北师大高三数学一轮复习练习:第十一章 计数原理概率随机变量及其分布 第讲 含解析
北师大高三数学一轮复习练习:第十一章 计数原理概率随机变量及其分布 第6讲 含解析
基础巩固题组 (建议用时:30分钟)一、选择题1.在区间[-2,3]上随机选取一个数x ,即x ≤1,故所求的概率为( ) A.45B.35C.25D.15解析 在区间[-2,3]上随机选取一个数x ,且x ≤1,即-2≤x ≤1,故所求的概率为P =35. 答案 B2.如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机扔一粒豆子,它落在阴影区域内的概率是13,则阴影部分的面积是( ) A.π3B.πC.2πD.3π解析 设阴影部分的面积为S ,且圆的面积S ′=π·32=9π.由几何概型的概率,得S S ′=13,则S =3π. 答案 D3.(2015·山东卷)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( ) A.34B.23C.13D.14解析 由-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1,得12≤x +12≤2,解得0≤x ≤32,所以事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为322=34,故选A. 答案 A4.(2017·陕西师大附中检测)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8解析 设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积=12π×121×2=π4. 答案 B5.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.π12B.1-π12C.π6D.1-π6解析 设“点P 到点O 的距离大于1”为事件A .则事件A 发生时,点P 位于以点O 为球心,以1为半径的半球的外部. ∴V 正方体=23=8,V 半球=43π·13×12=23π.∴P (A )=23-23π23=1-π12.答案 B6.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( )A.16B.13C.12D.23解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B ,E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含C ,F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12. 答案 C7.设不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4B.π-22C.π6D.4-π4解析 如图所示,正方形OABC 及其内部为不等式组表示的区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到原点距离大于2的区域,易知该阴影部分的面积为4-π,因此满足条件的概率是4-π4.故选D. 答案 D8.(2017·华师附中联考)在区间[0,4]上随机取两个实数x ,y ,使得x +2y ≤8的概率为( ) A.14B.316C.916D.34解析 由x ,y ∈[0,4]知(x ,y )构成的区域是边长为4的正方形及其内部,其中满足x +2y ≤8的区域为如图所示的阴影部分.易知A (4,2),S 正方形=16,S 阴影=(2+4)×42=12.故“使得x +2y ≤8”的概率P =S 阴影S 正方形=34.答案 D9.已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P -ABC <12V S -ABC 的概率是( ) A.78B.34C.12D.14解析 当点P 到底面ABC 的距离小于32时,V P -ABC <12V S -ABC .由几何概型知,所求概率为P =1-⎝ ⎛⎭⎪⎫123=78.答案 A10.设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12πB.12+1πC.12-1πD.14-12π解析 因为复数z =(x -1)+y i(x ,y ∈R )且|z |≤1,所以|z |=(x -1)2+y 2≤1,即(x -1)2+y 2≤1,即点(x ,y )在以(1,0)为圆心、1为半径的圆及其内部,而y ≥x表示直线y =x 左上方的部分(图中阴影弓形),所以所求概率为弓形的面积与圆的面积之比,即P =14·π·12-12×1×1π·12=14-12π.答案 D 二、填空题11.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.解析 由|x |≤m ,得-m ≤x ≤m .当m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去. 