第1课时 任意角的概念与弧度制导学案教程文件

合集下载

《任意角和弧度制》教案

《任意角和弧度制》教案

《任意角和弧度制》教案篇一:人教A版高中数学必修四1.1《任意角和弧度制》1.1 《任意角和弧度制》教案【教学目的】1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,推断象限角,掌握终边一样角的集合的书写.3.理解弧度制,能进展弧度与角度的换算.4.认识弧长公式,能进展简单应用.对弧长公式只要求理解,会进展简单应用,不必在应用方面加深.5.理解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、处理征询题. 【导入新课】复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系提出征询题:1.初中所学角的概念.2.实际生活中出现一系列关于角的征询题. 3.初中的角是如何度量的?度量单位是什么?4.1°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,构成一个角?,点O是角的顶点,射线OA,OB分别是角?的终边、始边. 说明:在不引起混淆的前提下,“角?”或“??”能够简记为?.2.角的分类:正角:按逆时针方向旋转构成的角叫做正角;负角:按顺时针方向旋转构成的角叫做负角;零角:假设一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x轴的非负轴重合,那么(1)象限角:假设角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30?,390?,?330?都是第一象限角;300?,?60?是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90?,180?,270?等等.说明:角的始边“与x轴的非负半轴重合”不能说成是“与x轴的正半轴重合”.由于x轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边一样的角的集合:由特别角30看出:所有与30角终边一样的角,连同30角本身在内,都能够写成30?k?360??????k?Z?的方式;反之,所有形如30??k?360??k?Z?的角都与30?角的终边一样.从而得出一般规律:所有与角?终边一样的角,连同角?在内,可构成一个集合S|?k?360?,k?Z?,即:任一与角?终边一样的角,都能够表示成角?与整数个周角的和. 说明:终边一样的角不一定相等,相等的角终边一定一样.例1在0与360范围内,找出与以下各角终边一样的角,并推断它们是第几象限角?(1)?120;(2)640;(3)?95012?.?????解:(1)?120?240?360,因而,与?120角终边一样的角是240,它是第三象限角;(2)640?280?360,因而,与640角终边一样的角是280角,它是第四象限角;(3)?95012??12948??3?360,??????????因而,?95012?角终边一样的角是12948?角,它是第二象限角.??例2 假设??k?360??1575?,k?Z,试推断角?所在象限. 解:∵??k?360??1575?(k?5)?360??225?, (k?5)?Z ∴?与225终边一样,因而,?在第三象限.?例3 写出以下各边一样的角的集合S,并把S中适宜不等式?360720?的元素? 写出来:(1)60;(2)?21;(3)36314?.?????解:(1)S??|??60?k?360,k?Z,??S中适宜?360720?的元素是60??1?360300?,60??0?360??60?,?60??1?360??420.??(2)S??|21?k?360,k?Z,??S中适宜?360720?的元素是?21??0?36021?,?21??1?360??339?,?21??2?260??699???(3)S??|??36314??k?360,k?ZS中适宜?360720?的元素是363?14??2?360356?46?, 363?14??1?360??3?14?,?363?14??0?360??363?14.例4 写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边一样的角分别为0?k?360,90?k?360,(k?Z);(3)第一象限角的集合确实是夹在这两个终边一样的角中间的角的集合,我们表示为:?????????M|k?360?90??k?360?,k?Z?.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90??k?360?180??k?360?,k?Z?;N|90??k?360?180??k?360?,k?Z?;Q|270??k?360?360??k?360?,k?Z?.说明:区间角的集合的表示不唯一.例5写出y??x(x?0)所夹区域内的角的集合.??解:当?终边落在y?x(x?0)上时,角的集合为?|??45?k?360,k?Z;????当?终边落在y??x(x?0)上时,角的集合为?|45?k?360,k?Z;??因而,按逆时针方向旋转有集合:S??|?45?k?36045?k?360,k?Z.??二、弧度制与弧长公式1.角度制与弧度制的换算:∵360?=2?(rad),∴180?=? rad. ∴1?=?180rad?0.01745rad.??180 1rad?57.30?5718.oSl2.弧长公式:l?r?. 由公式:?ln?r?l?r??.比公式l?简单. r180lR,其中l是扇形弧长,R是圆的半径. 2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式S?留意几点:1.今后在详细运算时,“弧度”二字和单位符号“rad”能够省略,如:3表示3rad ,sin?表示?rad角的正弦;2.一些特别角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推行之后,不管用角度制仍然弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6 把以下各角从度化为弧度:(1)252?;(2)1115;(3) 30;(4)67?30. 解:(1)/71? (2)0.0625? (3) ? (4) 0.375? 56变式练习:把以下各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o. 解:(1) ?;(2)? 18720?;(3)?. 63例7 把以下各角从弧度化为度:(1)?;(2) 3.5;(3) 2;(4)35?. 4解:(1)108 o;(2)200.5o;(3)114.6o;(4)45o. 变式练习:把以下各角从弧度化为度:(1)?4?3?;(2)-;(3).12310解:(1)15 o;(2)-240o;(3)54o.例8 知扇形的周长为8cm,圆心角?为2rad,,求该扇形的面积. 解:由于2R+2R=8,因而R=2,S=4. 课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3.牢记弧度制下的弧长公式和扇形面积公式,并灵敏运用;篇二:(教案3)1.1任意角和弧度制1.1.1任意角教学目的:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边一样的角”的含义。

高中数学人教版必修4任意角和弧度制教学设计

高中数学人教版必修4任意角和弧度制教学设计

第二课时 :1.1.2 弧度制(一)
教学目标 :掌握弧度制的定义,学会弧度制与角度制互化,并进
而建立角的集合与实数集 R一一对应关系的概念 .
教学重点 :掌握换算 .
教学难点 :理解弧度意义 .
教学过程:
一、复习准备:
1. 写出终边在 x 轴上角的集合
.
2. 写出终边在 y 轴上角的集合
.
3. 写出终边在第三象限角的集合
1、习题 1.1 A 组第 1,2,3 题. 2. 多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握 他们的表示,进一步理解具有相同终边的角的特点 .
2
2
分析:先求 1 弧度扇形的面积( 1 πR2 )→再求弧长为 L、半径
2
为 R的扇形面积?
方法二:根据扇形弧长公式、面积公式,结合换算公式转换 .
② 练习:扇形半径为 45,圆心角为 120°,用弧度制求弧长、
面积 .
③ 出示例:计算 sin 、tan1.5 、cos
3
4
(口答方法→共练→小结:换算为角度;计算器求)
(概念:角的顶点与原点重合, 角的始边与 x 轴的非负半轴重 合. 那么,角的终边(除端点外)在第几象限,我们就说这个角是第
几象限角 . ) ⑤ 练习:试在坐标系中表示 300°、 390°、- 330°角,并判
别在第几象限? ⑥ 讨论:角的终边在坐标轴上,属于哪一个象限? 结论:如果角的终边在坐标轴上 , 就认为这个角不属于任何一
(1) 推广角的概念、 引入大于角和负角 ;(2) 理解并掌握正角、 负角、
零角的定义 ;(3) 理解任意角以及象限角的概念 ;(4) 掌握所有与 角终
边相同的角 ( 包括 角) 的表示方法 ;(5) 树立运动变化观点,深刻理解

