最新正方形的有关提高练习题
与正方形有关的计算及证明精选训练题(能力提高卷)
与正方形有关的计算及证明精选训练题(能力提高卷)1.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.2.以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.3.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.4.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长,交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,求线段AE的长度.5.正方形ABCD中,点P是边CD上的任意一点,连接BP,O为BP的中点,作PE⊥BD 于E,连接EO,AE.(1)若∠PBC=α,求∠POE的大小(用含α的式子表示);(2)用等式表示线段AE与BP之间的数量关系,并证明.6.如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.(1)求证:四边形AECF是菱形;(2)若AC=4,BE=1,直接写出菱形AECF的边长.7.如图,经过正方形ABCD的顶点A在其外侧作直线AP,点B关于直线AP的对称点为E,连接BE、DE,其中DE交直线AP于点F.(1)依题意补全图1.(2)若∠P AB=30°,求∠ADF的度数.(3)如图,若45°<∠P AB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.8.如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足,若CF=3,CE=4,求AP的长.9.在正方形ABCD中,点P是边BC上一动点(不包含端点),线段AP的垂直平分线与AB、AP、BD、CD分别交于点M、E、F、N.(1)如图1,若PB=a,AB=3a,求线段MN的长度;(2)用等式表示ME、EF、NF之间的数量关系并证明.10.如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NP AB,射线MA交直线l于点C,连接BC.(1)设∠ONP=α,求∠AMN的度数;(2)写出线段AM、BC之间的等量关系,并证明.11.已知:在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.(1)如图①,若AB=1,DG=2,求BH的长;(2)如图②,连接AH、GH,求证:AH=GH且AH⊥GH.12.如图,在正方形ABCD中,点E是边BC的中点,直线EF交正方形外角的平分线于点F,交DC于点G,且AE⊥EF.(1)当AB=2时,求GC的长;(2)求证:AE=EF.13.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.14.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE=P A,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE=度.15.已知AP为正方形ABCD外的一条射线,B′为点B关于直线AP的对称点,连接B′D.如图1所示.(1)如果∠BAP=20°,求∠ADB′的度数的大小.(2)如图2所示,M为射线B′B上一点,且∠BMC=135°.①求证:BB′=CM.②求证:CM∥B′D.16.正方形ABCD中,对角线AC与BD交于点O,点P是正方形ABCD对角线BD上的一个动点(点P不与点B,O,D重合),连接CP并延长,分别过点D,B向射线CP作垂线,垂足分别为点M,N.(1)补全图形,并求证:DM=CN;(2)连接OM,ON,判断△OMN的形状并证明.小明在解决问题(2)时遇到了困难,通过向其他同学请教,小明得到了以下建议:建议一:观察现有图形,借助于所证关系线段所在三角形全等的证明来解决问题;建议二:延长MO交BN于点G,借助构造全等三角形来解决问题;如果你是小明,能够顺利的解决以上问题吗?17.如图,M、N分别是正方形ABCD的边BC、CD上的点,已知:∠MAN=30°,AM=AN,△AMN的面积为1.(1)求∠BAM的度数;(2)求正方形ABCD的边长.18.如图,在正方形ABCD中,AC为对角线,点P为线段AC上任意一点(不与A,C重合),过点P作PE⊥AD于E,PF⊥CD于F,连接EF.(1)△ABP的面积与四边形APFE的面积有何数量关系,并给出证明.(2)线段BP与线段EF有何关系,证明你的结论.19.已知:如图,在正方形ABCD中,M,N分别是边AD,CD上的点,且∠MBN=45°,连接MN.求证:MN=AM+CN.20.如图,正方形ABCD和正方形AEFG有公共顶点A,连接BE,DG.求证:BE=DG.21.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.22.如图,正方形ABCD的边长为6,点O是对角线AC,BD的交点,点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足为点F,连接OF.求:(1)CF的长;(2)OF的长.23.如图,正方形ABCD的边长为6,点E在边AB上,连接ED,过点D作FD⊥DE与BC 的延长线相交于点F,连接EF与边CD相交于点G、与对角线BD相交于点H.(1)若BD=BF,求BE的长;(2)若∠2=2∠1,求证:HF=HE+HD.24.如图,已知正方形ABCD,AC、BD相交于点O,E为AC上一点,AH⊥EB交EB于点H,AH交BD于点F.(1)若点E在图1的位置,判断OE与OF的数量关系,并证明你的结论;(2)若点E在AC的延长线上,请在图2中按题目要求补全图形,判断OE与OF的数量关系,并证明你的结论.25.已知:在正方形ABCD中,E、G分别是射线CB、DA上的两个动点,点F是CD边上,满足EG⊥BF,(1)如图1,当E、G在CB、DA边上运动时(不与正方形顶点重合),求证:GE=BF.(2)如图2,在(1)的情况下,连接GF,求证:FG+BE>BF.(3)如图3,当E、G运动到BC、AD的反向延长线时,请你直接写出FG、BE、BF三者的数量关系(不必写出证明过程).26.阅读下面材料:小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF =45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足关系时,仍有EF =BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE =45°,若BD=1,EC=2,求DE的长.27.如图,已知,正方形ABCD中,E是CD边上的一点,F为BC延长线上一点,CE=CF.(1)求证:△BEC≌△DFC;(2)若BC+DF=9,CF=3,求正方形ABCD的面积.28.如图,正方形ABCD中,点E、F为对角线BD上两点,DE=BF.(1)四边形AECF是什么四边形?并证明.(2)若EF=4cm,DE=BF=2cm,求四边形AECF的周长.29.已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动,顶点D在y轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP.(1)当OA=OD时,点D的坐标为,∠POA=°;(2)当OA<OD时,求证:OP平分∠DOA;(3)设点P到y轴的距离为d,则在点A,D运动的过程中,d的取值范围是什么?30.如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG 于点F.(1)求证:DE﹣BF=EF;(2)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明);(3)若AB=2a,点G为BC边中点时,试探究线段EF与GF之间的数量关系,并通过计算来验证你的结论.31.在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.32.已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.(1)当DG=2时,求△FCG的面积;(2)设DG=x,用含x的代数式表示△FCG的面积;(3)判断△FCG的面积能否等于1,并说明理由.33.正方形ABCD,E、F分别为BC、CD边上一点,AH⊥EF交EF于点H,∠EAF=45°.①求证:EF=BE+DF;②若AB=5,求△ECF的周长;③求证:AH=CD.34.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG、DE.求证:(1)BG=DE;(2)BG⊥DE.35.如图,四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE,AF,EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求EF的长.36.如图,在▱ABCD中,对角线AC,BD交于点O,E是AD上任意一点,连接EO并延长,交BC于点F,连接AF,CE.(1)求证:四边形AFCE是平行四边形;(2)若∠DAC=60°,∠ADB=15°,AC=4.①直接写出▱ABCD的边BC上的高h的值;②当点E从点D向点A运动的过程中,下面关于四边形AFCE的形状的变化的说法中,正确的是A.平行四边形→矩形→平行四边形→菱形→平行四边形B.平行四边形→矩形→平行四边形→正方形→平行四边形C.平行四边形→菱形→平行四边形→菱形→平行四边形D.平行四边形→菱形→平行四边形→矩形→平行四边形37.阅读材料:平面直角坐标系中点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的折线距离,记为[P],即[P]=|x|+|y|,其中的“+”是四则运算中的加法,例如点P(1,2)的折线距离[P]=|1|+|2|=3.【解决问题】(1)已知点A(﹣2,4),B(+,﹣),直接写出A、B的折线距离[A],[B];(2)若点M满足[M]=2,①当点M在x轴的上方时,且横坐标为整数,求点M的坐标;②正方形EFGH的两个顶点坐标分别为E(t,0),F(t﹣1,0),当正方形EFGH上存在点M时,直接写出t的取值范围.38.在正方形ABCD中,F是线段BC上一动点(不与点B,C重合)连接AF,AC,分别过点F,C作AF、AC的垂线交于点Q.(1)依题意补全图1,并证明AF=FQ;(2)过点Q作NQ∥BC,交AC于点N,连接FN.若正方形ABCD的边长为1,写出一个BF的值,使四边形FCQN为平行四边形,并证明.39.在正方形ABCD中,点P在射线AB上,连结PC,PD,M,N分别为AB,PC中点,连结MN交PD于点Q.(1)如图1,当点P与点B重合时,∠QMB=°;(2)当点P在线段AB的延长线上时.①依题意补全图;②在点P运动过程中,始终有QP=QM,请证明这个结论.40.如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD 于点H,G为FH的中点.(1)求证:AE=CE;(2)猜想线段AE,EG和GF之间的数量关系,并证明.41.如图,在正方形ABCD中,BE平分∠CBD,EF⊥BD于点F,若,求BC的长.42.如图,△ABC中,AB=2,AC=,∠BAC的度数为α,四边形BCDE为正方形.(1)当α=45°时,求AE的长.(2)当α=度时,AE的长最大,AE的最大值为.43.如图,在正方形ABCD中,E为AB边上一点(不与点A,B重合),CF⊥DE于点G,交AD于点F,连接BG.(1)求证:AE=DF;(2)是否存在点E的位置,使得△BCG为等腰三角形?若存在,写出一个满足条件的点E的位置并证明;若不存在,说明理由.44.如图,在△ABC中,∠BAC=90°,以BC为边,向外作正方形BCDE,对角线BD,CE交于点O.(1)求证:∠ABO+∠ACO=180°;(2)连接AO,用等式表示线段AB,AC,AO之间的数量关系,并证明你的结论.45.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E连接BE,DE,其中DE交直线AP于点F.连接AE,若∠P AB=20°,求∠ADF的度数.46.如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB=PE,连接PD,O为AC中点.(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.。
正方形提高练习题
1.已知,如图边长为 3的正方形ABCD 绕点C 按顺时针方向旋转 EF 交AD 于点H,那么DH 的长为()B .亜3CF = 5, BE = DF = 12,贝U EF 的长是( )等的两部分,则x 的值是4 •如图,四边形 ABCD 是正方形,以CD 为边作等边三角形 CDE BE 与AC 相交于点M ,则5•如图,ABCD 是正方形,M 是BC 中点,将正方形折起,使点6•如图,正方形 ABCD 的面积为18,菱形AECF 的面积为6,则菱形的边长为2.如图,在正方形 ABCD 中,△ ABE 和^ CDF 为直角三角形,/AEB=/ CFD= 90°, AE =Ac \.Jv学(第5题)EF,若正方形面积是 64,那么△ AEM 的面积是(第 6题)30°后得到正方形 EFCGD .B . D . 7/33 .如图是由三个边长分别为6、9、x 的正方形所组成的图形, 若直线 AB 将它分成面积相A . 1 或 9B . C. 4 或 6 D . 3 或 6C. 54 D .A 与点M 重合,设折痕为A . 7(第 1 8(第 2 S(第 3A . 75B . 607.如图,直线I过正方形ABCD的顶点D,过A、C分别作直线I的垂线,垂足分别为E、F.若AE =4a, CF= a,则正方形ABCD的面积为9 .如图,M、N是正方形ABCD的边CD上的两个动点,E,连接DE交AM于点F,连接CE若正方形的边长为6,贝熾段CF的最小值是10.如图所示,在三角形ABC中,/ ACB= 90°, AC= 8厘米,BC= 6厘米.分别以AC BC为边作正方形AEDC BCFG则三角形BEF的面积是11.如图,在正方形ABCD中,点E, F分别在边AB, BC上,/ ADE=/ CDF(1)求证:AE= CF;(2)连接DB交EF于点O,延长OB至点G,使OG= OD,连接EG FG,判断四边形DEGF12•如图,l1, l2, l3, l4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离&如图,在正方形ABCD中,AB= 3,点E, F分别在CD, AD上, CE= DF, BE, CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2: 3,则△ BCG的周长(第9 题)满足AM = BN,连接AC交BN于点平方厘米,AEDFGB的面积是G为h,正方形ABCD的四个顶点分别在这四条直线上,且正方形ABCD的面积是25 .(1)连接EF,证明△ ABE △ FBE △ EDF、A CDF的面积相等.13 •正方形ABCD与正方形CEFG的位置如图所示,点G在线段CD或CD的延长线上,分别连接BD、BF、FD,得到△ BFD.(1)在图1-图3中,若正方形CEFG的边长分别为1、3、4,且正方形ABCD的边长均为3,请通过计算填写下表:正方形CEFG的边长△ BFD的面积a,正方形ABCD的边长为b,猜想$△ BFD的大小,并结合图3证明你的猜想.(2 )若正方形CEFG的边长为图②(2 )求h的值.14.已知:如图,在正方形ABCD中,AB = 4,点G是射线AB上的一个动点,以DG为边向右作正方形DGEF作EH丄AB于点H.不是,请说明理由.15•如图,已知平行四边形ABCD中,对角线AC, BD交于点0, E是BD延长线上的点,且△ ACE是等边三角形.(1)求证:四边形ABCD是菱形;16 •如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点0,以线(1)若点G在点B的右边•试探索: EH- BG的值是否为定值,若是,请求出定值;若(2)连接EB,在G点的整个运动(点G与点A重合除外)过程中,求/ EBH的度数.C求证:四边形ABCD是正方形.段AG为边作一个正方形AEFG连接EB GD.(1)求证:EB= GD;(2)若AB= 5, AG= ,求EB的长.【感知】如图①,若四边形ABCD是正方形,且EF丄GH,易知&B0L &A0G又因为S△A0B= 寺S 四边形ABCD所以S四边形AE0G=+S正方形ABCD (不要求证明);【拓展】如图②,若四边形ABCD是矩形,且S四边形AE0G F丄S矩形ABCD若AB= a, AD = 4 b, BE= m,求AG的长(用含a、b、m的代数式表示);,若四边形ABCD是平行四边形,且S四边形AE0G=^S ABCD若AB= 3, AD圉③18•在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE= DF,连接AE、AF、17.在四边形ABCD中,对角线AC、BD相交于点0,过点0的直线分别交边AB、CD、AD、BC于点E、F、G、H【探究】如图③a①CE CE如图所示.(1)求证:△ ABE^A ADF;(2)试判断四边形AECF的形状,并说明理由.19.如图,正方形ABCD的对角线交于点0,点E、F分别在AB、BC 上(AEv BE),且/ EOF,OE、DA的延长线交于点M, OF、AB的延长线交于点N,连接MN .若正方形ABCD的边长为4, E为OM的中点,求MN的长.20 .如图,在正方形ABCD中,点G在对角线BD上(不与点B, D重合),GE1 DC于点E,=90(1) 求证:0M = ON.GF丄BC于点F,连结AG.(1 )写出线段AG, GE, GF长度之间的数量关系,并说明理由;1 , / AGF= 105 °,求线段BG的长.(1)求证:PA=PC;(2)求/ APE的度数;ABCD改为菱形ABCD,其它条件不变,当/ ABC= 120 °,连接AE,试探究线段AE与线段PC的数量关系,并给予证明.(2 )若正方形ABCD的边长为21.如图①,在正方形ABCD中, P是对角线BD上的一点,点E在CD的延长线上,且PC=PE, PE交AD 于点F.(3)如图②,把正方形参考答案与试题解析1. A2. C3. D4. B5. 106.7. 17a2 8 ^15+3 9.砺-3 10. 66; 148.。