当2<m <4时,由题意得m -(-2)6=56,解得m =3.答案 312.如图,在长方体ABCD -A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A -A 1BD 内的概率为________.解析 因为V A -A 1BD =V A 1-ABD =13AA 1×S △ABD =16×AA 1×S 矩形ABCD =16V 长方体,故所求概率为V A -A 1BD V 长方体=16.答案 1613.(2016·山东卷)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.解析 直线y =kx 与圆(x -5)2+y 2=9相交的充要条件是圆心(5,0)到直线y =kx 的距离小于3. 则|5k -0|k 2+1<3,解之得-34<k <34,故所求事件的概率P =34-⎝ ⎛⎭⎪⎫-341-(-1)=34. 答案 3414.(2017·唐山模拟)如图,将半径为1的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为________.解析 顺次连接星形的四个顶点,则星形区域的面积等于(2)2-4⎝ ⎛⎭⎪⎫14×π×12-12×12=4-π,又因为圆的面积等于π×12=π,因此所求的概率等于4-ππ=4π-1.答案4π-1 能力提升题组 (建议用时:25分钟)15.在区间[-1,4]内取一个数x ,则2x -x 2≥14的概率是( ) A.12B.13C.25D.35解析 由2x -x 2≥14,得-1≤x ≤2.又-1≤x ≤4. ∴所求事件的概率P =2-(-1)4-(-1)=35.答案 D16.如图,“天宫一号”运行的轨迹是如图的两个类同心圆,小圆的半径为2 km ,大圆的半径为4 km ,卫星P 在圆环内无规则地自由运动,运行过程中,则点P 与点O 的距离小于3 km 的概率为( ) A.112B.512C.13D.15解析 根据几何概型公式,小于3 km 的圆环面积为π(32-22)=5π;圆环总面积为π(42-22)=12π,所以点P 与点O 的距离小于3 km 的概率为P (A )=5π12π=512. 答案 B17.已知平面区域D ={(x ,y )|-1≤x ≤1,-1≤y ≤1},在区域D 内任取一点,则取到的点位于直线y =kx (k ∈R )下方的概率为( ) A.12B.13C.23D.34解析 由题设知,区域D 是以原点为中心的正方形,根据图形的对称性知,直线y =kx 将其面积平分,如图,故所求概率为12.答案 A18.(2017·合肥质检)在区间[0,π]上随机取一个实数x ,使得sin x ∈⎣⎢⎡⎦⎥⎤0,12的概率为( ) A.1πB.2πC.13D.23解析 由0≤sin x ≤12,且x ∈[0,π], 解之得x ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤56π,π.故所求事件的概率P =⎝ ⎛⎭⎪⎫π-56π+⎝ ⎛⎭⎪⎫π6-0π-0=13.答案 C19.(2017·成都诊断)如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形,直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为( ) A.117B.217C.317D.417解析 ∵大正方形的面积是34,∴大正方形的边长是34,由直角三角形的较短边长为3,得四个全等直角三角形的直角边分别是5和3,则小正方形边长为2,面积为4,∴小花朵落在小正方形内的概率为P =434=217. 答案 B20.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.23B.13C.89D.π4解析 V 圆柱=2π,V 半球=12×43π×13=23π,V 半球V 圆柱=13,故点P 到O 的距离大于1的概率为23. 答案 A21.(2015·湖北卷)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A.p 1<p 2<12 B.p 2<12<p 1 C.12<p 2<p 1D.p 1<12<p 2解析 (x ,y )构成的区域是边长为1的正方形及其内部,其中满足x +y ≤12的区域如图1中阴影部分所示,所以p 1=12×12×121×1=18,满足xy ≤12的区域如图2中阴影部分所示,所以p 2=S 1+S 21×1=12+S 21>12,所以p 1<12<p 2,故选D.答案 D22.在区间[-π,π]内随机取出两个数分别记为a ,b ,则函数f (x )=x 2+2ax -b 2+π2有零点的概率为( ) A.1-π8 B.1-π4 C.1-π2D.1-3π4解析 由函数f (x )=x 2+2ax -b 2+π2有零点,可得Δ=(2a 2)-4(-b 2+π2)≥0,整理得a 2+b 2≥π2,如图所示,(a ,b )可看成坐标平面上的点,试验的全部结果构成的区域为Ω={(a ,b )|-π≤a ≤π,-π≤b ≤π},其面积S Ω=(2π)2=4π2. 