y )是轨迹上任意一点.则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴).(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0.点M 的轨迹是以 (-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆.11 .双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q的交点为Q ,求Q 点的轨迹方程. .解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ). ∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x ax y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2.即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).12 .已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①³②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.13 已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R.(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2| 又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0). |F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)或者:a Q F OR ==121(2)如右图,∵S △AOB =21|OA |²|OB |²sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC14 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.15 设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招)技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系.解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x y x y px y px y ①-②得(y 1-y 2)(y 1+y 2)=4p (x 1-x 2) 若x 1≠x 2,则有2121214y y px x y y +=--⑥①³②,得y 12²y 22=16p 2x 1x 2③代入上式有y 1y 2=-16p 2 ⑦ ⑥代入④,得yxy y p -=+214⑧⑥代入⑤,得py x y y x x y y y y p 442111121--=--=+ 所以211214)(44y px y y p y y p--=+ 即4px -y 12=y (y 1+y 2)-y 12-y 1y 2⑦、⑧代入上式,得x 2+y 2-4px =0(x ≠0)当x 1=x 2时,AB ⊥x 轴,易得M (4p ,0)仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0(x ≠0)它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点. 解法二:设M (x ,y ),直线AB 的方程为y =kx +b由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+(2kb -4p )x +b 2=0所以x 1x 2=22kb ,消x ,得ky 2-4py +4pb =0 (y 1y 2=-4pa ,.x 1x 2=)所以y 1y 2=k pb 4,由OA ⊥OB ,得y 1y 2=-x 1x 2 所以kpk4=-22k b ,b =-4kp故y =kx +b =k (x -4p ),用k =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法三:设OA 的方程为,代入y 2=4px 得① ② ③ ④ ⑤则OB 的方程为,代入y 2=4px 得∴AB 的方程为,过定点,由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法四:设M (x ,y ).(x ≠0),OA 的方程为,代入y 2=4px 得则OB 的方程为,代入y 2=4px 得由OM ⊥AB ,得M 既在以OA 为直径的圆:……①上,又在以OB 为直径的圆:……②上(O 点除外),①+②得.x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点. [错解分析]:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.(此题可以让证明AB 过定点,)这是此题的一个副本产品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四中高二数学导学学案(十六)
朱强基编写
求曲线的轨迹方程(二)
(三)代入法(或叫相关点法)
有些问题是当一个点在某种曲线上运动时,另一个点也随之运动。

解这类问题的一般方法和步骤是(1)设要求轨迹的那个动点的坐标为(x,y),已知动点的坐标为(m,n),根据题意找到(x,y)与(m,n)的关系,(2)用(x,y)表示出(m,n),代入已知动点的轨迹方程中。

例10. 的的中点求线段为定点上的动点是椭圆点M AB ,a ,
,A b
y a x B )02(122
22=+ 轨迹方程。

分析:题中涉及了三个点A 、B 、M ,其中A 为定点,而B 、M 为动点,且点B 的运动是有规律的,显然M 的运动是由B 的运动而引发的,可见M 、B 为相关点,故采用相关点法求动点M 的轨迹方程。

解:设动点M 的坐标为(x ,y ),而设B 点坐标为(x 0,y 0) 则由M 为线段AB 中点,可得
⎩⎨⎧=-=⇒⎪⎪⎩⎪⎪⎨⎧=+=+y y a x x y
y x a
x 2222
02
20000 即点B 坐标可表为(2x -2a ,2y )
上在椭圆点又1)(22
2200=+b
y a x ,y x B
,b
y a a x b
y
a x 1)2()22(1
22
2222
0220=+-=+∴从而有
14)(422
22=+-b y a a x M ,的轨迹方程为得动点
整理 。

b
,a ,a ,
M 的椭圆短半轴为长半轴为为中心的轨迹是以动点2
2)0(
例11.△ABC 中,B (-3,8)、C (-1,-6),另一个顶点A 在抛物线y 2=4x 上移动,求此三角形重心G
的轨迹方程. 解:设点G 的坐标为(),x y ,点A 的坐标为(,)m n ,由三角形重心公式有:
31343
86323m x m x n n y y --+⎧=⎪=+⎧⎪⇒⎨⎨
-+=-⎩⎪=⎪⎩
2
A 4n m ∴= 点在抛物线上,
即:2
(32)34y x -=+
例12.自抛物线y 2=2x 上任意一点P 向其准线l 引垂线,垂足为Q ,连结顶点O 与P 的直线和连结焦点F 与Q 的直线交于R 点,求R 点的轨迹方程.
解:设P (m ,n )、R (x ,y ),则Q (-21,n )、F (2
1
,0), ∴OP 的方程为y =
n
m
x ,
① FQ 的方程为y =-n (x -21


由①②得m =x x
212-,n =x
y 212-,
代入n 2=2m ,可得y 2=-2x 2+x .
例13.线段AB 的两端点分别在两互相垂直的直线上滑动,且||2AB a =,求AB 的中点P 的轨迹方程。

解:分别以这两条直线为坐标轴建立直角坐标系,设点A (m,0),B (0,n )
中点P (x,y ),则
22
22
m x m x n n y y ⎧
=⎪=⎧⎪⇒⎨⎨=⎩⎪=⎪⎩
||2,2AB a a ==
从而有:222x y a +=
思考:若点P 满足AP PB λ=
又该如何解决?轨迹是什么图形?
例14. 已知定点A (2,0),点Q 是圆x 2+y 2=1的动点,∠AOQ 的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程。

分析1:|
||
|||||OQ OA MQ AM ,=知的性质由三角形的内角平分线
,MQ AM ,OQ ,OA 2|
||
|1
||2||===故而
即点分成比为,M AQ λ=2
若设出M (x ,y ),则由分点坐标公式,可表示出点Q 的坐标,因Q 、M 为相关点,(Q 点运动导致
点M 运动),可采用相关点法求点M 的轨迹方程。

解法1:设M (x ,y ),
,OQ AO MQ AM ,2|
||
|||||==得质定理由三角形内角平分线性
∵M 在AQ 上,
∴点分成比为M AQ λ=2,
⎪⎪⎩⎪⎪⎨⎧++=++=21·202
1·22)()02(0000y y x x ,,y x Q ,A 则的坐标为若设点又
上在圆而点1)(232
23220000=+⎪⎪⎩
⎪⎪⎨

=-=∴y x ,y x Q y y x x
94
)32(1)23()223(
122222
02
0=+-=+-=+∴y x ,,y x ,y x 得化简即 。

的轨迹方程为点9
4)32(22=+-∴y x M
分析2:,QO AO QM AM ,2|
||
|||||==知
性质由三角形的内角平分线
,QM AM ON AN N ,OA OQ MN M 2|
||
|||||==则
于交∥作若过 ,OQ ,AQ AM OQ MN ,,N 1||3
2
||||||||)032(===而从而 。

的距离为定值到定点可见动点为定值3
232||32||N M ,OQ MN ==∴
,,N M 的圆半径为为圆心的轨迹是以因此3
2
,y x 9
4)32(22=+-∴其方程为
而当∠AOQ =180°时,其角分线为y 轴,它与AQ 交点为原点O ,显然,该点也满足上述轨迹方程。

注:此种解法为定义法。

相关文档
最新文档