北师大版七年级数学(上)同步测试卷 第二章 有理数及其运算(A卷)
【北师大版】七年级数学上册第二章测试卷附答案--有理数及其运算
第二章单元测试卷(时间:100分钟 满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么-80元表示(C )A .支出20元B .收入20元C .支出80元D .收入80元 2. 下列说法正确的是(A )A .分数都是有理数B .-a 是负数C .有理数不是正数就是负数D .绝对值等于本身的数是正数 3. -5的相反数是(B )A .-5B .5C .-15D .154. 下列各对数是互为倒数的是(C )A .4和-4B .-3和13C .-2和-12D .0和05. 下列运算错误的是(A )A .13÷(-3)=3×(-3)B .-5÷(-12)=-5×(-2) C .8-(-2)=8+2 D .0÷3=06. 一天时间为86400秒,用科学记数法表示这一数字是(C ) A .864×102 B .86.4×103 C .8.64×104 D .0.864×1057. 有理数a ,b 在数轴上的位置如图所示,在-a ,b -a ,a +b ,0中,最大的是(D )A .-aB .0C .a +bD .b -a 8. 下列说法中,正确的是(B )A .若a≠b,则a 2≠b 2B .若a>|b|,则a>bC .若|a|=|b|,则a =bD .若|a|>|b|,则a>b9. 已知|x|=4,|y|=1,且x>y ,则x +y 的值为(D ) A .5 B .3 C .-5或-3 D .5或310. 在某一段时间里,计算机按如图所示程序工作,如果输入的数是2,那么输出的数是(C )A .-54B .54C .-558D .558二、填空题(本大题6小题,每小题4分,共24分)11. 小雷同学准备在教师节时和几位同学一起去看小学的老师,约定在中午12点到,提前到的时间记为正,若小雷到的时间记为-0.5 h ,则小雷到的时间是12:30.12. 计算:-32+12=-1;-5-|-9|=-14.13. 已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,这个最大值是33.14. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是1,则(a +b)cd -8m 的值是8或-8.15. 已知a ,b 满足|a +3b +1|+(2a -4)2=0,则(ab 3)2=4.16. 已知下列一组数:-1,34,-59,716,-925,1136……,则第9个数与第10个数之和为-1618100.三、解答题(一)(本大题3小题,每小题6分,共18分) 17. 把下列各数填入它所属的集合内:5.2,0,π2,227,+(-4),-234,-(-3),0.25555…,-0.030030003…(1)分数集合:{5.2,227,-234,0.25555…};(2)非负整数集合:{0,-(-3)}; (3)有理数集合:{5.2,0,227,+(-4),-234,-(-3),0.25555…}. 18. 画出数轴,在数轴上表示下列各数,并用“>”把它们连接起来. -(-412),-2,0,(-1)2,|-3|,-313.解:如图所示:-(-412)>|-3|>(-1)2>0>-2>-31319. 计算:(1)-52-16×(-12)3+33; (2)(-2)3×5-|-2.8|÷(-2)2.解:4 解:-40.7四、解答题(二)(本大题3小题,每小题7分,共21分)20. 如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示-112,设点B 所表示的数为m.(1)求m 的值;(2)求|m -1|+(m -6)2的值.解:(1)m =12(2)|m -1|+(m -6)2=30.7521. 某自行车厂一周计划生产自行车1400辆,平均每天生产200辆,但由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负,单位:辆):(1)产量最多的一天比产量最少的一天多生产自行车26辆;(2)该厂实行计件工资制,每生产一辆自行车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?解:(2)该厂本周实际生产自行车1410辆,因为1410>1400,所以超额完成10辆.则该厂工人这一周的工资总额是30×1410+10×20=42300+200=42500(元)22. (1)已知a |a|+b |b|=0,求ab|ab|的值;(2)已知a ,b ,c 是不为0的有理数,求a |a|+b |b|+c|c|的值.解:(1)由a |a|+b |b|=0可知a ,b 异号,则ab<0,故|ab|=-ab ,所以ab |ab|=ab-ab =-1(2)当a ,b ,c 均大于0时,原式=1+1+1=3;当a ,b ,c 中有两个大于0时,原式=1+1-1=1;当a ,b ,c 中有一个大于0时,原式=-1-1+1=-1;当a ,b ,c 均小于0时,原式=-1-1-1=-3五、解答题(三)(本大题3小题,每小题9分,共27分)23. 10月1日这一天下午,公安局警车司机小张在东西走向的世纪大道上值勤.如果规定向东为正,警车的所有行程如下(单位:千米):+5,-4,+3,-6,-2,+10,-3,-7(1)最后,警车司机小张在距离出发点的什么位置?(2)若警车每行驶10千米的耗油量为1升,那么这一天下午警车共耗油多少升? (3)如现在油价为每升7.34元,那么花费了多少油钱?解:(1)+5+(-4)+(+3)+(-6)+(-2)+10+(-3)+(-7)=-4,所以小张在距离出发点的西边4千米处(2)(|+5|+|-4|+|+3|+|-6|+|-2|+|+10|+|-3|+|-7|)÷10×1=4(升)(3)7.34×4=29.36(元)24. 流花河的警戒水位是33.5米,下表记录的是今年某一周内的水位变化情况,取河流的警戒水位作为0点,并且上周末(星期六)的水位达到警戒水位,(正号表示水位比前一天上升,负号表示水位比前一天下降).(1)本周哪一天河流的水位最高?哪一天河流的水位最低? (2)与上周末相比,本周末河流的水位是上升了还是下降了? (3)以警戒水位作为零点,用折线统计图表示本周的水位情况.解:(1)周日的水位是33.5+0.3=33.8(米),周一的水位是33.8+0.81=34.61(米),周二的水位是34.61-0.32=34.29(米),周三的水位是34.29+0.04=34.33(米),周四的水位是34.33+0.27=34.6(米),周五的水位是34.6-0.35=34.25(米),周六的水位是34.25-0.02=34.23(米),所以本周周一河流的水位最高,周日河流的水位最低(2)因为34.23>33.5,所以与上周末相比,本周末河流的水位上升了(3)折线统计图如图:25. 观察下列两组算式: ①22×32与(2×3)2; ②(-12)2×22与[(-12)×2]2.(1)每组两个算式的结果是否相等?(2)根据(1)的结果猜想a n b n等于什么? (3)用(2)的结论计算(15)2018×(-5)2018.解:(1)因为22×32=4×9=36,(2×3)2=62=36,(-12)2×22=14×4=1,[(-12)×2]2=(-1)2=1,所以每组两个算式的结果是相等的(2)根据(1)的结果,可得a n b n =(ab)n(3)(15)2018×(-5)2018=[15×(-5)]2018=(-1)2018=1。
北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)
北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。
北师大版(2024)七年级上册数学第2章 有理数及其运算 达标测试卷(含答案)
北师大版(2024)七年级上册数学第2章有理数及其运算达标测试卷(时间:45分钟。
满分:100分)一、选择题(本大题共8小题,每小题3分,共24分。
每小题只有一个正确选项)1.计算(-7)-(-5)的结果是()。
A.-12B.12C.-2D.22.中国是最早采用正负数表示相反意义的量并进行负数运算的国家。
若收入500元记作+500元,则支出237元记作()。
A.+237元B.-237元C.0元D.-474元3.在3,-7,0,1四个数中,最大的数是()。
9A.3B.-7C.0D.194.近似数5.0×102精确到()。
A.十分位B.个位C.十位D.百位5.“绿水青山就是金山银山”,多年来,某湿地保护区针对过度放牧问题,投入资金实施湿地生态效益补偿,完成季节性限牧还湿29.47万亩(1亩≈666.67 m2),使得湿地生态环境状况持续向好。
其中数据29.47万用科学记数法表示为()。
A.0.294 7×106B.2.947×104C.2.947×105D.29.47×1046.下列说法,正确的是()。
A.23表示2×3B.-110读作“-1的10次幂”C.(-5)2中-5是底数,2是指数D.2×32的底数是2×37.(2023内蒙古中考)定义新运算“⊗”,规定:a⊗b=a2-|b|。
则(-2)⊗(-1)的运算结果为()。
A.-5B.-3C.5D.3<0。
则其中正8.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a-c<0;④-1<ab确结论的个数是()。
A.1B.2C.3D.4二、填空题(本大题共5小题,每小题4分,共20分)9.(2024重庆奉节期末)若a是最小的正整数,b是最大的负整数,则a+b=。
10.(2023重庆渝中区校级月考)计算:-|-335|-(-225)+45=。
北师大版七年级数学上册第二章有理数及其运算 同步测试
北师大版七年级数学上册第二章有理数及其运算 同步测试一. 选择题1.-13的倒数的绝对值是( )A .-3B .13C .-13D .3 2.在-23,(-2)3,-(-2),-|-2|中,负数的个数是( )A .1B .2C .3D .43.如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是( )A.点AB.点BC.点CD.点D4.地球上的海洋面积约为361 000 000平方千米,数字361 000 000用科学记数法表示为 ( )A .36.1×107B .0.36×109C .3.61×108D .3.61×1075.大米包装袋上(10±0.1)kg 的标识表示此袋大米重( )A .(9.9~10.1) kgB .10.1 kgC .9.9 kgD .10 kg6.下列说法错误的有( )①-a 一定是负数; ②若|a|=|b|,则a =b ;③一个有理数不是整数就是分数; ④一个有理数不是正数就是负数.A .1个B .2个C .3个D .4个7.如图,乐乐将-3,-2,-1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a ,b ,c 分别标上其中的一个数,则a -b +c 的值为( )A .-1B .0C .1D .38.有理数a 、b 在数轴上的对应点如图所示,则下列式子中错误的是( )A.ab〉0B.a+b〈0C.ab〈1 D.a-b〈09.已知|a+1|与|b-4|互为相反数,则a b的值是( )A.-1B.1C.-4D.410.某种品牌的同一种洗衣粉有A,B,C三种袋装包装,每袋分别装有400克、300克、200克的洗衣粉,售价分别为3.5元、2.8元、1.9元.A,B,C三种包装的洗衣粉,每袋的包装费用(含包装袋成本)分别为0.8元、0.6元、0.5元.厂家销售A,B,C三种包装的洗衣粉各1 200千克,获得利润最大的是()A.A种包装的洗衣粉 B.B种包装的洗衣粉C.C种包装的洗衣粉D.三种包装的都相同二.填空题11.-23的相反数是____,绝对值是____,倒数是____.12.教育扶贫工作实施方案出台,全市计划争取专项资金120 000 000元,用于改造农村义务教育薄弱学校100所,数据120 000 000用科学记数法表示为____.13.如图所示,有理数a,b在数轴上对应的点分别为A,B,则a,-a,b,-b 按由小到大的顺序排列是________________.14.如图是一个简单的数值运算程序.当输入x的值为-1时,则输出的数值为.输入x―→×(-3)―→-2―→输出15.已知a,b互为相反数,且|a-b|=6,则b-1=_____.16.绝对值小于3的整数为__________,绝对值大于3.2且小于7.5的负整数为________________.17.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为________.18.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为______.三.解答题19.把下列各数填入相应的集合内:+8.5,-321,0.3,0,-3.4,12,-9,431,-1.2,-2. (1)正数集合:{___________…};(2)整数集合:{___________…};(3)非正整数集合:{_____________…};(4)负分数集合:{ ________________…}.20.计算:(1)-13×3+6×)31( ; (2)(-1)2÷12×[6-(-2)3].21.(1)13的相反数加上-27的绝对值,再加上-31的和是多少?