正方形练习题(培优训练)
正方形练习题(培优训练)
正方形练题(培优训练)
正方形是一种独特的几何形状,在数学和几何学中经常被研究和应用。
下面是一些正方形练题,旨在帮助您加深对正方形的理解和掌握。
1. 求解正方形的面积公式。
面积是一个几何形状的表面所覆盖的单位面积的总量。
对于正方形而言,其面积公式为边长的平方。
若正方形的边长为a,则其面积为a^2。
2. 假设一个正方形的面积为25平方单位,求解其边长。
根据上述面积公式,设边长为a,则有a^2 = 25。
解这个方程可以得到a = 5,所以该正方形的边长为5单位。
3. 如果一个正方形的边长为6单位,求解其周长和对角线的长度。
周长是一个几何形状的边界长度的总和。
对于正方形而言,其
周长公式为4倍边长。
所以这个正方形的周长为4 * 6 = 24单位。
对角线是连接正方形两个对角线的线段。
根据勾股定理,若正
方形的边长为a,则其对角线的长度为a * √2。
所以这个正方形的
对角线长度为6 * √2单位。
4. 如果一个正方形的周长为36单位,求解其面积和边长。
根据周长公式,设边长为a,则有4a = 36。
解这个方程可以得
到a = 9,所以这个正方形的边长为9单位。
根据面积公式,该正方形的面积为9^2 = 81平方单位。
这些练题旨在帮助您加深对正方形相关概念和公式的理解。
继
续练和应用这些知识,将帮助您在数学和几何学中取得更好的成绩。
专题5-5正方形专项提升训练(重难点培优)--2023-2024学年八年级数学(0002)
【拔尖特训】2023-2024学年八年级数学下册尖子生培优必刷题【浙教版】专题5.5正方形专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•阜平县期末)下列说法正确的是()A.菱形的四个内角都是直角B.矩形的对角线互相垂直C.正方形的每一条对角线平分一组对角D.平行四边形是轴对称图形2.(2022春•巴中期末)下列说法正确的是()A.四边相等的四边形是正方形B.对角线互相垂直且相等的四边形是正方形C.对角线互相垂直平分的四边形是菱形D.对角线相等的四边形是矩形3.(2022春•唐河县期末)已知:如图,M是正方形ABCD内的一点,且MC=MD=AD,则∠AMB的度数为()A.120°B.135°C.145°D.150°4.(2022春•青秀区校级期末)如图,正方形ABCD的对角线AC,BD交于点O,E、F分别为AO、AD的中点,若EF=3,则OD的长是()A.3B.4C.5D.65.(2022春•肥城市期中)如图,E、F分别是正方形ABCD的边CD、BC上的点,且CE=BF,AF、BE 相交于点G,下列结论中正确的是()①AF=BE;②AF⊥BE;③AG=GE;④S△ABG=S四边形CEGF.A.①②③B.①②④C.①③④D.②③④6.(2022秋•舞钢市期中)如图,正方形ABCD中,点P和H分别在边AD、AB上,且BP=CH,AB=15,BH=8,则BE的长是()A.B.5C.7D.7.(2022•大渡口区校级模拟)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若,则线段AC的长为()A.B.C.D.8.(2021秋•吉州区期末)如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线CF滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点B与点E重合时,四边形ACDF是菱形C.当点E为BC中点时,四边形ACDF是矩形D.四边形ACDF不可能是正方形9.(2022秋•金水区校级期中)已知四边形ABCD是平行四边形,下列结论中错误的有()①当AB=DC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形.A.1个B.2个C.3个D.4个10.如图,在边长为15的正方形ABCD中,点E、点F分别是BC、AB上的点,连接DE、DF、EF,满足∠DEF=∠DEC.若AF=3,则EF的长为()A.12B.13C.14D.15二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022春•北京期中)如果正方形的一条对角线长为3,那么该正方形的面积为.12.(2021秋•太原期末)添加一个条件,使矩形ABCD是正方形,这个条件可能是.13.(2022春•岱岳区期末)如图,在正方形ABCD中,点F为边CD上一点,BF与AC交于点E.若∠CBF =25°,则∠AED的大小为度.14.(2022秋•和平区校级期末)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,正方形ABCD的边长为3,BE=1,则DF的长为.15.(2022春•吴中区校级月考)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG 为边作一个正方形AEFG,线段EB和GD相交于点H若AB=2,AG=,则EB=.16.如图,在正方形ABCD中,AB=6,点F在边DC上运动(不包含两个端点),点E是边BC的中点,连接AE,AF,EF.当△AEF为等腰三角形,AE为底边时,CF的长为.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•周至县期末)如图,在正方形ABCD中,点E、F分别在边BC、AB上,且AF=BE,AE、DF相交于点O.求证:∠BAE=∠ADF.18.(2022•越秀区校级一模)如图,正方形ABCD中,点P,Q分别为CD,AD边上的点,且DQ=CP,连接BQ,AP.求证:BQ⊥AP.19.(2021•陕西模拟)如图,正方形ABCD的对角线AC与BD交于点O.过点C作CE∥BD,过点D作DE∥AC,CE与DE交于点E,求证:DE=CE.20.(2022春•东莞市校级期中)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB 边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)21.(2022秋•牡丹区校级月考)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB 边上点,过点D作DE⊥BC交直线MN与E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形CDBE是什么特殊四边形?说明理由;(3)在满足(2)的条件下,当△ABC再满足条件时,四边形CDBE是正方形(直接填写答案).22.(2022•崂山区一模)如图,正方形ABCD,点P在边BC的延长线上,连接AP交BD于F,过点C作CG∥AP交BD于点G,连接AG,CF.(1)求证:△ADF≌△CBG;(2)判断四边形AGCF是什么特殊四边形?请说明理由.23.(2021秋•宁阳县期末)如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,且∠CGD=∠DGE,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)猜想:△DEH的形状,并说明理由.(2)猜想BH与AE的数量关系,并证明.。
华师大版数学八年级下册_《正方形》提高训练
《正方形》提高训练一、选择题(本大题共5小题,共25.0分)1.(5分)顺次连接一个四边形的各边中点,得到了一个正方形,则这个四边形最可能是()A.平行四边形B.菱形C.矩形D.正方形2.(5分)如图,正方形ABCD中,点E、F、G分别为边AB、BC、AD上的中点,连接AF、DE交于点M,连接GM、CG,CG与DE交于点N,则结论①GM⊥CM;②CD=DM;③四边形AGCF是平行四边形;④∠CMD=∠AGM中正确的有()个.A.1B.2C.3D.43.(5分)如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的大小是()A.67.5°B.22.5°C.30°D.45°4.(5分)正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1B.2C.3D.45.(5分)正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为()A.8B.C.D.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.若AC=4,BE=1,则四边形AECF的周长为.7.(5分)如图,已知正方形ABCD的边长为8,点O是AD上一个定点,AO=5,点P从点A出发,以每秒1个单位长的速度,按照A→B→C→D的方向,在正方形的边上运动,设运动的时间为t(秒),当t的值为时,△AOP是等腰三角形.8.(5分)如图,正方形ABCD的边长是4,点E是BC的中点,连接DE,DF⊥DE交BA 的延长线于点F.连接EF、AC,DE、EF分别与C交于点P、Q,则PQ=.9.(5分)《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt△ABC 的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为.10.(5分)如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,在Rt△ABC中,∠ACB=90°,AC的垂直平分线EF交AC于点D,交AB于点F,且CE=BF.(1)求证:四边形AECF是菱形;(2)填空:当∠BAC的度数为时,四边形AECF是正方形.12.(10分)已知:如图,在平行四边形ABCD中,BC=AC,E,F分别是AB,CD的中点,连接CE并延长交DA的延长线于M,连接AF并延长交BC的延长线于N.(1)求证:△ABN≌△CDM;(2)当平行四边形ABCD的边或角满足什么关系时,四边形AECF是正方形?请说明理由.13.(10分)已知:如图,在平行四边形ABCD中,M、N分别是AD和BC的中点.(1)求证:四边形AMCN是平行四边形;(2)若AC=CD,求证四边形AMCN是矩形;(3)若∠ACD=90°,求证四边形AMCN是菱形;(4)若AC=CD,∠ACD=90°,求证四边形AMCN是正方形.14.(10分)已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.求证:四边形AECF是菱形15.(10分)如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D =90°,点E在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?《正方形》提高训练参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)顺次连接一个四边形的各边中点,得到了一个正方形,则这个四边形最可能是()A.平行四边形B.菱形C.矩形D.正方形【分析】利用连接四边形各边中点得到的四边形是正方形,则结合正方形的性质及三角形的中位线的性质进行分析,从而不难求解.【解答】解:如图点E,F,G,H分别是四边形ABCD各边的中点,且四边形EFGH是正方形.∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是正方形.∴EF=EH,EF⊥EH,∵BD=2EF,AC=2EH,∴AC=BD,AC⊥BD,即四边形ABCD满足对角线相等且垂直,选项D满足题意.故选:D.【点评】本题考查了利用三角形中位线定理得到新四边形各边与相应线段之间的数量关系和位置.熟练掌握特殊四边形的判定是解题的关键.2.(5分)如图,正方形ABCD中,点E、F、G分别为边AB、BC、AD上的中点,连接AF、DE交于点M,连接GM、CG,CG与DE交于点N,则结论①GM⊥CM;②CD=DM;③四边形AGCF是平行四边形;④∠CMD=∠AGM中正确的有()个.A.1B.2C.3D.4【分析】要证以上问题,需证CN是DN是垂直平分线,即证N点是DM中点,利用中位线定理即可,利用反证法证明④不成立即可.【解答】解:∵AG∥FC且AG=FC,∴四边形AGCF为平行四边形,故③正确;∴∠GAF=∠FCG=∠DGC,∠AMN=∠GND在△ADE和△BAF中,∵,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠ADE+∠AEM=90°∴∠EAM+∠AEM=90°∴∠AME=90°∴∠GND=90°∴∠DE⊥AF,DE⊥CG.∵G点为AD中点,∴GN为△ADM的中位线,即CG为DM的垂直平分线,∴GM=GD,CD=CM,故②错误;在△GDC和△GMC中,∵,∴△GDC≌△GMC(SSS),∴∠CDG=∠CMG=90°,∠MGC=∠DGC,∴GM⊥CM,故①正确;∵∠CDG=∠CMG=90°,∴G、D、C、M四点共圆,∴∠AGM=∠DCM,∵CD=CM,∴∠CMD=∠CDM,在Rt△AMD中,∠AMD=90°,∴DM<AD,∴DM<CD,∴∠DMC≠∠DCM,∴∠CMD≠∠AGM,故④错误.故选:B.【点评】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用及平行四边形的性质的运用.在解答中灵活运用正方形的中点问题解决问题,灵活运用了几何图形知识解决问题.3.(5分)如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的大小是()A.67.5°B.22.5°C.30°D.45°【分析】由四边形ABCD是正方形,即可求得∠BAC=∠ACB=45°,又由AE=AC,根据等边对等角与三角形内角和等于180°,即可求得∠ACE的度数,又由∠BCE=∠ACE ﹣∠ACB,即可求得答案.