任意角和弧度制教案

任意角和弧度制教案

任意角和弧度制教案教案标题:任意角和弧度制教案教案目标:1. 了解任意角的概念,能够在坐标系中表示和定位任意角。

2. 理解弧度制的概念,能够在弧度制和度数制之间进行转换。

3. 掌握任意角的三角函数值的计算方法。

教学准备:1. 教师准备:教学投影仪、白板、笔记本电脑、教学PPT等。

2. 学生准备:纸和铅笔。

教学过程:Step 1: 引入1. 教师通过展示一张钟表图,引导学生思考角度的概念。

提问:你们平时见过哪些角度的度量方式?2. 学生回答后,教师解释度数制的概念,并引出本节课学习的内容:任意角和弧度制。

Step 2: 任意角的表示和定位1. 教师通过示意图和坐标系,解释任意角的表示方法。

提醒学生注意正角、负角和零角的特点。

2. 学生跟随教师的指导,在纸上练习绘制不同角度的示意图,并用坐标系表示和定位这些角。

Step 3: 弧度制的介绍和转换1. 教师给出弧度制的定义:1弧度是半径等于1的圆的弧所对应的角。

2. 教师通过示意图和实际物体(如一根铁丝弯成的圆弧),展示弧度制的概念和计算方法。

3. 教师引导学生进行度数制和弧度制之间的转换练习,提供一些常见的转换例题。

Step 4: 任意角的三角函数值的计算1. 教师复习正弦、余弦和正切的定义,并介绍任意角的三角函数值的计算方法。

2. 教师通过示例演示三角函数值的计算步骤,引导学生进行练习。

Step 5: 拓展应用1. 教师提供一些与任意角和弧度制相关的实际问题,引导学生运用所学知识解决问题。

2. 学生个别或小组合作完成拓展应用题。

Step 6: 总结和归纳1. 教师带领学生总结本节课所学内容,并强调重点和难点。

2. 学生将所学知识进行整理和归纳,完成课堂笔记。

Step 7: 作业布置1. 教师布置相关的课后作业,包括练习题和思考题。

2. 学生完成作业,以便巩固所学知识。

教学评估:1. 教师观察学生在课堂上的参与度和理解程度。

2. 教师检查学生完成的课堂练习和作业,评估学生的掌握情况。

2015任意角和弧度制导学案

2015任意角和弧度制导学案

1.1 任意角和弧度制导学案一、角的定义与范围的扩大 1.角的定义:一条射线绕着它的端点O ,从起始位置OA 旋转到终止位置OB ,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边. 2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角.说明:零角的始边和终边重合.例1.能以同一条射线为始边作出下列角吗?210º -150º -660º 990º3.象限角和轴线角在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.(2)轴线角:如角的终边在坐标轴上,就认为这个角不属于任何象限.例2.在0º到360º的范围内,找出与下列各角终边相同的角,并分别判断它们是第几象限角:(1)650º (2)-150º (3)-990º15¹问题:(1)具有相同终边的角彼此之间有什么关系?(2)你能写出与60º角的终边相同的角的集合吗?4.终边相同的角的集合:由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30360k +⋅()k Z ∈的形式;反之,所有形如30360k +⋅()k Z ∈的角都与30角的终边相同.从而得出一般规律:所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅∈即:任一与角α终边相同的角,都可以表示成角α与整数个周角的和.说明:终边相同的角不一定相等,相等的角终边一定相同.例3. 写出下列各边相同的角的集合S ,并把S 中适合不等式360720β-≤≤的元素β写出来:(1)60; (2)21-; (3)36314'.练1(1)终边落在x 轴正半轴上的角的集合如何表示?终边落在x 轴上呢?(2)终边落在坐标轴上的角的集合如何表示?练2.写出第一、二、三、四象限角的集合M .二、弧度制与弧长公式5. 角度制与弧度制的换算:∵ 360︒=2π rad, ∴180︒=π rad.∴ 1︒=rad rad 01745.0180≈π.'185730.571801 =≈⎪⎭⎫ ⎝⎛=πrad .(3)应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建 立一种一一对应的关系.o R S l例4.把下列各角从度化为弧度: (1)0252;(2) 030;(3)'3067︒.练3.把下列各角从度化为弧度: (1)22 º30′;(2)-210º; (3)1200º. 例5.把下列各角从弧度化为度:(1)35π;(2) 3.5;(3) 2;(4)4π. 练4.把下列各角从弧度化为度: (1)12π;(2)-34π;(3)103π. 6.弧长公式:α⋅=r l 由公式:⇒=r l αα⋅=r l ,比公式180r n l π=简单. 弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积.7.扇形面积公式:lR S 21=(其中l 是扇形弧长,R 是圆的半径) 例6.知扇形的周长为8cm ,圆心角α为2rad ,,求该扇形的面积. 练5.如果弓形的弧所对的圆心角为3π,弓形的弦长为4 cm ,求弓形的面积. 任务三、例题补充例7.分别求出图1-1-9中从OA 旋转到OB ,1OB ,2OB 时所成角的度数.例8.在1080-~360-范围内,找出与2004终边相同的角.例9.在与角10030终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最大的正角.例10.在角的集合{}9045,k k Z αα=⋅+∈中.(1)有几种终边不同的角?(2)有几个属于区间(360,360)-的角? 例11.设{}90E =小于的角,{}F =锐角,{}G =第一象限的角,{}900M =小于但不小于的角 则有( )F G E ≠≠⊂⊂ B .F E G ≠≠⊂⊂ C .()M E G ≠⊂ D .()E G M F =练6.设集合{}{}18090,180,A k k Z k k Z αααα==⋅+∈=⋅∈,集合{}90,B k k Z ββ==⋅∈,则( )A B ≠⊃ B .B A ≠⊃ C .A B =∅ D .A B = 例12.在直角坐标平面内,画出下列角的终边.(1)114π;(2)236π;(3)83π-;(4)113π-. 例13.如图所示:(1)分别写出终边落在OA 、OB 位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.例14.把下列角化成2(02,)k k Z πααπ+≤≤∈形式,写出终边相同的角的集合,指出它是第几象限角.(1)463π-(2)1485-(3)20- 练7.(1)把1480-写成2()k k Z απ+∈的形式,其中02απ≤<;(2)若[4,0]βπ∈-,且β与(1)中α的终边相同,求β.例15.已知α是第二象限的角,求2α,3α是第几象限的角.O AB 练8.若γ是第二象限角,那么2γ和90γ-都不是( ) 第一象限角 B .第二象限角 C .第三象限角 D .第四象限角第一题:选择题1.下列角中终边与330°相同的角是( )A .30° B .-30° C .630° D .-630°2.-1120°角所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是 ( )A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°4.终边在第二象限的角的集合可以表示为: ( ) A .{α∣90°<α<180°} B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z }5.下列命题是真命题的是( )A .三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角C .不相等的角终边一定不同D .{}Z k k ∈±⋅=,90360| αα={}Z k k ∈+⋅=,90180|αα 6.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=C C .A ⊂CD .A=B=C7.在“①160°②480°③-960°④-1600°”这四个角中,属于第二象限的角是( )A.①B.①②C.①②③D.①②③④8.下列结论中正确的是( )A.小于90°的角是锐角 B.第二象限的角是钝角C.相等的角终边一定相同D.终边相同的角一定相等9.集合A={α|α=k ·90°,k ∈N +}中各角的终边都在( )A.x 轴的正半轴上B.y 轴的正半轴上C.x 轴或y 轴上D.x 轴的正半轴或y 轴的正半轴上10.α是一个任意角,则α与-α的终边是( )A.关于坐标原点对称B.关于x 轴对称C.关于直线y=x 对称D.关于y 轴对称11.一角为30,其终边按逆时针方向旋转三周后的角度数为 _.12.若角α是第三象限角,则2α角的终边在 _. 13.与-1050°终边相同的最小正角是 _.14.在ABC ∆中,若::3:5:7A B C ∠∠∠=,求A ,B ,C 弧度数.15.直径为20cm 的滑轮,每秒钟旋转45,则滑轮上一点经过5秒钟转过的弧长是多少?16.如图,扇形OAB 的面积是24cm ,它的周长是8cm ,求扇形的中心角及弦AB 的长.第一题:选择题1.圆弧的长等于该圆内接正三角形的边长,则该弧所对的圆心角的弧度数是( ) A .3 B .1 C .23D .3π2.设集合,,,22k M x x k Z N x x k k Z πππ⎧⎫⎧⎫==∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则M 与N 的关系是( ) A.M N = B.M N ⊆ C.M N ⊇ D.MN =∅ 5.若α是钝角,则,k k Z θπα=+∈是( )A. 第二象限角B. 第三象限角C. 第二象限角或第三象限角D. 第二象限角或第四象限角6.设k Z ∈,下列终边相同的角是( )A . ()21180k +与()41180k ±B . 90k ⋅与18090k ⋅+C . 18030k ⋅+与36030k ⋅±D . 18060k ⋅+与60k ⋅8.在单位圆中,面积为1的扇形所对的圆心角为( )弧度A . 1 B . 2 C .3 D . 49. 120-的弧度数是( ) A.56π- B. 43π C.23π- D. 34π- 7.若角α是第二象限的角,则2α是( )(A )第一象限或第二象限的角 (B )第一象限或第三象限的角 (C )第二象限或第四象限的角 (D )第一象限或第四象限的角11.扇形的中心角为π32,弧长为π2,则其半径 .13.终边在y 轴上的角的集合是(用弧度制表示) .14.将65rad π化为角度是 . 16.求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角:(1) 210-; (2)420.17.已知α=1690o。