(2)从-3中减去-712与-16的和,所得的差是多少?22.现定义两种运算:“⊕”“⊗”,对于任意两个整数a ,b ,a ⊕b =a +b -1,a ⊗b =a ×b -1,求4⊗ [(6⊕8) ⊕(3⊗5)]的值.23.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,-9,+8,-7,13,-6,+12,-5.(1)请你帮忙确定B地相对于A地的方位;(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油.24.同学们都知道|5-(-2)|表示5与(-2)之差的绝对值,也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求|5-(-2)|=___;(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7成立的整数是___;(3)由以上探索猜想,对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有,写出最小值;如果没有,请说明理由.答案提示1. D 2.C 3.A 4.C 5.D6.C7.C8.C9.B 10.B11.23 23 -3212.1.2×108 13.-a<b<-b<a 14.1 15. 2或-4 16. 0,±1,±2;-4,-5,-6,-7 17.0 18.18419.解:(1)正数集合: {+8.5,0.3,12,431,…}. (2)整数集合:{ 0,12,-9,-2,…}.(3)非正整数集合:{ 0,-9,-2,…}.(4)负分数集合:{-321,-3.4,-1.2,…}. 20.解:(1)-13×3+6×)31(- =-1+(-2)=-3.(2)(-1)2÷12×[6-(-2)3] =1×2×[6-(-8)]=1×2×14=28.21. 解:(1)根据题意,得-13+||-27+(-31)=-17.(2)根据题意,得-3-⎥⎦⎤⎢⎣⎡-+-)61(127=-214. 22. 解:根据新运算的定义,(6⊕8)=6+8-1=13,(3⊗5)=3×5-1=14,则(6⊕8) ⊕(3⊗5)=13⊕14=13+14-1=26,则4⊗ [(6⊕8) ⊕(3⊗5)]=4⊗26=4×26-1=103.23.解:(1)∵14-9+8-7+13-6+12-5=20,∴B 地在A 地的东边20千米.(2)∵路程记录中各点离出发点的距离分别为14千米,14-9=5(千米),14-9+8=13(千米),14-9+8-7=6(千米),14-9+8-7+13=19(千米),14-9+8-7+13-6=13(千米),14-9+8-7+13-6+12=25(千米),14-9+8-7+13-6+12-5=20(千米).∴最远处离出发点25千米.(3)这一天走的总路程为14+|-9|+8+|-7|+13+|-6|+12+|-5|=74(千米),耗油74×0.5=37(升),37-28=9(升),故还需补充的油量为9升.24.解: (1)原式=|5+2|=7.(2)令x+5=0或x-2=0时,则x=-5或x=2.当x<-5时,-(x+5)-(x-2)=7,解得x=-5(不成立).当-5<x<2时,(x+5)-(x-2)=7,化简得7=7,∴x=-4,-3,-2,-1,0,1.当x>2时,(x+5)+(x-2)=7,解得x=2(不成立).综上所述,符合条件的整数x有-5,-4,-3,-2,-1,0,1,2.(3)由(2)的探索猜想,对于任何有理数x,|x-3|+|x-6|有最小值,为3.。
北师大版七年级数学(上)同步测试卷_第二章_有理数及其运算(A卷)
1第二章 有理数及其运算一、填空题:(每小题2分,共20分) 1.32-的相反数是____________,53-的倒数是____________.2. 绝对值等于2.5的数是_______________.3. 比较大小:3______5-,0_______2-,32-_______43-.4. 计算:2132+-=_______,3×)6(-=_________.5.3)2(--的底数是_________,结果是_________.6. 计算:)7(71)1(-⨯÷-=____________.7. 如果一个家庭把本月的收入记作“+”,而把本月的支出记作“-”,那么这个家庭本月工资收入4200元,奖金400元,生活费用1300元,买彩票500元,中奖一注20000元,报个人所得税4000元,本月这个家庭的收情况可依次简记为____________________________________________________. 8. 45.0-与8+的和减去+1.7的差是_________.9. 仔细观察下列各数,按某种规律在横线上填上适当的数,并说明理由.0,2,4,_____,____,理由:____________________. 10、计算: ()=-32 , ()=-101 , =-23二、选择题:11、下面给出的四条数轴中画得正确的是( )3-2-1-1-011-011-01A B C D12、如果向东走50米记作+50米,那么-50米表示( ) A 、向西走50米 B 、向南走50米 C 、向北走50米 D 、向东走50米 13、下列说法正确的是( )A. 正数和负数统称有理数B. 正整和负整数统称为整数C. 小数3.14不是分数D. 整数和分数统称为有理数14、若22)2() (-=,那么( )中应填的数是( )A. 2-B. 3C. 4D. +2或2- 15、 若一个数的绝对值的相反数是5-,则这个数是( )A. 5B. 5-C. ±5D. 0或5 16、 数轴上表示31-的点与表示21-的点的距离是( ) A. 61-B.65C.61 D.2117、 一个有理数的平方与它本身的和等于0,那么这个有理数是( )A. 0和1B. 0和1-C. 0D. 1 18、 计算20062005)1()1(-+-的值等于( )A. 2B. 2-C. 0D. 1 19、 下列等式成立的是( )A. 33±=±B. )2(2--=-C. 222)2(±=±D. 312312=--20、下列对“0”的描述中说法正确的是( ) A 、是最小的正数 B 、它的相反数是它本身 C 、它的倒数是它本身 D 、是最大的负数 三、解答题:(共50分) 21、计算:(前4小题,每题3分,后4小题每题4分,共28分)(1) )21(41---(2) )2.2()32()05.1()54()31()75.1(++-+++++-++2(3) )30()4.03221(-⨯+-(4) )100(21)1.0(-⨯÷-(5) 233)2(--(6) 2)3121(36-⨯(7) )4()81()2(163-⨯---÷ (8) 101-102+103-104+…+199-20022.(4分)某部队新兵入伍时,对新兵进行“引体向上”测试,以50次为标准,超过50次用正数表示,不足50次用负数表示,第二小队的10名新兵的23.(6分)把下列各数表示的点画在数轴上。
北师大版七年级数学上册 第2章 有理数及其运算 单元测试卷(含解析)
北师大版七年级数学上册第 2章有理数及其运算单元测试卷一、选择题(本大题共10小题,共30分)1. 如果“盈利5%”记作+5%,那么−3%表示( )A. 盈利2%B. 亏损8%C. 亏损3%D. 少赚2%2. 在有理数−3,0,3,4中,最小的有理数是( )A. −3B. 0C. 3D. 43. 下列运算正确的是( )A. −22=4B. (−213)3=−8127 C. (−12)3=−18 D. (−2)3=−64. −22−(−2)4的值是( )A. −20B. 16C. −16D. −125. 数轴上点A 、B 表示的数分别是−3、8,它们之间的距离可以表示为A. −3+8B. −3−8C. |−3+8|D. |−3−8|6. 下列说法中正确的有( )①同号两数相乘,符号不变;②几个因数相乘,积的符号由负因数的个数决定;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值等于这两个有理数的绝对值的积. A. 1个B. 2个C. 3个D. 4个7. 高度每增加1千米,气温就下降2℃,现在地面气温是−10℃,那么离地面高度为7千米的高空的气温是( ) A. −4℃B. −14℃C. −24℃D. 14℃8. 一个数的立方是它本身,那么这个数是( )A. 0B. 0或1C. −1或1D. 0或−1或19. 为解决“最后一公里”的交通接驳问题,平谷区投放了大量公租自行车供市民使用.据统计,目前我区共有公租自行车3 500辆.将3 500用科学记数法表示应为( ) A. 0.35×104B. 3.5×103C. 3.5×102D. 35×10210. 计算:3−2×(−1)=( )二、填空题(本大题共6小题,共24分)11.若规定一种运算:a∗b=ab+a−b,则1∗(−2)=___________.12.绝对值小于2的所有整数的和是______.13.如果向南走5米,记作+5米,那么向北走8米应记作______米.14.在实数范围内定义运算“☆”,其规则为:a☆b=a2−b2,则(4☆3)☆6=__________。
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(带答案)
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(带答案)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. −7步C. +12步D. −2步2.小亮去帮爸爸超市买面粉,他发现一种面粉的质量标识为“(25±0.25)千克”,则下列面粉中合格的是( )A. 24.70千克B. 24.80千克C. 25.30千克D. 25.51千克3.北京与巴黎的时差为7小时,小丽和小红分别在北京和巴黎,她们相约在各自当地时间7:00~17:00之间选择一个时刻开始通话,这个时刻可以选择巴黎时间( )A. 14:00B. 15:30C. 9:00D. 10:304.在数轴上,一只蚂蚁从原点出发,它第一次向右爬行了1个单位长度,第二次接着向左爬行了2个单位长度,第三次接着向右爬行了3个单位长度,第四次接着向左爬行了4个单位长度,如此进行了2023次,蚂蚁最后在数轴上对应的数是( )A. 1012B. −1012C. 2023D. −20235.如图,数轴上P、Q、S、T四点对应的整数分别是p、q、s、t,且有p+q+s+t=−2,那么,原点应是点( )A. PB. QC. SD. T6.在数轴上与—2的距离等于4的点表示的数是( )A. 2B. —6C. 2或—6D. 无数个7.如图,四个有理数m、n、p、q在数轴上对应的点分别为M、N、P、Q,若n+q=0,则m、n、p、q四个数中负数有个.( )A. 1B. 2C. 3D. 48.若|a−3|+|2−b|=0,则a2+b2的值为( )A. 12B. 13C. 14D. 159.下列说法中正确的( )A. 有理数的绝对值一定是正数B. 如果|a|=|b|,那么a=bC. 如果a>0,那么|a|=aD. 如果|a|=a,那么a>010.如图,乐乐将−3,−2,−1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,若a,b,c分别表示其中的一个数,则a−b+c的值为( )A. −1B. 0C. 1D. 311.计算(−2)100+(−2)99的结果是( )A. 2B. −2C. −299D. 29912.地球绕太阳公转的轨道半径约是149000000千米,用科学记数法表示这个数为( )A. 149×106B. 1.49×108C. 0.149×109D. 1.49×109二、填空题(本大题共8小题,共24分)13.某种零件,标明要求是φ:(10±0.03)mm(φ表示直径,单位:mm),经检查,一个零件的直径是9.98mm,该零件______ (填“合格”或“不合格”).14.数轴上点A表示的数是3,若将点A向右移动2单位,再向左移动8个单位到点B,则点B表示的数是________。
北师大七年级上第二章有理数及其运算单元同步测试卷含答案
第 2 页
9.某种细菌在培养过程中,每半小时分裂一次(由一个分裂为两个),且原细菌死亡。若这种细菌由 1 个分裂
为 16 个,那么这个过程中要经过( )
A.1 小时 B.2 小时 C.3 小时 D.4 小时
10.四个各不相等的整数 a,b,c,d,它们的积 a bc d 9 ,那么 a b c d 的值为( )
求全队同学的平均身高
解:分别将各数减去 170,得
1,-2,0,3, -5,8 , -4,-9,6, 2, 6,6
这组数的平均数为: (1-2+0+3-5+8-4-9+6+ 2+6+6)÷12 =12÷12=1
则已知数据的平均数为 170+1=171
通过阅读上面解决问题的方法,请利用它解决下面的问题:
(1)10 筐苹果称重(千克)如下:
32, 26, 32.5, 33, 29.5, 31.5, 33, 29, 30, 27.5
1 1
A.(a+ )2 是正数 B.a2+ 是正数
2 2
1 1 1
6.若 a n >0(n 取正偶数),则下列说法正确的是( )
A.a 一定是负数 B.a 一定是正数
C.a 可能是正数也可能是负数 D.a 可能是任何数
7、a 为有理数,下列说法中,正确的是( )。.
C. 这两个有理数异号 D. 这两个有理数中有一个为零
第 1 页
七年级上册第二章《有理数及其运算》单元检测试题(A)
一.选择题(每题 3 分,共 18 分)
1. 下面的说法错误的是(A ).