事件A 表示函数f (x )有零点,所构成的区域为M ={(a ,b )|a 2+b 2≥π2},即图中阴影部分,其面积为S M =4π2-π3,故P (A )=S M S Ω=4π2-π34π2=1-π4.答案 B23.(2017·安徽江南名校联考)AB 是半径为1的圆的直径,M 为直径AB 上任意一点,过点M 作垂直于直径AB 的弦,则弦长大于3的概率是________. 解析 依题意知,当相应的弦长大于3时,圆心到弦的距离小于12-⎝ ⎛⎭⎪⎫322=12,因此相应的点M 应位于线段AB 上与圆心的距离小于12的地方,所求的概率等于12. 答案 1224.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为________.解析 由已知条件,可知蜜蜂只能在一个棱长为1的小正方体内飞行,结合几何概型,可得蜜蜂“安全飞行”的概率为P =1333=127. 答案 12725.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.解析 ∵去看电影的概率P 1=π×12-π×(12)2π×12=34, 去打篮球的概率P 2=π×(14)2π×12=116,∴不在家看书的概率为P =34+116=1316. 答案 131626.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为________. 解析 由0<y <2ax -x 2(a >0).得(x -a )2+y 2<a 2. 因此半圆域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4”,由几何概型的概率计算公式得P(A)=A的面积半圆的面积=14πa2+12a212πa2=12+1π.答案12+1π。
走向高考一轮课后强化作业北师大:第十一章 计数原理与概率3 含解析
基础达标检测一、选择题1.若二项式(x +1x )n(x >0,且n ∈N +)的展开式中含有常数项,则指数n 必为( )A .奇数B .偶数C .3的倍数D .5的倍数[答案] C[解析] 由T r +1=C r n (x )n -r·(1x )r =C r n x n -3r 2 ,因展开式中含有常数项,故n -3r =0有解,所以n 必为3的倍数,故选C.2.(2014·烟台模拟)在(1+x )5+(1+x )6+(1+x )7的展开式中,x 4的系数是( )A .25B .35C .45D .55[答案] D[解析] 二项式(1+x )5中x 4的系数为C 45,二项式(1+x )6中x 4的系数为C 46,二项式(1+x )7中x 4的系数为C 47,故(1+x )5+(1+x )6+(1+x )7的展开式中x 4的系数为C 45+C 46+C 47=55,故选D.3.(2013·新课标Ⅱ)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( )A .-4B .-3C .-2D .-1[答案] D[解析] (1+ax )(1+x )5=(1+ax )(1+5x +10x 2+10x 3+5x 4+x 5),展开式中x 2的系数为5a +10=5,所以a =-1.4.(4x -2-x )6(x ∈R )展开式中的常数项是( ) A .-20 B .-15 C .15 D .20[答案] C[解析] T r +1=C r 6(22x )6-r(-2-x )r =(-1)r C r 6·(2x )12-3r ,r =4时,12-3r =0,故第5项是常数项,T 5=(-1)4C 46=15.5.(2014·临沂模拟)已知(x -a x )8展开式中常数项为1 120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或28[答案] C[解析] 由题意知C 48·(-a )4=1 120,解得a =±2,令x =1,得展开式各项系数和为(1-a )8=1或38.6.22 015除以9的余数是( ) A .1 B .2 C .5D .8[解析] 22 015=4×22 013=4(9-1)671=4(9671-C 16719670+C 26719669+…-1),展开式中共672项,最后一项为4×(-1)=-4,故余数为5.答案选C.二、填空题7.若(x +1x )n的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为______.[答案] 56[解析] 本小题主要考查了二项式定理中通项公式的运用.依题意:C 2n =C 6n ,得:n =8.∵(x +1x )8展开式中通项公式为T r +1=C r 8x8-2r,∴令8-2r =-2,即r =5,∴C 58=56,即为所求.本题是常规题型,关键考查通项公式求特定项.8.(a +x )4的展开式中x 3的系数等于8,则实数a =________. [答案] 2[解析] 本题考查了二项式定理,T r +1=C r 4a 4-r x r,∴r =3,∴C 34a =8,∴a =2.