力学名词解释
工程力学 名词解释
工程力学名词解释1、稳定性(stability): 是指构件在压缩载荷的作用下,保持平衡形式不能发生突然转变的能力;2、约束力(constraint force): 当物体沿着约束所限制的方向有运动或运动趋势时,彼此连接在一起的物体之间将产生相互作用力,这种力称为约束力。
3、光滑面约束(constraint of smooth surface): 构件与约束的接触面如果说是光滑的,即它们之间的摩擦力可以忽略时,这时的约束称为光滑面约束。
4、加减平衡力系原理:在承受任意力系作用的刚体上,加上任意平衡力系,或减去任意平衡力系,都不会改变原来力系对刚体的作用效应。
这就是加减力系平衡原理。
5、二力构件:实际结构中,只要构件的两端是铰链连接,两端之间没有其他外力作用,则这一构件必为二力构件。
6、自锁:主动力作用线位于摩擦角范围内时,不管主动力多大,物体都保持平衡,这种现象称为自锁。
7、固体力学(solid mechanics):即研究物体在外力作用下的应力、变形和能量,统称为应力分析。
8、材料科学中的材料力学行为:即研究材料在外力和温度作用下所表现出的力学性能和失效行为。
9、工程设计(engineering design):即设计出杆状构件或零部件的合理形状和尺寸,以保证它们具有足够的强度、刚度和稳定性。
10、微元(element):如果将弹性体看作由许多微单元体所组成,这些微单元体简称微元体或微元。
11、弹性体受力与变形特点:弹性体在载荷作用下,将产生连续分布的内力。
弹性体内力应满足:与外力的平衡关系;弹性体自身变形协调关系;力与变形之间的物性关系。
这是弹性静力学与刚体静力学的重要区别。
12、外力突变:所谓外力突变,是指有集中力、集中力偶作用的情形:分布载荷间断或分布载荷集度发生突变的情形。
13、控制面:在一段杆上,内力按某一种函数规律变化,这一段杆的两个端截面称为控制面。
据此,下列截面均可为控制面:1)集中力作用点的两侧截面;2)集中力偶作用点的两侧截面;3)均布载荷(集度相同)起点和终点处的截面。
八年级下册物理力学
八年级下册物理力学
八年级下册物理力学主要包括以下内容:
1. 力的概念:力是物体对物体的作用。
力的单位是牛顿,简称牛,用N表示。
2. 力的作用效果:力可以改变物体的运动状态,力可以改变物体的形状。
3. 力的性质:物体间力的作用是相互的,施力物体同时也是受力物体,反之,受力物体同时也是施力物体。
4. 力的三要素:力的大小、方向和作用点,它们都能影响力的作用效果。
5. 力的测量:可以使用测力计来测量力的大小,其中弹簧测力计是实验室常用的测量工具。
6. 二力平衡:当物体受到两个力的作用时,如果能保持静止状态或匀速直线运动状态,则这两个力相互平衡。
二力平衡的条件是二力作用在同一物体上、大小相等、方向相反、两个力在一条直线上。
7. 惯性和惯性定律:惯性是物体保持其原有运动状态不变的性质,与受力与否无关。
惯性定律即牛顿第一定律,是指当物体不受外力作用或所受外力合力为零时,物体将保持静止状态或匀速直线运动状态。
8. 力和运动状态的关系:力可以改变物体的运动状态,包括改变物体的运动速度和方向。
9. 功和功率:功是力在空间上的积累效应,等于力和在力的方向上通过的位移的乘积。
功率是表示做功快慢的物理量,等于功和时间的比值。
以上是八年级下册物理力学的主要知识点,建议查阅教辅资料或教材来获取更详细和准确的信息。
(完整版)材料力学名词解释(1)
名词解释第一章:1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象.3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象.5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力.韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7。
解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶.8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9。
解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面.10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等13。
弹性极限:式样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
14.静力韧度:金属材料在静拉伸时单位体积材料断裂前所吸收的功。
15.正断型断裂:断裂面取向垂直于最大正应力的断裂.16.切断型断裂:断裂面取向与最大切应力方向一致而与最大正应力方向约成45度的断裂17.解理断裂:沿解理面断裂的断裂方式.第二章:1。
合力的名词解释力学
合力的名词解释力学力学是研究物体运动和受力的学科,其中一个重要的概念就是合力。
合力指的是多个力合并后产生的总效果,即多个力共同作用下,物体所受到的合成力。
在物体受到多个力的情况下,了解合力的概念对于分析物体运动状态和力的作用具有重要的意义。