A.0 是最小的整数 B.1 是最小的正整数
北师大版七年级数学上册单元测试卷:第二章 有理数及其运算
第二章 有理数及其运算一、填空题(每小题4分,共16分)1.-23的相反数是________,绝对值是________,倒数是________.2.在-1,0,-2这三个数中,最小的数是________.3.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价________万元. 4.某程序如图所示,当输入x =5时,输出的值为 ________. 输入x →平方→减去x →除以2→取相反数→输出 二、选择题(每小题3分,共30分) 5.-13的倒数的绝对值是( )A .-3B .13C .-13D .36.检验4个工件,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的工件是( )A .-2B .-3C .3D .57.在-12,0,-2,13,1这五个数中,最小的数为( )A .0B .-12C .-2D .138.下列说法中,正确的个数有( )①-3.14既是负数,又是小数,也是有理数; ②-25既是负数,又是整数,但不是自然数; ③0既不是正数也不是负数,但是整数; ④0是非负数.A .1个B .2个C .3个D .4个 9.下列运算结果正确的是( ) A .-87×(-83)=7 221 B .-2.68-7.42=-10 C .3.77-7.11=-4.66 D .-101102<-10210310.据中国电子商务研究中心监测数据显示,2018年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元.将27 800 000 000用科学记数法表示为( )A .2.78×1010B .2.78×1011C .27.8×1010D .0.278×101111.一件商品的成本价是100元,提高50%后标价,又以8折出售,则这件商品的售价是( ) A .150元 B .120元 C .100元 D .80元12.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c ,其中AB =B C .如果|a |>|c |>|b |,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边13.式子⎝ ⎛⎭⎪⎫12-310+25×4×25=⎝ ⎛⎭⎪⎫12-310+25×100=50-30+40中运用的运算律是( ) A .乘法交换律及乘法结合律B .乘法交换律及乘法对加法的分配律C .加法结合律及乘法对加法的分配律D .乘法结合律及乘法对加法的分配律14.有理数a ,b 在数轴上的位置如图所示,下面结论正确的是( )A .b -a <0B .ab >0C .a +b >0D .|a |>|b |三、解答题(本大题共6小题,共54分)15.(8分)画数轴,在数轴上表示下列各数,并用“<”把这些数的相反数连接起来:3,0,-|-2|,-52,1.5,-22.16.(8分)(1)13的相反数加上-27的绝对值,再加上-31的和是多少? (2)从-3中减去-712与-16的和,所得的差是多少?17.(10分)计算:(1)(-121.3)+(-78.5)-⎝ ⎛⎭⎪⎫-812-(-121.3);(2)-12-[2-(-3)2]×⎪⎪⎪⎪⎪⎪15-13÷⎝ ⎛⎭⎪⎫-110.18.(8分)一辆货车从超市出发送货,先向南行驶30 km 到达A 单位,继续向南行驶20 km 到达B 单位.回到超市后,又给向北15 km 处的C 单位送了3次货,然后回到超市休息.(1)C 单位离A 单位有多远?(2)该货车一共行驶了多少千米?19.(10分)已知a ,b 互为相反数,c ,d 互为倒数,e 的绝对值为3,试求(a +b )÷108-e 2÷[(-cd )2 017-2]的值.20.(10分)2017年“十一”国庆假期间,万彬和温权听到各自的父母都将带他们去黄山旅游,他们听到后立即上网查资料,资料显示:高山气温一般每上升100 m ,气温就下降0.8 ℃.10月2日上午10点,万彬在黄山顶,温权在黄山脚下.他们用手机通话,同时测出他们所在位置气温,分别是13.2 ℃和28.2 ℃,因而,他们就推算出这时候彼此所在地的海拔差.你知道他们是怎么算出的吗?他们的海拔差是多少?B 卷(共50分)四、填空题(本大题共5个小题,每小题4分,共20分)21.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1 011)2换算成十进制数应为:(101)2=1×22+0×21+1×20=4+0+1=5,(1 011)2=1×23+0×22+1×21+1×20=11.按此方式,将二进制(1 001)2换算成十进制数的结果是_______.22.绝对值小于3的整数为__________,绝对值大于3.2且小于7.5的负整数为________________. 23.若|x |=4,|y |=5,则x -y 的值为____________. 24.将从1开始的连续自然数按以下规律排列:…则2 018在第_______行.25.若|m -2|+(n -2)2=0,则m n的值是______. 五、解答题(本大题共3个小题,共30分)26.(10分)在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如: |6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7; 根据上面的规律,把下列各式写成去掉绝对值符号的形式: (1)|7-21|=_________;(2)⎪⎪⎪⎪⎪⎪-12+0.8=____________; (3)⎪⎪⎪⎪⎪⎪717-718=__________; (4)用合理的方法计算:⎪⎪⎪⎪⎪⎪15-12 018+|12 018-12|-12×⎪⎪⎪⎪⎪⎪-12+11 009. 27.(10分)现定义两种运算:“⊕”“⊗”,对于任意两个整数a ,b ,a ⊕b =a +b -1,a ⊗b =a ×b -1,求4⊗ [(6⊕8) ⊕(3⊗5)]的值.28.(10分)下面是按一定规律排列的一列数:第1个数:1-⎝⎛⎭⎪⎫1+-12;第2个数:2-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34;第3个数:3-⎝ ⎛⎭⎪⎫1+-12⎝ ⎛⎭⎪⎫1+(-1)23⎝ ⎛⎭⎪⎫1+(-1)34⎝ ⎛⎭⎪⎫1+(-1)45⎣⎢⎡⎦⎥⎤1+(-1)56. …(1)分别计算这三个数的结果(直接写答案);(2)写出第2 017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案1. 23 23 -32 2. -2 3.9.9 4. -105. D6. A7. C8. D9. A 10. A 11. B 12. C 13. D 14. A15. 解:如答图.它们的相反数分别为-3,0,2,52,-1.5,4,2分答图16. 解:(1)根据题意,得-13+||-27+(-31)=-17.(2)根据题意,得-3-⎣⎢⎡⎦⎥⎤-712+⎝ ⎛⎭⎪⎫-16=-214. 17. 解:(1)原式=-121.3-78.5+8.5+121.3=(-121.3+121.3)+(-78.5+8.5) =-70(2)原式=-12-(2-9)×⎪⎪⎪⎪⎪⎪315-515÷⎝ ⎛⎭⎪⎫-110=-1-(-7)×215÷⎝ ⎛⎭⎪⎫-110=-1-1415×10=-1-283=-31318. 解:(1)规定超市为原点,向南为正,向北为负,1分依题意,得C 单位离A 单位有30+||-15=45(km),3分 ∴C 单位离A 单位45 km.4分(2)该货车一共行驶了(30+20)×2+||-15×6 =190(km).7分答:该货车一共行驶了190 km.8分19. 解:因为a ,b 互为相反数,c ,d 互为倒数,e 的绝对值为3,所以a +b =0,cd =1,e =±3.4分所以原式=0÷108-(±3)2÷[(-1)2 017-2] =(-9)÷(-1-2)=(-9)÷(-3)=3. 20. 解:根据题意,得(28.2-13.2)÷0.8×100 =15×1.25×100=1 875(m).答:他们的海拔差是1 875 m . 21.922. 0,±1,±2 -4,-5,-6,-7 23. ±1,±9【解析】 ∵|x |=4,∴x =±4.∵|y |=5,∴y =±5.当x =4,y =5时,x -y =-1; 当x =4,y =-5时,x -y =9; 当x =-4,y =5时,x -y =-9; 当x =-4,y =-5时,x -y =1.24.45【解析】∵442=1 936,452=2 025,∴2 018在第45行. 25.426.(1) 21-7 (2) 0.8-12 (3)717-718 (4) 920解:(4)原式=15-12 018+12-12 018-14+11 009=920.27. 解:根据新运算的定义,(6⊕8)=6+8-1=13,(3⊗5)=3×5-1=14,则(6⊕8) ⊕(3⊗5)=13⊕14=13+14-1=26, 则4⊗ [(6⊕8) ⊕(3⊗5)]=4⊗26=4×26-1=103. 28. 解:(1)第1个数:12;第2个数:32;第3个数:52.(2)第2 017个数:2 017-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤(1+(-1)34…⎣⎢⎡⎦⎥⎤1+(-1)4 0334 034=4 0332.。
(北师大版)北京市七年级数学上册第二单元《有理数及其运算》检测题(包含答案解析)
一、选择题1.若a >0,b <0,且a >|b|,那么a ,b ,-b 的大小关系是( )A .-b <b <aB .b <a <-bC .b <-b <aD .-b <a <b 2.实数a ,b ,c 在数轴上的对应点的位置如图所示,则不正确的结论是( )A .3a >B .0b a -<C .0ab <D .a c >- 3.如图所示的是图纸上一个零件的标注,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .29.8mmB .30.03mmC .30.02mmD .29.98mm 4.已知数a ,b 在数轴上对应点的位置如图所示,则下列结论不正确的是( )A .a +b <0B .a ﹣b >0C .b <﹣a <a <﹣bD .b a>0 5.计算:(-3)-(-5)=____________.( )A .2B .-2C .-8D .86.如图,在数轴上,点A 表示数1,现将点A 沿数轴作如下移动,第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,…,按照这种移动规律进行下去,第2021次移动到点2021A ,那么点2021A 所表示的数为( )A .3029-B .3032-C .3035-D .3038- 7.光明科学城的规划总面积达9900000平方米,其中9900000用科学记数法表示为( ) A .9.9×107 B .99×107 C .9.9×106 D .0.99×108 8.已知a ,b ,c ,三个数在数轴上,对应点的位置如图所示,下列各式错误的是( )A .b a c <<B .a b -<C .0a b +<D .0c a -> 9.下列几组数中,相等的是( )A .32和23B .()23-和23-C .()81-和81-D .()5+-和5-- 10.某地一天早晨的气温是2-℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是( )A .10-℃B .6-℃C .2℃D .6℃ 11.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是( )A .0a b +>B .0a c +<C .0a b c +->D .0b c a +->12.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算78⨯和89⨯的两个示例.若用法国的“小九九”计算79⨯,左、右手依次伸出手指的个数是( )A .2,3B .3,3C .2,4D .3,4二、填空题13.计算:301202052-⎛⎫---= ⎪⎝⎭___________. 14.一个数用科学记数法表示为35.2810⨯,则这个数是______.15.比较大小:13-________12-(填入“>”“=”“<”) 16.2020年初扬州市户籍总人口约4571400人,将4571400用科学记数法表示为____. 17.如图,将一个正方体的表面沿某些棱剪开,展成一个平面图形,已知正方体相对两个面上的数互为倒数,则ab =________.18.若2(2)|1|0a b ++-=,则a b -=______.19.某市出租车的收费标准如下:行驶路程在3千米以内,收费8元;行驶路程超过3千米时,超过3千米的按2.6元/千米收费(不满1千米,按1千米计算).小明乘坐出租车到距离14千米的少年宫,他所付的车费是______元.20.有理数a 、b 在数轴上的位置如图所示,则|a -b |-|b |化简的结果为:____.三、解答题21.已知下列各数:5-,13,4,0, 1.5-,5,133,12-.把上述各数填在相应的集合里:正有理数集合:{ }负有理数集合:{ }分数集合:{ }22.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?23.一股民在上星期五买进某公司股票1000股,每股27元,下表为本星期内每日该股票相对于前一天(星期一相对于上星期五)的涨跌情况:(比前一天上涨的记为正,比前一天下跌的记为负,股市周末休市) 星期一 二 三 四 五 每股涨跌(单位:元) 4+ 4.5+ 1- 2.5- 6- (2)本星期内每股最低价多少元?(3)星期二收盘时,全部股票获利多少元?24.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).(2)产量最多的一天比产量最少的一天多生产多少个?(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?25.计算:(1)()18623⎛⎫-÷-⨯- ⎪⎝⎭(2)()()2221235122---+--÷⨯ 26.一年一度的“春节”即将到来,某超市购进一批价格为每千克6元的苹果,原计划每天卖50千克,但实际每天的销量与计划销量有出入,表格是某周的销售情况(超额记为正,不足记为负,单位:千克):(2)若每千克按10元出售,每千克苹果的运费为2元,那么该超市这周的利润一共有多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据>0,b <0,得到b <a ,b <0<-b ,再根据a >|b|得到-b <a ,即可求解.【详解】解:∵a >0,b <0,∴b <a ,b <0<-b ,∵a >|b|∴-b <a ,∴b <-b <a .故选:C【点睛】本题考查了有理数的大小比较,理解绝对值,相反数的意义,有理数的大小比较方法是解题关键.2.C解析:C【分析】利用绝对值以及数轴的性质以及实数的运算进行判断即可;【详解】由数轴可知-4<a<-3,-1<b<0,4<c<5;a>,故此选项不符合题意;A、∵-4<a<-3,∴3B、∵b<c,∴b-c<0,故此选项不符合题意;C、∵a<0,b<0,∴ab>0,故此选项符合题意;D、∵-4<a<-3,4<c<5,∴-5<-c<-4,∴ a>-c,故此选项不符合题意;故选:C.【点睛】本题考查了绝对值以及数轴的性质以及实数的运算,正确掌握数轴的性质是解题的关键.3.A解析:A【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【详解】解:∵30+0.03=30.03,30-0.02=29.98,∴零件的直径的合格范围是:29.98mm≤零件的直径≤30.03mm.∵29.8mm不在该范围之内,∴不合格的是A.故选:A.