注意二项式系数与二项展开式中项的系数是不同的.9.(2013·四川高考)二项式(x +y )5的展开式中,含x 2y 3的项的系数是________.(用数字作答)[解析] T r +1=C r 5x 5-r y r,∴r =3. ∴系数为C 35=10.三、解答题10.在二项式⎝ ⎛⎭⎪⎫3x -123x n 的展开式中,前三项系数的绝对值成等差数列.(1)求展开式的第四项; (2)求展开式的常数项; (3)求展开式的各项系数的和. [解析] 第一项系数的绝对值为C 0n ,第二项系数的绝对值为C 1n 2,第三项系数的绝对值为C 2n 4,依题意有C 0n +C 2n 4=C 1n2×2,解得n =8.(1)第四项T 4=C 38(3x )5⎝ ⎛⎭⎪⎪⎫-123x 3=-7x 23 .(2)通项公式为T k +1=C k 8(3x )8-k ⎝ ⎛⎭⎪⎪⎫-123x k =C k 8⎝ ⎛⎭⎪⎫-12k ·(3x )8-2k ,展开式的常数项满足8-2k =0,即k =4,所以常数项为T 5=C 48·⎝⎛⎭⎪⎫-124=358.(3)令x =1,得展开式的各项系数的和为⎝⎛⎭⎪⎫1-128=128=1256. 能力强化训练一、选择题1.(2013·陕西高考)设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x , x ≥0,则当x >0时,f [f (x )]表达式的展开式中常数项为( )A .-20B .20C .-15D .15[答案] A[解析] 当x >0时,f (x )=-x <0,∴f [f (x )]=f (-x )=(-x +1x )6=(x -1x)6,展开式中通项为T r+1=C r6(x )6-r(-1x)r=C r6(-1)r x 3-r ,令r =3,T 4=C 36(-1)3=-20,故选A.2.在⎝ ⎛⎭⎪⎪⎫x2-13x n 的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( )A .-7B .7C .-28D .28[答案] B[解析] 由题意可知n =8, T r +1=C r 8⎝ ⎛⎭⎪⎫x 28-r ⎝⎛⎭⎪⎪⎫-13x r =⎝ ⎛⎭⎪⎫128-r(-1)r C r8·x 8- 43 r .∴r =6,∴⎝ ⎛⎭⎪⎫122×(-1)6C 68=7. 二、填空题 3.(13x+2x x )n 的二项展开式中,若各项的二项式系数的和是128,则x 5的系数是________.(以数字作答)[答案] 560 [解析] 因为(13x+2x x )n 的二项展开式中,各项的二项式系数的和为128,所以2n =128,n =7.该二项展开式中的第r +1项为T r +1=C r 7·2r (x - 13 )7-r (x 32 )r =C r 7·2rx 11r-146,令11r -146=5得r =4,所以展开式中x 5的系数为C 47×24=560.4.(2013·浙江高考)设二项式(x -13x)5的展开式中常数项为A ,则A =________.[答案] -10 [解析]T r +1=C r 5(x )5-r·(-13x)r=(-1)rC r 5,令52-5r6=0得r =3,所以A =C 35(-1)3=-10.三、解答题5.已知在二项式(ax m +bx n )12中,a >0,b >0,mn ≠0且2m +n =0.(1)如果在它的展开式中,系数最大的项是常数项,则它是第几项?(2)在(1)的条件下,求ab 的取值范围.[解析] (1)设T k +1=C k 12(ax m )12-k·(bx n )k =C k 12a12-k b k x m (12-k )+nk 为常数项, 则有m (12-k )+nk =0, 即m (12-k )-2mk =0.∵m ≠0,∴k =4,∴它是第5项. (2)∵第5项是系数最大的项,∴⎩⎪⎨⎪⎧ C 412a 8b 4≥C 312a 9b 3C 412a 8b 4≥C 512a 7b5①②由①得a b ≤94,由②得a b ≥85, ∴85≤a b ≤94.6.(1+2x )n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.[解析] T 6=C 5n (2x )5,T 7=C 6n (2x )6,依题意有C 5n ·25=C 6n ·26⇒n =8. ∴(1+2x )8的展开式中二项式系数最大的项为T 5=C 48(2x )4=1120x 4,设第r +1项系数最大,则有⎩⎨⎧C r 8·2r ≥C r -18·2r -1C r 8·2r ≥C r +18·2r +1,⇒⎩⎪⎨⎪⎧8!·2r !(8-r )!≥8!(r -1)!(8-r +1)!,8!r !(8-r )!≥8!·2(r +1)!(8-r -1)!⇒⎩⎨⎧2(8-r +1)≥r ,r +1≥2(8-r )⇒⎩⎪⎨⎪⎧r ≤6,r ≥5⇒5≤r ≤6. 又∵r ∈N ,∴r =5或r =6,∴系数最大的项为T 6=1 792x 5,T 7=1 792x 6.。