第1讲 任意角和弧度制、三角函数的概念

第1讲 任意角和弧度制、三角函数的概念

第1讲任意角和弧度制、三角函数的概念1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.1.任意角(1)任意角包括正角、负角和零角.(2)象限角:在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在□1第几象限,就说这个角是第几□2象限角;如果角的终边在□3坐标轴上,就认为这个角不属于任何一个象限.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S=□4{β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于□5半径长的圆弧所对的圆心角叫做1弧度的角,正角的弧度数是一个□6正数,负角的弧度数是一个□7负数,零角的弧度数是□80.(2)公式角α的弧度数公式|α|=lr(弧长用l表示)角度与弧度的换算1°=π180rad;1rad=□9(180π)°弧长公式弧长l=□10|α|r扇形面积公式S=□1112lr=□1212|α|r2扇形的弧长公式、面积公式中角的单位要用弧度,在同一式子中,采用的度量制必须一致.3.任意角的三角函数(1)概念:任意角α的终边与单位圆交于点P(x,y)时,sinα=□13y,cosα=□14x,tan α=□15y x(x ≠0).(2)概念推广:三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则sin α=□16y r ,cos α=□17x r ,tan α=□18y x(x ≠0).常用结论1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.象限角与不属于任何象限的角(1)(2)(3)3.重要不等关系:若α∈(0,π2),则sin α<α<tan α.1.思考辨析(在括号内打“√”或“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,第一象限角也都是锐角.()(3)角α的三角函数值与其终边上点P 的位置无关.()(4)若α为第一象限角,则sin α+cos α>1.()答案:(1)×(2)×(3)√(4)√2.回源教材(1)67°30′化为弧度是()A.3π8B.38C.673π1800D.6731800解析:A 67°30′=67.5×π180=38π.(2)已知α是第一象限角,那么α2是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角解析:D 易知2k π<α<π2+2k π,k ∈Z ,故k π<α2<π4+k π,所以α2是第一或第三象限角.(3)已知角θ的终边经过点P (-12,5),则sin θ+cos θ=.解析:由三角函数的定义可得sin θ+cos θ=5(-12)2+52+-12(-12)2+52=513-1213=-713.答案:-713任意角及其表示例1(1)(多选)若α是第二象限角,则()A.-α是第一象限角B.α2是第一或第三象限角C.3π2+α是第二象限角D.2α是第三或第四象限角或终边在y 轴负半轴上解析:BD因为α是第二象限角,所以可得π2+2k π<α<π+2k π,k ∈Z .对于A ,-π-2k π<-α<-π2-2k π,k ∈Z ,则-α是第三象限角,所以A 错误.对于B ,可得π4+k π<α2<π2+k π,k ∈Z ,当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角,所以B 正确.对于C ,2π+2k π<3π2+α<5π2+2k π,k ∈Z ,即2(k +1)π<3π2+α<π2+2(k +1)π,k ∈Z ,所以3π2+α是第一象限角,所以C 错误.对于D ,π+4k π<2α<2π+4k π,k ∈Z ,所以2α的终边位于第三象限或第四象限或y 轴负半轴上,所以D 正确.故选BD.(2)集合{α|k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是()解析:C当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.故选C.反思感悟1.表示区间角的三个步骤(1)先按逆时针方向找到区域的起始和终止边界.(2)再按由小到大的顺序分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x |α<x <β},其中β-α<360°.(3)最后令起始、终止边界对应角α,β再加上360°的整数倍,即得区间角的集合.2.象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.(2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α的终边所在的象限判断已知角是第几象限角.训练1(1)把-380°表示成θ+2k π(k ∈Z )的形式,则θ的值可以是()A.π9B.-π9C.8π9D.-8π9解析:B∵-380°=-20°-360°,∴-380°=(-π9-2π)rad ,故选B.(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.解析:如图,在平面直角坐标系中画出直线y=3x,可以发现它与x轴的夹角是π3,在[0,2π)内,终边在直线y=3x上的角有两个,即π3,4π3;在[-2π,0)内满足条件的角有两个,即-2π3,-5π3,故满足条件的角α构成的集合为{-5π3,-2π3,π3,4π3}.答案:{-5π3,-2π3,π3,4π3}弧度制及其应用例2已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=π3,R=10cm,求扇形的弧长l;(2)若扇形的周长是20cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2cm,求扇形的弧所在的弓形的面积.解:(1)因为α=π3,R=10cm,所以l=|α|R=π3×10=10π3(cm).(2)由已知,得l+2R=20,所以S=12lR=12(20-2R)R=10R-R2=-(R-5)2+25.所以当R=5cm时,S取得最大值,此时l=10cm,α=2.(3)设弓形面积为S弓形,由题意知l=2π3cm,所以S弓形=12×2π3×2-12×22×sinπ3=(2π3-3)(cm2).反思感悟应用弧度制解决问题时的注意点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,或用基本不等式解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.训练2如图,图1是杭州2022年第19届亚运会的会徽,名为“潮涌”,整个会徽象征着新时代中国特色社会主义大潮的涌动和发展.图2是会徽的几何图形,设弧AD 的长度是l 1,弧BC 的长度是l 2,几何图形ABCD 的面积为S 1,扇形BOC 的面积为S 2,若l 1l 2=2,则S1S 2=()图1图2A.1B.2C.3D.4解析:C 设∠BOC =α,由l 1l 2=2,得OA ·αOB ·α=OA OB =2,即OA =2OB ,∴S1S 2=12α·OA 2-12α·OB 212α·OB 2=OA 2-OB 2OB 2=4OB 2-OB 2OB 2=3.故选C.三角函数的定义及其应用三角函数的定义例3(1)(2024·哈尔滨期中)已知角α的终边经过点P (-3,4),则sin α-cos α-11+tan α的值为()A.-65 B.1C.2D.3解析:A由(-3)2+42=5,得sin α=45,cos α=-35,tan α=-43,代入原式得45-(-35)-11+(-43)=-65.(2)如果点P 在角23π的终边上,且|OP |=2,则点P 的坐标是()A.(1,3)B.(-1,3)C.(-3,1)D.(-3,-1)解析:B由三角函数定义知,cos 23π=x P |OP |=-12,sin 23π=y P |OP |=32,所以x P =-1,y P =3,即P 的坐标是(-1,3).三角函数值的符号例4(1)点P (sin 100°,cos 100°)落在()A.第一象限内B.第二象限内C.第三象限内D.第四象限内解析:D因为sin 100°=sin(90°+10°)=cos 10°>0,cos 100°=cos(90°+10°)=-sin 10°<0,所以点P (sin 100°,cos 100°)落在第四象限内.(2)已知sin θ<0,tan θ<0,则角θ的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D 由sin θ<0,tan θ<0,根据三角函数的符号与角的象限间的关系,可得角θ的终边位于第四象限.