合力的概念源于牛顿第一定律,即物体保持静止或匀速直线运动的条件是合力为零。
也就是说,当物体受到多个力时,如果合力为零,则物体将保持当前的状态;如果合力不为零,则物体将发生运动。
合力可以是单个力的代替力,也可以是多个力的综合效果。
在力学中,合力的计算可根据力的性质和作用方向采用不同的方法。
当力的作用方向相同时,它们的合力等于各个力的代数和。
比如,当两个力的大小相等且方向相同时,它们的合力大小为两个力大小之和,方向与原来的力相同。
这种情况下,合力将增加物体的运动速度或改变其运动方向。
当力的作用方向相反时,合力的计算则需要考虑力的相对大小。
如果两个力的大小相等且方向相反,合力为零,物体将保持静止。
如果两个力的大小不等,并且方向相反,合力等于两个力的差值。
合力方向指向较大力的方向,从而使得物体的运动方向与较大力的方向一致。
在实际生活中,合力的概念也有广泛的应用。
比如,在运动竞技中,人们常常需要合理运用合力的原理来提高运动效果。
举个例子,如果一个人要推开一扇重门,他可能会采用较大的力以克服阻力。
然而,如果另外一个人在同一方向上施加同等大小的力,合力将增加,使得推门的效果更加显著。
此外,在工程和建筑领域中,合力的概念也得到应用。
当建筑物或桥梁设计过程中需要考虑各种力的作用时,合力的分析成为非常重要的一环。
合理计算和掌握合力的大小和方向,能够有助于保持结构的稳定性和安全性。
最后,合力的概念也可以应用于团队合作和集体行动。
一个团队或集体的力量并非简单的个体之和,正确地协调和统一行动可以实现更大的合力。
这种合力可以使得团队的效率和成果达到更高的水平。
总之,合力是力学中一个重要的概念,它可以帮助我们理解物体的运动状态和力的作用。
结构力学名词解释
结构力学名词解释结构力学是力学的一个分支,主要研究刚体和物体的运动、变形、应力和应变等力学问题。
1. 刚体:刚体是指物体所有点之间的相对位置在运动或作用力下不发生改变的物体。
刚体不会发生形变,其运动可以用平动和转动两种方式描述。
2. 运动学:运动学研究物体的运动状态,主要研究物体的位移、速度和加速度等。
运动学分为平动运动和转动运动两大类。
3. 平动运动:物体的所有点在同一时间内沿着相同方向移动,并且移动的距离相等。
平动运动可以用质心的位置、速度和加速度来描述。
4. 转动运动:物体的某一点围绕某个轴进行旋转运动。
转动运动可以用角度、角速度和角加速度来描述。
5. 力:力是促使物体发生运动或变形的物理量,用矢量表示。
力的单位是牛顿(N),它等于1千克质量在1秒钟内获得的加速度。
6. 应力:应力是物体内部受到的单位面积力的大小,用矢量表示。
常用的应力有压应力和剪应力。
7. 压应力:压应力是垂直于物体表面的作用力对单位面积的大小。
压应力可以导致物体的压缩变形。
8. 剪应力:剪应力是平行于物体表面的作用力对单位面积的大小。
剪应力可以导致物体的剪切变形。
9. 应变:应变是物体在受到外力作用下发生形变的程度,用无量纲的比例表示。
常用的应变有线性应变和切变应变。
10. 线性应变:线性应变是物体的长度与原始长度之差与原始长度的比值。
线性应变可以用来描述物体的拉伸或压缩变形。
11. 切变应变:切变应变是物体内部某一点沿切面上的平均切线方向的位移与该点到切面的距离的比值。
切变应变可以用来描述物体的剪切变形。
12. 应力-应变关系:应力-应变关系描述了物体在外力作用下产生应变的规律。
材料的应力-应变关系可以通过实验得到,常用的应力-应变关系包括线弹性、非线弹性和塑性等。
以上是结构力学中的一些重要名称和概念的解释,结构力学在实际工程中具有重要的应用价值,能够帮助工程师分析和设计各种结构的力学性能。
运动生物力学
运动生物力学一、名词解释1、力学:是研究物体机械运动规律的学科。
2、生物力学:是生物物理学的一个分支,是力学与生物学的交叉、渗透、融合而形成的一门学科。
3、运动生物力学:是研究人体运动力学规律的学科,它是体育科学学科体系的重要组成部分。
4、转动惯量:是衡量物体(人体)转动惯性大小的物理量。
用ω表示。
5、角速度:是指人体在单位时间内转过的角度。
用α表示。
6、加速度:指单位时间内人体运动速度的变化量,是描述人体运动速度变化快慢的物理量。
7、角加速度:表示人体转动时角速度变化的快慢,指转动中角速度的时间变化率。
8、三维坐标系:又称空间坐标,判断人体运动要从三个方向上看,由原点引出三条互相垂直的坐标轴,分别用Ox、Oy、Oz表示。
9、力:是物体间的相互作用。
10、力矩:使物体(人体)转动状态发生改变的原因,用M表示。
11、动量:用以描述物体在一定运动状态下具有的“运动量”。
12、动量矩:是转动惯量J和角速度ω的乘积。
用L表示。
13、冲量:物体(人体)运动状态的改变时力作用的结果,力在时间上的积累可用冲量I表示14、冲量矩:在研究转动问题时,把力矩在时间上的积累称为冲量矩,是力矩和时间的乘积。
15、均匀强度分布:在特定的加载条件下,材料的每一部分受到的最大应力相同。
16、适宜应力原则:骨骼对体育运动的生物力学适应性本质上是骨骼系统对机械力信号的应变。
有利于运动负荷及强度导致的骨应变会诱导骨量增加和骨的结构改善;应变过大则造成骨组织微损伤和出现疲劳性骨折,应变过小或出现废用则导致骨质流失过快。
17、骨折:骨的完整性或连续性中断者称为骨折。
是运动损伤中最常见的损伤之一18、关节软骨:是一种多孔的粘弹性材料,其组织间隙中充满着关节液。