【点睛】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.4.D解析:D【分析】根据数轴上a、b的位置结合有理数的运算法则即可判断.【详解】解:由数轴可知:b<0<a,|b|>|a|,∴﹣b>a,∴a+b<0,a﹣b>0,b<0,b<﹣a<0<a<﹣b.a故选:D.【点睛】本题考查数轴的定义,解题的关键是正确理解数轴与有理数之间的关系,本题属于基础题型.5.A解析:A【分析】根据有理数的减法运算法则计算即可.【详解】解:(-3)-(-5)=-3+5=2故选:A.【点睛】本题考查了有理数的减法运算法则,解题的关键是熟练掌握有理数的减法运算法则.6.C解析:C【分析】从A的序号为奇数的情形中,寻找解题规律求解即可.【详解】∵A表示的数为1,∴A=1+(-3)×1=-2,1∴A=-2+(-3)×(-2)=4,2∴A=4+(-3)×3=-5= -2+(-3),3∴A=-5+(-3)×(-4)=7,4∴A=7+(-3)×(-5)=-8= -2+(-3)×2,5∴A= -2+(-3)×1011=-3035,2021故选C.【点睛】本题考查了数轴上动点运动规律,抓住序号为奇数时数的表示规律是解题的关键.7.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将数9900000用科学记数法表示为9.9×106.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.B解析:B【分析】利用A 、B 、C 在数轴上的位置,确定符号和绝对值,进而对各个选项做出判断.【详解】解:由题意得,a <0,b <0,c >0,且|a|<|b|,|c|<|b|,因此:A .b a c <<,正确,故此项不符合题意;B .-a >b ,不正确,故此项符合题意;C .0a b +<,正确,故此项不符合题意;D .c-a <0,正确,故此项不符合题意;故选:B【点睛】考查有理数、数轴、绝对值等知识,根据点在数轴上的位置确定符号和绝对值是解决问题的关键.9.D解析:D【分析】根据乘方的运算和绝对值的性质比较即可.【详解】A .328=,239=,故错误;B .()239-=,239-=-,故错误; C .()811-=,811-=-,故错误;D .()55+-=-,55--=-,故正确; 故答案选D .【点睛】本题主要考查了有理数比较大小,准确应用绝对值性质和幂的性质判断是解题的关键. 10.C解析:C【分析】温度上升是加法,温度下降是减法,据此列式计算即可.【详解】由题意得:-2+12-8=2(℃),故选:C .【点睛】此题考查有理数加减法解决实际问题,正确理解上升与下降的含义列算式计算是解题的关键.11.D解析:D【分析】根据数轴上点的位置确定出a,b,c的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a<0<b<c,且|b|<|a|<|c|,∴a+b<0,故选项A错误,不符合题意;a c+>,故选项B错误,不符合题意;+-<,故选项C错误,不符合题意;a b c+->,故选项D正确,符合题意;b c a故选:D.【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.12.C解析:C【分析】按照法国的“小九九”的算法,大于5时,左手伸出的手指数是第一个因数减5,右手伸出的手指数是第二个因数减5,即可得答案.【详解】∵计算78⨯和89⨯时,7-5=2,8-5=3,9-5=4,∴法国的“小九九”大于5的算法为左手伸出的手指数是第一个因数减5,右手伸出的手指数是第二个因数减5,∴计算79⨯,左、右手依次伸出手指的个数是7-5=2,9-5=4,故选:C.【点睛】本题主要考查有理数的乘法,解题的关键是掌握法国“小九九”伸出手指数与两个因数间的关系.二、填空题13.2【分析】先分别利用负整数指数幂零指数幂的运算法则及绝对值的意义进行计算再进行加减法运算即可解答【详解】解:故答案为:2【点睛】本题考查了有理数的混合运算掌握负整数指数幂及零指数幂的运算法则是解题的解析:2【分析】先分别利用负整数指数幂、零指数幂的运算法则及绝对值的意义进行计算,再进行加减法运算即可解答.【详解】解:301202052-⎛⎫--- ⎪⎝⎭ 815=--2=.故答案为:2.【点睛】本题考查了有理数的混合运算,掌握负整数指数幂及零指数幂的运算法则是解题的关键. 14.5280【分析】科学记数法的标准形式为a×10n (1≤|a|<10n 为整数)本题数据中的a=528指数n 等于3所以需要把528的小数点向右移动3位就得到原数了【详解】=故答案为:5280【点睛】本题解析:5280【分析】科学记数法的标准形式为a×10n (1≤|a|<10,n 为整数),本题数据“35.2810⨯”中的a=5.28,指数n 等于3,所以,需要把5.28的小数点向右移动3位,就得到原数了.【详解】35.2810⨯=5.2810005280⨯=,故答案为:5280.【点睛】本题考查写出用科学记数法表示的原数.将科学记数法a×10n 表示的数,“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.15.>【分析】两个负数绝对值大的其值反而小【详解】解:∵||=||=而<∴>故答案为:>【点睛】本题主要考查了有理数的大小比较解题时注意:正数都大于0负数都小于0正数大于一切负数两个负数比较大小绝对值大 解析:>【分析】两个负数,绝对值大的其值反而小.【详解】解:∵|13-|=13,|12-|=12,而13<12, ∴13->12-. 故答案为:>.【点睛】本题主要考查了有理数的大小比较,解题时注意:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.16.5714×106【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;解析:5714×106【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4571400=4.5714×106.故答案为:4.5714×106.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.【分析】根据展开图可知b 和-2相对a 和3相对求倒数即可【详解】解:由展开图可知b 和-2相对a 和3相对∴故答案为:【点睛】本题考查了正方体展开图根据图形判断哪两个面相对是解题关键 解析:16- 【分析】根据展开图可知,b 和-2相对,a 和3相对,求倒数即可.【详解】解:由展开图可知,b 和-2相对,a 和3相对, ∴11,23b a =-=, 111236ab =-⨯=-, 故答案为:16-. 【点睛】本题考查了正方体展开图,根据图形判断哪两个面相对是解题关键. 18.-3【分析】根据非负数的性质列式求出ab 的值然后代入代数式进行计算即可得解【详解】由题意得【点睛】本题考查了非负数的性质:几个非负数的和为0时这几个非负数都为0解析:-3【分析】根据非负数的性质列式求出 a 、 b 的值,然后代入代数式进行计算即可得解.【详解】由题意得2010a b +=⎧⎨-=⎩, 21a b =-⎧∴⎨=⎩, 213a b ∴-=--=-.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.【分析】先根据收费标准列出运算式子再计算有理数的乘法与加减法即可得【详解】由题意得:即他所付的车费是元故答案为:【点睛】本题考查了有理数的乘法与加减法的应用依据题意正确列出运算式子是解题关键解析:36.6【分析】先根据收费标准列出运算式子,再计算有理数的乘法与加减法即可得.【详解】由题意得:()8 2.6143+⨯-,828.6=+,36.6=,即他所付的车费是36.6元,故答案为:36.6.【点睛】本题考查了有理数的乘法与加减法的应用,依据题意,正确列出运算式子是解题关键. 20.【分析】根据数轴上点的位置判断出绝对值里式子的正负利用绝对值的代数意义化简计算即可得到结果【详解】解:根据题意得:a <0<b ∴原式==故答案为:【点睛】本题考查了数轴和绝对值解答此题的关键是明确绝对 解析:a -【分析】根据数轴上点的位置判断出绝对值里式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:a <0<b∴0a b -<原式=b a b --=a -故答案为:a -【点睛】本题考查了数轴和绝对值,解答此题的关键是明确绝对值里的数值是正是负,然后根据绝对值的性质进行化简.三、解答题21.正有理数集合:11,4,5,333⎧⎫⎨⎬⎩⎭;负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭;分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭ 【分析】正有理数指的是除了负数、0、无理数的数字,负有理数指小于0的有理数,正分数、负分数、小数统称为分数.【详解】解:正有理数集合:11,4,5,333⎧⎫⎨⎬⎩⎭,负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭,分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭.【点睛】本题考查了有理数的分类,熟练掌握各类数的属性和特点是解题的关键.22.(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧; (2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯, =97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.23.(1)34.5,(2)26,(3)8500.【分析】(1)由表格可计算出星期三收盘时每股的价钱;(2)本题需先根据本周内每股最低价是星期五,再列出式子解出结果即可;(3)求出星期二股票价格,算出获利即可.【详解】解:(1)27+(+4+4.5-1)=27+(8.5-1)=27+7.5=34.5(元).答:星期三收盘时,每股34.5元;(2)27+(+4+4.5-1-2.5-6)=27+[(+4+4.5)+(-1-2.5-6)]=27+[8.5+(-9.5)]=27+(-1)=26(元).答:本星期内每股最低价是26元;(3)星期二的股票价格为:27+(+4+4.5)=35.5(元)利润为:(35.5-27)×1000=8.5×1000=8500 (元).答:星期二收盘时,全部股票获利8500元.【点睛】此题考查了有理数混合运算的实际应用,本题提供的是实际生活中常见的表格,它提供了多种信息,关键是找出解题所需的有效信息,构建相应的数学模型,列出正确的算式,从而解决问题.学生解题时要注意运算顺序和运算法则.24.(1)20100个;(2)650个;(3)7100元【分析】(1)把前三四天的记录相加,再加上每天计划生产量,计算即可得解;(2)根据正负数的意义确定星期三产量最多,星期二产量最少,然后用记录相减计算即可得解;(3)求出一周记录的和,然后根据工资总额的计算方法列式计算即可得解.【详解】解:(1)(+100-250+400-150)+4×5000=20100(个).故前四天共生产20100个口罩;(2)+400-(-250)=650(个).故产量最多的一天比产量最少的一天多生产650个;(3)5000×7+(100-250+400-150-100+350+150)=35500(个),35500×0.2=7100(元),答:本周口罩加工厂应支付工人的工资总额是7100元.【点睛】此题主要考查了正负数的意义及有理数的混合运算的应用,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.(1)7,(2)-12.【分析】(1)按照有理数混合运算的顺序和法则计算即可;(2)按照有理数混合运算的顺序和法则计算即可.【详解】解:(1)()18623⎛⎫-÷-⨯- ⎪⎝⎭ =1833-⨯=8-1=7(2)()()2221235122---+--÷⨯ =24222---⨯=4422---⨯=-12.【点睛】本题考查了有理数的混合运算,解题关键是熟练运用有理数的运算法则,按照有理数混合运算顺序进行计算.26.(1)14.5千克(2)716元【分析】(1)根据正负数的性质分析,即可得到与原计划销售量之间差值的最大值和最小值,再通过计算即可得到答案;(2)结合题意,通过有理数加减运算,得该超市这周与计划销售量的总差值、销售每千克苹果的利润,再通过计算即可得到该超市这周的总利润.【详解】(1)根据题意得,与原计划销售量之间差值的最大值为:10.5+千克;与原计划销售量之间差值的最小值为:4-千克∴销售量最多的一天比销售量最少的一天多销售:()10.5414.5+--=千克;(2)根据题意得,该超市这周的和计划量的差值综合为:()()()()2 1.5 2.5 6.5410.538+-+-++-++-=千克∴该超市这周的的总销售量为:()5078⨯+千克∵该超时每千克苹果售出的利润为:()1062--元∴该超市这周的利润一共为:()()106250782358716--⨯⨯+=⨯=元.【点睛】本题考查了有理数的知识;解题的关键是熟练掌握正负数、有理数混合运算的性质,从而完成求解.。
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-附答案
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-附答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.若海平面以上500米,记作+500米,则海平面以下100米可记作( )A .100米B .-100米C .500米D .-500米2.已知x y ,为有理数,如果规定一种运算“*”,*1x y xy =+则()()2*5*3-的值是( )A .30-B .29-C .33-D .32-3.下列各组数中,互为相反数的是( )A .3与13-B .()2--与2C .25-与()25-D .7与7-4.据有关部门统计,2018 年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A .1.442 × 107B .0.1442 × 107C .1.442 × 108D .1442 × 1045.下列说法:①若a b =﹣1,则a 、b 互为相反数;①若a+b <0,且b a>0,则|a+2b|=﹣a ﹣2b ;①一个数的立方是它本身,则这个数为0或1;①若﹣1<a <0,则a 2>﹣1a;①若a+b+c <0,ab >0,c >0,则|﹣a|=﹣a ,其中正确的个数是( )A .2个B .3个C .4个D .5个 6.平面展开图按虚线折叠成正方体后,相对两个面上的数互为相反数,则x 、y 的值为( )A .2,3B .-2,-3C .-1,-3D .-1,-27.下列各组数中,运算结果相等的是( )A .22()3与223 B .﹣22与(﹣2)2C .﹣(﹣5)3与(﹣5)3D .﹣(﹣1)2015与(﹣1)2016 8.下列说法中正确的是( )A .两个有理数,绝对值大的反而小B .两个有理数的和为正数,则至少有一个加数为正数C .三个负数相乘,积为正数D .1的倒数是1,0的倒数是09.第十四届中国(合肥)国际园林博览会在合肥骆岗中央公园举办,该公园占地面积12.7平方公里,是世界最大的城市中央公园.2023年中秋、国庆八天假期,接待总游客突破225万人,创造了历史记录.其中225万用科学记数法表示为( )A .62.2510⨯B .72.2510⨯C .52.2510⨯D .422510⨯10.下列说法正确的是( )A .如果0x =,那么x 一定是0B .如果3x =,那么x 一定是3C .3和8之间有4个正数D .1-和0之间没有负数了11.用四舍五入法按要求把2.05446取近似值,其中错误的是 ( )A .2.1(精确到0.1)B .2.05(精确到百分位)C .2.05(保留2个有效数字)D .2.054(精确到0.001)12.比1小2的数是( )A .2B .﹣2C .﹣1D .