反思感悟1.三角函数定义的应用(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.2.要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在象限,那就要进行分类讨论求解.训练3(1)(多选)已知角α的终边与单位圆交于点P (35,m5),则sin α的值可能是()A.45B.35C.-45 D.-35解析:AC由题意可得sin α=m 5(35)2+(m 5)2=m 32+m 2=m5,解得m =±4.当m =4时,sin α=45;当m =-4时,sin α=-45.故A ,C 正确,B ,D 错误.(2)(多选)已知角θ的终边经过点(-2,-3),且θ与α的终边关于x 轴对称,则()A.sin θ=-217B.α为钝角C.cos α=-277D.点(tan θ,tan α)在第四象限解析:ACD因为角θ的终边经过点(-2,-3),所以sin θ=-37=-217,故A 正确.因为θ与α的终边关于x 轴对称,所以α的终边经过点(-2,3),则α为第二象限角,不一定为钝角,且cos α=-27=-277,故B 错误,C 正确.因为tanθ=32>0,tan α=-32<0,所以点(tan θ,tan α)在第四象限,D 正确.故选ACD.限时规范训练(二十四)A级基础落实练1.与-2023°终边相同的最小正角是()A.137°B.133°C.57°D.43°解析:A因为-2023°=-360°×6+137°,所以与-2023°终边相同的最小正角是137°.2.下列与角9π4的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+9π4(k∈Z)C.k·360°-315°(k∈Z)D.kπ+5π4(k∈Z)解析:C对于A,B,2kπ+45°(k∈Z),k·360°+9π4(k∈Z)中角度和弧度混用,不正确;对于C,因为9π4=2π+π4与-315°是终边相同的角,故与角9π4的终边相同的角可表示为k·360°-315°(k∈Z),C正确;对于D,kπ+5π4(k∈Z),不妨取k=0,则表示的角5π4与9π4终边不相同,D错误.3.已知角θ的顶点与原点重合,始边与x轴非负半轴重合,若A(-1,y)是角θ终边上一点,且sinθ=-31010,则y=()A.3B.-3C.1D.-1解析:B因为sinθ=-31010<0,A(-1,y)是角θ终边上一点,所以y<0,由三角函数的定义,得yy2+1=-31010,解得y=-3(正值舍去).4.(2024·鹰潭期中)点A(sin1240°,cos1240°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D1240°=3×360°+160°,160°是第二象限角,所以sin1240°>0,cos1240°<0,P点在第四象限.5.(2023·河东一模)在面积为4的扇形中,其周长最小时半径的值为()A.4B.22C.2D.1解析:C设扇形的半径为R(R>0),圆心角为α,则12αR2=4,所以α=8R2,则扇形的周长为2R+αR=2R+8R≥22R·8R=8,当且仅当2R=8 R,即R=2时,取等号,此时α=2,所以周长最小时半径的值为2.6.给出下列命题:①第二象限角大于第一象限角;②三角形的内角一定是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cosθ<0,则θ是第二或第三象限的角.其中正确命题的序号是()A.②④⑤B.③⑤C.③D.①③⑤解析:C①由于120°是第二象限角,390°是第一象限角,故第二象限角大于第一象限角不正确,即①不正确;②直角不属于任何一个象限,故三角形的内角是第一象限角或第二象限角错误,即②不正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,即③正确;④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,即④不正确;⑤若cosθ<0,则θ是第二象限角或第三象限角或θ的终边落在x轴的负半轴上,即⑤不正确.其中正确命题的序号是③,故选C.7.(多选)已知角α的顶点为坐标原点,始边为x轴的非负半轴,终边上有一点P(1,2sinα),且|α|<π2,则角α的可能取值为()A.-π3B.0C.π6D.π3解析:ABD因为角α的终边上有一点P(1,2sinα),所以tanα=2sinα,所以sinαcosα=2sinα,①若α=0,则sinαcosα=2sinα成立;②若α≠0,则cosα=12,因为|α|<π2,所以α=π3或α=-π3.8.已知角α的终边过点P(-8m,-6sin30°),且cosα=-45,则m的值为.解析:因为r=64m2+9,所以cosα=-8m64m2+9=-45,所以4m264m2+9=125,因为m>0,解得m=12.答案:1 29.α为第二象限角,且|cosα2|=-cosα2,则α2在象限.解析:∵α为第二象限角,∴α2为第一或第三象限角,又|cos α2|=-cos α2,∴cos α2<0,∴α2在第三象限.答案:第三10.若角α的终边与函数5x +12y =0(x <0)的图象重合,则2cos α+sin α=.解析:∵角α的终边与函数5x +12y =0(x <0)的图象重合,∴α为第二象限角,且tan α=-512,即sin α=-512cos α.∴sin 2α+cos 2α=(-512cos α)2+cos 2α=1,解得cos α=-1213.∴sin α=-512cos α=-512×(-1213)=513.∴2cos α+sin α=2×(-1213)+513=-1913.答案:-191311.用弧度制表示终边落在如图所示阴影部分内(含边界)的角θ的集合是.解析:由题图,终边OB 对应角为2k π-π6且k ∈Z ,终边OA 对应角为2k π+3π4且k ∈Z ,所以阴影部分角θ的集合是[2k π-π6,2k π+3π4],k ∈Z .答案:[2k π-π6,2k π+3π4],k ∈Z12.已知扇形的圆心角为23π,扇形的面积为3π,则该扇形的周长为.解析:设扇形的半径为R,利用扇形面积计算公式S=12×23πR2=3π,可得R=3,所以该扇形的弧长为l=23π×3=2π,所以周长为l+2R=6+2π.答案:6+2πB级能力提升练13.(多选)在平面直角坐标系xOy中,角α以Ox为始边,终边经过点P(-1,m)(m>0),则下列各式的值一定为负的是()A.sinα+cosαB.sinα-cosαC.sinαcosαD.sinαtanα解析:CD因为角α终边经过点P(-1,m)(m>0),所以α在第二象限,所以sinα>0,cosα<0,tanα<0,如果α=23π,所以sinα+cosα=32-12>0,所以选项A不满足题意;sinα-cosα>0;sinαcosα<0;sinαtanα<0,故CD正确.14.(2023·长治模拟)水滴是刘慈欣的科幻小说《三体Ⅱ·黑暗森林》中提到的由三体文明使用强相互作用力(SIM)材料所制成的宇宙探测器,因为其外形与水滴相似,所以被人类称为水滴.如图所示,水滴是由线段AB,AC和圆的优弧BC围成,其中AB,AC恰好与圆弧相切.若圆弧所在圆的半径为1,点A到圆弧所在圆的圆心的距离为2,则该封闭图形的面积为()A.3+2π3 B.23+2π3C.23+π3D.3+π3解析:A 如图,设圆弧所在圆的圆心为O ,连接OA ,OB ,OC ,依题意得OB ⊥AB ,OC ⊥AC ,且OB =OC =1,OA =2,则AB =AC =3,∠BAC =π3,所以∠BOC =2π3,所以该封闭图形的面积为2×12×3×1+12×(2π-2π3)×12=3+2π3.15.(2024·牡丹江模拟)在平面直角坐标系xOy 中,已知点A (35,45),将线段OA绕原点顺时针旋转π3得到线段OB ,则点B 的横坐标为.解析:易知A (35,45)在单位圆上,记终边在射线OA 上的角为α,如图所示,根据三角函数定义可知,cos α=35,sin α=45;OA 绕原点顺时针旋转π3得到线段OB ,则终边在射线OB 上的角为α-π3,所以点B 的横坐标为cos(α-π3)=cos αcos π3+sin αsin π3=3+4310.答案:3+431016.若点P (sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是.解析:由题意可得α-cos α>0,α>0,∈[0,2π),α>0,∈[0,2π),可得α∈(0,π2)或α∈(π,3π2),当α∈(0,π2),即α为第一象限角,则sin α>0,cos α>0,∵sin α-cos α>0,则tan α>1,∴α∈(π4,π2);当α∈(π,3π2),即α为第三象限角,则sin α<0,cos α<0,∵sin α-cos α>0,则0<tan α<1,∴α∈(π,5π4);综上所述,α∈(π4,π2∪(π,5π4).答案:(π4,π2)∪(π,5π4)。