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵AE=AC,∴∠ACE=∠E==67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故选:B.【点评】此题考查了正方形的性质与等腰三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质.4.(5分)正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1B.2C.3D.4【分析】由题意可证△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF=EC,由平角定义可求∠AED=75°,由AE=AF,EC=FC可证AC垂直平分EF,则可判断各命题是否正确.【解答】解:∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°∵△AEF是等边三角形∴AE=AF=EF,∠EAF=∠AEF=60°∵AD=AB,AF=AE∴△ABF≌△ADE∴BF=DE∴BC﹣BF=CD﹣DE∴CE=CF故①正确∵CE=CF,∠C=90°∴EF=CE,∠CEF=45°∴AF=CE,∵∠AED=180°﹣∠CEF﹣∠AEF∴∠AED=75°故②③正确∵AE=AF,CE=CF∴AC垂直平分EF故④正确故选:D.【点评】本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,线段垂直平分线的判定,熟练运用这些性质和判定解决问题是本题的关键.5.(5分)正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为()A.8B.C.D.【分析】根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.【解答】解:∵正方形ABCD的面积为16,正方形BPQR面积为25,∴正方形ABCD的边长为4,正方形BPQR的边长为5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四边形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴∴∴DS=∴∴阴影部分的面积S=S正方形ABCD﹣S△ABR﹣S△RDS=4×4﹣﹣=故选:D.【点评】本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS 的面积是解此题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.若AC=4,BE=1,则四边形AECF的周长为4.【分析】由正方形的性质可得AO=CO=BO=DO=2,AC⊥BD,由BE=DF,可得OE =OF,可证四边形AECF是菱形,由勾股定理可求CE=,即可求四边形AECF的周长.【解答】解:设AC与BD交于点O,∵四边形ABCD是正方形,∴AO=CO=BO=DO=2,AC⊥BD,∵BE=DF=1,∴OE=OF=3,且OA=OC,∴四边形AECF是平行四边形,又∵AC⊥BD∴四边形AECF是菱形∴AE=CE=CF=AF,在Rt△COE中,CE===∴四边形AECF的周长为4故答案为:4【点评】本题考查了正方形的性质,菱形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.7.(5分)如图,已知正方形ABCD的边长为8,点O是AD上一个定点,AO=5,点P从点A出发,以每秒1个单位长的速度,按照A→B→C→D的方向,在正方形的边上运动,设运动的时间为t(秒),当t的值为5或10.5或20时,△AOP是等腰三角形.【分析】由正方形的性质可得AB=BC=CD=AD=8,∠D=90°,OD=3,分AP=AO,AP=PO,AO=OP三种情况讨论,由等腰三角形的性质可求t的值.【解答】解:∵四边形ABCD是正方形∴AB=BC=CD=AD=8,∠D=90°∵AO=5,∴OD=3若AP=AO=5,即t=若AP=OP,即点P在AO的垂直平分线上,∴点P在BC上,且BP=2.5∴t=若AO=OP=5,即点P在CD上,∴PD==4∴t=故答案为:5或10.5或20【点评】本题考查了正方形的性质,等腰三角形的性质,利用分类讨论思想解决问题是本题的关键.8.(5分)如图,正方形ABCD的边长是4,点E是BC的中点,连接DE,DF⊥DE交BA的延长线于点F.连接EF、AC,DE、EF分别与C交于点P、Q,则PQ=.【分析】过点E作EM∥AB,交AC于点M,由题意可证ME∥AB∥CD,△ADF≌△CDE,可得AF=CE=ME,根据平行线分线段成比例可得,,,即可求PQ的长.【解答】解:如图,过点E作EM∥AB,交AC于点M,∵四边形ABCD是正方形∴AD=CD=BC=4,∠ADC=∠DAB=∠DCE=90°,∠ACE=45°,AB∥CD,∴∠CDE+∠ADE=90°,AC=4∵DF⊥DE,∴∠FDA+∠ADE=90°∴∠CDE=∠FDA,且∠DAF=∠DCE=90°,AD=CD,∴△ADF≌△CDE(AAS)∴AF=CE,∵点E是BC中点,∴CE=BE=BC=AF,∵ME∥CD∴∠DCE=∠MEB=90°,且∠ACB=45°∴∠CME=∠ACB=45°,∴ME=CE=BC,∵ME∥AB,AB∥CD,∴ME∥AB∥CD,∴,,,∴MQ=AQ,AM=CM=2,CP=2MP,∴MQ=,MP=∴PQ=MQ+MP=【点评】本题考查了正方形的性质,全等三角形的判定和性质,平行线分线段成比例等性质,灵活运用相关的性质定理、综合运用知识是解题的关键.9.(5分)《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt△ABC 的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为.【分析】根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【解答】解:∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=5﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴,x=,故答案为:.【点评】此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.10.(5分)如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=.【分析】首先利用勾股定理求出DE,再利用三角形的面积公式求出OA即可.【解答】解:∵四边形ABCD是正方形,∴AD=BC=2,∠DAE=90°,∵AE=EB=1,∴DE==,∵AO⊥DE,∴×DE×AO=×AE×AD,∴AO=.故答案为.【点评】本题考查正方形的性质,勾股定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,在Rt△ABC中,∠ACB=90°,AC的垂直平分线EF交AC于点D,交AB于点F,且CE=BF.(1)求证:四边形AECF是菱形;(2)填空:当∠BAC的度数为45°时,四边形AECF是正方形.【分析】(1)由线段垂直平分线的性质可得CE=AE,CF=AF,AC⊥EF,CD=AD,由平行线分线段成比例可得AF=BF,可得CE=AF=CF=AE,则可得结论;(2)由菱形的性质可得∠BAC=∠FCA=45°,可得∠AFC=90°,可得四边形AECF 是正方形.【解答】证明:(1)∵EF垂直平分AC,∴CE=AE,CF=AF,AC⊥EF,CD=AD,∵∠ACB=90°,AC⊥EF∴BC∥EF,∴∴AF=BF,又∵CE=BF,∴CE=AF=CF=AE∴四边形AECF是菱形(2)当∠BAC=45°时,四边形AECF是正方形.理由如下:∵AF=CF∴∠BAC=∠FCA=45°,∴∠AFC=90°,且四边形AECF是菱形∴四边形AECF是正方形.故答案为:45°【点评】本题考查了正方形的判定,菱形的判定和性质,线段垂直平分线的性质等知识,灵活运用这些性质进行推理是本题的关键.12.(10分)已知:如图,在平行四边形ABCD中,BC=AC,E,F分别是AB,CD的中点,连接CE并延长交DA的延长线于M,连接AF并延长交BC的延长线于N.(1)求证:△ABN≌△CDM;(2)当平行四边形ABCD的边或角满足什么关系时,四边形AECF是正方形?请说明理由.【分析】(1)根据平行四边形得到AB=CD,AB∥CD,∠B=∠D,根据线段中点的定义得到AE=AB,CF=CD,推出四边形AECF是平行四边形,得到四边形AECF是矩形,根据全等三角形的判定定理得到结论;(2)根据直角三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∠B=∠D,∵E,F分别是AB,CD的中点,∴AE=AB,CF=CD,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC=CB,∴CE⊥AB,∴∠AEC=90°,∴四边形AECF是矩形,∴∠BAN=∠DCM=90°,在△ABN与△CDM中,,∴△ABN≌△CDM(ASA);(2)解:当∠B=45°时,四边形AECF是正方形,理由:∵BC=AC,∴∠B=∠BAC=45°,∵E是AB的中点,∴CE⊥AB,∴AE=EC,∴矩形AECF是正方形.【点评】本题考查了正方形的判定,全等三角形的判定和性质,等腰三角形的性质,平行四边形的判定和性质,熟练掌握平行四边形的判定和性质是解题的关键.13.(10分)已知:如图,在平行四边形ABCD中,M、N分别是AD和BC的中点.(1)求证:四边形AMCN是平行四边形;(2)若AC=CD,求证四边形AMCN是矩形;(3)若∠ACD=90°,求证四边形AMCN是菱形;(4)若AC=CD,∠ACD=90°,求证四边形AMCN是正方形.【分析】(1)根据平行四边形的判定定理即可得到结论;(2)根据矩形的判定定理即可得到结论;(3)根据菱形的判定定理即可得到结论;(4)根据正方形的判定定理即可得到结论.【解答】证明:(1)由已知得AD∥BC,AD=BC,∵M、N分别是AD和BC的中点,∴AM=AD,CN=BC,AM=CN,∵AM∥CN,AM=CN,∴四边形AMCN是平行四边形;(2)∵AC=CD,M是AD的中点,∴∠AMC=90°,∵由(1)知,四边形AMCN是平行四边形,∴四边形AMCN是矩形;(3)∵∠ACD=90°,M是AD的中点,∴AM=CM,∵由(1)知,四边形AMCN是平行四边形,∴四边形AMCN是菱形;(4)∵AC=CD,M是AD的中点,∴∠AMC=90°,∵由(1)知四边形AMCN是平行四边形,∴四边形AMCN是矩形,∵∠ACD=90°,M是AD的中点,∴AM=CM,∴四边形AMCN是菱形,∴四边形AMCN是正方形【点评】本题考查了平行四边形、矩形、菱形、正方形的判定,熟练掌握判定定理是解题的关键.14.(10分)已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.求证:四边形AECF是菱形【分析】由正方形的性质可得AO=CO,BO=DO,AC⊥BD,可得EO=FO,由对角线互相平分的四边形是平行四边形可得四边形AECF是平行四边形,即可证四边形AECF 是菱形.【解答】证明:如图,连接AC交BD于点O,∵四边形ABCD是正方形,∴AO=CO,BO=DO,AC⊥BD,∵BE=DF∴DO﹣DF=BO﹣BE∴FO=EO,且AO=CO∴四边形AECF是平行四边形,又∵AC⊥BD∴四边形AECF是菱形【点评】本题考查了正方形的性质,菱形的判定,熟练运用正方形的性质解决问题是本题的关键.15.(10分)如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D =90°,点E在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?【分析】(1)由题意可得BP=CQ,BE=CP,由“SAS”可证△BPE≌△CQP;(2)由全等三角形的性质可得BP=CP=5,BE=CQ=6,即可求点Q的速度.【解答】解:(1)全等.理由:由题意:BP=CQ=2t当t=2时,BP=CQ=4∵AB=BC=10,AE=4∴BE=CP=10﹣4=6∵BP=CQ,∠B=∠C=90°,BE=CP∴△BPE≌△CQP(SAS)(2)∵P、Q运动速度不相等∴BP≠CQ∵∠B=∠C=90°∴当BP=CP,CQ=BE时,△BPE≌△CQP∴BP=CP=BC=5,CQ=BE=6∴当t=5÷2=(秒)时,△BPE≌△CQP此时点Q的运动速度为6÷=(cm/s)【点评】本题考查了正方形的性质,全等三角形的判定和性质,熟练运用全等三角形的性质解决问题是本题的关键.。
正方形经典题型(培优提高)
正方形的性质及判定知识归纳1. 正方形的定义: 有一组邻边相等, 并且有一个角是直角的平行四边形叫做正方形.2. 正方形的性质正方形是特殊的平行四边形、矩形、菱形. 它具有前三者的所有性质: ① 边的性质: 对边平行, 四条边都相等. ② 角的性质: 四个角都是直角.③ 对角线性质:两条对角线互相垂直平分且相等, 每条对角线平分一组对角. ④ 对称性:正方形是中心对称图形, 也是轴对称图形. 平行四边形、矩形、菱形和正方形的关系: (如图) 3. 正方形的判定判定①: 有一组邻边相等的矩形是正方形. 判定②:有一个角是直角的菱形是正方形. 4. 重点:知晓正方形的性质和正方形的判定方法。
难点: 正方形知识的灵活应用例题讲解一、正方形的性质例1: 如图, 已知正方形 的面积为 , 点 在 上, 点 在 的延长线上, 且, 则 的长为FE D CBA变式1: 如图, 在正方形 中, 为 边的中点, , 分别为 , 边上的点, 若 , ,, 则 的长为 .变式2: 将 个边长都为 的正方形按如图所示摆放, 点 分别是正方形的中心, 则 个正方形重叠形成的重叠部分的面积和为例2: 如图, 是正方形 对角线 上的一点, 求证: .EDCBA变式1: 如图, 为正方形 对角线上一点, 于 , 于 .求证: .F EPDCB A例3: 如图, 已知 是正方形 内的一点, 且 为等边三角形, 那么PDCBA变式1: 如图, 已知 、 分别是正方形 的边 、 上的点, 、 分别与对角线 相交于 、 , 若 ,则 .变式2: 如图, 四边形 为正方形, 以 为边向正方形外作正方形 , 与 相交于点 ,则FEDCBA例4: 如图, 正方形 的边 在正方形 的边 上, 连接 , 求证: .GC FEDBA变式1: 如图, 在正方形 中, 为 边上的一点, 为 延长线上的一点, , , 求的度数.BDCAEF变式2: 已知: 如图, 在正方形 中, 是 上一点, 延长 到 , 使 , 连接 并延长交 于 .(1)求证: ;(2)将 绕点顺时针旋转 得到 , 判断四边形 是什么特殊四边形?并说明理由.例5: 若正方形 的边长为 , 为 边上一点, , 为线段 上一点, 射线 交正方形的一边于点 , 且 , 则 的长为 .ABCDEF EG变式1: 如图1, 在正方形 中, 、 、 、 分别为边 、 、 、 上的点, , 连接 、 , 交点为 .⑴ 如图2, 连接 , 试判断四边形 的形状, 并证明你的结论;⑵ 将正方形 沿线段 、 剪开, 再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形 的边长为 , , 则图3中阴影部分的面积为_________ .图3图1图2H DGC FEBAOH GFEDC BA变式2: 如图, 正方形 对角线相交于点 , 点 、 分别是 、 上的点, , 求证: (1);(2) . BO D CAQP例6: 如图, 正方形 中, 是 边上两点, 且 于 , 求证:G FEC DBA变式1: 如图, 点 分别在正方形 的边 上, 已知 的周长等于正方形 周长的一半,求 的度数NMDCBA变式2: 如图, 设 正方形 的对角线 , 在 延长线上取一点 , 使 , 与交于 , 求证: 正方形的边长.HEGCDFBA例7: 把正方形 绕着点 , 按顺时针方向旋转得到正方形 , 边 与 交于点 (如图).试问线段 与线段 相等吗? 请先观察猜想, 然后再证明你的猜想.GCHF EDB A变式1: 如图所示, 在直角梯形 中, , , 是 的垂直平分线, 交 于点 , 以腰为边作正方形 , 作 于点 , 求证 .lPM FE DC BA二、正方形的判定例1: 四边形 的四个内角的平分线两两相交又形成一个四边形 , 求证: ⑴四边形EFGH 对角互补;⑵若四边形 为平行四边形, 则四边形 为矩形.⑶四边形 为长方形, 则四边形 为正方形.HEFG DCBA变式1: 如图, 已知平行四边形 中, 对角线 、 交于点 , 是 延长线上的点, 且 是等边三角形. ⑴ 求证: 四边形 是菱形;⑵ 若 , 求证:四边形 是正方形.OEDCBA变式2: 已知: 如图, 在 中, , , 垂足为点 , 是 外角 的平分线, , 垂足为点 .⑴ 求证: 四边形 为矩形;⑵ 当 满足什么条件时, 四边形 是一个正方形?并给出证明.M ENCDBA例2: 如图, 是边长为 的正方形, 是内接于 的正方形, , 若 则 =H GFEDCBA例3: 如图, 若在平行四边形 各边上向平行四边形的外侧作正方形, 求证: 以四个正方形中心为顶点组成一个正方形.PRQ S NMFEDCBA1. 附加题:如图, 在线段 上, 和 都是正方形, 面积分别为 和 , 则 的面积为GFEDCB A如图, 在正方形 中, 、 分别是 、 的中点, 求证: .MFEDCBA如图, 正方形 中, 是对角线 的交点, 过点 作 , 分别交 于 , 若 , 则 OFE DC BA如图所示, 是正方形, 为 上的一点, 四边形 恰好是一个菱形, 则 ______.ABCDEF。