19、渗透性:在恒定的外力下,软骨变形,关节液和水分子溶液从软骨的小孔流出,由形变引起的压力梯度就是引起关节液渗出的驱动力。
20、界面润滑:是依靠吸附于关节面表面的关节液分子形成的界面层作为润滑。
工程力学名词解释
所谓刚体是这样的物体,在力的作用下,其内部任意两点之间的距离始终保持不变。
刚体是在力的作用下不变形的物体。
变形体:构件尺寸与形状的变化。
这时的物体即视为变形固体。
二力平衡公理:作用在同一刚体上的的两个力,使刚体保持平衡的必要和充分条件是,这两个力的大小相等、方向相反、且在同一直线上。
加减平衡力系原理:在已知力上加上或减去任意的平衡力系,并不改变原力系对刚体的作用。
力的可传性原理:作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该力对刚体的作用。
三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则第三个力的作用线必通过此汇交点,且三个力共面。
刚化原理:变形体在某一力系作用下处于平衡,如将此变形体刚化为刚体,则平衡状态保持不变。
约束:对非自由体的位移起限制作用的物体。
约束力:约束对非自由体的作用力。
由两个等值、反向、不共线的(平行)力组成的力系称为力偶,记作 力偶中两力所在平面称为力偶作用面。
力偶两力之间的垂直距离称为力偶臂。
合力投影定理:合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。
力偶系的平衡条件:空间力偶系平衡的必要充分条件是合力偶矩矢等于零,即力偶系各力偶矩矢的矢量和等于零。
平面任意力系:各力的作用线在同一平面内,既不汇交为一点又不相互平行的力系叫平面任意力系。
力系向一点简化:把未知力系(平面任意力系)变成已知力系(平面汇交力系和平面力偶系)力的平移定理:可以把作用在刚体上点A 的力平行移到任一点B ,但必须同时附加一个力偶。
这个力偶的矩等于原来的力对新作用点B 的矩。
强 度:杆件在外载作用下,抵抗断裂或过量塑性变形的能力。
刚 度:杆件在外载作用下,抵抗弹性变形的能力。
稳定性:杆件在压力外载作用下,保持其原有平衡状态的能力。
连续性假设:物质密实地充满物体所在空间,毫无空隙。
(可用微积分数学工具) 均匀性假设:物体内,各处的力学性质完全相同。
工程力学力的名词解释
工程力学力的名词解释力是物体之间相互作用的产物,是物体发生运动或变形的原因。
工程力学力的名词解释将涉及到我们在工程领域中常用的力学术语和概念。
一、质点与力在工程力学中,质点是指忽略物体的尺寸和形状,将物体集中为一个质点进行分析的理想化模型。
力是质点受到的外界作用所引起的,其大小通常用牛顿(N)作为单位,方向则通过矢量表示。
二、重力重力是地球或其他物体对于质点所产生的吸引力。
它的大小由质点的质量和地球或其他物体之间的距离决定,其方向指向质心或地心。
三、弹性力弹性力是物体发生形变后,所产生的恢复力。
当物体受到外界作用而发生形变时,内部的分子或原子会产生运动,使物体试图恢复到原来的形状和尺寸。
弹性力常用于工程设计中,具有很大的实用价值。
四、摩擦力摩擦力是相对运动或潜在运动中,物体间接触面产生的力。
摩擦力的大小与物体间的表面质量、粗糙度以及受到的外力等因素有关。
摩擦力可以使物体停止运动,或者改变物体的运动方向和速度。
五、剪切力剪切力是物体受到垂直于其表面的两个相对方向作用力所引起的力。
这种力通常出现在固体或流体的接触面上,例如在剪刀切割物体时,剪刀受到的力就是剪切力。
剪切力对于工程设计和土木工程中的结构稳定性分析来说十分重要。
六、正压力与负压力正压力是指物体受到外界施加的沿垂直方向的压力,以单位面积上的力做量度。
负压力则是指物体受到外界施加的沿垂直方向的拉力。
正压力和负压力导致物体产生形变或变形,对于工程结构的承载能力和稳定性分析具有重要影响。
七、刚体力学刚体力学是工程力学中的一个分支,研究物体在受到力作用时的平衡、运动和形变。
刚体力学基于质点力学的基本原理,对物体的运动和力学特性进行分析,为工程设计和结构分析提供理论依据。
八、静力学与动力学静力学研究物体在平衡状态下的受力和受力平衡问题,力的大小和方向会导致物体的静力平衡或不平衡。
动力学研究物体在运动状态下的受力和运动问题,力的作用会导致物体的加速度、速度和位移的变化。
流体力学 名词解释
压强水头:H=p/ρg称为测压管高度或压强水头,物理意义是单位重量液体具有的压强势能,简称压能。
真空高度:当某点的绝对压强小于当地大气压,即处于真空状态时,H=p/ρg也是可以直接测量的高度 称为真空高度。
明渠流:具有露在大气中的自由页面的槽内液体的流动称为明渠流
水力最优断面:指当渠道底坡,糙率及面积大小一定时,通过最大流量时的断面形式。
堰:在明渠缓流中设置障壁,它既能雍高渠中的水位,又能自然溢流,这障壁就是堰。
堰流:缓流越过阻水的堰墙溢出流动的局部水流现象力的大小跟流体的质量成正比所以叫质量力。
压缩性:流体受压,分子间距离减小,体积缩小的性质。
膨胀性:流体受热,分子间距离增大,体积膨胀的性质。
等压面:压强相等的空间点构成的面,称为等压面。
测压管水头:z+p/ρg称为测压管水头,是单位重量液体具有的总势能。
恒定流:以时间为标准,若各空间上的运动要素皆不随时间变化,这样的流动是恒定流。