任意角和弧度制(第1课时)

任意角和弧度制(第1课时)

第四课时:任意角和弧度制(第1课时)编写人:潘有金审核人:张广泉审批:苏自先学习目标:1.理解任意角的概念,学会在平面直角坐标系中讨论角;2.掌握象限角、终边相同的角、终边在坐标轴上的角的表示方法;3.了解角的概念推广的现实意义,学会用数学的观点分析、解决实际问题。

预习案一、教材助读认真阅读课本P 1 -P 5 ,完成下列问题1.在初中,我们已学习过角的有关知识。

请同学们回忆:角的定义:角的表示:角的范围:2.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的几何图形。

我们规定:按逆时针方向旋转所成的角叫做_________;按顺时针方向旋转所成的角叫做_________;如果一条射线没有作任何旋转,我们称它形成了_________。

3.在直角坐标系内讨论角,必须使角的顶点与________________重合,角的始边与______________________重合.4. 在直角坐标系内,如果角的终边在第几象限,我们就说这个角是_________;如果角的终边在坐标轴上,我们就说这个角_________。

5. 在直角坐标系内,相等的两个角终边一定相同;反过来,终边相同的两个角不一定相等。

6. 在直角坐标系内,所有与角α终边相同的角,连同角α在内,可构成一个集合S=______________________二、预习自测(牛刀小试)1.下列命题正确的是()A.终边相同的角一定相等B.第一象限的角都是锐角C.锐角都是第一象限的角D.小于90°的角都是锐角2.已知集合A={第一象限的角},B={锐角},C={小于90°的角},则下面正确的是()A.A=B=CB.A BC.A∩C=BD.以上都不对3.已知角的顶点与坐标原点重合,终边与x轴的非负半轴重合,作出下列各角:(1)420°;(2)-75°;(3)-510°在下面记下预习中的困惑在课上和同学讨论或向老师请教第四课时:任意角和弧度制(第1课时)导学案一、学始于疑同学们首先认真独立思考如下问题问题1.体操中,有“转体720°”、“转体1080°”,这些动作名称的含义是什么?问题2.被动轮随主动轮旋转而旋转,OA绕O旋转形成的角与O/B/绕O/旋转形成的角有什么区别?如何准确地描述这些现象?二、质疑探究小组内讨论上述问题,准备展示,将组内不能解决的问题用小纸条交给老师探究一任意角的概念(利用几何画板展示任意角形成的过程)⎧⎪⎨⎪⎩正角按逆时针方向旋转形成的角任意角零角未作任何旋转负角按顺时针方向旋转形成的角探究二如何在直角坐标系内讨论角?今后,我们一般地都是在直角坐标系内讨论角,为了讨论问题的方便,规定:角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合探究三象限角的定义探究四终边相同的两个角之间的关系问题1.给定一个角,它的终边是不是唯一的?问题2.对于直角坐标系中的任意一条射线OB,以它为终边的角是否唯一?问题3.在直角坐标系中,如果角α与β的终边相同,那么α与β有什么关系?探究五终边相同的角的集合所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k×360°,k∈Z}即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。

任意角的概念与弧度制教案

任意角的概念与弧度制教案

任意角的概念与弧度制教案一、任意角的概念:1.任意角的定义:在坐标平面上,如果将终边与正半轴之间的交点记作点A,即A=(1,0),以正向旋转方向将终边与正半轴旋转到位时所转过的角叫做任意角。

任意角由初始边和终边两部分构成。

2.任意角的位置:任意角不限于0到360度之间,可以是任意大小的角度。

旋转方向可以是正向(逆时针)或反向(顺时针)。

3.任意角的度数:任意角的度数即为终边与正半轴的夹角的度数,用角度符号°表示。

4.任意角的象限:根据终边在哪个象限上,可以将任意角分为一、二、三、四象限。

二、弧度制的概念:1.弧度的定义:将半径等于1的圆的周长分成等份,每份叫做一个弧度。

如果圆上的一段弧的长度等于半径的长度,则该弧对应的角叫做一弧度。

2.弧度与度数的关系:360°对应的弧度为2π,即一周对应2π弧度。

所以,任意角对应的弧度数等于该角度数乘以π/180。

3.弧度制的优势:在三角函数的计算中,弧度制比度数制更为方便和精确,有利于进行各种数学计算。

三、教学步骤:教学目标:学生了解任意角的概念与弧度制的定义,掌握任意角的度数与弧度的转化关系。

教学步骤:Step 1:导入新知识通过出示一个角的图片,提问学生这个角是什么角,是否为任意角。

引导学生思考任意角的含义与特点。

Step 2:任意角的概念解释与举例教师对任意角的概念进行解释,并用实际生活中的例子来说明。

比如:针对绕场地跑的运动员,可以将终点的方向与正北方向之间的夹角视为任意角。

Step 3:弧度制的引入教师让学生回忆以前学过的圆的知识,引出弧度的概念。

通过实际的展示,向学生展示单位圆上的一个弧度与该弧度对应的角。

Step 4:弧度与度数的转化通过一个表格或示例,教师向学生解释弧度与度数之间的转化关系。

提醒学生要掌握好π、角度、弧度之间的换算。

Step 5:练习与巩固提供一些练习题,让学生进行弧度与度数之间的互相转化,巩固所学知识。

Step 6:拓展应用教师提出一些与弧度制相关的实际问题,让学生运用所学知识解决问题。

任意角的概念与弧度制教案

任意角的概念与弧度制教案

任意角的概念与弧度制教案一、概念解释任意角是指角的顶点可以位于坐标系中的任意位置,而不仅仅局限于角的顶点位于原点或坐标轴上。

在平面直角坐标系中,如果将角的顶点放在原点上,且不在坐标轴上,则该角为任意角。

在数学中,角的度量方式有两种,分别是度度量和弧度度量。

本教案将重点介绍弧度制的概念与应用。

二、弧度制的定义弧度制是一种用弧长来度量角的单位制度。

弧度制中,角的度量用弧长与半径相等的弧所对应的弧度数表示。

三、弧度制与度度量的转换1. 弧度制转度度量:角度(度) = 弧度数× (180°/π)2. 度度量转弧度制:弧度数 = 角度(度) × (π/180°)四、弧度制的优点1. 精确性:弧度制可以更精确地表示小角度,保证计算结果的准确性。