中考数学总复习《正方形》专项提升训练(带答案)
中考数学总复习《正方形》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________ 1. 如图,在四边形ABCD中,对角线AC,BD相交于点O .第1题图(1)若四边形ABCD是平行四边形,请添加条件__________,使四边形ABCD是正方形;【判定依据】__________________________;(2)若四边形ABCD是矩形,请添加一个条件________,使四边形ABCD是正方形;【判定依据】__________________________;(3)若四边形ABCD是菱形,请添加一个条件________,使四边形ABCD是正方形;【判定依据】__________________________.2. 如图,在正方形ABCD中,对角线AC,BD相交于点O.(1)∠ABC=________,∠BAC=________,∠COD=________;(2)若AB=3,则BC=________,CD=________;(3)若OA=2,则AC=________,BD=________,AD=________;(4)若OA=4,则正方形ABCD 的面积是________,周长是________.第2题图知识逐点过考点1 正方形的性质及面积边四条边都相等,对边平行角四个角都是直角1.对角线相等且互相①________;对角线2.每一条对角线平分一组对角对称性既是轴对称图形,又是中心对称图形,有4条对称轴,对称中心是两条②________的交点面积公式S=a2=12l2【温馨提示】正方形的两条对角线把正方形分成四个全等的等腰直角三角形考点2 正方形的判定边1.有一组邻边相等,并且有一个角是③________的平行四边形是正方形(定义);2.有一组邻边④________的矩形是正方形角有一个角是⑤________的菱形是正方形对角线1.对角线⑥________的矩形是正方形;2.对角线⑦________的菱形是正方形;3.对角线互相⑧__________的四边形是正方形考点3 平行四边形、矩形、菱形、正方形的关系从边、角的角度看从对角线的角度看考点4 中点四边形概念依次连接任意一个四边形各边中点所得的四边形原图形任意四边形矩形菱形正方形对角线相等的四边形对角线垂直的四边形对角线垂直且相等的四边形中点四边形形状平行四边形菱形矩形正方形菱形矩形正方形【温馨提示】连接特殊四边形中点的四边形面积是原图形的一半教材原题到重难考法与正方形有关的证明与计算例如图,在正方形ABCD中,点F为对角线AC上一点,连接BF,DF.你能找出图中的全等三角形吗?选择其中一对进行证明.例题图变式题1. 结合角度求线段长如图,正方形ABCD的边长为4,点F为对角线AC上一点,连接BF,当∠CBF=22.5°时求AF的长.第1题图2. 过点F作AB边的垂线如图,在正方形ABCD中,F是对角线AC上一点,作EF⊥AB于点E,连接DF,若BC=6,BE=2,求DF的长.第2题图3. 过点F分别作AB,BC边的垂线如图,F是正方形ABCD对角线AC上一点,过点F分别作FE⊥AB,FG⊥BC,垂足分别为点E,G,连接DF,EG.(1)求证:EG=DF;(2)若正方形的边长为3+3,∠BGE=30°,求DF的长.第3题图真题演练命题点正方形性质的相关计算1. 如图,正方形ABCD的边长为4,延长CB至点E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N,K .则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN∶S△ADM =1∶4.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个第1题图2. 边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为________.第2题图基础过关1. 正方形具有而菱形不具有的性质是()A. 对角线平分一组对角B. 对角线相等C. 对角线互相垂直平分D. 四条边相等2. 若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD的两条对角线AC,BD一定是()A. 互相平分B. 互相垂直C. 互相平分且相等D. 互相垂直且相等3.如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A. (3,-3)B. (-3,3)C. (3,3)D. (-3,-3)第3题图4. 如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于()A. 2αB. 90°-2αC. 45°-αD. 90°-α第4题图5.在矩形ABCD中,对角线AC,BD相交于点O,试添加一个条件_________________________ 使得矩形ABCD为正方形.6. 如图,在边长为2的正方形ABCD中,点E在AD上,连接EB,EC,则图中阴影部分的面积是__________.第6题图7. 七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4 dm的正方形纸板制作了一副七巧板,如图所示,由5个等腰直角三角形,1个正方形和1个平行四边形组成,则图中阴影部分的面积为__________dm2.第7题图8. 如图,点P是正方形ABCD的对角线AC上的一点,PE⊥AD于点E,PE=3.则点P到直线AB的距离为__________.第8题图9. 如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=7,点F为DE的中点,若△CEF的周长为32,则OF的长为__________.第9题图10. 如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.第10题图综合提升11. 如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=()A. 23B. 352 C. 5+1 D. 10第11题图12. 如图,在正方形ABCD 中,点E 为BD 上一点,DE =3BE ,连接AE ,过点E 作AE 的垂线,交CD 于点F ,连接AF 交BD 于点G .下列结论:①sin ∠BAE =13 ;②∠EAF =45°;③点F 为CD 的中点;④BE +DG =GE .其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个第12题图13. 第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE ,△ABF ,△BCG ,△CDH )和中间一个小正方形EFGH 拼成的大正方形ABCD 中,∠ABF >∠BAF ,连接BE .设∠BAF =α,∠BEF =β,若正方形EFGH 与正方形ABCD 的面积之比为1∶n ,tan α=tan 2β,则n =( ) A. 5 B. 4 C. 3 D. 2第13题图参考答案1. (1)AC =BD ,且AC ⊥BD (答案不唯一);【判定依据】对角线互相垂直且相等的平行四边形是正方形(答案不唯一); (2)AC ⊥BD (答案不唯一);【判定依据】对角线互相垂直的矩形是正方形; (3)∠ABC =90°(答案不唯一)【判定依据】有一个角是直角的菱形是正方形.2. (1)90°,45°,90°;(2)3,3;(3)4,4,22 ;(4)32,162 . 教材原题到重难考法例 解:△ABC ≌△ADC ,△ABF ≌△ADF ,△CDF ≌△CBF ,理由如下: ∵四边形ABCD 是正方形∴AB =AD =BC =CD ,∠DAC =∠BAC =∠DCA =∠BCA =45° 在△ABC 和△ADC 中 ⎩⎪⎨⎪⎧AB =AD ∠BAC =∠DAC AC =AC∴△ABC ≌△ADC (SAS) 在△ABF 和△ADF 中 ⎩⎪⎨⎪⎧AB =AD ∠BAF =∠DAF AF =AF∴△ABF ≌△ADF (SAS) 在△DCF 和△BCF 中 ⎩⎪⎨⎪⎧DC =BC ∠DCF =∠BCF CF =CF∴△DCF ≌△BCF (SAS).(选择其中任意一对证明即可) 1. 解:在正方形ABCD 中,∠ABC =90°,AB =BC ∴∠BAC =∠BCA =45° ∵∠CBF =22.5°∴∠ABF =∠ABC -∠CBF =90°-22.5°=67.5°∴∠AFB =180°-∠BAC -∠ABF =180°-45°-67.5°=67.5° ∴∠ABF =∠AFB ∴AF =AB =4.2. 解:如解图,连接BF第2题解图∵四边形ABCD是正方形∴AB=BC=6,∠EAF=45°∵EF⊥AB∴EF=AE=AB-BE=6-2=4∴BF=BE2+EF2=25∵正方形ABCD关于AC对称∴DF=BF=25.3. (1)证明:如解图,连接FB.∵四边形ABCD为正方形∴DA=AB,∠DAC=∠BAC∵AF=AF∴△DAF≌△BAF∴DF=BF∵四边形ABCD为正方形∴∠ABC=90°∵FG⊥BC,FE⊥AB∴∠FGB=∠FEB=90°∴∠FGB=∠FEB=∠ABC=90°∴四边形FEBG是矩形∴EG=FB∴EG=DF;(2)解:∵正方形的边长为3+3,∠BGE=30°∴BC=3+3∴BG=BC-CG=3+3-CG∵∠BGE=30°∴BG=3BE∵AC为正方形ABCD的对角线∴∠DCF=∠BCF=45°∵FG⊥BC∴∠FGC=∠FGB=90°∴∠CFG=45°∴FG=CG∵四边形FEBG是矩形∴EB=FG∴FG=CG=EB设FG=CG=EB=x∴GE=2x∴BG=3BE=3x∵BG=BC-CG=3+3-x∴3+3-x=3x∴x=3∴GE=2x=23∴DF=BF=GE=23.第3题解图知识逐点过①垂直平分②对角线③直角④相等⑤直角⑥互相垂直⑦相等⑧垂直平分且相等真题演练1. C 【解析】∵四边形EFGB 是正方形,EB =2,∴FG =BE =2,∠FGB =90°,∵四边形ABCD 是正方形,H 为AD 的中点,∴AD =4,AH =2,∠BAD =90°,∴∠HAN =∠FGN ,AH =FG ,∵∠ANH =∠GNF ,∴△ANH ≌△GNF (AAS),故①正确;∴∠AHN =∠HFG ,∵AG =FG =2=AH ,∴AF =2 FG =2 AH ,∴∠AFH ≠∠AHF ,∵AD ∥FG ,∴∠AHF =∠HFG ,∴∠AFN ≠∠HFG ,故②错误;∵△ANH ≌△GNF ,∴AN =12 AG =1,∵GM=BC =4,∴AH AN =GM AG=2,∵∠HAN =∠AGM =90°,∴△AHN ∽△GMA ,∴∠AHN =∠AMG ,∠MAG =∠HNA ,∴AK =NK ,∵AD ∥GM ,∴∠HAK =∠AMG ,∴∠AHK =∠HAK ,∴AK =HK ,∴AK =HK =NK ,∵FN =HN ,∴FN =2NK ;故③正确;∵延长FG 交DC 于M ,∴四边形ADMG 是矩形,∴DM =AG =2,∵S △AFN =12 AN ·FG =12 ×2×1=1,S △ADM=12 AD ·DM =12×4×2=4,∴S △AFN ∶S △ADM =1∶4,故④正确. 2. 15 【解析】如解图,∵四边形ABCD ,ECGF ,IGHK 均为正方形,∴CD =AD =10,CE =FG =CG =EF =6,∠CEF =∠F =90°,GH =IK =4,∴CH =CG +GH =10,∴CH =AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ (AAS),∴CJ =DJ =5,∴EJ =1,∵GL ∥CJ ,∴△HGL ∽△HCJ ,∴GL CJ =GH CH =25,∴GL =2,∴FL =4,∴S阴影=S梯形EJLF=12 (EJ +FL )·EF =12(1+4)×6=15.第2题解图基础过关1. B2. D 【解析】如解图,点E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12 AC ,FG =12 BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第2题解图3. C 【解析】 ∵边长为3的正方形OBCD 两边与坐标轴正半轴重合,∴OB =BC =3,∴C (3,3).4. A 【解析】如解图,将△ADF 绕点A 顺时针旋转90°得到△ABG ,则AF =AG ,∠DAF =∠BAG .∵∠EAF =45°,∴∠BAE +∠DAF =45°,∴∠GAE =∠EAF =45°.在△GAE 和△F AE 中,⎩⎪⎨⎪⎧AG =AF ∠GAE =∠F AE AE =AE ,∴△GAE ≌△F AE (SAS),∴∠AEF =∠AEG .∵∠BAE =α,∴∠AEB =90°-α,∴∠AEF =∠AEB =90°-α,∴∠FEC =180°-∠AEF -∠AEB =180°-2(90°-α)=2α.第4题解图5. AB =BC (答案不唯一,符合条件即可,如:AC ⊥BD ) 【解析】∵邻边相等的矩形是正方形,∴可添加条件AB =BC ;∵对角线互相垂直的矩形是正方形,∴还可以添加条件AC ⊥BD .6. 2 【解析】如解图,过点E 作EF ⊥BC 于点F .∵四边形ABCD 是正方形,∴AB =BC =2,AD ∥BC ,∴EF =AB =2,∴S △BCE =12 BC ·EF =12×2×2=2.∵S 正方形ABCD =BC 2=22=4,∴S阴影=S 正方形ABCD -S △BCE =4-2=2.第6题解图7. 2 【解析】如解图,依题意得OD =22 AD =22 ,OE =12OD =2 ,∴图中阴影部分的面积为OE 2=(2 )2=2(dm 2).第7题解图8. 3 【解析】如解图,过点P 作PF ⊥AB 于点F .∵四边形ABCD 是正方形,AC 是对角线,∴∠DAC =∠BAC .∵PE ⊥AD ,PF ⊥AB ,∴PE =PF .∵PE =3,∴点P 到直线AB 的距离为PF =3.第8题解图9.172【解析】∵CE =7,△CEF 的周长为32,∴CF +EF =32-7=25.∵点F 为DE 的中点,∴DF =EF .∵四边形ABCD 为正方形,∴∠BCD =90°,BC =CD ,∴CF =EF =DF =252,∴DE =25,∴在Rt △DCE 中,CD =DE 2-CE 2 =24,∴BC =CD =24.∵点O 为BD 的中点,∴OF 是△BDE 的中位线,∴OF =12 (BC -CE )=12 (24-7)=172 .10. (1)证明:∵四边形ABCD 为正方形 ∴AB =AD ,∠A =∠D =90°. ∵MF ∥AD ∴∠DFM =90° ∴四边形ADFM 为矩形 ∴MF =AD =AB . ∵MN 垂直平分BE ∴∠BOM =90° ∴∠ABE +∠BMO =90°. ∵∠FMN +∠BMO =90° ∴∠ABE =∠FMN . 