﹣2二、填空题13.2023年全国普通高校毕业生规模预计达到1158万人,数11580000用科学记数法表示为 . 14.79-的绝对值是 .15.已知|x+2|=1,则x=16.在247⎛⎫- ⎪⎝⎭中,底数是 ,指数是 ,乘方的结果为 . 17.下列7个数:47-,1.01001001与4333,0,-π,-6.9,0.12,其中分数有 个.三、解答题18.已知算式“()1825--⨯-”.(1)聪聪将数字“5”抄错了,所得结果为24-,则聪聪把“5”错写成了______;(2)慧慧不小心把运算符号“×”错看成了“+”,求慧慧的计算结果比原题的正确结果大多少?19.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣22,2,﹣1.5,0,|﹣3|和132.20.科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小王把自家种的苹果放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周苹果的销售情况: 星期一 二 三 四 五 六 日 苹果销售超过或不足计划量情况(单位:千克) 4+ 6- 4- 10+ 8- 12+ 6+(1)小王第一周实际销售苹果超过或不足多少千克?实际销售苹果的总量是多少千克?(2)若小王按7元/千克进行苹果销售,成本为3元/千克,且平均运费为1元/千克,则小王第一周销售苹果的利润一共多少元?21.出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午的行程记录如下:(单位:千米)+15,-3,+14,-11,+10,-18,+14(1)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(2)若汽车的耗油量为0.06升/千米,油价为7.5元/升,这天下午共需支付多少油钱?22.小车司机李师傅某天下午的营运全是在东西走向的振兴路上进行的,如果规定向东为正,向西为负,+-+-+--++-+他这天下午行车里程(单位:千米)如下:14,3,7,3,11,4,3,11,6,7,9(1)李师傅这天最后到达目的地时,在下午出车点的什么位置?(2)李师傅这天下午共行车多少千米?(3)若李师傅的车平均行驶每千米耗油0.1升,则这天下午李师傅用了多少升油?23.如图,在平面直角坐标系中,点A 、B 的坐标分别为(),0A a ,(),0B b 且a 、b 满足240a b +-=,现同时将点A 、B 分别向右平移2个单位,再向上平移3个单位,得到点A 、B 的对应点C 、D ,连接AC 、BD 、CD .(1)请直接写出以下各点的坐标:A (____,____);B (____,____);C (____,____);D (____,____);(2)若点M 在x 轴上,且三角形ACM 的面积是平行四边形ABDC 面积的13,求M 点的坐标; (3)点Q 在线段CD 上,点P 是线段BD 上的一个动点,连接PQ 、PQ ,当点P 在线段BD 上移动时(不与点D 、B 重合),请找出AOP ∠、OPQ ∠和PQC ∠的数量关系,并证明你的结论.24.两百年前,德国数学家哥德巴赫发现:任何一个不小于6的偶数都可以写成两个奇素数(既是奇数又是素数)之和,简称:“1+1 ”.如633=+,1257=+等等.众多数学家用很多偶数进行检验,都说明是正确的,但至今仍无法从理论上加以证明,也没找到一个反例.这就是世界上著名的哥德巴赫猜想.你能检验一下这个伟大的猜想吗?请把偶数42写成两个奇素数之和.42= + ,或者42= + . 你是否有更大的发现:把42写成4个奇素数之和?42= + + + .参考答案1.B2.D3.C4.A5.B6.C7.D8.B9.A10.A11.C12.C13.71.15810⨯14.7915.-1或-316. - 472 1649 17.5/五18.(1)6(2)慧慧的计算结果比原题的正确结果大1119.212 1.502332-<-<<<-< 20.(1)超过14千克,实际销售苹果的总量为714千克;(2)利润一共为2142元.21.(1)将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米(2)这天下午共需支付油费38.25元22.(1)在下午出车点的东边38千米(2)78千米;(3)7.8升23.(1)2- ;0 ;4;0;0;3;6;3(2)()6,0-或()2,0(3)360PQC AOP OPQ +∠+∠=︒∠24.5,37;11,31;5,5,13,19。
北师大版七年级数学上册第二章有理数及其运算测试题及答案
七上第二章《有理数及其运算》综合测试一、选一选(每小题3分,共30分)1.下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是()城市北京武汉广州哈尔滨平均气温(单位:℃)-4.63.813.1-19.4 A.哈尔滨 B.广州 C.武汉 D.北京2.下列各数中互为相反数的是()A.12与0.2B.13与-0.33C.-2.25与124D.5与-(-5)3.对于(-2)4与-24,下列说法正确的是()A.它们的意义相同B.它的结果相等C.它的意义不同,结果相等D.它的意义不同,结果不等4.下列四个数中,在-2到0之间的数是()A.-1 B. 1 C.-3 D.3 5.下列计算错误的是()A.0.14=0.0001B.3÷9×(-19)=-3C.8÷(-14)=-32D.3×23=246.若x 是有理数,则x 2+1一定是( )A.等于1 B.大于1 C.不小于1 D.不大于17.在数轴上与-3的距离等于4的点表示的数是 ( ) A .1B .-7C .1或-7D .无数个8.两个有理数的积是负数,和也是负数,那么这两个数( )A. 都是负数B. 其中绝对值大的数是正数,另一个是负数C. 互为相反数D. 其中绝对值大的数是负数,另一个是正数9.一个有理数的绝对值等于其本身,这个数是()A 、正数B 、非负数C 、零D 、负数10.四个互不相等整数的积为9,则和为( )A .9 B .6 C .0 D .3-二、填一填(每小题3分,共30分)1.一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是________.2.用“<”“=”或“>”号填空:-2_____098-_____109- -(+5) _____-(-|-5|)3.计算:737()()848-÷-= ;232(1)---= .4.若a 与-5互为相反数,则a =_________;若b 的绝对值是21-,则b =_________.5.如果n >0,那么nn = ,如果nn =-1,则n 0。
北师大版七年级数学上册 第二章 有理数及其运算 检测题(解析版)
第二章有理数及其运算检测题一.选择题1.已知a是最大的负整数,b是绝对值最小的数,c是最小的正整数,则a+b+c等于()A.2B.﹣2C.0D.﹣62.下列各数中与4相等的是()A.﹣22B.(﹣2)2C.﹣|﹣4|D.﹣(+4)3.|﹣|的相反数是()A.﹣B.C.﹣D.4.下列各数中,是负整数的是()A.﹣6B.3C.0D.5.下列四个数中,是正整数的是()A.﹣2B.﹣1C.1D.6.在﹣2,﹣1,0,﹣0.01,3五个数中,最小数是()A.0B.﹣1C.﹣0.01D.﹣27.﹣的倒数是()A.B.﹣C.D.﹣8.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:(1)b﹣a<0;(2)|a|<|b|;(3)a+b>0;(4)>0.其中正确的是()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)9.在1,﹣2,3,﹣4这四个数中,绝对值最小的数为()A.1B.3C.﹣2D.﹣410.在数轴上表示﹣1的点与表示2的点之间的距离是()A.﹣2B.1C.2D.3二.填空题11.若零上8℃记作+8℃,则零下6℃记作℃.12.预计到2025年我国高铁运营里程将达到38000公里.将数据38000用科学记数法表示为.13.的相反数是.14.如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C 所表示的数是.15.2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为和.三.解答题16.有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.17.计算:(﹣6)2×(﹣).18.已知,数轴上三个点A、O、B.点O是原点,固定不动,点A和B可以移动,点A 表示的数为a,点B表示的数为b.(1)若AB移动到如图所示位置,计算a+b的值.(2)在图的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数a,并计算b﹣|a|.(3)在图的情况下,点A不动,点B向右移动15.3个单位长,此时b比a大多少?请列式计算.19.如图,已知A,B两点在数轴上,点A在原点O的左边,表示的数为﹣10,点B在原点的右边,且BO=3AO.点M以每秒3个单位长度的速度从点A出发向右运动.点N 以每秒2个单位长度的速度从点O出发向右运动(点M,点N同时出发).(1)数轴上点B对应的数是,点B到点A的距离是;(2)经过几秒,原点O是线段MN的中点?(3)经过几秒,点M,N分别到点B的距离相等?20.计算(1)﹣+(﹣)﹣(﹣)﹣(2)(﹣3)2﹣()2÷+6÷|﹣|321.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?22.有理数a ,b ,c 在数轴上的位置如图所示请化简:﹣|a |﹣|b +2|+2|c |﹣|a +b |+|c ﹣a |.23.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A 、B 在数轴上对应的数分别为a 、b ,则A 、B 两点间的距离表示为AB =|a ﹣b |.根据以上知识解题:(1)点A 在数轴上表示3,点B 在数轴上表示2,那么AB = .(2)在数轴上表示数a 的点与﹣2的距离是3,那么a = .(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.第二章有理数及其运算检测题参考答案与试题解析一.选择题1.【分析】根据题意确定出a,b,c的值,代入原式计算即可求出值.【解答】解:根据题意得:a=﹣1,b=0,c=1,则a+b+c=﹣1+0+1=0,故选:C.【点评】此题考查了有理数的加法,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.2.【分析】各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣4,不相同;B、原式=4,相同;C、原式=﹣4,不相同;D、原式=﹣4,不相同,故选:B.【点评】此题考查了有理数的乘方,绝对值,相反数,熟练掌握有理数的乘方,绝对值,相反数的意义是解本题的关键.3.【分析】先把所给的式子化简,再根据相反数的定义得出即可.【解答】解:∵|﹣|=,∴|﹣|的相反数是﹣,故选:A.【点评】本题主要考查相反数和绝对值的求法,先进行正确化简是解题的关键.4.【分析】根据负整数的定义即可判定选择项.【解答】解:A、﹣6为负整数,故选项正确;B、3为正整数,故选项错误;C、0不是正数,也不是负数,故选项错误;D、为正分数,故选项错误.故选:A.【点评】本题主要考查了实数的相关概念及其分类方法,然后就可以熟练进行判断,难度适中.5.【分析】正整数是指既是正数又是整数,由此即可判定求解.【解答】解:A、﹣2是负整数,故选项错误;B、﹣1是负整数,故选项错误;C、1是正整数,故选项正确;D、是非正整数,故选项错误.故选:C.【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.6.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣2<﹣1<﹣0.01<0<3,∴在﹣2,﹣1,0,﹣0.01,3五个数中,最小数是﹣2.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.7.【分析】直接利用倒数的定义得出答案.【解答】解:﹣的倒数是:﹣.故选:B.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.8.【分析】根据图示,可得﹣3<a<0,b>3,据此逐项判断即可.【解答】解:根据图示,可得﹣3<a<0,b>3,∴(1)b﹣a>0,故错误;(2)|a|<|b|,故正确;(3)a+b>0,故正确;(4)<0,故错误.故选:B.【点评】此题主要考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.9.【分析】根据绝对值的定义先求出这四个数的绝对值,再找出绝对值最小的数即可.【解答】解:∵|1|=1,|﹣2|=2,|3|=3,|﹣4|=4,∴这四个数中,绝对值最小的数是1,故选:A.【点评】此题考查了有理数的大小比较和绝对值,掌握绝对值的定义是本题的关键,是一道基础题.10.【分析】可借助数轴直接得结论,亦可用右边点表示的数减去左边点表示的数得结论.【解答】解:表示﹣1的点与表示2的点间距离为:2﹣(﹣1)=3.故选:D.【点评】本题考查了数轴上两点间的距离,数轴上两点间的距离=右边点表示的数﹣左边点表示的数.二.填空题11.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8℃记作+8℃,那么零下6℃记作﹣6℃.故答案为:﹣6.【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【解答】解:38000用科学记数法表示应为3.8×104,故答案为:3.8×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【分析】根据相反数的意义,即可求解;【解答】解:的相反数是﹣;故答案为﹣;【点评】本题考查相反数;熟练掌握相反数的求法是解题的关键.14.【分析】根据A、B两点所表示的数分别为﹣4和2,利用中点公式求出线段AB的中点所表示的数即可.【解答】解:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣1【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.15.【分析】根据题意要求①②可得关于所要求的两数的两个等式,解出两数即可.【解答】解:设图中两空白圆圈内应填写的数字从左到右依次为a,b∵外圆两直径上的四个数字之和相等∴4+6+7+8=a+3+b+11①∵内、外两个圆周上的四个数字之和相等∴3+6+b+7=a+4+11+8②联立①②解得:a=2,b=9∴图中两空白圆圈内应填写的数字从左到右依次为2,9故答案为:2;9.【点评】此题比较简单,主要考查了有理数的加法,主要依据题中的要求①②列式即可以求解.三.解答题16.【分析】(1)根据有理数的加减法可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点评】本题考查有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法.17.【分析】原式先计算乘方运算,再利用乘法分配律计算即可求出值.【解答】解:原式=36×(﹣)=18﹣12=6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【分析】(1)由图可知,点A表示的数a,点B表示的数b,即可求得a+b的值.(2)由B点不动,点A向左移动3个单位长,可得数a,再根据绝对值求得即可.(3)点A不动,点B向右移动15.3个单位长,可知数b,再列式计算解得.【解答】解:(1)由图可知:a=﹣10,b=2,∴a+b=﹣8故a+b的值为﹣8.(2)由B点不动,点A向左移动3个单位长,可得a=﹣13,b=2∴b﹣|a|=b+a=2﹣13=﹣11故a的值为﹣13,b﹣|a|的值为﹣11.