2. 便利性:在三角函数的计算中,弧度制更便于推导与计算,使得计算过程更加简洁。

3. 单位统一:由于弧度制是用弧长来度量角度的单位制度,使得角度和长度的单位得到了统一。

五、任意角的弧度表示在任意角中,以顺时针为正方向,角的弧度表示为正角度的弧度数。

六、弧度制在三角函数中的应用在三角函数中,弧度制是最常用的单位制度。

以下是几个常用三角函数值对应的弧度制表示:1. 正弦函数:sin(30°) = sin(π/6) = 0.52. 余弦函数:cos(45°) = cos(π/4) = 0.7073. 正切函数:tan(60°) = tan(π/3) = √3七、弧度制的练习与应用1. 练习一:求解以下各角的弧度制表示:a) 45°b) 60°c) 90°2. 练习二:根据题意求解下列三角函数的值(保留两位小数):a) sin(π/4)b) cos(π/3)c) tan(π/6)3. 应用一:计算角度为45°的正弦值解答:sin(45°) = sin(π/4) = 0.7074. 应用二:计算角度为60°的余弦值解答:cos(60°) = cos(π/3) = 0.5八、总结通过本教案的学习,我们了解了任意角的概念以及其中的弧度制度量方式。

《任意角和弧度制》(第一课时)教学设计

《任意角和弧度制》(第一课时)教学设计

《任意角和弧度制》(第一课时)教学设计《任意角和弧度制》(第一课时)教学设计《任意角和弧度制》(第一课时)教学设计一、教学目标:1、知识与技能(1)推广角的概念、引入大于360度的角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与a角终边相同的角(包括a角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境:转体720度角,逆(顺)时针旋转、角有大于360、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。

3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点:理解正角、负角和零角的定义,掌握终边相同角的表示法.难点:终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板四、教学设想[创设情境]思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0~360之间,它是如何定义的呢?这正是我们这节课要研究的主要内容任意角.[探究新知]初中时,我们已学习了0~360[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.一条射线由原来的位置OA,绕着它的端点O 按逆时针方向旋转到终止位置OB,就形成角a。

任意角和弧度制导学案.doc

任意角和弧度制导学案.doc

1.1任意角和弧度制导学案Q学习眇1、知道任意角的定义,知道正角、负角、零角与象限角的概念2、掌握终边相同角的表示方法,并能解决一些简单问题。

【重点、难点】:1、将0。

一360。

范围的角推广到任意角,终边相同的角的集合;2、用集合来表示终边相同的角.心学习过程任务一、课前准备(预习教材P2~P5,找出疑惑之处)体操跳水比赛中有“转体720。

”,“翻腾转体两周半”这样的动作名称,720。

在这里表示什么?任务二、新课导学淤探索新知问题1:在初中我们是如何定义一个角的?角的范围是什么?问题2:(1)手表慢了5分钟,如何校准,校准后,分针转了几度?(2)手表快了10分钟,如何校准,校准后,分针转了儿度?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,形成一个角。

,点O是角的顶点,射线OA.OB分别是角。

的终边、始边.2.角的分类:按方向旋转形成的角叫做-按方向旋转形成的角叫做 :如果,我们称它形成了一个零角;综上,我们把角的概念推广到,任意角包括说明:零角的始边和终边重合.例1.能以同一条射线为始边作出下列角吗?210°-150°-660°990°3.象限角和轴线角在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例如:30°,390“,-330°都是第一象限角;300°,-60“是第四象限角.(2)轴线角:如角的终边在坐标轴上,就认为这个角.不属于任何象限.例如:90°, 180°,270。

等等.说明:角的始边“与X轴的非负半轴重合”不能说成是“与尤轴的正半轴重合”.因为工轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.问题:上述四个角分别是第儿象限角,那些终边在坐标轴上,其中哪些角的终边相同.例2.在0。

任意角的概念与弧度制教案

任意角的概念与弧度制教案

任意角的概念与弧度制教案导言:任意角是初中数学中一个重要的概念,它是我们研究三角函数的基础。

为了更好地理解任意角,我们需要引入弧度制这一概念。

本教案将从任意角的定义开始,逐步介绍弧度制的概念以及如何进行角度与弧度的转换,帮助学生深入理解和掌握这两个概念。

一、任意角的定义在平面直角坐标系中,通过原点O以及一条射线OA,可以确定一个角,这个角叫做任意角。

其中,射线OA称为角的始边,射线OB (OB ≠ OA)称为角的终边,O点叫做角的顶点。

二、弧度制的概念角度制是我们最常用的一种角度单位,但在一些高级数学和物理问题中,常常使用弧度制来度量角的大小。

弧度制定义如下:当半径为r 的圆的圆心角所对的弧长等于半径时,这个角的度数为1弧度,记作1 rad。

三、角度与弧度的转换1. 角度转弧度:已知角的度数α,可以使用如下公式将其转化为弧度:弧度数 = 角度数× π/1802. 弧度转角度:已知角的弧度数β,可以使用如下公式将其转化为角度:角度数 = 弧度数× 180/π四、任意角的性质1. 一个任意角可绘制无数个与之终边相同的角。

2. 一个任意角的终边在平面直角坐标系中的位置决定了该角在坐标系中的唯一性。

3. 弧度制中的任意角大小范围为0≤θ<2π,其中2π的意义相当于360°。

五、任意角的相关公式在三角函数的研究中,任意角的概念是非常重要的。

以下是一些与任意角相关的基本公式。

1. sin任意角和cos任意角的定义:在平面直角坐标系中,给定角θ的终边上的点P(x,y),则有:sinθ = y/rcosθ = x/r其中,r为OP的长度。

2. tan任意角的定义:在平面直角坐标系中,给定角θ的终边上的点P(x,y),则有:tanθ = y/x注:当x=0时,tanθ不存在。

3. 值域:在上述公式中,可以发现sinθ、cosθ、tanθ的值与终边上的坐标有关,因此它们的值域都在[-1,1]之间。

1.1任意角和弧度制教程

1.1任意角和弧度制教程

1.1任意角和弧度制一、教学目标:1.理解任意角的概念;2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。

3.理解弧度制的意义;4.能正确的应用弧度与角度之间的换算; 5.记住公式||lrα=(l 为以角α作为圆心角时所对圆弧的长,r 为圆半径)。

二、教学重、难点:1.判断已知角所在象限; 2.终边相同的角的书写。

3.弧度与角度之间的换算。

三、教学过程: (一)复习引入:1.初中所学角的概念。

2.实际生活中出现一系列关于角的问题。

(二)新课讲解:1.角的定义:一条射线绕着它的端点O ,从起始位置OA 旋转到终止位置OB ,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边。

说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α. 2.角的分类:正角:按逆时针方向旋转形成的角叫做正角; 负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角。

说明:零角的始边和终边重合。

3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则 (1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