在△ABE 和△FMN 中⎩⎪⎨⎪⎧∠A =∠MFN AB =FM ∠ABE =∠FMN∴△ABE ≌△FMN (ASA); (2)解:如解图,连接ME . ∵MN 垂直平分BE ∴ME =BM .设BM =x ,则AM =8-x ,ME =x .在Rt △AME 中,由勾股定理得ME 2=AE 2+AM 2,即x 2=62+(8-x )2. 解得x =254 ,即BM =254.在Rt △ABE 中,由勾股定理得BE =62+82 =10. ∵∠MBO =∠EBA ,∠MOB =∠A ∴△BOM ∽△BAE ∴OM AE =BMBE∴OM =AE ·BM BE =6×25410 =154 .由(1)知△ABE ≌△FMN ∴MN =BE =10∴ON =MN -OM =10-154 =254.第10题解图11. B 【解析】∵四边形ABCD 是正方形,∴BC ⊥AB ,CD ∥AB ,CD =AB .∵EF ⊥AB ,∴EF ∥BC ,∴AE EC =AF FB .∵AF =2,FB =1,∴AE EC =21 .∵CD ∥AB ,∴CD ∥AG ,∴∠DCE=∠GAE ,∠CDE =∠AGE ,∴△DCE ∽△GAE ,∴AG CD =AE CE =21,∴AG =2CD ,∴CD =AB =BG .∵∠DCM =∠GBM =90°,∠DMC =∠GMB ,∴△DCM ≌△GBM (AAS),∴DM=GM =12 DG .∵AF =2,FB =1,∴AB =3.∵AD =AB =3,∴AG =6,∴在Rt △DAG 中,DG =32+62 =35 ,∴MG =352.12. B 【解析】 如解图,延长AE 交BC 于点H .∵四边形ABCD 是正方形,∴AD =AB ,AD ∥BC ,∴△ADE ∽△HBE ,∴AD HB =DEBE ,∵DE =3BE ,∴AD =3HB ,∴AB =3HB ,在Rt △ABH 中,由勾股定理得AH =AB 2+HB 2 =10 HB ,∴sin ∠BAE =HB AH =1010 ,①错误;如解图,过点E 分别作AB ,CD 的垂线,交AB ,CD 于点M ,N ,∴∠AME =∠ENF =90°,∴∠AEM +∠MAE =90°,∵∠AEF =90°,∴∠AEM +∠NEF =90°,∴∠MAE =∠NEF ,∵∠MBE =45°,∴MB =ME ,∵AB =MN ,∴AM =EN ,∴△AME ≌△ENF ,∴AE =EF ,∵∠AEF =90°,∴∠EAF =45°,②正确;∵△AME ≌△ENF ,∴ME =NF =MB ,∵BE =2 ME ,∴CF =2ME =2 BE ,∵DE =3BE ,∴BD =4BE ,∴CD =22BD =22 BE ,∴CD =2CF ,∴点F 为CD 的中点,③正确;∵点F 为CD 的中点,∴DF =12 CD =12 AB ,∵AB ∥CD ,∴△FDG ∽△ABG ,∴DG BG =DF AB =12 ,∴DG =13 BD ,GB =23 BD ,设BE =x ,则DE =3x ,BD =4x ,∴DG =43 x ,GB =83 x ,∴GE =GB -BE =53 x ,∴BE +DG =73 x ≠GE ,④错误.第12题解图13. C 【解析】设BF =a ,AF =b ,则AB =a 2+b 2 ,EF =b -a ,∴tan α=tan ∠BAF =BFAF=a b ,tan β=tan ∠BEF =BF EF =a b -a .∵正方形EFGH ∽正方形ABCD ,∴S 正方形EFGH S 正方形ABCD =(EFAB )2=EF 2AB 2 =(b -a )2a 2+b 2 =1n .∵tan α=tan 2β,∴a b =a 2(b -a )2 .∴(b -a )2=ab ,b 2+a 2-2ab =ab ,∴a 2+b 2=3ab ,∴n =a 2+b 2(b -a )2=a 2+b 2ab =3abab =3.。
全等正方形、轴对称能力提高练习
全等正方形、轴对称能力提高练习
介绍:
全等正方形和轴对称是数学中的重要概念,具有广泛的应用。
通过针对这两个概念进行练,可以帮助提高学生的几何能力和逻辑思维。
本文档将提供一些练方法和策略,帮助学生在全等正方形和轴对称方面取得更好的成绩。
练方法:
1. 全等正方形练:
- 画出两个正方形,尺寸可以不同。
- 判断它们是否全等,思考并列出推理步骤。
- 确定共同的特征,例如边长、角度等。
- 确认所有相等的特征,逐个进行比较和验证。
- 写下最终结论,说明两个正方形是否全等。
2. 轴对称练:
- 画一个多边形,而后找到它的轴对称线。
- 观察多边形的结构,确定轴对称线的位置。
- 尝试画出多个不同形状的多边形,并找出它们的轴对称线。
- 验证轴对称线的正确性,确保两边完全相等。
- 思考并列出判断多边形轴对称的推理步骤。
提高策略:
1. 多做纸上练,反复熟悉全等正方形和轴对称概念。
2. 独立思考问题,根据已知信息进行推理,不要依赖他人的提示。
3. 尝试解决不同难度的练题,逐渐提高自己的理解和应用能力。
4. 注重细节和精确度,确保正确地比较和验证各个特征。
5. 在研究过程中记录重要观点和结论,便于复和总结。
总结:
通过全等正方形和轴对称的练习,学生可以提高几何能力并培
养逻辑思维。
掌握这两个概念对于数学的学习和日常生活中的应用
都具有重要意义。
通过坚持练习和遵循提高策略,学生可以取得更
好的成绩并增强对几何学的兴趣和自信。
正方形提高练习题
1.已知,如图边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长为()A.B.C.D.22.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF =5,BE=DF=12,则EF的长是()A.7 B.8 C.7D.7(第1题)(第2题)(第3题)3.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或64.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是()A.75°B.60°C.54°D.°5.如图,ABCD是正方形,M是BC中点,将正方形折起,使点A与点M重合,设折痕为EF,若正方形面积是64,那么△AEM的面积是.(第5题)(第6题)6.如图,正方形ABCD的面积为18,菱形AECF的面积为6,则菱形的边长为.7.如图,直线l过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE=4a,CF=a,则正方形ABCD的面积为.8.如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为.(第7题)(第8题)(第9题)9.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是.10.如图所示,在三角形ABC中,∠ACB=90°,AC=8厘米,BC=6厘米.分别以AC、BC 为边作正方形AEDC、BCFG,则三角形BEF的面积是平方厘米,AEDFGB的面积是平方厘米.11.如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF 是怎样的四边形,并说明理由.12.如图,l1,l2,l3,l4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h,正方形ABCD的四个顶点分别在这四条直线上,且正方形ABCD的面积是25.(1)连接EF,证明△ABE、△FBE、△EDF、△CDF的面积相等.(2)求h的值.13.正方形ABCD与正方形CEFG的位置如图所示,点G在线段CD或CD的延长线上,分别连接BD、BF、FD,得到△BFD.(1)在图1﹣图3中,若正方形CEFG的边长分别为1、3、4,且正方形ABCD的边长均为3,请通过计算填写下表:正方形CEFG的边长 1 3 4△BFD的面积(2)若正方形CEFG的边长为a,正方形ABCD的边长为b,猜想S△BFD的大小,并结合图3证明你的猜想.14.已知:如图,在正方形ABCD中,AB=4,点G是射线AB上的一个动点,以DG为边向右作正方形DGEF,作EH⊥AB于点H.(1)若点G在点B的右边.试探索:EH﹣BG的值是否为定值,若是,请求出定值;若不是,请说明理由.(2)连接EB,在G点的整个运动(点G与点A重合除外)过程中,求∠EBH的度数.15.如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.16.如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.(1)求证:EB=GD;(2)若AB=5,AG=2,求EB的长.17.在四边形ABCD中,对角线AC、BD相交于点O,过点O的直线分别交边AB、CD、AD、BC 于点E、F、G、H【感知】如图①,若四边形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因为S△AOB =S四边形ABCD,所以S四边形AEOG=S正方形ABCD(不要求证明);【拓展】如图②,若四边形ABCD是矩形,且S四边形AEOG=S矩形ABCD,若AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);【探究】如图③,若四边形ABCD是平行四边形,且S四边形AEOG=S▱ABCD,若AB=3,AD=5,BE=1,则AG=.18.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.19.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF =90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.20.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF ⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.21.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在CD的延长线上,且PC=PE,PE交AD于点F.(1)求证:PA=PC;(2)求∠APE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,当∠ABC=120°,连接AE,试探究线段AE与线段PC的数量关系,并给予证明.参考答案与试题解析1.A 2.C 3.D 4.B 5.10 6.7.17a2 8.+3 9.3﹣3 10.66;148.。
正方形综合提高练习题
正方形综合提高练习题
问题1
一个正方形的边长为5 cm,请计算该正方形的周长和面积。
问题2
一个正方形的周长为20 cm,请计算该正方形的边长和面积。
问题3
一个正方形的面积为36 cm²,请计算该正方形的边长和周长。
问题4
正方形A的面积是正方形B面积的2倍,正方形A的边长比正方形B的边长多3 cm。
请分别计算正方形A和正方形B的边长和周长。
问题5
正方形C的边长是正方形D的边长的2倍,正方形C的面积是正方形D面积的4倍。
请计算正方形C和正方形D的面积。
问题6
在一个正方形的四个角上分别连接线段,形成一个小正方形和4个等腰直角三角形。
已知小正方形的边长为2 cm,请计算大正方形的边长和面积。
问题7
在一个正方形的四个角上分别连接线段,形成一个小正方形和4个等腰直角三角形。
已知大正方形的面积为25 cm²,请计算小正方形的面积。
问题8
一个正方形的边长为x cm,请用x的代数式表达出该正方形的周长和面积。
问题9
已知正方形的面积为A cm²,请用A的代数式表示出该正方形的边长和周长。
问题10
已知正方形的周长为P cm,请用P的代数式表示出该正方形的边长和面积。
小结
通过这些练习题,你可以巩固和提高对正方形的周长和面积计算的能力。
通过多次练习,你会更加熟练地运用这些概念,并能够灵活解决与正方形相关的问题。
为了加强你的学习效果,可以自行编写更多类似的练习题进行练习。
祝你学习进步!。
正方形综合提高练习题
正方形综合提高练习题1. 题目描述本练题旨在提高学生对正方形的理解和运用能力。
题目涵盖了正方形的基本性质、特征和相关定理。
学生需要通过解答题目来巩固对正方形知识的掌握。
2. 练题题目1:已知正方形ABCD的边长为5cm,求:(a) 正方形的周长;(b) 正方形的面积。
题目2:已知正方形EFGH的对角线EF的长度为6√2cm,求:(a) 正方形的边长;(b) 正方形的面积。
题目3:正方形IJKL的顶点J在坐标轴上,坐标为(0, 4),求:(a) 正方形的边长;(b) 正方形的周长。
题目4:正方形MNOP的对角线MN与坐标轴的交点分别为M(2, 0)和N(0, -2),求:(a) 正方形的边长;(b) 正方形的面积。
题目5:正方形QRST中,点R的坐标为(-3, 4),求:(a) 正方形的边长;(b) 正方形的周长。
3. 答案解析题目1:(a) 正方形的周长等于4倍边长,所以周长为4 * 5cm = 20cm;(b) 正方形的面积等于边长的平方,所以面积为5cm * 5cm = 25cm²。
题目2:(a) 正方形的对角线等于边长的√2倍,所以边长为6√2cm ÷ √2 = 6cm;(b) 正方形的面积等于边长的平方,所以面积为6cm * 6cm = 36cm²。
题目3:由于顶点J位于坐标轴上,所以正方形的边长等于J的纵坐标,即边长为4;正方形的周长等于4倍边长,所以周长为4 * 4 = 16。
题目4:由已知条件可得正方形MNOP是边长为2的正方形,所以边长为2;正方形的面积等于边长的平方,所以面积为2 * 2 = 4。
题目5:由已知条件可得正方形QRST是边长为8的正方形,所以边长为8;正方形的周长等于4倍边长,所以周长为4 * 8 = 32。
4. 总结通过这些练习题,学生可以进一步巩固对正方形的性质和定理的理解,并能够灵活运用所学知识解决各种问题。
正方形是几何学中重要的基本形状,掌握好正方形的相关知识对于学生的数学学习非常重要。
中考数学复习《正方形》专项提升训练(附答案)