(3)∵点A不动,点B向右移动15.3个单位长∴a=﹣10 b=17.3∴b﹣a=17.3﹣(﹣10)=27.3故b比a大27.3.【点评】本题考查了数轴、绝对值,当a是负有理数时,a的绝对值是它的相反数﹣a.19.【分析】(1)根据点A表示的数为﹣10,OB=3OA,可得点B对应的数,点B对应的数减去点A对应的数就是点B到点A的距离;(2根据题意列方程解答即可;(3)根据题意分M,N在B点同侧异侧列方程解答即可.【解答】解:(1)因为点A表示的数为﹣10,OB=3OA,所以OB=3OA=30,30﹣(﹣10)=40.故B对应的数是30,点B到点A的距离是40,故答案为:30,40;(2)设经过y秒,原点O是线段MN的中点,根据题意得﹣10+3y+2y=0,解得y=2.答:经过几秒,原点O是线段MN的中点;(3)设经过x秒,点M、点N分别到点B的距离相等,根据题意得3x﹣40=30﹣2x或10+3x=2x,解得x=14或x=10.答:经过14秒或10秒,点M、点N分别到点B的距离相等.【点评】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.20.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.【解答】解:(1)﹣+(﹣)﹣(﹣)﹣==﹣;(2)(﹣3)2﹣()2÷+6÷|﹣|3=9﹣+6÷=9﹣2+6×=9﹣2+=.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.21.解:(1)根据题意得:﹣5×1﹣2×4+0×3+1×4+3×5+6×3=﹣5﹣80+4+15+18=24(克),则这批样品的质量比标准质量多,多24克;(2)根据题意得:20×450+24=9024(克),则抽样检测的总质量是9024克.22.根据题意得:﹣3<a<﹣2,﹣1<b<0,1<c<2,则b+2>0,a+b<0,c﹣a<0,则化简得:a﹣(b+2)+2c+(a+b)+(c﹣a)=a+3c﹣2.23.解:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=|3﹣2|=1,故答案为:1;(2)根据题意得,|a+2|=3,解得a=1或﹣5.故答案为:1或﹣5;(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=﹣a+4+a+2=6.故答案为:6;(4)|x﹣3|+|x﹣6|表示数x到3和6两点的距离之和,如果求最小值,则x一定在3和6之间,则最小值为3.。
北师大版七年级数学上册第二章《有理数及其运算》检测试卷(含答案)
北师大版七年级数学上册第二章《有理数及其运算》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分) 1.若有理数a ,a+2b ,b 在数轴上对应点如图所示,则下列运算结果是正数的是( ) A .a+b B .a - b C .1.5a+b D .0.5a+1.5b2.下列各式:①-(-5),②-|-2|,③-(-2)2,④-52,计算结果为负数的个数有( ) A .4个 B .3个 C .2个 D .1个3.下列说法中正确的选项是( )A .温度由﹣3℃上升 3℃后达到﹣6℃B .零减去一个数得这个数的相反数C .3π既是分数,又是有理数 D .20.12 既不是整数,也不是分数,所以它不是有理数 4.把数3120000用科学记数法表示为( )A .3.12×105B .3.12×106C .31.2×105D .0.312×1075.下列各式中一定成立的是( )A .221(1)-=-B .331(1)=-C .221(1)=--D .33(1)(1)-=- 6.数轴上如果点A 表示的数2,将点A 向左移动6个单位长度后表示的数是( ) A .6 B .-4 C .-6 D .-87.如图,数轴的单位长度为1,如果P ,R 表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的平方值最大( )A .PB .RC .QD .T8.下列说法不正确的是( )A .0既不是正数,也不是负数B .一个有理数不是整数就是分数C .1是绝对值是最小的有理数D .0的绝对值是09.下列有理数-2,(-1)2,0,|-5|,其中负数的个数有( )A .1个B .2个C .3个D .4个10.下列说法中,正确的是( )A .一个数的相反数是负数B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点,可以在原点的同一侧二、填空题(每小题4分,共32分) 1.已知a 、b 互为相反数,m 、n 互为倒数,则28a b mn +-+的值是 . 2.你吃过拉面吗?如图把一个面团拉开,然后对折,再拉开再对折,如此往复下去折5次, 会拉出 根面条.3.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“1cm ”和“9cm ”分别对应数轴上的5-和x ,那么x 的值为 .4.已知a 、b 互为相反数,c 是绝对值最小的数,d 是负整数中最大的数,则a+b+c+d= . 5.“腊味香肠”是居民冬季特别是春节餐桌上必不可少的传统美食,每年入冬以后,便进入灌香肠的好时节.老李、老陈、老杨三人约定每人拿出相同数目的钱共同去灌制香肠.香肠灌制完成后,老李、老陈分别比老杨多分了8、13斤香肠,最后结算时,老李需付给老杨30元,则老陈应付给老杨 元.6.34--的倒数是 ,24-()的相反数是 . 7.纸上画有一条数轴,将纸对折后,表示5的点与表示2-的点恰好重合,则此时与表示 3.5-的重合的点所表示的数是 .8.北京与纽约的时差为-13h (负号表示同一时刻纽约时间比北京时间晚),如果现在是北京时间16:00,那么纽约时间是 .三、解答题(每小题8分,共48分)1.如图,周长为2个单位长度的圆片上的一点A 与数轴上的原点O 重合,圆片沿数轴来回无滑动地滚动.(1)把圆片沿数轴向左滚动一周,点A到达数轴上点B的位置,则点B表示的数为__________.(2)圆片在数轴上向右滚动的周数记为正数,向左滚动的周数记为负数,依次滚动情况记录如下表:第1次第2次第3次第4次第5次第6次滚动周数+3 -1 -2 +4 -3 a①第6次滚动a周后,点A距离原点4个单位长度,请求出a的值;②当圆片结束第6次滚动时,点A一共滚动了多少个单位长度?2.计算:(1)﹣10﹣(﹣18)+(﹣4)(2)(﹣54)÷(﹣3)+83×(﹣92)(3)(513638-+)×(﹣24)(4)(﹣12)3+[﹣8﹣(﹣3)×2]÷43.甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时乙在前,甲在后,出发后8分钟甲、乙第一次相遇,出发后的24分钟时甲、乙第二次相遇.假设两人的速度保持不变,你知道出发时乙在甲前多少米吗?4.计算:(1)﹣7﹣11+4+(﹣2)(2)3×(—4)+(—28)÷7(3)111135 532114⎛⎫⨯-⨯÷⎪⎝⎭参考答案一、单选题(每小题2分,共20分)1.D 2.B 3.B 4.B 5.C6.B 7.D 8.C 9.A 10.C二、填空题(每小题4分,共32分)三、解答题(每小题8分,共48分)- 5 -。
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)一、选择题1.−3的绝对值是()A.3B.13C.−13D.−32.2022年春季开学后,济南市的天气突然降温,2月16日的最高气温是2℃,最低气温是−4℃,那么这天的温差是()A.6℃B.−6℃C.2℃D.−2℃3.−|−2021|的相反数为()A.−2021B.2021C.−12021D.1 20214.党的十八大以来,以习近平同志为核心的党中央重视技能人才的培育与发展.据报道,截至2021年底,我国高技能人才超过65000000人,将数据65000000用科学记数法表示为()A.6.5×106B.65×106C.0.65×108D.6.5×1075.下列说法中,错误的是()A.数轴上表示−3的点距离原点3个单位长度B.规定了原点、正方向和单位长度的直线叫做数轴C.有理数0在数轴上表示的点是原点D.表示十万分之一的点在数轴上不存在6.下列各式:①−(−2);②−|−2|;③−22;④(−2)2,计算结果为负数的个数有()A.4个B.3个C.2个D.1个7.小明在写作业时不慎将两滴墨水滴在数轴上,如图所示,此时墨迹盖住的整数共有()个.A.3B.4C.5D.68.计算:1−(+2)+3−(+4)+5−(+6)+⋯−(+2022)=()A.2022B.−2022C.−1011D.10119.若|x|=7,|y|=9,则x−y为()A.±2和±16B.±16C.−2和−16D.±210.有理数a,b在数轴上对应的位置如图所示,则()A.|a|<|b|B.ab>0C.a+b<0D.a−b>0 11.如图,a,b,c,d,e,f均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a−b+c−d+e−f的值为()A.1B.−3C.7D.812.一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4……若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2022,则这只小球的初始位置点P0所表示的数是()A.−1971B.1971C.−1972D.197213.已知|x|=6,y2=4,且xy<0.则x+y的值为()A.4B.−4C.4或−4D.2或−214.某路公交车从起点经过A,B,C,D站到达终点,各站上、下乘客人数如下表所示(用正数表示上车的人数,负数表示下车的人数)站点起点A B C D终点上车人数x1512750下车人数0−3−4−10−11−29若此公交车采用一票制,即每位上车乘客无论哪站下车,车票都是2元,问该车这次出车共收入()A.114元B.228元C.78元D.56元二、填空题15.A、B为同一数轴上两点,且A、B两点间的距离为3个单位长度,若点A所表示的数是-1,则点B所表示的数是.16.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a−b+c的值为 .17.体育课上规定时间内仰卧起坐的满分标准为46个,高于标准的个数记为正数.如某同学做了50个记作“+4”,那么“-5”表示这位同学作了 个.18.有理数 a 、 b 在数轴上的位置如图所示,则下列各式:①a +b >0 ;②a −b >0 ;③b >a ;④ab <0 ;⑤|b −a|=a −b 正确的有 .(填式子前面的序号即可)19.《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2m 记作 +2 m ,则下降1m 记作 m .三、计算题20.计算题(1)−20+(−14)−(−18);(2)(−38−16+34)×(−24);(3)−8÷2×(−12)×0.25;(4)−14−8÷(−4)×|−6+4|.21.计算:(1)9+5×(−3)−(−2)2÷4; (2)(−5)3×[2−(−6)]−300÷5(3)(−13)×3÷3×(−13);(4)(−14−56+89)÷(−16)2+(−2)2×(−14)22.(1)12+(−5)−7−(−24)(2)(−36)×(13−12)+16÷(−2)3四、解答题23.阅读下面文字:对于(−556)+(−923)+1734+(−312)可以按如下方法进行计算:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)]=0+(−5 4)=−54.上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(−202156)+(−202023)+404223+(−112)24.在数轴上表示下列各数:5,3.5,−212,−1,并把它们用“<”连接起来.25.如图,数轴上点A表示的有理数为﹣4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度点运动至点A停止运动,设运动时间为t(单位:秒).(1)当t=2时,点P表示的有理数为.(2)当点P与点B重合时t的值为.(3)①在点P由A到点B的运动过程中,点P与点A的距离为.(用含t的代数式表示)②在点P由点A到点B的运动过程中,点P表示的有理数为.(用含t的代数式表示)(4)当点P表示的有理数与原点距离是2的单位长度时,t的值为.26.某公路检修队乘车从A地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):+3,-8,+4,+7,-6,+8,-7,+10.(1)问收工时,检修队在A地哪边?据A地多远?(2)问从出发到收工时,汽车共行驶多少千米?(3)在汽车行驶过程中,若每行驶1千米耗油0.2升,则汽车共耗油多少升?27.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,−9,+7,−15,−3,+11,−6,−8,+5(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?五、综合题28.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“−”表示出库)+21,−32,−16,+35,−38(1)经过这6天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?29.已知数轴上三点M,O,N对应的数分别为−1,0,3,点P为数轴上任意一点,其对应的数为x(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,求t 的值30.李强靠勤工俭学的收入维持上大学的费用.下面是他某一周的收支情况表(收入为正,支出为负,单位为元)周一周二三四五六日+15+100+20+15+10+14-8-12-19-10-9-11-8(1)到这个周末,李强有多少节余?(2)照这样,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?31.已知a 是最大的负整数,b 是15的倒数,c 比a 小1,且a 、b 、c 分别是A 、B 、C 在数轴上对应的数.若动点P 从点A 出发沿数轴正方向运动,动点Q 同时从点B 出发也沿数轴负方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒1个单位长度.(1)在数轴上标出点A 、B 、C 的位置;(2)运动前P 、Q 两点间的距离为 ;运动t 秒后,点P ,点Q 运动的路程分别为 和 ;(3)求运动几秒后,点P 与点Q 相遇?(4)在数轴上找一点M ,使点M 到A 、B 、C 三点的距离之和等于11,直接写出所有点M 对应的数.32.有理数a ,b ,c 在数轴上的位置如图所示(1)a 0;b 0;c 0. (2)化简|a|+|a +b|−|c −b|.33.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).星期 一 二 三 四 五 六 日 增减+100−200+400−100−100+350+150(1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?34.出租车司机小主某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”,他这天下午行车情况如下:(单位:千米) ﹣2,+5,﹣8,﹣3,+6,﹣2(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若出租车每公里耗油0.3升,求小王回到出发地共耗油多少升?(3)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米(不足1千米按1千米计算)还需收4元钱,小王今天是收入是多少元?