例如:30,390,330-都是第一象限角;300,60-是第四象限角。

(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。

例如:90,180,270等等。

说明:角的始边“与x 轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”。

因为x 轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。

4.终边相同的角的集合:由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30360k +⋅()k Z ∈的形式;反之,所有形如30360k +⋅()k Z ∈的角都与30角的终边相同。

从而得出一般规律:所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅∈, 即:任一与角α终边相同的角,都可以表示成角α与整数个周角的和。

第1课时 任意角的概念与弧度制导学案

第1课时    任意角的概念与弧度制导学案

第1课时任意角的概念与弧度制导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第1课时 任意角的概念与弧度制导学案1、学习目标(1)了解任意角的概念。

并会写象限角和终边相同的角的集合。

(2)熟练掌握角度与弧度的互化。

(3)熟记弧长和扇形面积的公式。

2、新知导读1.与角α终边相同的角的集合为 .2.与角α终边互为反向延长线的角的集合为 .3.轴线角(终边在坐标轴上的角)终边在x 轴上的角的集合为 ,终边在y 轴上的角的集合为 ,终边在坐标轴上的角的集合为 .4.象限角是指: .如何确定四个象限角?5.弧度制的意义:圆周上弧长等于半径长的弧所对的圆心角的大小为1弧度的角,它将任意角的集合与实数集合之间建立了一一对应关系.6.弧度与角度互化:180º= 弧度,1º= 弧度,1弧度= ≈ º.特殊角的角度与弧度的互化。

30º= 弧度45º= 弧度60º= 弧度90º= 弧度7.弧长公式:l = ;扇形面积公式:S = .8、阅读练习册P60的名师支招3、范例点睛例1.(象限角问题) 若α是第二象限的角,试分别确定2α,2α ,3α的终边所在位置.例2. (弧长与扇形面积)已知一扇形中心角为α,所在圆半径为R .(1) 若α3π=,R =2cm ,求扇形的弧长及该弧所在弓形面积; (2) 若扇形周长为一定值C(C>0),当α为何值时,该扇形面积最大,并求此最大值.4、达标检测1、已知,αβ的终边关于y=x 对称,则αβ+= 。

2 、一个半径为r 的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是________弧度或_____角度,该扇形的面积是____________________3、练习册P62对应演练。

5、[学后反思]____________________________________________________ ____________________________________________________________________。

1.1.2弧度制 导学案

1.1.2弧度制 导学案

- 1 -第一章 三角函数1.1.2 弧度制一、课标要求了解任意角的概念和弧度制,能进行弧度与角度的互化。

二、考纲要求了解弧度的概念,会进行弧度与角度的换算。

三、学习目标叙写:1、理解匀速圆周运动的特点,掌握描述匀速圆周运动快慢的几个物理量:线速度、角速度、周期、转速的定义,理解它们的物理意义并能灵活的运用它们解决问题。

2、理解并掌握描写圆周运动的各个物理量之间的关系3、理解匀速圆周运动的周期性的确切含义。

4、理解向心加速度产生的原因和计算方法。

四.使用说明与学法指导认真阅读教材的6-9页内容,理解弧度制的定义是基础,掌握角度与弧度的换算关系是关键。

理解弧度作为角的度量单位的可靠性和可行性,运算时要熟练使用弧度制【预习案】一、复习:(1)1度角是指把圆周 等份,其中每一份所对的圆心角的度数。

这种用 来度量角的制度叫角度制。

(2)设圆心角为0n 的圆弧长为l ,圆的半径为r ,则l = ;r l= 。

(3)写出终边在下列位置的角的集合。

(1)x 轴: ; (2)y 轴: 。

二、自主学习:自学课本7P -9P 回答:问题1:什么叫角度制?问题2:角度制下扇形弧长公式是什么?扇形面积公式是什么?问题3:什么是1弧度的角?弧度制的定义是什么?【探究按】探究:如图所示,半径为r 的圆的圆心与原点重合,角α始边与x 轴的非负半轴重合,交圆与点A ,终边交与点B.请在下列表格中填空,并思考:如果一个半径为r 的圆的圆心角α所对的弧长是l,那么α的弧度数是多少?既然角度制,弧度制都是角的度量制,那么它们之间如何换算?新知: ① 正角的弧度数是 数,负角的弧度数是 数,零角的弧度数是 。

② 角α的弧度数的绝对值反思:① 1rad 等于 度,②1︒等于 弧度。

试试:完成特殊角的度数与弧度数的对应表:在弧度制下,角的集合与实数集R 之间建立了________对应关系:三.典型例题例1.(A 级)把3730'︒化成弧度- 2 -例2.(B 级)利用弧度制证明下列关于扇形的公式:(1)l=αR; (2)S=221R α; (3)S=lR 21其中R 是半径,l 是弧长,α(0<α<π2)为圆心角,S 是扇形面积。

任意角与弧度制导学案

任意角与弧度制导学案
二、建构数学
1.角的概念
角可以看成平面一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。
射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______。
2.角的分类
按__________方向旋转形成的角叫做正角,
按顺时针方向旋转形成的角叫做_________。
(2)若将钟表拨慢了10分钟,则时针和分针分别转了多少度?
例2在 到 的围,找出与下列各角终边相同的角,并分别判断它们是第几象限角。
(1) (2) (3) (4)
例3已知 角的终边相同,判断 是第几象限角。
例4写出终边落在第一、三象限的角的集合。
例5写出角的终边在下图中阴影区域角的集合(包括边界)
(1)(2)(3)
第一章三角函数
1.1.1任意角
【学习目标】
1.了解任意角的概念;正确理解正角、零角、负角的概念
2.正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示
【学习重点、难点】
用集合与符号语言正确表示终边相同的角
【自主学习】
一、复习引入
问题1:回忆初中我们是如何定义一个角的?
______________________________________________________
(4)第四象限角的集合:_______________________________________
轴线角的集合
(1)终边在 轴正半轴的角的集合:_______________________________________
(2)终边在 轴负半轴的角的集合:_______________________________________

任意角与弧度制导学案.doc

任意角与弧度制导学案.doc

任意⾓与弧度制导学案.doc第⼀章三⾓函数【学习⽬标】1.了解任意⾓的概念;正确理解正⾓、零⾓、负⾓的概念2.正确理解终边相同的⾓的概念,并能判断其为第⼏象限⾓,熟悉掌握终边相同的⾓的集合表⽰【学习重点、难点】⽤集合与符号语⾔正确表⽰终边相同的⾓【⽇主学习】⼀、复习引⼊问题1:回忆初中我们是如何定义⼀个⾓的?所学的⾓的范围是什么?问题2:在体操、跳⽔中,有“转体720°”这样的动作名词,这⾥的“ 720°”,怎么刻画?⼆、建构数学1.⾓的概念⾓同?以看成平⾯内⼀条绕着它的从⼀个位置到另⼀个位置所形成的图形。

射线的端点称为⾓的,射线旋转的开始位置和终⽌位置称为⾓的和O2.⾓的分类按⽅向旋转形成的⾓叫做正⾓,按顺时针⽅向旋转形成的⾓叫做O如果⼀条射线没有作任何旋转,我们称它形成了⼀个,它的和重合。