中考数学复习《正方形》专项提升训练(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,平行四边形、矩形、菱形、正方形的包含关系可用如图表示,则图中阴影部分所表示的图形是( )A.矩形B.菱形C.矩形或菱形D.正方形2.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是( )A.22.5°B.25°C.23°D.20°3.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )A.16B.12C.24D.184.如图,E是正方形ABCD的边BC延长线上一点,且CE=AC,则∠E=( )A.90°B.45°C.30°D.22.5°5.将一正方形纸片按图中⑴、⑵的方式依次对折后,再沿⑶中的虚线裁剪,最后将⑷中的纸片打开铺平,所得图案应该是下面图案中的( )6.如图所示,两个含有30°角的完全相同的三角板ABC 和DEF 沿直线l 滑动,下列说法错误的是( )A.四边形ACDF 是平行四边形B.当点E 为BC 中点时,四边形ACDF 是矩形C.当点B 与点E 重合时,四边形ACDF 是菱形D.四边形ACDF 不可能是正方形 7.下列叙述,错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形8.已知一个无盖长方体的底面是边长为1的正方形,侧面是长为2的长方形,现展开铺平.如图,依次连结点A ,B ,C ,D 得到一个正方形,将周围的四个长方形沿虚线剪去一个直角三角形,则所剪得的直角三角形较短直角边与较长直角边的比是( )A.12B.13C.23D.459.如图,正方形ABCD 的对角线交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点,而且这两个正方形的边长相等.无论正方形A 1B 1C 1O 绕点O 怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的( )A.12B.13C.14D.1510.如图,点O(0,0),A(0,1)是正方形OAA 1B 的两个顶点,以OA 1对角线为边作正方形OA 1A 2B 1,再以正方形的对角线OA 2作正方形OA 1A 2B 1,…,依此规律,则点A 2027的坐标是( )A.(0,21013)B.(21013,21013)C.(21014,0)D.(21014,﹣21014) 二、填空题11.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠BED 的度数是 .12.如图.将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为 .13.如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图2.这个拼成的长方形的长为30,宽为20.则图2中Ⅱ部分的面积是.14.若正方形的面积是9,则它的对角线长是 .15.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于_______cm.16.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;则S3﹣S2=.三、解答题17.如图,已知点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE.求证:(1)EF=FP=PQ=QE;(2)四边形EFPQ是正方形.18.如图,菱形ABCD的对角线AC、BD相交于点O,分别延长OA、OC到点E、F,使AE=CF,依次连接B、F、D、E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA=________°时,四边形BFDE是正方形.19.如图,已知在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.20.如图,在正方形ABCD中,E,F分别为AD,CD边上的点,BE,AF交于点O,且AE=DF.(1)求证:△ABE≌△DAF;(2)若BO=4,DE=2,求正方形ABCD的面积.21.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE 于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.22.如图,在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q.(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.23.在几何探究问题中,经常需要通过作辅助线(如,连接两点,过某点作垂线,作延长线,作平行线等等)把分散的条件相对集中,以达到解决问题的目的.(1)(探究发现)如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连接EF.通过探究,可发现BE,EF,DF之间的数量关系为________(直接写出结果).(2)(验证猜想)同学们讨论得出下列三种证明思路(如图1):思路一:过点A作AG⊥AE,交CD的延长线于点G.思路二:过点A作AG⊥AE,并截取AG=AE,连接DG.思路三:延长CD至点G,使DG=BE,连接AG.请选择一种思路证明(探究发现)中的结论.(3)(应用)如图2,点E,F分别在正方形ABCD的边BC,CD上,且BC=3BE,∠EAF =45°,设BE=t,试用含t的代数式表示DF的长.参考答案1.D.2.A3.A.4.D5.B.6.B.7.D.8.C.9.C.10.B11.答案为:45°.12.答案为:45°.13.答案为:100.14.答案为:3 2.15.答案为:1或2.16.答案为:52 .17.证明:(1)∵四边形ABCD是正方形∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD ∵AF=BP=CQ=DE∴DF=CE=BQ=AP在△APF和△DFE和△CEQ和△BQP中∴△APF≌△DFE≌△CEQ≌△BQP(SAS)∴EF=FP=PQ=QE;(2)∵EF=FP=PQ=QE∴四边形EFPQ是菱形∵△APF≌△BQP∴∠AFP=∠BPQ∵∠AFP+∠APF=90°∴∠APF+∠BPQ=90°∴∠FPQ=90°∴四边形EFPQ是正方形.18.证明:(1)在菱形ABCD中,BA=BC∴∠BAC=∠BCA∴∠BAE=∠BCF.在△BAE与△BCF中BA=BC,∠BAE=∠BCF,AE=CF∴△BAE≌△BCF(SAS).(2)20.19.证明:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ20.证明:(1)∵四边形ABCD是正方形∴AB=AD,∠BAE=∠D=90°又AE=DF∴△ABE≌△DAF;(2)∵△ABE≌△DAF∴∠FAD=∠ABE又∠FAD+∠BAO=90°∴∠ABO+∠BAO=90°∴△ABO∽△EAB∴AB:BE=BO:AB,即AB:6=4:AB∴AB2=24所以正方形ABCD面积是24.21.解:(1)∵四边形ABCD是正方形∴∠ADG=∠C=90°,AD=DC又∵AG⊥DE∴∠DAG+∠ADF=90°=∠CDE+∠ADF∴∠DAG=∠CDE∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H∵E是BC的中点∴BE=CE又∵∠C=∠HBE=90°,∠DEC=∠HEB∴△DCE≌△HBE(ASA)∴BH=DC=AB,即B是AH的中点又∵∠AFH=90°∴Rt△AFH中BF=12AH=AB.22.解:(1)PB=PQ.证明:连接PD ∵四边形ABCD是正方形∴∠ACB=∠ACD,∠BCD=90°,BC=CD又∵PC=PC∴△DCP≌△BCP(SAS)∴PD=PB,∠PBC=∠PDC∵∠PBC+∠PQC=180°,∠PQD+∠PQC=180°∴∠PBC=∠PQD∴∠PDC=∠PQD∴PQ=PD∴PB=PQ(2)PB=PQ.证明:连接PD同(1)可证△DCP≌△BCP∴PD=PB,∠PBC=∠PDC∵∠PBC=∠Q∴∠PDC=∠Q∴PD=PQ∴PB=PQ.23.解:(1)EF=BE+DF.(2)思路三:延长CD至点G,使DG=BE,连接AG. ∵正方形ABCD∴AB=AD,∠B=∠ADC=90°∵BE=DG∴△ABE≌△ADG(SAS)∴AE=AG,∠BAE=∠DAG∵∠EAF=45°∴∠BAE+∠DAF=45°∴∠GAF=∠GAD+∠DAF=45°∴∠GAF=∠EAF∴AF=AF∴△EAF≌△GAF(SAS)∴EF=GF=BE+DF.(3)由题意可知,CE=2t,设DF=x,则CF=3t-x,EF=2t+x ∴在RtCEF中,EF2=CE2+CF2∴(x+t)2=(3t-x)2+(2t)2∴x=32t.即DF=32t.。
正方形复习题及答案
正方形复习题及答案一、选择题1. 正方形的四条边长度相等,其对角线长度是边长的多少倍?A. 1倍B. √2倍C. 2倍D. √3倍答案:B2. 如果正方形的边长为a,则其面积是多少?A. aB. a²C. 2aD. a³答案:B3. 正方形的内角是多少度?A. 45度B. 90度C. 180度D. 360度答案:B二、填空题1. 正方形的周长公式为______。
答案:4a2. 如果一个正方形的面积为64平方厘米,那么它的边长是______厘米。
答案:8三、计算题1. 一个正方形的边长为10厘米,求其对角线的长度。
解:根据勾股定理,对角线长度为边长的√2倍,即10√2厘米。
2. 一个正方形的面积为100平方厘米,求其边长。
解:面积为边长的平方,即a²=100,解得a=10厘米。
四、简答题1. 正方形和矩形有哪些相同点和不同点?答:相同点:正方形和矩形都是四边形,它们的内角都是90度。
不同点:正方形的四条边长度相等,而矩形的对边长度相等。
五、应用题1. 一个正方形的花坛,边长为20米,如果需要在花坛的四周围上一圈篱笆,篱笆的总长度是多少?解:正方形的周长为4倍的边长,所以篱笆的总长度为4×20=80米。
2. 如果一个正方形的对角线长度为26厘米,求正方形的边长。
解:根据勾股定理,设边长为a,那么a²+a²=26²,即2a²=676,解得a²=338,所以a=√338厘米。
六、判断题1. 正方形的面积总是边长的平方。
答案:√2. 正方形的对角线长度总是边长的2倍。
答案:×七、解答题1. 一个正方形的边长增加2厘米后,面积增加了20平方厘米,求原正方形的边长。
解:设原边长为a厘米,增加后的边长为a+2厘米。
根据面积公式,原面积为a²,增加后的面积为(a+2)²。
根据题意,(a+2)² - a² = 20,即4a + 4 = 20,解得a=4厘米。
人教版数学三年级上册 第七单元 长方形和正方形 阶段素养提升练 (含答案)
第七单元长方形和正方形阶段素养提升练一、我聪明,我会填。
(每空 3 分,共 18 分)1.封闭图形一周的长度是它的( )。
2. 一个长方形的长是 9 厘米,宽是 5 厘米,它的周长是( )厘米。
3. 一个长方形,长与宽的和是 12 厘米,它的周长是( )厘米。
4. 一个正方形的周长是 20 分米,它的边长是( )分米。
5. 在一张长 10 厘米,宽 8 厘米的长方形纸片上折出一个最大的正方形,正方形的周长是( )厘米。
6. 把两个边长为 8 厘米的正方形拼接在一起,周长减少了( )厘米。
二、我自信,我会选。
(每题 4 分,共 20 分)1. 弯折一根铁丝,下面的“·”表示拐点,方法( )能围成一个长方形。
2. 下列图形( )没有周长。
3. 下面各图是由同样多个大小相同的正方形拼成的,( )的周长最短。
4. 用 24 个边长为 1 分米的正方形来拼长方形,请从下面的叙述中找出周长最短的一个。
( )。
A. 长 24 分米,宽 1 分米B. 长 12 分米,宽 2 分米C. 长 8 分米,宽 3 分米D. 长 6 分米,宽 4 分米5. 华华去同同家有两条路可以走,这两条路相比,( )。
A. ①比较长B. ②比较长C. 一样长D. 无法确定三、我细心,我会算。
(12 分)计算下面每个图形的周长。
1.2.四、我机灵,我会动。
(10 分)画一个长 5 厘米,宽 3 厘米的长方形和一个与它周长相等的正方形。
五、我挑战,我会想。
(共 40 分)1. 王老师家的房子有 4 扇这样的门,装饰这些门框至少需要多少厘米的木条? (木条的宽度忽略不计)(8 分)2. 用一根 12 厘米长的铁丝正好围成一个长方形,如果它的长是 4 厘米,那么它的宽是多少厘米?如果这根铁丝正好围成一个正方形,那么它的边长是多少厘米? (8 分)3. 斯诺克台球也称障碍台球,此项运动使用的长方形球桌长382 厘米,宽 204 厘米。
正方形(提高)巩固练习
【巩固练习】一.选择题1. 在正方形ABCD勺边AB BC CD DA上分别任意取点E、F、G H.这样得到的四边形EFGH中,是正方形的有()A. 1个B . 2个C . 4个D .无穷多个2. (2015?南湖区一模)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD转动这个四边形,使它形状改变.当/B=90°时(如图甲),测得对角线BD的长为看].当/B=60°A.二B. 7C. 2D.-3. 如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,设△ AFC的面积为S,则()A. S= 2 B . S= 2.4 C . S= 4 D . S与BE长度有关4. (2016?毕节市)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH .若BE : EC=2 : 1,则线段CH的长是()B E CA. 3B. 4C. 5D. 65. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为则S! S2的值为()S , S2 ,A.16B.17C.18D.19At > DC, )二. 填空题7.延长正方形 ABCD 的BC 边至点E ,使CE = AC 连结AE ,交CD 于 F ,那么/ AFC 的度数为 ,若BC = 4 cm ,则△ ACE 的面积等于 _________________ .& 在正方形 ABCD 中, E 为BC 上一点,EF L AC,EGL BD,垂足分别为 F 、G,如果AB 2cm ,那么EF + EG 的长为______ .9.已知:如图,△ ABC 中,/ ACB= 90。
,点0ABC 的三条角平分线的交点,OD L BC,OEL AC OF L AB,点D, E , F 分别是垂足,且 BC = 8 cm , CA= 6 cm ,则点O 到三边 AB, AC 和BC 的距离分别等于 _____________ cm .10.如图所示,直线a 经过正方形 ABCD 的顶点A ,分别过顶点 B D 作DEL a 于点E 、BF L a 于点F ,若DE = 4, BF = 3,则EF 的长为 _______________ .2 26.如图,四边形ABCD 中,16,则DE 的长为( A . 3B/ ADC=Z ABC= 90°, DEL AB 若四边形 ABCD 面积为 C .4 D . 811. (2016?南京)如图,菱形菱形的边长为 _______ cm .ABCD的面积为120cm,正方形AECF的面积为50cm,则三. 解答题13. (2015?西城区二模)如图,将正方形 OABC 放在平面直角坐标系 xOy 中,0是原点, 若点A 的坐标为(1,聖']),则点C 的坐标?14. 如图,点E 是正方形 ABCD 内一点,△ CDE 是等边三角形,连结 EB EA 延长BE 交边AD 于点F.(1) 求证:△ ADE^A BCE (2) 求/ AFB 的度数.ABCD 中,点P 在AB 上从A 向B 运动,连结DP 交AC 于点Q(1)试证明:无论点 P 运动到AB 上何处时,都有△ ABQ12. (2015?朝南区一模)如图所示,如果以正方形 ABCD 的对角线AC 为边作第二个正方形ACEF ,再以AE 为边作第三个正方形上述方法所作的正方形的面积依次为 面积S 8= .AEGM ,…已知正方形 ABCD 的面积S i =1,按S 2, S 3,…S n (n 为正整数),那么第8个正方形O 1 x一 1⑵当点P 在AB 上运动到什么位置时,△ ADQ 的面积是正方形 ABCD 面积的6(3)若点P 从点A 运动到点B ,再继续在BC 上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ ADC 恰为等腰三角形.【答案与解析】 一. 选择题 1•【答案】D;【解析】在正方形四边上任意取点 E 、F 、G H正方形,则说明可以得到无穷个正方形.2. 【答案】B ;【解析】解:如图甲, •/ AB=BC=CD=DA^ B=90°, •••四边形ABCD 是正方形, 连接 BD 贝y A E+A D^BE 2, • AB =AD =,I如图乙,/ B=60°,连接 BD, •••△ ABD 为等腰三角形, • AB =AD =,I • BD =二 故选B . 3. 【答案】A ;【解析】设正方形 EFGB 的边长是a ,则s = S 梯形 AFGB + S A ABC 一 S A CFG111= x ( a + 2)x a +x 2x 2- x ( a + 2) x a = 2.2224. 【答案】B【解析】由题意设 CH=xcm ,贝U DH=EH= (9 - x ) cm , •/ BE : EC=2 : 1, •• CE=—^—BC=3cm32 2 2•••在 Rt △ ECH 中,EH 2=EC 2+CH 2,2 2 2即(9 - x ) =3 +x , 5. 【答案】B ;AH= DG= CF = BE,能证明四边形 EFGH 为【解析】设正方形S2的边长为x ,根据等腰直角三角形的性质知,AC= '' 2x , x= 2CD ,••• AC = 2CD CD= 6 =2.EC = 2^2 ,S 2 =8, •/ S 1的边长为3 , 3的面积为3X33=9,「. S S 2 = 8 + 9= 17.6. [答案】C ;【解析】如图,过点D 作BC 的垂线,交BC 的延长线于F ,利用互余关系可得/ A =/ FCD又/AED=/ F = 90°, AD= DC 利用 AAS 可以判断厶 ADE^A CDF 二 DE = DF ,二. 