2018届北师大版高三数学一轮复习练习第十一章计数原理、概率、随机变量及其分布第4讲Word版含解析
基础巩固题组(建议用时:40分钟)一、选择题1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,任意两人不能同一个方向.事件“甲向南”与事件“乙向南”是()A.互斥但非对立事件B.对立事件C.相互独立事件D.以上都不对解析由于任意两人不能同一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.答案 A2.(2017·合肥模拟)从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为()A.0.7B.0.65C.0.35D.0.3解析事件“抽到的产品不是一等品”与事件A是对立事件,由于P(A)=0.65,所以由对立事件的概率公式得“抽到的产品不是一等品”的概率为P=1-P(A)=1-0.65=0.35.答案 C3.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率为710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡解析至多有一张移动卡包含“一张移动卡,一张联通卡”、“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,因此“至多有一张移动卡”的概率为7 10.答案 A4.某袋中有编号为1,2,3,4,5,6的6个球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是( ) A.15B.16C.56D.3536解析 设a ,b 分别为甲、乙摸出球的编号.由题意,摸球试验共有36种不同结果,满足a =b 的基本事件共有6种.所以摸出编号不同的概率P =1-636=56. 答案 C5.掷一个骰子的试验,事件A 表示“出现小于5的偶数点”,事件B 表示“出现小于5的点数”,若表示B 的对立事件,则一次试验中,事件A +发生的概率为( ) A.13B.12C.23D.56解析 掷一个骰子的试验有6种可能结果. 依题意P (A )=26=13,P (B )=46=23, ∴P ()=1-P (B )=1-23=13, ∵表示“出现5点或6点”的事件, 因此事件A 与互斥,从而P (A +)=P (A )+P ()=13+13=23. 答案 C 二、填空题6.给出下列三个命题,其中正确命题有________个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.解析 ①错,不一定是10件次品;②错,37是频率而非概率;③错,频率不等于概率,这是两个不同的概念. 答案 07.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907966191925271932812458569683 431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为________.解析20组随机数中,恰有两次命中的有5组,因此该运动员三次投篮恰有两次命中的概率为P=520=14.答案1 48.某城市2017年的空气质量状况如表所示:100<T≤150时,空气质量为轻微污染,则该城市2017年空气质量达到良或优的概率为________.解析由题意可知2017年空气质量达到良或优的概率为P=110+16+13=35.答案3 5三、解答题9.某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下:(1)(2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值. 解记事件“在竞赛中,有k人获奖”为A k(k∈N,k≤5),则事件A k彼此互斥.(1)∵获奖人数不超过2人的概率为0.56,∴P(A0)+P(A1)+P(A2)=0.1+0.16+x=0.56.解得x=0.3.(2)由获奖人数最多4人的概率为0.96,得P(A5)=1-0.96=0.04,即z=0.04. 由获奖人数最少3人的概率为0.44,得P(A3)+P(A4)+P(A5)=0.44,即y+0.2+0.04=0.44.解得y=0.2.10.(2015·陕西卷)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为P=2630=1315.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等),这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率f=1416=78.以频率估计概率,运动会期间不下雨的概率为7 8.能力提升题组(建议用时:20分钟)11.设事件A,B,已知P(A)=15,P(B)=13,P(A+B)=815,则A,B之间的关系一定为()A.