答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】D5.【答案】D6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C11.【答案】C12.【答案】D13.【答案】C14.【答案】A15.【答案】2或-416.【答案】217.【答案】4118.【答案】②④⑤19.【答案】-120.【答案】(1)解:原式=−20−14+18=−34+18 =−16;(2)解:原式=−38×(−24)−16×(−24)+34×(−24)=9+4−18=−5;(3)解:原式=−4×(−12)×14=4×12×14=12;(4)解:原式=−1−(−2)×2=−1−(−4) =−1+4=3.21.【答案】(1)解:9+5×(−3)−(−2)2÷4=9−15−4÷4 =9−15−1=−7(2)解:(−5)3×[2−(−6)]−300÷5=−125×8−60 =−1000−60 =−1060(3)解:(−13)×3÷3×(−13)=−1×13×(−13) =19(4)解:(−14−56+89)÷(−16)2+(−2)2×(−14)=(−14−56+89)×36+4×(−14) =−14×36−56×36+89×36−56=−9−30+32−56=−6322.【答案】(1)解:12+(−5)−7−(−24)=12−5−7+24 =12−12+24=24;(2)解:(−36)×(13−12)+16÷(−2)3=(−36)×13−(−36)×12+16÷(−8)=−12+18+(−2) =4.23.【答案】解:原式=[(−2021)+(−56)]+[(−2020)+(−23)]+(4042+23)+[−1+(−12)]=(−2021−2020+4042−1)+(−56−23+23−12)=0+(−4 3)=−43.24.【答案】解:数轴如图所示:用“<”连接起来:−212<−1<3.5<5.25.【答案】(1)0(2)5(3)2t;2t﹣4(4)1,3,7,926.【答案】(1)解:+3-8+4+7-6+8-7+10=11(千米).故收工时,检修队在A地南边,距A地11千米远.(2)解:|+3|+|-8|+|+4|+|+7|+|-6|+|+8|+|-7|+|+10|=53(千米).故汽车共行驶53千米.(3)解:53+11=64(千米),64×0.2=12.8(升).故汽车共耗油12.8升.27.【答案】(1)解:+17-9+7-15-3+11-6-8+5+16=+15(千米)答:养护小组最后到达的地方在出发点的东边,距出发点15千米远;(2)解:(17+|-9|+7+|-15|+|-3|+11+|-6|+|-8|+5+16)×0.5=48.5(升)答:这次养护共耗油48.5升.28.【答案】(1)减少了(2)解:460+50=510(吨)答:6天前仓库里有货品510吨.(3)解:21+32+16+35+38+20=162(吨)则装卸费为:162×5=810(元).答:这6天要付810元装卸费.29.【答案】(1)4(2)1(3)解:①当点P 在点M 的左侧时根据题意得:−1−x +3−x =8解得:x =−3②P 在点M 和点N 之间时,则x −(−1)+3−x =8,方程无解,即点P 不可能在点M 和点N 之间③点P 在点N 的右侧时解得:x =5∴x 的值是−3或5;(4)解:设运动t 分钟时,点P 到点M ,点N 的距离相等,即PM =PN点P 对应的数是−t ,点M 对应的数是−1−2t ,点N 对应的数是3−3t①当点M 和点N 在点P 同侧时,点M 和点N 重合所以−1−2t =3−3t ,解得t =4,符合题意②当点M 和点N 在点P 异侧时,点M 位于点P 的左侧,点N 位于点P 的右侧(因为三个点都向左运动,出发时点M 在点P 左侧,且点M 运动的速度大于点P 的速度,所以点M 永远位于点P 的左侧)故PM =−t −(−1−2t )=t +1,PN =(3−3t )−(−t )=3−2t所以t +1=3−2t ,解得t =23,符合题意综上所述,t 的值为23或430.【答案】(1)解:根据题意列得:(+15)+(-8)+(+10)+(-12)+0+(-19)+(+20)+(-10)+(+15)+(-9)+(+10)+(-11)+(+14)+(-8)=7则李强有7元的节余;(2)解:30×(7÷7)=30则李强一个月能有30元的节余;(3)解:根据题意列得:(-8)+(-12)+(-19)+(-10)+(-9)+(-11)+(-8)=-77 ∴至少支出77元,即每天至少支出11元则一个月至少有330元的收入才能维持正常开支.31.【答案】(1)解:∵a 是最大的负整数∴a=-1∵b 是15的倒数∴b=5∵c 比a 小1∴c=-2如图所示:(2)6;3t ;t(3)解:依题意有3t+t=6解得t=1.5.故运动1.5秒后,点P 与点Q 相遇;(4)解:设点M 表示的数为x ,使P 到A 、B 、C 的距离和等于11①当M 在C 点左侧,(-1)-x+5-x+(-2)-x=11.解得x=-3,即M 对应的数是-3.②当M 在线段AC 上,x-(-2)-1-x+5-x=11解得:x=-5(舍);③当M 在线段AB 上(不含点A ),x-(-1)+5-x+x-(-2)=11解得x=3,即M 对应的数是3.④当M 在点B 的右侧,x-(-1)+x-5+x-(-2)=11解得:x=133(舍)综上所述,点M 表示的数是3或-3.32.【答案】(1)<;<;>(2)解:由题意得,a<b<0<c∴a<0,a+b<0,c−b>0∴|a|+|a+b|−|c−b|=−a−a−b−c+b=−2a−c.33.【答案】(1)解:(+100−200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2)解:+400−(−200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3)解:5000×7+(100−200+400−100−100+350+150)=35600(个)0.2×35600=7120(元).故本周口罩加工厂应支付工人的工资总额是7120元.34.【答案】(1)解:-2+5-8-3+6-2=-4(千米)∴小王将最后一名乘客送到目的地时,小王在下午出车的出发地的北方,距下午出车的出发地4千米.(2)解:|-2|+|5|+|-8|+|-3|+|6|+|-2|=26(千米)26×0.3=7.8(升)∴小王回到出发地共耗油7.8升.(3)解:根据出租车收费标准,可知小王今天是收入是10+[10+(5-3)×4]+[10+(8-3)×4]+10+[10+(6-3)×4]+10=100(元)∴小王今天是收入是100元.。
北师大版数学七年级上册第二章《有理数及其运算2.72.12》 测试卷 (扫描版)-学习文档
第二章 有理数及其运算(二)(§2.7~§2.12)一. 选择题(共12小题)1. A2. B3. D4. C5. C6. A7. B8. B9. C 10. D11. C 12. A二. 填空题(共4小题)13.【答案】-314.【答案】(1)>;(2)>.15.【答案】1916.【答案】8三. 解答题(共7小题)17. 解:(1(2(3)原式(418. 解:(1)如图所示:(2)原式=-4+3+(-8)×31=-4+3-38=-311.19. 解:(1)最重的一筐超过2.5千克,最轻的一筐不足3千克,2.5-(-3)=5.5(千克)答:20匡白菜中,最重的一匡比最轻的一匡重5.5千克;(2)(-3)×1+(-2)×4+(-1.5)×2+0×3 +1×2+2.5×8=-3-8-3+2+20=8(千克)答:与标准质量比较,20匡白菜总计超过8千克;(3)(20×25+8)×2.6=1320.8≈1321(元) 答:出售这20匡白菜可卖1321元.20. 解:由题意得:3.212.77.54.8=++=(元)答:小明家这两个月共缴水费21.3元.21. 解:(1)5;(2)10,20;(3)如图:由题意知,-40到小红的年龄、小红的年龄到爷爷的年龄、爷爷的年龄到125的距离相等,所以-40到125被分成了三个相等的部分,每部分的长为,则小红和爷爷的年龄差为55岁,故小红的年龄为-40+55=15岁,爷爷的年龄为125-55=70岁.22. 解:已知a ,b 是有理数,当ab ≠ 0时,①当a <0,b <0时, bb a a +=-1-1=-2; ②当a >0,b >0时,bb a a +=1+1=2; ③当a ,b 异号时,bb a a +=0. 故bb a a +的值为±2或0. 23. 解:(1)18;(2)90;(3)15,5;(4)(-1) n ·n 2。
2022年北师大版数学七上第二章《有理数及其运算》同步练习(附答案)2(2.1-2.6)
第二章 有理数及其运算周周测一、选择题1.计算:|-13|=( )A .3B .-3 C.13 D .-132.以下各数中,最小的数是( ) A .0 B.13C .-13D .-33.计算(-2)+3的结果是( )A .1B .-1C .-5D .-6 4.下面说法正确的选项是( )A .两数之和不可能小于其中的一个加数B .两数相加就是它们的绝对值相加C .两个负数相加,和取负号,绝对值相减D .不是互为相反数的两个数,相加不能得零5.哈市某天的最高气温为28 ℃,最低气温为21 ℃,那么这一天的最高气温与最低气温的差为( )A .5 ℃B .6 ℃C .7 ℃D .8 ℃ 6.以下各式中,其和等于4的是( ) A .(-114)+(-214)B .312-558-|-734|C .(-12)-(-34)+2D .(-34)+0.125-(-458)7.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,缺乏的千克数记为负数,记录如图.那么这4筐杨梅的总质量是( )千克 B .千克C .20.1千克D .千克8.有理数a ,b ,c 在数轴上的位置如图,那么以下结论错误的选项是( )A .c -a <0B .b +c <0C .a +b -c <0D .|a +b |=a +b 二、填空题9.如果将低于警戒线水位0.27 m 记作-0.27 m ,那么+0.42 m 表示________________________.10.按规定,食品包装袋上都应标明袋内装有食品多少克,下表是几种饼干的检验结果,“+〞“-〞号分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是________.威化 咸味 甜味 酥脆 +10(g)-8.5(g)+5(g)-3(g)11.从-5中减去-1,-3,2的和,所得的差是________.12.如果a 的相反数是最小的正整数,b 是绝对值最小的数,那么a +b =________,b -a =________.13.一只小虫从数轴上表示-1的点出发,先向左爬行2个单位长度,再向右爬行5个单位长度到点C ,那么点C 表示的数是________.14.现有一列数:2,34,49,516,…,那么第7个数为________.15.01=-x ,2=y ,那么x -y =________.16.33+=+x x ,猜猜看x 是什么数?________.三、解答题17.将以下各数填在相应的集合里: +6,-2,,-15,1,35,0,314,,-4.92.18.在数轴上表示以下各数:-12,|-2|,-(-3),0,52,-(+32),并用“<〞将它们连接起来.19.计算: (1)(-10)+(+7);(2)(+52)-(-13);(3)12-(-18)+(-7)-15;(4)12+(-23)-(-45)+(-12)-(+13).20.一个水利勘察队,第一天沿江向上游走了7千米,,,第四天沿江向上游走了10千米,第四天勘察队在出发点的上游还是下游?距出发点多少千米?21.某自行车厂本周方案每天生产100辆自行车,由于工人实行轮休,每天上班人数不一定相等,实际每天产量与方案产量比照方下表:(超出的辆数为正数,缺乏的辆数为负数)星期一二三四五六日增减-5 +4 -3 +4 +10 -2 -15(1)本周总产量与方案产量相比,增加(或减少)了多少辆?(2)日平均产量与方案产量相比,增加(或减少)了多少辆?依题意,可列方程为:=10;应选B.【点评】理清题意,找对等量关系是解答此类题目的关键;需注意的是此题中“每两人都握了一次手〞的条件,类似于球类比赛的单循环赛制.9.〔3分〕某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是〔〕A.50〔1+x〕2=182 B.50+50〔1+x〕+50〔1+x〕2=182C.50〔1+2x〕=182 D.50+50〔1+x〕+50〔1+2x〕2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×〔1+增长率〕,如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50〔1+x〕、50〔1+x〕2,∴50+50〔1+x〕+50〔1+x〕2=182.应选B.【点评】增长率问题,一般形式为a〔1+x〕2=b,a为起始时间的有关数量,b 为终止时间的有关数量.10.〔3分〕x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,那么b a的值是〔〕A.B.﹣C.4 D.﹣1【考点】根与系数的关系.【分析】根据根与系数的关系和x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=〔﹣〕2=.应选:A.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.11.〔3分〕定义运算:a⋆b=a〔1﹣b〕.假设a,b是方程x2﹣x+m=0〔m<0〕的两根,那么b⋆b﹣a⋆a的值为〔〕A.0 B.1 C.2 D.与m有关【考点】根与系数的关系.【专题】新定义.【分析】〔方法一〕由根与系数的关系可找出a+b=1,根据新运算找出b⋆b﹣a⋆a=b 〔1﹣b〕﹣a〔1﹣a〕,将其中的1替换成a+b,即可得出结论.〔方法二〕由根与系数的关系可找出a+b=1,根据新运算找出b⋆b﹣a⋆a=〔a﹣b〕〔a+b﹣1〕,代入a+b=1即可得出结论.【解答】解:〔方法一〕∵a,b是方程x2﹣x+m=0〔m<0〕的两根,∴a+b=1,∴b⋆b﹣a⋆a=b〔1﹣b〕﹣a〔1﹣a〕=b〔a+b﹣b〕﹣a〔a+b﹣a〕=ab﹣ab=0.〔方法二〕∵a,b是方程x2﹣x+m=0〔m<0〕的两根,∴a+b=1.∵b⋆b﹣a⋆a=b〔1﹣b〕﹣a〔1﹣a〕=b﹣b2﹣a+a2=〔a2﹣b2〕+〔b﹣a〕=〔a+b〕〔a﹣b〕﹣〔a﹣b〕=〔a﹣b〕〔a+b﹣1〕,a+b=1,∴b⋆b﹣a⋆a=〔a﹣b〕〔a+b﹣1〕=0.应选A.【点评】此题考查了根与系数的关系,解题的关键是找出a+b=1.此题属于根底题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.12.〔3分〕使用墙的一边,再用13m的铁丝网围成三边,围成一个面积为20m2的长方形,求这个长方形的两边长.设墙的对边长为xm,可得方程〔〕A.x〔13﹣x〕=20 B.x•=20 C.x〔13﹣x〕=20 D.x•=20【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】根据铁丝网的总长度为13m,长方形的面积为20m2,来列出关于x的方程,由题意可知,墙的对边为xm,那么长方形的另一对边为m,那么可利用面积公式求出即可.【解答】解:设墙的对边长为x m,可得方程:x×=20.应选:B.【点评】此题主要考查长方形的周长和长方形的面积公式,得出矩形两边长是解题关键.二.填空题〔每题3分,共12分〕13.〔3分〕方程x2﹣3=0的根是x=±.【考点】解一元二次方程-直接开平方法.【专题】计算题;一次方程〔组〕及应用.【分析】方程变形后,利用平方根定义开方即可求出x的值.【解答】解:方程整理得:x2=3,开方得:x=±,故答案为:x=±【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握平方根定义是解此题的关键.14.〔3分〕当k=0时,方程x2+〔k+1〕x+k=0有一根是0.