填空题【答案】112.5 ° , 8 ■. 2 cm 2 ;于—4.2 4 = 8 2cm?. 2 【答案】故答案为:13.12. 【答案】128;7. I 解析】/ AEl CEA =叮= 22.5° , / AFC = 90°+ 22.5 ° = 112.5 ° ,面积等5 cm ;【解析】 AC = BD = 5・」2 ::」2 =10, EF + EG= - BD= 5. 29. 【答案】 2 ;OD= OE = OF,可知四边形 ODCE 是正方形,设 CD= CE = x , BD= BF = y , AE = AF所以x ,y=8 , y ,z=10 , x z = 6,解得x = 2,即0点到三边的距10.【答案】 【解析】 离•7;因为 因为 =3, 13.ABCD 是 正方形,所以 AB= AD,/ B =Z A = 90°,则有/ ABF =Z DAE 又DE I a 、BF 丄 a ,根据 AAS 易证△ AFB^A AED 所以 AF = DE = 4, BF = AE 则EF 的长=7.11.[答案】 [解析】因为正方形 AECF 的面积为50cm 2 , 所以 AC= -—~1cm ,2因为菱形ABCD 的面积为120cm , 所以 BD= _;:cm ,DE = 4.所以菱形的边长 -■: I 春-- .1 <cm .2【解析】根据题意可得:第n个正方形的边长是第(n- 1)个的冷J倍;故面积是第(n -1)个的2倍,已知第一个面积为 1 ;则那么第8个正方形面积S8=27=128 .故答案为12 8.三.解答题13. 【解析】解:作AD丄轴于D,作CE丄x轴于E,如图所示: 贝ADO= / OEC=90 °•••/ 1+ / 2=90°•••点A的坐标为(1, 7),• 0D=1 , AD=二,•••四边形OABC是正方形,•••/ AOC=90 ° OC=AO ,:丄 1+ / 3=90°•••/ 3= / 2,£ 0 1 X在厶OCE和厶AOD中,f ZOBC=ZADO、Z3=Z2 ,OC=AOL•••△ OCE◎△ AOD (AAS ),• OE=AD=二,CE=OD=1 ,•••点C的坐标为(- ';,1).14. 【解析】解:(1厂••四边形ABCD是正方形,•••/ ADC=/ BCD= 90°, AD= BC.•△ CDE是等边三角形,•••/ CDE=/ DCE= 60°, DE= CE•••/ ADE=/ BCE= 30°.•/ AD= BC, / ADE=/ BCE DE= CE,•△ADE^A BCE(2)vA ADE^A BCE •- AE= BE•••/ BAE=/ ABE•/ BAE^Z DAE= 90°,/ ABE+Z AFB= 90°,/ BAE=/ ABE•••/ DAE=Z AFB•/ AD= CD= DE, •/ DAE=Z DEA•/ ADE= 30°, •/ DAE= 75° ,•/ AFB= 75°.15. 【解析】(1) 证明:••四边形ABCD是正方形,• AD= AB, / DAC=Z BAC= 45°, AQ= AQ•△ADQ PA ABQ( SAS;(2) 以A为原点建立如图所示的直角坐标系,过点Q作QEL y轴于点E, QFL x轴于点F.4 4.过点D(0,4) , Q(—,—)两点的函数关系式为:y = -2x ・4,当y = 0时,x = 2,3 31即P 运动到AB 中点时,△ ADQ 的面积是正方形 ABCD 面积的一;6⑶ 若厶ADQ 是等腰三角形,则有 QD- QA 或 DA = DQ 或 AQ= AD① 当点P 运动到与点B 重合时,由四边形ABCD 是正方形知 QD- QA 此时△ ADQ 是等腰 三角形;② 当点P 与点C 重合时,点Q 与点C 也重合,此时DA= DQ △ ADQ 是等腰三角形; ③ 如图,设点 P 在BC 边上运动到CP = X 时,有AD = AQ •/ AD// BC •••/ ADQ=Z CPQ 又•••/ AQ[=Z CQP / ADQ=Z AQD •••/ CQP=Z CPQ •• CQ= CP = X .••• AC = 4,2 , AQ= AD = 4. • X = CQ= AC — AQ= 4、J 2 — 4.即当CP= 4.. 2 — 4时,△ ADQ 是等腰三角形.QE= 43•••点Q 在正方形对角线 AC 上AB。
正方形提升训练00
正方形提升练习1.如图,正方形的对角线相交于O ,∠BAC 的的平分线交BD 于E , 若正方形的周长是20cm ,则DE =2.如图,在正方形ABCD 中,∠DAF =25°,AF 交对角线BD 于E 点, 则∠BEC =( )A .45°B .60°C .70°D .75°3.如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D落在BC 边中点E 处,点A 落在点F 处,折痕为MN , 则线段CN 的长是( )A .3cmB .4cmC .5cmD .6cm4.如图,将一块边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE=5,折痕为PQ ,则PQ 的长为( )A .12B .13C .14D .155.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为2,1S S ,则21S S +的值为( )A.16B.17C.18D.196.如图,正方形ABCD 的边长为2,点E 在AB 上,四边形EFGB 也为正方形,设∆AFC 的面积为S ,则( )A.2=SB.4.2=SC.4=SD.S 与BE 长度有关7.如图,三个边长均为2的正方形重叠在一起,21,O O 是其中两个正方形的中心,则阴影部分的面积是 。
8.如图所示,正方形ABCD 的面积为12,∆ABE 是等边三角,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 的和最小,则这个最小值为( )A.32B.62C.3D.69.如图,正方形ABCD 内有两条相交线段MN 、EF ,M 、N 、E 、F 分别在边AB 、CD 、AD 、BC 上,小明认为:若MN=EF,则MN ⊥EF ;小亮认为:若MN ⊥EF ,则MN=EF.你认为( ) A.仅小明对 B.仅小亮对 C.两人都对 D.两人都不对10.如图,正方形ABCD 的面积为12cm ,P 是正方形内一点,若∆PBC 是等边三角形,则∆PBD 的面积为 2cm 。
正方形提高题
A BCDO EF121.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE 。
将△ADE 沿对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF 。
下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF;④S △FGC=3. 其中正确结论的个数是( ) A 1 B 2 C 、3 D 、42.如图,正方形ABCD 的三边中点E 、F 、G 。
连ED 交AF 于M,GC 交DE 于N,下列结论 ①GM ⊥CM ②CD=CM ③四边形MFCG 为等腰梯形。
④∠CMD=∠AGM 。
其中正确结论的个数是( ) A 、①②③B 、①②④C 、①③④D 、①②③④(1) (2) (3)3. 如图,在等腰梯形ABCD 中,DC ∥AB ,对角线AC 与BD 交于点O ,BE ⊥AB 交AC 的延长线于E ,EF ∥BD 交AD 的延长线于F ,下列结论:①OB=OE ;②∠AEF=2∠BAC ;③AD=DF ;④AC=CE +EF.其中正确的结论是 ( ) A .1个 B .2个 C .3个 D .4个4.(1)在正方形ABCD 中,∠1=∠2.求证: BE OF 21=(2)在正方形ABCD 中,∠1=∠2.AE ⊥DF,求证:CEOG 21=5.如图,在正方形ABCD 中,E 、F 为AB 、BC 的中点,CE 、DF 交于M ,求证:AM=AD 。
B6.如图正方形ABCD 中,E 为AD 边上的中点,过A 作AF ⊥BE , 交CD 边于F ,M 是AD 边上一点,且有BM =DM +CD . ⑴求证:点F 是CD 边的中点; ⑵求证:∠MBC =2∠ABE . ABC D F O EGH 12G NMFED CBAE B MFEDAA B D CD A N EN A D 7、已知在正方形ABCD 中。
(1)如图1,如果M 是BC 上一点,AN 平分 ∠DAM 交CD 于N ,那么AM=BM+DN ;(2)如图2如果M 在BC 的延长线上,AN 平分∠DAM 交CD 于N ,那么线段AM 、BM 、DN 的长度关系是。
人教版数学四年级下册:正方形提高练习题
人教版数学四年级下册:正方形提高练习题一、判断正方形请根据图形的特点判断下列图形是否为正方形,并将正确的图形前面的括号内的字母填入括号内。
1. ( ) 正方形 ( ) 不是正方形![图1](link_to_image_1)2. ( ) 正方形 ( ) 不是正方形![图2](link_to_image_2)3. ( ) 正方形 ( ) 不是正方形![图3](link_to_image_3)4. ( ) 正方形 ( ) 不是正方形![图4](link_to_image_4)二、找出正方形在下面的图形中,找出所有的正方形,并将其编号写在对应的括号内。
1. ![图5](link_to_image_5)( ) ① ( ) ② ( ) ③ ( ) ④2. ![图6](link_to_image_6)( ) ① ( ) ② ( ) ③ ( ) ④3. ![图7](link_to_image_7)( ) ① ( ) ② ( ) ③ ( ) ④4. ![图8](link_to_image_8)( ) ① ( ) ② ( ) ③ ( ) ④5. ![图9](link_to_image_9)( ) ① ( ) ② ( ) ③ ( ) ④三、计算正方形的周长请根据下列图形的边长,计算出每个正方形的周长,并将结果填入空格内。
1. 图10的边长为 4cm,它的周长是 __ cm。
2. 图11的边长为 8mm,它的周长是 __ mm。
3. 图12的边长为 5dm,它的周长是 __ dm。
四、综合运用根据下列文图题给出的条件,综合运用所学知识,回答问题。
文图题:根据图13,四根边为等长的图形是 __ 。
1. 图14的是图13的 __ 。
2. 图15的边长是 8cm,它是图13的 __ 。
3. 图16的图形是图13的 __ 平方。
五、选择填空根据题目的意思,选择正确的答案填入括号内。
1. 以下图形中,是正方形的是 ( A )。
A. ![图17](link_to_image_17)B. ![图18](link_to_image_18)C. ![图19](link_to_image_19)D. ![图20](link_to_image_20)2. 图21的边长是 __ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正方形专题1、已知正方形ABCD和等腰直角三角形BEF,BE=EF,∠BEF=90°,按图1放置,使点E在BC上,取DF的中点G,连接EG,CG.(1)延长EG交DC于H,试说明:DH=BE.(2)将图1中△BEF绕B点逆时针旋转45°,连接DF,取DF中点G(如图2),莎莎同学发现:EG=CG且EG⊥CG.在设法证明时他发现:若连接BD,则D,E,B三点共线.你能写出结论“EG=CG且EG⊥CG”的完整理由吗?请写出来.(3)将图1中△BEF绕B点转动任意角度α(0<α<90°),再连接DF,取DF 的中点G(如图3),第2问中的结论是否成立?若成立,试说明你的结论;若不成立,也请说明理由.2、(2011•鸡西)在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.3、已知:如图,在菱形ABCD中,点E在对角线AC上,点F在BC的延长线上,EF=EB,EF与CD相交于点G.(1)求证:EG•GF=CG•GD;(2)连接DF,如果EF⊥CD,那么∠FDC与∠ADC之间有怎样的数量关系?证明你所得到的结论.4、已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.(1)求证:∠DAE=∠DCE;(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.5、已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.(1)探索EG、CG的数量关系和位置关系并证明;(2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论;(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.6、已知E是正方形ABCD的一边AB上任一点,AC与BD是正方形ABCD的对角线EG⊥BD于G,EF⊥AC于F,AC=10厘米,则EF+EG= 。
7、(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上任一点,EF⊥BD于点F,EG ⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段,并满足(1)或(2)的结论,写出相关题设的条件和结论.8、已知正方形ABCD和等腰直角三角形BEF,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.(1)探索EG、CG的数量关系,并说明理由;(2)将图①中△BEF绕B点顺时针旋转45°得图②,连接DF,取DF的中点G,问(1)中的结论是否成立,并说明理由;(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间)得图③,连接DF,取DF的中点G,问(1)中的结论是否成立,请说明理由.9、已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点G,使OG=OA,连接EG、FG.判断四边形AEGF是什么特殊四边形?并证明你的结论.10、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.(1)求证:DP平分∠ADC;(2)若∠AEB=75°,AB=2,求△DFP的面积.11、如图,正方形ABCD中,点E是对角线BD上一点,点F是边BC上一点,点G是边CD上一点,BE=2ED,CF=2BF,连接AE并延长交CD于G,连接AF 、EF、FG.给出下列五个结论:①DG=GC;②∠FGC=∠AGF;③S△ABF=S△FCG;④AF=2EF;⑤∠AFB=∠AEB.其中正确结论的个数是()A、5个B、4个C、3个D、2个12、如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确结论的序号是①②④⑤.13、(2011•重庆)如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.2013年6月柯老师的初中数学正方形组卷一.解答题(共9小题)1.以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?2.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.3.如图,在正方形ABCD中,点M在边AB上,点N在边AD的延长线上,且BM=DN.点E为MN的中点,DE的延长线与AC相交于点F.试猜想线段DF与线段AC的关系,并证你的猜想.4.已知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H(1)如图1,猜想AH与AB有什么数量关系?并证明;(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长;小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN 关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?5.