三元流动:以空间为标准,若各空间上的点的运动参数是三个空间坐标和时间变量的函数,则流动为三元流动。
流量:单位时间内通过某一断面得流体量称为流量。
断面平均流速:设想过流断面上的流速V均匀分布,通过的流量与实际流量相同,流速V定义为该断面的平均流速。
自由流出:水由孔口流入大气中称为自由流出。
淹没流出:水由孔口直接流入另一部分水体中称为淹没流出。
短管:指水头损失中,沿程损失和局部损失都占相当比重,两者都不可忽略的管道。
水击现象:在有压管道中,由于某种原因,使水流速度突然发生变化,引起压强大幅度波动的现象。
力学性能名词解释
1.弹性变形:材料在外力作用下产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状的性质称为弹性。
这种可恢复的变形称为弹性变形。
2.E:弹性模量,表征材料对弹性变形的抗力。
3.弹性比功:表示单位体积金属材料吸收弹性变形功的能力,又称弹性比应变能。
4.比例极限ζp:应力与应变成直线关系的最大应力。
5.弹性极限ζe:由弹性变形过渡到弹性塑性变形的应力。
6.力学性能指标:反映材料某些力学行为发生能力或抗力的大小。
7.滞弹性:弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。
8.循环韧性:指在交变载荷下吸收不可逆变形功的能力。
9.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向残余伸长应力降低的现象。
10.包申格应变:给定应力下,正向加载与反向加载两应力-应变曲线之间的应变差。
11.塑性:金属材料断裂前发生不可逆永久 (塑性) 变形的能力.12.固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度,此即为固溶强化。
13.韧性:韧性是指材料在断裂前吸收塑性变形功和断裂功的能力。
14.解理断裂:指金属材料在一定条件下(如低温),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂。
15.Ak:表示冲击试样变形及断裂消耗的功。
16.ζ0.2:屈服强度,对于无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力,作为该钢的屈服强度。
17.NSR:缺口敏感度,金属材料的缺口敏感性指标,用缺口试样的抗拉强度ζbn与等截面尺寸光滑试样的抗拉强度ζb的比值表示,称为缺口敏感度。
18.ψ:断面收缩率,是试样拉断后,颈缩处横截面积的最大缩减量与原始横截面积的百分比,反映了材料局部变形的能力。
19.KI:应力场强度因子,表示裂纹尖端应力场的强弱。
20.KIC:平面应变下的断裂韧度,表示在平面应变条件下材料抵抗裂纹失稳、扩展的能力。
力学名词解释
力学名词解释当涉及到力学的名词解释时,以下是一些常见的力学术语及其解释:1. 力(Force):力是物体之间相互作用的结果,它可以改变物体的状态或形状。
力通常由两个物体之间的接触或远程作用引起,其大小由物体之间的相互作用决定,单位为牛顿(N)。
2. 质量(Mass):质量是物体所拥有的惯性量度,表示物体对力的抵抗能力。
质量越大,物体对力的抵抗能力越强,单位为千克(kg)。
3. 加速度(Acceleration):加速度是物体在单位时间内速度变化的量度。
当物体受到外力作用时,它的速度会发生改变,加速度描述了这种速度变化的快慢和方向。
加速度的单位是米每秒平方(m/s²)。
4. 动量(Momentum):动量是物体运动的量度,它是物体质量乘以其速度。
动量是一个矢量量,具有大小和方向,单位为千克米每秒(kg·m/s)。
5. 能量(Energy):能量是物体所拥有的做功能力,是物体由于其状态或位置而能够改变其他物体状态或位置的量度。
常见的能量形式包括动能(由物体运动产生)和势能(由物体位置产生),单位为焦耳(J)。
6. 弹性力(Elastic Force):弹性力是一种恢复物体形状或长度的力,当物体被压缩、拉伸或扭曲时产生。
弹簧的弹性力是一个常见的例子。
7. 惯性(Inertia):惯性是物体维持其静止状态或匀速直线运动状态的性质。
根据牛顿第一定律,物体会保持其运动状态,直到受到外力的作用才会改变。
这些是一些常见的力学名词及其解释,力学是研究物体运动和力的学科,其中包含了更多的概念和术语。
如果你有针对特定术语的更具体的问题,请随时提问。
流体力学名词解释(知识要点)
流体力学名词解释(知识要点)1.质量力:质量力是作用在流体的每个质点上的力。
1.流体质点:流体中宏观尺寸无穷小、而微观尺寸无穷大的任一物理实体。
2. 表面力:是作用在所考虑流体表面上的力,其大小与被作用的表面积成正比。
3.是毗邻流体或其他物体作用在流体隔离体表面上的直接施加的接触力4.应力:单位面积上的作用力5.法向应力:单位面积上的法向力(正应力)—流体的压强6.切向应力:单位面积上的切向力—切应力τ7.惯性:是物体维持原有运动状态的能力的性质。
8.密度:单位体积流体所具有的质量9.容重:单位体积的流体受到的重力10.流体的黏滞性:流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质,此内摩擦力称为流体的黏滞力.11.切应力:流层间单位面积上的内摩擦力12.速度梯度:速度沿垂直于速度方向y的变化率13.动力黏度μ的物理意义:单位速度梯度下的切应力14.运动黏度:流体的动力黏度与密度的比值15.牛顿流体:符合牛顿内摩擦定律的流体。