【考点】一元二次方程的解.【专题】计算题.【分析】将x=0代入的方程中,得到关于k的方程,求出方程的解即可得到满足题意k的值.【解答】解:将x=0代入方程x2+〔k+1〕x+k=0得:k=0,那么k=0时,方程x2+〔k+1〕x+k=0有一根是0.故答案为:0【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.〔3分〕设m,n分别为一元二次方程x2+2x﹣2021=0的两个实数根,那么m2+3m+n=2021.【考点】根与系数的关系.【专题】计算题.【分析】先利用一元二次方程根的定义得到m2=﹣2m+2021,那么m2+3m+n可化简为2021+m+n,再根据根与系数的关系得到m+n=﹣2,然后利用整体代入的方法计算.【解答】解:∵m为一元二次方程x2+2x﹣2021=0的实数根,∴m2+2m﹣2021=0,即m2=﹣2m+2021,∴m2+3m+n=﹣2m+2021+3m+n=2021+m+n,∵m,n分别为一元二次方程x2+2x﹣2021=0的两个实数根,∴m+n=﹣2,∴m2+3m+n=2021﹣2=2021.【点评】此题考查了根与系数的关系:假设x1,x2是一元二次方程ax2+bx+c=0〔a≠0〕的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程根的定义.16.〔3分〕写出以4,﹣5为根且二次项的系数为1的一元二次方程是x2+x ﹣20=0.【考点】根与系数的关系.【专题】计算题.【分析】先简单4与﹣5的和与积,然后根据根与系数的关系写出满足条件的方程.【解答】解:∵4+〔﹣5〕=﹣1,4×〔﹣5〕=﹣20,∴以4,﹣5为根且二次项的系数为1的一元二次方程为x2+x﹣20=0.故答案为x2+x﹣20=0.【点评】此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程两个为x1,x2,那么x1+x2=﹣,x1•x2=.三.解答题〔此题有7小题,共52分〕17.〔10分〕解方程〔1〕x2﹣4x﹣5=0〔2〕3x〔x﹣1〕=2﹣2x.【考点】解一元二次方程-因式分解法.【分析】〔1〕根据因式分解法可以解答此题;〔2〕先移项,然后提公因式可以解答此方程.【解答】解:〔1〕x2﹣4x﹣5=0〔x﹣5〕〔x+1〕=0∴x﹣5=0或x+1=0,解得,x1=5,x2=﹣1;〔2〕3x〔x﹣1〕=2﹣2x3x〔x﹣1〕+2〔x﹣1〕=0〔3x+2〕〔x﹣1〕=0∴3x+2=0或x﹣1=0,解得,.【点评】此题考查解一元二次方程﹣因式分解法,解题的关键是根据方程的特点,选取适宜的因式分解法解答方程.18.〔5分〕试证明关于x的方程〔a2﹣8a+20〕x2+2ax+1=0无论a取何值,该方程都是一元二次方程.【考点】一元二次方程的定义.【专题】证明题.【分析】根据一元二次方程的定义,只需证明此方程的二次项系数a2﹣8a+20不等于0即可.【解答】证明:∵a2﹣8a+20=〔a﹣4〕2+4≥4,∴无论a取何值,a2﹣8a+20≥4,即无论a取何值,原方程的二次项系数都不会等于0,∴关于x的方程〔a2﹣8a+20〕x2+2ax+1=0,无论a取何值,该方程都是一元二次方程.【点评】一元二次方程有四个特点:〔1〕只含有一个未知数;〔2〕含未知数的项的最高次数是2;〔3〕是整式方程;〔4〕将方程化为一般形式ax2+bx+c=0时,应满足a≠0.要判断一个方程是否为一元二次方程,先看它是否为整式方程,假设是,再对它进行整理.如果能整理为ax2+bx+c=0〔a≠0〕的形式,那么这个方程就为一元二次方程.19.〔6分〕某村方案建造如下图的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保存3m宽的空地,其它三侧内墙各保存1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】此题有多种解法.设的对象不同那么列的一元二次方程不同.设矩形温室的宽为xm,那么长为2xm,根据矩形的面积计算公式即可列出方程求解.【解答】解:解法一:设矩形温室的宽为xm,那么长为2xm,根据题意,得〔x﹣2〕•〔2x﹣4〕=288,∴2〔x﹣2〕2=288,∴〔x﹣2〕2=144,∴x﹣2=±12,解得:x1=﹣10〔不合题意,舍去〕,x2=14,所以x=14,2x=2×14=28.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.解法二:设矩形温室的长为xm,那么宽为xm.根据题意,得〔x﹣2〕•〔x ﹣4〕=288.解这个方程,得x1=﹣20〔不合题意,舍去〕,x2=28.所以x=28,x=×28=14.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.【点评】解答此题,要运用含x的代数式表示蔬菜种植矩形长与宽,再由面积关系列方程.20.〔8分〕某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.〔1〕求该种商品每次降价的百分率;〔2〕假设该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【考点】一元二次方程的应用;一元一次不等式的应用.【分析】〔1〕设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×〔1﹣降价百分比〕的平方〞,即可得出关于x的一元二次方程,解方程即可得出结论;〔2〕设第一次降价后售出该种商品m件,那么第二次降价后售出该种商品〔100﹣m〕件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量〞,即可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:〔1〕设该种商品每次降价的百分率为x%,依题意得:400×〔1﹣x%〕2=324,解得:x=10,或x=190〔舍去〕.答:该种商品每次降价的百分率为10%.〔2〕设第一次降价后售出该种商品m件,那么第二次降价后售出该种商品〔100﹣m〕件,第一次降价后的单件利润为:400×〔1﹣10%〕﹣300=60〔元/件〕;第二次降价后的单件利润为:324﹣300=24〔元/件〕.依题意得:60m+24×〔100﹣m〕=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.【点评】此题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:〔1〕根据数量关系得出关于x的一元二次方程;〔2〕根据数量关系得出关于m的一元一次不等式.此题属于根底题,难度不大,解决该题型题目时,根据数量关系列出不等式〔方程或方程组〕是关键.21.〔6分〕阅读下面的例题,范例:解方程x2﹣|x|﹣2=0,解:〔1〕当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1〔不合题意,舍去〕.〔2〕当x<0时,原方程化为x2+x﹣2=0,解得:x1=﹣2,x2=1〔不合题意,舍去〕.∴原方程的根是x1=2,x2=﹣2请参照例题解方程x2﹣|x﹣1|﹣1=0.【考点】解一元二次方程-因式分解法.【专题】阅读型.【分析】分为两种情况:〔1〕当x≥1时,原方程化为x2﹣x=0,〔2〕当x<1时,原方程化为x2+x﹣2=0,求出方程的解即可.【解答】解:x2﹣|x﹣1|﹣1=0,〔1〕当x≥1时,原方程化为x2﹣x=0,解得:x1=1,x2=0〔不合题意,舍去〕.〔2〕当x<1时,原方程化为x2+x﹣2=0,解得:x1=﹣2,x2=1〔不合题意,舍去〕.故原方程的根是x1=1,x2=﹣2.【点评】此题考查了解一元二次方程的应用,解此题的关键是能正确去掉绝对值符号.22.〔8分〕龙华天虹商场以120元/件的价格购进一批上衣,以200元/件的价格出售,每周可售出100件.为了促销,该商场决定降价销售,尽快减少库存.经调查发现,这种上衣每降价5元/件,每周可多售出20件.另外,每周的房租等固定本钱共3000元.该商场要想每周盈利8000元,应将每件上衣的售价降低多少元?【考点】一元二次方程的应用.【分析】设每件上衣应降价x元,那么每件利润为〔80﹣x〕元,此题的等量关系为:每件上衣的利润×每天售出数量﹣固定本钱=8000.【解答】解:设每件上衣应降价x元,那么每件利润为〔80﹣x〕元,列方程得:〔80﹣x〕〔100+x〕﹣3000=8000,解得:x1=30,x2=25因为为了促销,该商场决定降价销售,尽快减少库存,所以x=30.答:应将每件上衣的售价降低30元.【点评】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解.23.〔9分〕如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点P从A 点开始沿A边向点B以1厘米/秒的速度移动〔到达点B即停止运动〕,点Q从C点开始沿CB边向点B以2厘米/秒的速度移动〔到达点C即停止运动〕.〔1〕如果P、Q分别从A、C两点同时出发,经过几秒钟,△PBQ的面积等于是△ABC的三分之一?〔2〕如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿AB移动〔到达点B即停止运动〕,动点Q从C出发,沿CB移动〔到达点C 即停止运动〕,几秒钟后,P、Q相距6厘米?〔3〕如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿AB移动〔到达点B即停止运动〕,动点Q从C出发,沿CB移动〔到达点B 即停止运动〕,是否存在一个时刻,PQ同时平分△ABC的周长与面积?假设存在求出这个时刻的t 值,假设不存在说明理由.【考点】三角形综合题.【分析】〔1〕设经过t秒钟,△PBQ的面积等于是△ABC的三分之一,根据题意得:AP=t,BP=6﹣t,BQ=2t,由,△PBQ的面积等于是△ABC的三分之一列式可得求出t的值;〔2〕在Rt△PQB中,根据勾股定理列方程即可;〔3〕分两种情况:①当PQ平分△ABC面积时,计算出这时的t=5﹣,同时计算这时PQ所截△ABC的周长是否平分;②当PQ平分△ABC周长时,计算出这时的t=,此时△PBQ的面积是否为,计算即可.【解答】解:〔1〕设经过t秒钟,△PBQ的面积等于是△ABC的三分之一,由题意得:AP=t,BP=6﹣t,BQ=2t,×2t×〔6﹣t〕=××6×8,解得:t=2或4,∵0≤t≤4,∴t=2或4符合题意,答:经过2或4秒钟,△PBQ的面积等于是△ABC的三分之一;〔2〕在Rt△PQB中,PQ2=BQ2+PB2,∴62=〔2t〕2+〔6﹣t〕2,解得:t1=0〔舍〕,t2=,答:秒钟后,P、Q相距6厘米;〔3〕由题意得:PB=6﹣t,BQ=8﹣2t,分两种情况:①当PQ平分△ABC面积时,S△PBQ=S△ABC,〔6﹣t〕〔8﹣2t〕=××8×6,解得:t1=5+,t2=5﹣,∵Q从C到B,一共需要8÷2=4秒,5+>4,∴t1=5+不符合题意,舍去,当t2=5﹣时,AP=5﹣,BP=6﹣〔5﹣〕=1+,BQ=8﹣2〔5﹣〕=2﹣2,CQ=2〔5﹣〕=10﹣2,PQ将△ABC的周长分为两局部:一局部为:AC+AP+CQ=10+5﹣+10﹣2=25﹣3,另一局部:PB+BQ=1++2﹣2=3﹣1,25﹣3≠3﹣1,②当PQ平分△ABC周长时,AP+AC+CQ=PB+BQ,10+2t+t=6﹣t+8﹣2t,t=,当t=时,PB=6﹣=,BQ=8﹣2×=,∴S=××=≠12,△PBQ综上所述,不存在这样一个时刻,PQ同时平分△ABC的周长与面积.【点评】此题是动点运动问题,在三角形中的动点问题,首先要确定两个动点的:路线、路程、速度、时间,表示出时间为t时的路程是哪一条线段的长,根据条件列等式或方程,解出即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级数学(上)同步测试卷
第二章 有理数及其运算 (A 卷)
班级:________ 姓名:____________ 学号:_______ 成绩:________
一、填空题:(每小题2分,共20分) 1. 3
2-
的相反数是____________,5
3-
的倒数是____________.
2. 绝对值等于2.5的数是_______________.
3. 比较大小:3______5-,0_______2-,3
2-_______4
3-.
4. 计算:2
132+-
=_______,3×)6(-=_________.
5. 3)2(--的底数是_________,结果是_________.
6. 计算:)7(7
1)1(-⨯÷
-=____________.
7. 如果一个家庭把本月的收入记作“+”,而把本月的支出记作“-”,那么这
个家庭本月工资收入4200元,奖金400元,生活费用1300元,买彩票500元,中奖一注20000元,报个人所得税4000元,本月这个家庭的收支情况可依次简记为____________________________________________________. 8. 45.0-与8+的和减去+1.7的差是_________.
9. 仔细观察下列各数,按某种规律在横线上填上适当的数,并说明理由.
0,2,4,_______,________,理由:____________________________.
10、计算: ()=-3
2 , ()
=-10
1 , =-2
3
二、选择题:
11、下面给出的四条数轴中画得正确的是( )
3
-2-1
-1-0
1
1-0
1
1-0
1
A B C D
12、如果向东走50米记作+50米,那么-50米表示( )
A 、向西走50米
B 、向南走50米
C 、向北走50米
D 、向东走50米
13、下列说法正确的是( )
A. 正数和负数统称有理数
B. 正整和负整数统称为整数
C. 小数3.14不是分数
D. 整数和分数统称为有理数
14、若22)2() (-=,那么( )中应填的数是( ) A. 2- B. 3 C. 4 D. +2或2- 15、若一个数的绝对值的相反数是5-,则这个数是( )
A. 5
B. 5-
C. ±5
D. 0或5 16、数轴上表示3
1-
的点与表示2
1-的点的距离是( ) A. 6
1-
B.
6
5
C.
6
1 D.
2
1
17、一个有理数的平方与它本身的和等于0,那么这个有理数是( ) A. 0和1 B. 0和1- C. 0 D. 1 18、计算20062005)1()1(-+-的值等于( ) A. 2 B. 2- C. 0
D. 1
19、下列等式成立的是( )
A. 33±=±
B. )2(2--=-
C. 222)2(±=±
D. 3
12
312
=--
20、下列对“0”的描述中说法正确的是( ) A 、是最小的正数 B 、它的相反数是它本身 C 、它的倒数是它本身 D 、是最大的负数
三、解答题:(共50分) 21、计算:(前4小题,每题3分,后4小题每题4分,共28分)
(1) )2
1(4
1-
--
(2) )2.2()3
2
()05.1()5
4()3
1()75.1(++-+++++-++
(3) )
30()4.03
221(-⨯+- (4) )
100(2
1)1.0(-⨯÷
-
(5) 233)2(-- (6) 2)3
1
2
1(36-⨯
(7) )4()81
()2(163-⨯---÷
(8) 101-102+103-104+…+199-200
22.(4分)某部队新兵入伍时,对新兵进行“引体向上”测试,以50次为标准,超过50次用正数表示,不足50次用负数表示,第二小队的10名新兵的成
23.(6分)把下列各数表示的点画在数轴上。
-4, 2-, 2
5-
, 0, 2
13
24、“十·一”黄金周期间,太姥山风景区在7天假期中每天旅游的人数变化如下表
(正数表示比前一天多的人数,负数表示比前一天少的人数):
(1) 若9月30日的游客人数记为5万人,则10月2日的游客人数: 万人 。
(2
分)
(2) 请判断七天内游客人数最多的是 日,最少的是 日。
(2分)
(3) 以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数情况:(4分)。