在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC 于点F.(1)如图1,当点P与点O重合时,OE与OF的数量关系为_________;(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为_________;位置关系为_________.6.如图,正方形ABCD,动点E在AC上,AF⊥AC,垂足为A,AF=AE.(1)求证:BF=DE;(2)当点E运动到AC中点时(其他条件都保持不变),问四边形AFBE是什么特殊四边形?说明理由.7.(2005•乌兰察布)图1是由五个边长都是1的正方形纸片拼接而成的,过点A1的直线分别与BC1、BE交于点M、N,且图1被直线MN分成面积相等的上、下两部分.(1)求的值;(2)求MB、NB的长;(3)将图1沿虚线折成一个无盖的正方体纸盒(图2)后,求点M、N间的距离.8.如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.9.已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.(1)求证:∠DAE=∠DCE;(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.2013年6月柯老师的初中数学正方形组卷参考答案与试题解析一.解答题(共9小题)1.以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?考点:正方形的判定与性质;全等三角形的判定与性质;平行四边形的判定;矩形的判定.分析:(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC,所以全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;(2)根据“矩形的内角都是直角”易证∠DAG=90°.然后由周角的定义求得∠BAC=135°;(3)由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由□ABDI和□ACHG的性质证得,AC=AB.解答:解:(1)图中四边形ADEG是平行四边形.理由如下:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(2)当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;(3)当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由(2)知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.点评:本题综合考查了正方形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质等知识点.解题时,注意利用隐含在题干中的已知条件:周角是360°.2.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.考点:正方形的判定与性质;全等三角形的判定与性质.分析:(1)过P作PE⊥BC,PF⊥CD,证明Rt△PQF≌Rt△PBE,即可;(2)证明思路同(1)解答:(1)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ;(2)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ.点评:此题考查了正方形,角平分线的性质,以及全等三角形判定与性质.此题综合性较强,注意数形结合思想.3.如图,在正方形ABCD中,点M在边AB上,点N在边AD的延长线上,且BM=DN.点E为MN的中点,DE的延长线与AC相交于点F.试猜想线段DF与线段AC的关系,并证你的猜想.考点:正方形的判定与性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:探究型.分析:猜想:线段DF垂直平分线段AC,且DF=AC,过点M作MG∥AD,与DF的延长线相交于点G,作GH⊥BC,垂足为H,连接AG、CG.根据正方形的性质和全等三角形的证明方法证明△AMG≌△CHG即可.解答:猜想:线段DF垂直平分线段AC,且DF=AC,证明:过点M作MG∥AD,与DF的延长线相交于点G.则∠EMG=∠N,∠BMG=∠BAD,∵∠MEG=∠NED,ME=NE,∴△MEG≌△NED,∴MG=DN.∵BM=DN,∴MG=BM.作GH⊥BC,垂足为H,连接AG、CG.∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠BAD=∠B=∠ADC=90°,∵∠GMB=∠B=∠GHB=90°,∴四边形MBHG是矩形.∵MG=MB,∴四边形MBHG是正方形,∴MG=GH=BH=MB,∠AMG=∠CHG=90°,∴AM=CH,∴△AMG≌△CHG.∴GA=GC.又∵DA=DC,∴DG是线段AC的垂直平分线.∵∠ADC=90°,DA=DC,∴DF=AC即线段DF垂直平分线段AC,且DF=AC.点评:本题综合考查了矩形的判定和性质、正方形的判定和性质,垂直平分线的判定和性质,全等三角形的性质和判定等知识点,此题综合性比较强,难度较大,但题型较好,训练了学生分析问题和解决问题以及敢于猜想的能力.4.已知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H(1)如图1,猜想AH与AB有什么数量关系?并证明;(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长;小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN 关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?考点:正方形的判定与性质;全等三角形的判定与性质;勾股定理;翻折变换(折叠问题).分析:(1)延长CB至E使BE=DN,连接AE,由三角形全等可以证明AH=AB;(2)作△ABD关于直线AB的对称△ABE,作△ACD关于直线AC的对称△ACF,延长EB、FC交于点G,则四边形AEGF是矩形,又AE=AD=AF,所以四边形AEGF是正方形,设AD=x,则EG=AE=AD=FG=x,所以BG=x ﹣2;CG=x﹣3;BC=2+3=5,在Rt△BGC中,(x﹣2)2+(x﹣3)2=52解之得x1=6,x2=﹣1,所以AD的长为6.解答:(1)答:AB=AH,证明:延长CB至E使BE=DN,连接AE,∵四边形ABCD是正方形,∴∠ABC=∠D=90°,∴∠ABE=180°﹣∠ABC=90°又∵AB=AD,∵在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴∠1=∠2,AE=AN,∵∠BAD=90°,∠MAN=45°,∴∠1+∠3=90°﹣∠MAN=45°,∴∠2+∠3=45°,即∠EAM=45°,∵在△EAM和△NAM中,,∴△EAM≌△NAM(SAS),又∵EM和NM是对应边,∴AB=AH(全等三角形对应边上的高相等);(2)作△ABD关于直线AB的对称△ABE,作△ACD关于直线AC的对称△ACF,∵AD是△ABC的高,∴∠ADB=∠ADC=90°∴∠E=∠F=90°,又∵∠BAC=45°∴∠EAF=90°延长EB、FC交于点G,则四边形AEGF是矩形,又∵AE=AD=AF∴四边形AEGF是正方形,由(1)、(2)知:EB=DB=2,FC=DC=3,设AD=x,则EG=AE=AD=FG=x,∴BG=x﹣2;CG=x﹣3;BC=2+3=5,在Rt△BGC中,(x﹣2)2+(x﹣3)2=52解得x1=6,x2=﹣1,故AD的长为6.点评:本题主要考查正方形的性质和三角形全等的判断,题目的综合性很强,难度中等.5.在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F.(1)如图1,当点P与点O重合时,OE与OF的数量关系为OE=OF;(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为OE=OF;位置关系为OE⊥OF.考点:正方形的判定与性质;全等三角形的判定与性质;矩形的判定与性质;平移的性质.分析:(1)根据利用正方形的性质和直角三角形的性质即可判定四边形BEOF为正方形,从而得到结论;(2)当移动到点P的位置时,可以通过证明四边形BEPF为矩形来得到两条线段的数量关系;(3)继续变化,有相同的关系,其证明方法也类似.解答:(1)解:OE=OF(相等);(1分)(2)解:OE=OF,OE⊥OF;(3分)证明:连接BO,∵在正方形ABCD中,O为AC中点,∴BO=CO,BO⊥AC,∠BCA=∠ABO=45°,(4分)∵PF⊥BC,∠BCO=45°,∴∠FPC=45°,PF=FC.∵正方形ABCD,∠ABC=90°,∵PF⊥BC,PE⊥AB,∴∠PEB=∠PFB=90°.∴四边形PEBF是矩形,∴BE=PF.(5分)∴BE=FC.∴△OBE≌△OCF,∴OE=OF,∠BOE=∠COF,(7分)∵∠COF+∠BOF=90°,∴∠BOE+∠BOF=90°,∴∠EOF=90°,∴OE⊥OF.(8分)(3)OE=OF(相等),OE⊥OF(垂直).(10分)点评:本题考查了正方形的性质,解题的关键是抓住动点问题,化动为静,还要大胆的猜想.6.如图,正方形ABCD,动点E在AC上,AF⊥AC,垂足为A,AF=AE.(1)求证:BF=DE;(2)当点E运动到AC中点时(其他条件都保持不变),问四边形AFBE是什么特殊四边形?说明理由.考点:正方形的判定与性质;全等三角形的判定与性质.分析:(1)根据正方形的性质判定△ADE≌△ABF后即可得到BF=DE;(2)利用正方形的判定方法判定四边形AFBE为正方形即可.解答:(1)证明:∵正方形ABCD,∴AB=AD,∠BAD=90°,∵AF⊥AC,∴∠EAF=90°,∴∠BAF=∠EAD,∵AF=AE,∴△ADE≌△ABF,∴BF=DE;(2)解:当点E运动到AC的中点时四边形AFBE是正方形,理由:∵点E运动到AC的中点,AB=BC,∴BE⊥AC,BE=AE=AC,∵AF=AE,∴BE=AF=AE,又∵BE⊥AC,∠FAE=∠BEC=90°,∴BE∥AF,∵BE=AF,∴得平行四边形AFBE,∵∠FAE=90°,AF=AE,∴四边形AFBE是正方形.点评:本题考查了正方形的判定和性质,解题的关键是正确的利用正方形的性质.7.(2005•乌兰察布)图1是由五个边长都是1的正方形纸片拼接而成的,过点A1的直线分别与BC1、BE交于点M、N,且图1被直线MN分成面积相等的上、下两部分.(1)求的值;(2)求MB、NB的长;(3)将图1沿虚线折成一个无盖的正方体纸盒(图2)后,求点M、N间的距离.考点:正方形的判定与性质;一元二次方程的应用;相似三角形的判定与性质.专题:代数几何综合题;压轴题;数形结合.分析:(1)本题可通过相似三角形A1B1M和NBM得出的关于NB,A1B1,MB,MB1的比例关系式来求,比例关系式中A1B1,BB1均为正方形的边长,长度都是1,因此可将它们的值代入比例关系式中,将所得的式子经过变形即可得出所求的值;(2)由于直线MN将图(1)的图形分成面积相等的两部分,因此△BMN的面积为,由此可求出MB•NB的值,根据(1)已经得出的MB+NB=MB•NB可求出MB+NB的值,由此可根据韦达定理列出以MB,NB为根的一元二次方程,经过解方程即可求出MB、NB的值;(3)根据(2)的结果,不难得出B1M=EN,由于折叠后E与B点重合,因此B1M=BN,那么四边形B1MNB是个矩形,因此MN的长为正方形的边长.解答:解:(1)∵△A1B1M∽△NBM且A1B1=BB1=1,∴,即整理,得MB+NB=MB•NB,两边同除以MB•NB得;(2)由题意得,即MB•NB=5,又由(1)可知MB+NB=MB•NB=5,∴MB、NB分别是方程x2﹣5x+5=0的两个实数根.解方程,得x1=,x2=;∵MB<NB,∴MB=,NB=;(3)由(2)知B1M=﹣1=,EN=4﹣=,∵图(2)中的BN与图(1)中的EN相等,∴BN=B1M;∴四边形BB1MN是矩形,∴MN的长是1.点评:本题主要考查了相似三角形的判定和性质,正方形的性质,一元二次方程的应用等知识点,综合性比较强.8.如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.考点:正方形的判定与性质;全等三角形的判定与性质.专题:动点型.分析:(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形,故可根据正方形的定义证明四边形PQEF是否使正方形.(2)证PE是否过定点时,可连接AC,证明四边形APCE为平行四边形,即可证明PE过定点.解答:解:(1)在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴BP=QC=ED=FA.又∵∠BAD=∠B=∠BCD=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF.∴FP=PQ=QE=EF,∠APF=∠PQB.∴四边形PQEF是菱形,∵∠FPQ=90°,∴四边形PQEF为正方形.(2)连接AC交PE于O,∵AP平行且等于EC,∴四边形APCE为平行四边形.∵O为对角线AC的中点,∴对角线PE总过AC的中点.点评:在证明过程中,应了解正方形和平行四边形的判定定理,为使问题简单化,在证明过程中,可适当加入辅助线.9.已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.(1)求证:∠DAE=∠DCE;(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.考点:正方形的性质;全等三角形的判定与性质;等腰三角形的判定与性质;含30度角的直角三角形.专题:代数几何综合题.分析:(1)通过全等三角形的判定定理SAS判定△DAE≌△DCE,然后根据全等三角形的对应角相等知∠DAE=∠DCE;(2)如图,由∠CEG=2∠EAC,∠ECB=2∠CEG可得,4∠EAC﹣∠ECA=∠ACB=45°,得∠G=∠CEG=30°;根据直角三角形中特殊角的三角函数值,可得在直角△ECH中,EH=2CH,在直角△FCH中,CH=CF,代入可得出.解答:(1)证明:在△DAE和△DCE中,∠ADE=∠CDE(正方形的对角线平分对角),ED=DE(公共边),AE=CE(正方形的四条边长相等),∴△DAE≌△DCE (SAS),∴∠DAE=∠DCE(全等三角形的对应角相等);(2)解:如图,由(1)知,△DAE≌△DCE,∴AE=EC,∴∠EAC=∠ECA(等边对等角);又∵CG=CE(已知),∴∠G=∠CEG(等边对等角);而∠CEG=2∠EAC(外角定理),∠ECB=2∠CEG(外角定理),∴4∠EAC﹣∠ECA=∠ACB=45°,∴∠G=∠CEG=30°;过点C作CH⊥AG于点H,∴∠FCH=30°,∴在直角△ECH中,EH=CH,EG=2CH,在直角△FCH中,CH=CF,∴EG=2×CF=3CF.点评:本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的性质及特殊角的三角函数值,本题综合比较强,考查了学生对于知识的综合运用能力.14、如图,在正方形ABCD中,E、F分别为AB、BC上的中点,连接DE、AF交于G点,连接CG,若CG=4cm,求正方形ABCD的面积.15、(2007•成都)如图,A是以BC为直径的⊙O上一点,于点D,AD⊥BC过点B 作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为32,求BD和FG的长度.16、在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.(1)如图l,当点M在BC上时,求证:BD-2DE=2BM;(2)如图2,当点M在BC延长线上时,BD、DE、BM之间满足的关系式是BD+2DE=2BM;(3)在(2)的条件下,连接BN交AD于点F,连接MF交BD于点G,连接CG.若DE=2,且AF:FD=1:2时,求线段DG的长.。