16.非牛顿流体:不符合牛顿内摩擦定律的流体。
17.流体的压缩性:流体受压,体积缩小,密度增大的性质18.流体的热胀性:流体受热,体积膨胀,密度减小的性质19.压缩系数:当温度保持不变时,单位压强增量引起流体密度的相对变化率20.流体的弹性模量:压缩系数的倒数21.热胀系数:表示当压强保持不变时,单位温度增量引起液体密度的相对变化率22.如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降一定高度,这种现象称为毛细管现象,对应的细管称为毛细管23.表面张力系数:单位长度上的表面张力值24.接触角概念: 当液体与固体壁面接触时形成曲面, 在曲面和管壁交接处,曲面的切线与管壁的夹角,称为接触角α25.可压缩流体:流体密度随压强变化不能忽略的流体。
26.理想流体:没有粘性的流体。
27.易流动性:静止时不能承受切向力,运动时抵抗剪切变形的能力。
28.三大模型:连续介质模型、不可压缩模型、理想流体模型。
工程材料力学名词解释
应变(strain):为一微小材料(元素)承受应力时所产生的单位长度变形量(力学定义,无量纲)弹性变形(elastic deformation): 材料在外力作用下产生变形,当外力去除后恢复其原来形状,这种随外力消失而消失的变形。
重要特征:可逆性、胡克定律(是力学基本定律之一。
适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比)4)塑性变形(plastic deformation):材料在外力作用下产生的永久不可恢复的变形。
(5)断裂(fracture,rupture 破裂、crack裂纹):物体在外力作用下产生裂纹以至断开的现象。
脆性断裂(未发生较明显的塑性变形)、韧性断裂(发生较明显的塑性变形),宏观特征(1)弹性(elasticity):是指物体(材料)本身的一种特性,发生形变后可以恢复原来的状态的一种性质。
(2)弹性变形(elastic deformation):材料在外力作用下产生变形,当外力去除后恢复其原来形状,这种随外力消失而消失的变形。
(3)弹性模量(elastic modulus,modulus of elasticity):是表征材料弹性的物理参数,是指材料在弹性变形范围内,应力和对应的应变的比值E=σ/ε,也是材料内部原子之间结合力强弱的直接量度。
(4)刚度(stiffness):指物体(固体)在外力作用下抵抗变形的能力,可用使产生单位形变所需的外力值来量度。
刚度越高,物体表现越硬。
(5)弹性比功(elastic specific work):表示材料吸收弹性变形功的能力,弹性比能、应变比能,决定于弹性模量和弹性极限(即材料由弹性变形过渡到弹-塑性变形时的应力)。
(6)滞弹性(anelasticity):在弹性范围内加快加载或卸载后,随时间延长产生附加弹性应变的现象。
7)循环弹性(cyclic elasticity):在交变载荷(振动)下材料吸收不可逆变形功的能力。
生物力学名词解释
生物力学名词解释
生物力学是研究人体或动物在运动过程中机械性能及其控制的学科。
以下是一些相关的术语解释:
1. 力学:研究物体受力作用下的运动规律与变形规律的学科。
2. 动力学:研究物体运动状态的变化规律及其原因的力学分支。
3. 静力学:研究物体处于静止状态下受力平衡的力学分支。
4. 动力学分析:运用动力学原理研究人体或动物在运动过程中的各种机械性能。
5. 生物力学模型:对人体或动物进行建模,以便研究其在运动中的机械性能。
6. 肌肉力量:肌肉产生的力,通常由肌肉收缩产生。
7. 关节力:关节处产生的力量,通常由关节的运动产生。
8. 生物力学分析:通过分析力、力矩、压力等参数,研究人体或动物在运动过程中的各种受力状况。
9. 步态分析:通过分析步行、跑步等运动的各种参数,来研究人体或动物在运动过程中的各种机械性能。
10. 姿势控制:指人体或动物在运动过程中通过调整身体姿势来维持平衡的能力。
建筑力学名词解释
建筑力学名词解释建筑力学是研究建筑结构的力学性能和力学行为的一门工程学科。
它主要研究建筑物的力学原理、结构荷载和结构受力分析、结构的稳定性和抗震性能、结构材料的强度和变形特性以及结构的设计和计算方法等。
以下是建筑力学中常见的一些名词的解释:1. 力学:研究物体的运动、受力和形变等力学现象的科学。
在建筑力学中,力学主要涉及到结构的受力分析和力的平衡。
2. 结构:由构件(如梁、柱、墙等)和连接件(如钢筋、连接板等)组成的整体体系。
建筑力学研究结构的稳定性和强度等问题。
3. 荷载:施加在结构上的外力或外力引起的内力。
常见的荷载包括自重、活荷载(如人员、家具等)、风荷载、地震荷载等。
4. 强度:材料的抗力或结构的抵抗能力。
建筑力学中研究结构材料的强度,以保证结构的安全性和稳定性。
5. 变形:结构在受力下发生的形状或尺寸的变化。
建筑力学研究结构受荷载引起的变形,以保证结构的使用性能和稳定性。
6. 稳定性:结构在荷载作用下保持平衡和稳定的性能。
建筑力学研究结构的稳定性,以保证结构的安全性和可靠性。