这样,我们就把⾓的概念推⼴到了,包括________________________ 、 ________ 和 ________ 。

3.终边相同的⾓所有与⾓a终边相同的⾓,连同⾓a在内,可构成⼀个,即任⼀与⾓a终边相同的⾓,都可以表⽰成?4.象限⾓、轴线⾓的概念我们常在直鱼坐度内讨论⾓。

为了讨论问题的⽅便,使⾓的与重合,⾓的与重合。

那么,⾓的(除端点外)落在第⼏象限,我们就说这个⾓是o如果⾓的终边落在坐标轴上,则称这个⾓为.象限⾓的集合(1)第⼀象限⾓的集合: ____________________________________________(2)第⼆象限⾓的集合: ____________________________________________(3)第三象限⾓的集合: ____________________________________________(4)第四象限⾓的集合: ____________________________________________轴线⾓的集合(1)终边在x轴正半轴的⾓的集合:_____________________________________________(2)终边在x轴负半轴的⾓的集合:_____________________________________________(3)终边在y轴正半轴的⾓的集合:____________________________________________(4)终边在y轴负半轴的佑的集合:____________________________________________(5)终边在X轴上的⾓的集合:____________________________________________(6)终边在y轴上的⾓的集合:____________________________________________(7)终边在坐标轴上的⾓的集合: ____________________________________________三、课前练习在百.⾓坐标系中画出下列各⾓,并说出这个⾓是第⼏象限⾓。

任意角和弧度制导学案(1)

任意角和弧度制导学案(1)

xx1.1.1任意角和弧度制——任意角(A)【使用说明及学法指导】1、结合问题导学,回归课本1-5页,用红色笔勾画出疑惑点,独立完成探究题,总结方法。

2、针对预习自学及合作探究找出的疑惑点,课上小组讨论交流,答疑解惑3、带(*)号的C层可以不做,带(附加)的B、C层可以不做【学习目标】1.了解任意角的概念 2.认识终边相同的角并会表示【重点】各种角的概念一、任意角:角可以看成平面内一条绕着从一个位置旋转到另一个位置所成的图形按方向旋转形成的角叫做正角。

按方向旋转形成的角叫做负角。

因为可以旋转一圈、两圈……无穷圈,这样就可以形成无穷大的正角、无穷小的负角。

如果一条射线,就形成零角。

二、象限角在直角坐标系中,若角的顶点与重合,角的始边与x轴的非负半轴重合,那么,这个角的在第几象限,则称这个角是第几象限角。

如果角的终边在就认为这个角任何一个象限。

三、与α终边相同的角所有与角α终边相同的角,连同α在内,可构成一个集合S=互动课堂题型一:有关角的概念问题】例1.下列各说法正确的是--------------------------------------------------()A、 0~90的角是第一象限的角 B、第一象限角都是锐角C、锐角都是第一象限角D、小于90的角都是锐角例2、下列说法:①第一象限角可能是负角;②第二象限角大于第一象限角;③第二象限角是钝角;④小于180的角是钝角、直角或锐角;其中错误说法的序号是题型二:终边相同的角】例3、在 0~360内,找出与下列各角终边相同的角(1)-50(2)660(3)315-例4、将下列各角改写成()3600<≤⋅+αα360k的形式,并判断它们分别所在的象限(1)430(2)∙-60(3)-1550题型三:终边相同角的表示法的应用】例5、(1)终边在x轴的角的集合(2)终边在的一、三象限角平分线的角的集合(3)终边落在第一象限的角的集合(附加)例6、写出下面阴影部分(包括边界)角的集合课堂练习1、下列说法中正确的是----------------------------------------------------( ) A 、第一象限角一定是非负角 B 、第三象限角一定大于180 C 、钝角一定是第二象限角 D 、三角形的内角必是第一、二象限角2、与435角终边相同的角是----------------------------------------------( ) A 、Z k ∈-⋅,75360k B 、Z k ∈-⋅,435360k C 、Z k ∈+⋅,75 360k D 、Z k ∈+⋅,75 180k3、给出下列四个命题:()751-是第四象限角;()2252是第三象限角;()4753是第二象限角;() 3154-是第一象限角;期中正确的命题有--------------------------( ) A 、1个 B 、2个 C 、3个 D 、4个4、若角α的终边经过点()50-M ,,则α是-----------------------------------( ) A 、第三象限角 B 、第四象限角 C 、既是第三象限角又是第四象限角 D 、不是任何象限角 (*)5、已知α是第三象限角,则2α所在的象限是-------------------------------( )A 、第一或第二象限角B 、第二或第三象限角C 、第一或第三象限角D 、第二或第四象限角 6、在360<≤α0中与120-角终边相同的角为 7、角α的终边落在()0x x y ≥=上的角的集合为(选做)8、若角α与β的终边关于x 轴对称,则α与β的关系是 ;若角α与β 的终边关于原点对称,则α与β的关系是 ;若角α与β的终边关于y 轴对称,则α与β的关系是【使用说明及学法指导】1、结合问题导学,回归课本1-5页,用红色笔勾画出疑惑点,独立完成探究题,总结方法。

任意角与弧度制导学案

任意角与弧度制导学案

第一章 三角函数1.1.1 任意角【学习目标】1. 了解任意角的概念;正确理解正角、零角、负角的概念2. 正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示【学习重点、难点】用集合与符号语言正确表示终边相同的角 【自主学习】 一、复习引入问题1:回忆初中我们是如何定义一个角的?______________________________________________________ 所学的角的范围是什么?______________________________________________________ 问题2:在体操、跳水中,有“转体0720”这样的动作名词,这里的“0720”,怎么刻画? ______________________________________________________ 二、建构数学 1.角的概念角可以看成平面内一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。

射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______。

2.角的分类按__________方向旋转形成的角叫做正角, 按顺时针方向旋转形成的角叫做_________。

如果一条射线没有作任何旋转,我们称它形成了一个_________,它的______和_________重合。

这样,我们就把角的概念推广到了___________,包括_______、________和________。

3. 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个_________,即任一与角α终边相同的角,都可以表示成______. 4.象限角、轴线角的概念我们常在直角坐标系内讨论角。

为了讨论问题的方便,使角的________与__________重合,角的___________与_______________________重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时任意角的概念与弧度制导学

第1课时 任意角的概念与弧度制导学案1、学习目标
(1)了解任意角的概念。

并会写象限角和终边相同的角的集合。

(2)熟练掌握角度与弧度的互化。

(3)熟记弧长和扇形面积的公式。

2、新知导读
1.与角α终边相同的角的集合为 .2.与角α终边互为反向延长线的角的集合为 .
3.轴线角(终边在坐标轴上的角)
终边在x 轴上的角的集合为 ,
终边在y 轴上的角的集合为 ,
终边在坐标轴上的角的集合为 .
4.象限角是指: .如何确定四个象限角?
5.弧度制的意义:圆周上弧长等于半径长的弧所对的圆心角的大小为1弧度的角,它
将任意角的集合与实数集合之间建立了一一对应关系.
6.弧度与角度互化:180º= 弧度,1º= 弧度,1弧度= ≈ º.
特殊角的角度与弧度的互化。

30º= 弧度45º= 弧度60º= 弧度90º= 弧度
7.弧长公式:l = ;
扇形面积公式:S = .
8、阅读练习册P60的名师支招
3、范例点睛
例1.(象限角问题) 若α是第二象限的角,试分别确定2α,2α ,3
α的终边所在位置.
例2. (弧长与扇形面积)
已知一扇形中心角为α,所在圆半径为R .
(1) 若α3
π=,R =2cm ,求扇形的弧长及该弧所在弓形面积; (2) 若扇形周长为一定值C(C>0),当α为何值时,该扇形面积最大,并求此最大值.
4、达标检测
1、已知,αβ的终边关于y=x 对称,则αβ+= 。

2 、一个半径为r 的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是________弧度或_____角度,该扇形的面积是____________________
3、练习册P62对应演练。

5、[学后反思]____________________________________________________ _______ _____________________________________________________________。

相关文档
最新文档