7. 抗震性能:结构在地震作用下抵抗破坏的能力。
建筑力学研究结构的抗震性能,以保证结构在地震中的安全性。
8. 设计和计算方法:根据结构的力学性能和要求,进行结构设计和计算的方法和理论。
建筑力学研究结构的设计和计算方法,以保证结构的可行性和安全性。
9. 梁:承受弯曲荷载的构件,常用于构成建筑物的水平支撑体系。
梁在建筑力学中研究受力和变形的问题。
10. 柱:承受压力荷载的构件,常用于构成建筑物的垂直支撑体系。
柱在建筑力学中研究受力和稳定性的问题。
总之,建筑力学是一个重要的工程学科,它研究的是结构的力学性能和力学行为,旨在保证建筑物在设计、施工和使用过程中的可靠性、安全性和稳定性。
通过对建筑力学中的各个名词的理解和应用,可以更好地掌握和应用建筑力学的理论和方法,为设计和建设高质量的建筑物提供科学依据。
力学名词解释
力学名词解释力学 (Mechanics)力学是物理学的一个分支,研究物体运动和受力的规律。
力 (Force)力是物体之间相互作用的结果,导致物体的运动或形状发生变化。
力可以通过推、拉、旋转等方式作用于物体。
质量 (Mass)质量是物体所具有的惯性度量。
质量越大,物体越难改变其状态或移动。
运动 (Motion)运动是物体从一个位置到另一个位置的变化。
运动可以是直线运动、曲线运动、往复运动等形式。
加速度 (Acceleration)加速度是物体在单位时间内速度改变的量。
加速度的方向与速度变化的方向相同或相反。
势能 (Potential Energy)势能是物体由于其位置或状态而具有的能量。
物体具有势能时,可以进行其他形式的能量转换。
动能 (Kinetic Energy)动能是物体由于其运动而具有的能量。
动能的大小取决于物体的质量和速度。
作用力 (Action Force)作用力是物体对另一个物体施加的力。
根据牛顿第三定律,作用力会引起反作用力。
压力 (Pressure)压力是施加在物体表面上的力的分布情况。
压力等于单位面积上的力的大小。
弹力 (Elastic Force)弹力是物体在被压缩、拉伸或扭动时所产生的力。
弹簧和橡皮筋都是常见的弹性体。
摩擦力 (Frictional Force)摩擦力是两个物体相对运动时产生的力。
摩擦力可以减慢物体的速度或阻止物体的滑动。
约束力 (Constraint Force)约束力是物体受到限制或约束而产生的力。
例如,物体在绳索上悬挂时受到重力和绳索张力的约束。
平衡 (Equilibrium)平衡是物体受到力的作用后,不改变其位置或状态的情况。
平衡可以是静态平衡或动态平衡。
杠杆 (Lever)杠杆是一个刚性物体,可以绕一个支点旋转。
杠杆原理用于解决平衡和力的转移的问题。
动量 (Momentum)动量是物体运动时的特性。
动量等于物体的质量乘以速度,是物体在运动过程中的一个守恒量。
工程力学名词解释
工程力学名词解释1.静力学中研究的两个问题:(1力系的简化;2.物体在力系作用下的平衡条件。
2.刚体:任何状态下都不变形的物体3.多余约束:如果的体系中增加一个约束,体系的独立运动参数并不减少,此类约束为多余约束4.摩擦角;当摩擦力达到最大值时,全反力与法线间的夹角5.材料的塑性:材料能产生塑性变形的性质6.中性轴:在平面弯曲和斜弯曲情况下,横截面与应力平面的交线上各点的正压力值均为零,这条交线叫中性轴7.超静定:如果所研究的问题中,未知量的数目大于对应的独立平衡方程的数目时,仅仅用平衡方程不能求出全部未知量8.低碳钢的冷作硬化;若材料曾一度受力到达强化阶段,然后卸载,则再重新加载时,比例极限和屈服点将提高,而断裂后的塑性变形将减小9.材料力学中的内力:物体内部某一部分与另一部分的相互作用的力10.应力集中:局部区域应力突然增大的现象11.自锁现象;与力的大小无关而与摩擦角有关的平衡条件称为自锁条件,物体在这种条件下的平衡现象称为自锁现象12应力:分布在单位面积上的内力。
13低碳钢的拉伸曲线四个阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部变形14.横力弯曲:剪切面上同时存在弯矩M和剪力Fs。
这种弯曲称为和横力弯曲。
Fs为零而弯矩M为常量,这种弯曲称为纯弯曲15剪切:两力间的横截面发生相对错动的形式。
16挤压应力:由于挤压力而引起的应力。
17单元体:如果以横截面和纵向截面自筒壁上取出一个微小的正六面体。
18纯剪切:在单元体上将只有切应力而无正应力的作用。
19中性轴:中性层与横截面的交线。
20提高梁抗弯强度的措施(1)选用合理的截面(2)采用变截面梁(3)适度布置载荷和支座位置21挠曲线:梁弯曲后的轴线。
22.提高梁刚度和强度的主要措施有:1.合理安排梁的支承2.合理的布置载荷3.选择梁的合理截面23.挠度:梁轴线上的一点在垂直于梁变形前轴方向的线位移24.转角:梁任一截面绕其中性轴转动的角度。
工程材料力学名词解释
应变(strain):为一微小材料(元素)承受应力时所产生的单位长度变形量(力学定义,无量纲)弹性变形(elastic deformation): 材料在外力作用下产生变形,当外力去除后恢复其原来形状,这种随外力消失而消失的变形。
重要特征:可逆性、胡克定律(是力学基本定律之一。
适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比)4)塑性变形(plastic deformation):材料在外力作用下产生的永久不可恢复的变形。
(5)断裂(fracture,rupture 破裂、crack裂纹):物体在外力作用下产生裂纹以至断开的现象。
脆性断裂(未发生较明显的塑性变形)、韧性断裂(发生较明显的塑性变形),宏观特征(1)弹性(elasticity):是指物体(材料)本身的一种特性,发生形变后可以恢复原来的状态的一种性质.(2)弹性变形(elastic deformation):材料在外力作用下产生变形,当外力去除后恢复其原来形状,这种随外力消失而消失的变形。
(3)弹性模量(elastic modulus,modulus of elasticity):是表征材料弹性的物理参数,是指材料在弹性变形范围内,应力和对应的应变的比值E=σ/ε,也是材料内部原子之间结合力强弱的直接量度。
(4)刚度(stiffness):指物体(固体)在外力作用下抵抗变形的能力,可用使产生单位形变所需的外力值来量度.刚度越高,物体表现越硬。
(5)弹性比功(elastic specific work): 表示材料吸收弹性变形功的能力,弹性比能、应变比能,决定于弹性模量和弹性极限(即材料由弹性变形过渡到弹-塑性变形时的应力)。
(6)滞弹性(anelasticity):在弹性范围内加快加载或卸载后,随时间延长产生附加弹性应变的现象。
7)循环弹性(cyclic elasticity):在交变载荷(振动)下材料吸收不可逆变形功的能力. (8)包申格效应(Bauschinger′s effect,Bauschinger effect):简单地说,就是经过预先加载产生少量塑性变形后的金属材料,再次进行同向或反向加载,会产生残余伸长应力(弹性极限或屈服极限)增加或降低的现象。
工程力学 名词解释
工程力学名词解释1、稳定性(stability): 是指构件在压缩载荷的作用下,保持平衡形式不能发生突然转变的能力;2、约束力(constraint force): 当物体沿着约束所限制的方向有运动或运动趋势时,彼此连接在一起的物体之间将产生相互作用力,这种力称为约束力。
3、光滑面约束(constraint of smooth surface): 构件与约束的接触面如果说是光滑的,即它们之间的摩擦力可以忽略时,这时的约束称为光滑面约束。
4、加减平衡力系原理:在承受任意力系作用的刚体上,加上任意平衡力系,或减去任意平衡力系,都不会改变原来力系对刚体的作用效应。
这就是加减力系平衡原理。
5、二力构件:实际结构中,只要构件的两端是铰链连接,两端之间没有其他外力作用,则这一构件必为二力构件。
6、自锁:主动力作用线位于摩擦角范围内时,不管主动力多大,物体都保持平衡,这种现象称为自锁。
7、固体力学(solid mechanics):即研究物体在外力作用下的应力、变形和能量,统称为应力分析。
8、材料科学中的材料力学行为:即研究材料在外力和温度作用下所表现出的力学性能和失效行为。
9、工程设计(engineering design):即设计出杆状构件或零部件的合理形状和尺寸,以保证它们具有足够的强度、刚度和稳定性。
10、微元(element):如果将弹性体看作由许多微单元体所组成,这些微单元体简称微元体或微元。
11、弹性体受力与变形特点:弹性体在载荷作用下,将产生连续分布的内力。
弹性体内力应满足:与外力的平衡关系;弹性体自身变形协调关系;力与变形之间的物性关系。
这是弹性静力学与刚体静力学的重要区别。
12、外力突变:所谓外力突变,是指有集中力、集中力偶作用的情形:分布载荷间断或分布载荷集度发生突变的情形。
13、控制面:在一段杆上,内力按某一种函数规律变化,这一段杆的两个端截面称为控制面。
据此,下列截面均可为控制面:1)集中力作用点的两侧截面;2)集中力偶作用点的两侧截面;3)均布载荷(集度相同)起点和终点处的截面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蠕变极限:在一定的温度下,经一定时间,金属蠕变速度仍不超过规定数值,此时所能承受的最大应力,称为蠕变强度或蠕变极限。
什么是蠕变与蠕变极限?什么是持久强度与持久塑性?
金属在一定温度和一定应力作用下,随着时间的推移缓慢地发生塑性变形的现象称蠕变。
材料发生蠕变的温度与其性质有关,碳钢在300—350℃时,合金钢在350—450℃时,在应力作用下,就会出现蠕变。
温度越高,应力越大,蠕变速度就越快。
材料抗蠕变的性能用蠕变极限来衡量,它表示在一定温度下,于规定时间内,钢材发生一定量总变形的最大应力值。
持久强度是在高温条件下,经过规定时间发生蠕变破裂时的最大应力。
持久塑性是指处于蠕变状态的材料,在发生破裂时的相对塑性变形量。
高温材料特别是发电厂使用的管材,应具有良好的持久塑性,希望不低于3%—5%。
过低的持久塑性,会使材料发生脆性破坏,降低其使用奉命。
材料的蠕变极限、持久强度、持久塑性都是通过试验方法求得的
固溶处理:材料或工件加热至适当温度并保温足够时间,使可溶相充分溶解,然后快速冷却到室温以获得过饱和固溶体的热处理工艺。
使合金中各种相充分溶解,强化固溶体,并提高韧性及抗蚀性能,消除应力与软化,以便继续加工或成型。
高温持久强度试验测定材料在某一温度下受恒定载荷作用时,在规定的持续时间内不引起断裂的最大应力的一种材料机械性能试验。
高温持久强度是高温构件设计选材的重要依据。
持久强度一般用σ寲表示,其中t为试验温度(℃),τ为规定的持续试验时间(小时)。
例如σ喖=300兆牛/米2,即表示材料在试验温度为700℃、试验持续时间为1000小时的持久强度为300兆帕。
持久强度试验的方法是:保持某一恒定温度,对一组试样分别选取不同的应力进行试验直到断裂为止,得出一组试验持续时间,然后在双对数坐标纸上画出应力与持续时间的关系曲线,由之求出规定时间下的应力,即持久强度。
持久塑性是用试样在断裂后的延伸率和断面收缩率来表示的。
它表示材料在温度、应力共同作用下在规定的持续时间内的塑性性能。
它与材料的缺口敏感性、低周疲劳性能和抗裂纹发展能力等有关。
持久试验时间的长短根据产品对象而定,例如对喷气发动机零件,一般提供数百到数千小时的持久强度数据;而电站动力设备用材料则要求提供十万到二十万小时的持久强度数据。
在实际试验中,常用较短时间的试验结果来外推长时间的性能。
外推的方法已有很多,但外推时间一般应不大于实际最长试验时间的10倍。
许用应力allowable stress:机械设计或工程结构设计中允许零件或构件承受的最大应力值。
要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力。
凡是零件或构件中的工作应力不超过许用应力时,这个零件或构件在运转中是安全的,否则就是不安全的。
许用应力是机械设计和工程结构设计中的基本数据。
在实际应用中,许用应力值一般由国家工程主管部门根据安全和经济的原则,按材料的强度、载荷、环境情况、加工质量、计算精确度和零件或构件的重要性等加以规定。
许用应力等于考虑各种影响因素后经适当修正的材料的失效应力(静强度设计中用屈服极限yield limit或强度极限strength limit疲劳强度设计中用
疲劳极限fatigue limit)除以安全系数。
塑性材料(大多数结构钢和铝合金)以屈服极限为基准,除以安全系数后得许用应力,即*σ+=σs/n(n=1.5~2.5);脆性材料(铸铁和高强钢)以强度极限为基准,除以安全系数后得许用应力,即*σ+=σb/n(n=2~5)。
(n为安全系数)
塑性材料和脆性材料并没有严格的绝对界限,所以有时很难预先确定用屈服极限还是用强度极限为基准来确定许用应力。
例如低碳钢的屈服极限与强度极限的比值(称为屈强比)小于1,所以以屈服极限为基准的许用应力总是小于以强度极限为基准的许用应力。
随着高强钢的采用,材料的屈强比不断提高,就可能出现相反的情况。
考虑到确定许用应力有这两种可能性,在室温静载荷下工作的零件或构件的设计中,应同时求得两种情况下的许用应力,加以比较,取其较小值。
在疲劳强度设计中,一般应用安全系数表示的强度判据进行疲劳强度的验算。
许用温度:随着温度升高,钢板会有一个软化屈服点,当温度高于软化点后,钢板的强度将急剧下降。
持久强度:在给定的温度下和规定时间内,试样发生断裂的应力值,用符号σ(T,t)表示。
其中σ表示应力,单位为MPa;T为温度,单位为℃;t为时间,单位为h。
例如:σ(700,1000)=200MPa,表示材料在700℃时,持续时间为1000h,的持久强度为200MPa。
金属材料、机械零件和构件抗高温断裂的能力,常以持久极限表示。
试样在一定温度和规定的持续时间下,引起断裂的应力称持久极限。
金属材料的持久极限根据高温持久试验来测定。
飞机发动机和机组的设计寿命一般是数百至数千小时,材料的持久极限可以直接用相同时间的试验确定。
在锅炉、燃气轮机和其他透平机械制造中,机组的设计寿命一般为数万小时以上,它们的持久极限可用短时间的试验数据直线外推以得到数万小时以上的持久极限。
经验表明,蠕变速度小的零件,达到持久极限的时间较长。
锅炉管道对蠕变要求不严,但必须保证使用时不破坏,需要用持久强度作为设计的主要依据。
持久强度设计的判据是:工作应力小于或等于其许用应力,而许用应力等于持久极限除以相应的安全系数。
超超临界:火电厂超超临界机组和超临界机组指的是锅炉内工质的压力。
锅炉内的工质都是水,水的临界压力是:22.115MPA 374℃[2];在这个压力和温度时,水和蒸汽的密度是相同的,就叫水的临界点,炉内工质压力低于这个压力就叫亚临界锅炉,大于这个压力就是超临界锅炉,炉内蒸汽温度不低于593℃或蒸汽压力不低于31 MPa 被称为超超临界。
从国际及国内已建成及在建的超临界或超超临界机组的参数选择情况来说,只要锅炉参数在临界点以上,都是超临界机组。
但对超临界和超超临界机组并无严格的界限,只是参数高了多少的一个问题,目前国内及国际上一般认为只要主蒸汽温度达到或超过600度,就认为是超超临界机组。
超临界、超超临界火电机组具有显著的节能和改善环境的效果,超超临界机组与超临界机组相比,热效率要提高1.2%,一年就可节约6000吨优质煤。
未来火电建设
将主要是发展高效率高参数的超临界(SC)和超超临界(USC)火电机组,它们在发达国家已得到广泛的研究和应用。
亚临界、超临界、超超临界发电机组,主要是就蒸汽的压力与温度参数而言:亚临界,170ata,535;超临界,240ata,560℃℃;超超临界,300ata,600℃。
在超临界与超超临界状态,水由液态直接成为汽态(由湿蒸汽直接成为过热蒸汽、饱和蒸汽),热效率高。
因此,超临界、超超临界发电机组已经成为国外,尤其是发达国家主力机组。