两个任意事件B.互斥事件C.非互斥事件D.对立事件解析因为P(A)+P(B)=15+13=815=P(A+B),所以A,B之间的关系一定为互斥事件.答案 B12.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是()A.25 B.710 C.45 D.910解析设被污损的数字为x,则甲=15(88+89+90+91+92)=90,乙=15(83+83+87+99+90+x),若甲=乙,则x=8.若甲>乙,则x可以为0,1,2,3,4,5,6,7,故P=810=45.答案 C13.抛掷一枚均匀的正方体骰子(各面分别标有数字1,2,3,4,5,6),事件A 表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过2”,则P(A+B)=________.解析将事件A+B分为:事件C“朝上一面的数为1,2”与事件D“朝上一面的数为3,5”.则C,D互斥,且P(C)=13,P(D)=13,∴P(A+B)=P(C+D)=P(C)+P(D)=2 3.答案2 314.(2017·宝鸡调研)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.。
2022届高考一轮复习第11章计数原理概率随机变量及其分布第4节随机事件的概率课时跟踪检测理含解
第十一章 计数原理、概率、随机变量及其分布第四节 随机事件的概率A 级·基础过关 |固根基|1.如果事件A 与B 是互斥事件,且事件A∪B 发生的概率是0.64,事件B 发生的概率是事件A 发生的概率的3倍,则事件A 发生的概率为( )A .0.64B .0.36C .0.16D .0.84解析:选C 设P(A)=x ,则P(B)=3x ,所以P(A∪B)=P(A)+P(B)=x +3x =0.64,解得x =0.16,故选C .2.(2019届西安五校模拟)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,如果事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡解析:选A “2张全是移动卡”的对立事件是“2张不全是移动卡”,即至多有一张移动卡. 3.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13 B .12 C .23D .34解析:选C 从4张卡片中抽取2张的方法有6种,和为奇数的情况有4种,∴P=23.4.从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .310B .15C .12D .35解析:选A 从1,2,3,4,5这5个数中任取3个数,共有10种情况,其中三个数可作为三角形边长的有(2,3,4),(2,4,5),(3,4,5)3种情况,故所求概率P =310.故选A .5.(2019届湖南长沙模拟)同时掷3枚硬币,至少有1枚正面向上的概率是( ) A .78 B .58 C .38D .18解析:选A 由题意知本题是一个等可能事件的概率,试验发生包含的事件是将1枚硬币连续抛掷三次,共有8种结果,满足条件的事件的对立事件是3枚硬币都是背面向上,有1种结果,所以至少一枚正面向上的概率是1-18=78.故选A .6.(2019年全国卷Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16 B .14 C .13D .12解析:选D 将两位男同学分别记为A 1,A 2,两位女同学分别记为B 1,B 2,则四位同学排成一列,情况有A 1A 2B 1B 2,A 1A 2B 2B 1,A 2A 1B 1B 2,A 2A 1B 2B 1,A 1B 1A 2B 2,A 1B 2A 2B 1,A 2B 1A 1B 2,A 2B 2A 1B 1,B 1A 1A 2B 2,B 1A 2A 1B 2,B 2A 1A 2B 1,B 2A 2A 1B 1,A 1B 1B 2A 2,A 1B 2B 1A 2,A 2B 1B 2A 1,A 2B 2B 1A 1,B 1B 2A 1A 2,B 1B 2A 2A 1,B 2B 1A 1A 2,B 2B 1A 2A 1,B 1A 1B 2A 2,B 1A 2B 2A 1,B 2A 1B 1A 2,B 2A 2B 1A 1,共有24种,其中两位女同学相邻的有12种,所以所求概率P =12.故选D .7.(2019年全国卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A .23B .35C .25D .15解析:选B 设3只测量过某项指标的兔子为A ,B ,C ,另2只兔子为a ,b ,从这5只兔子中随机取出3只,则基本事件共有10种,分别为(A ,B ,C),(A ,B ,a),(A ,B ,b),(A ,C ,a),(A ,C ,b),(A ,a ,b),(B ,C ,a),(B ,C ,b),(B ,a ,b),(C ,a ,b),其中“恰有2只测量过该指标”的取法有6种,分别为(A ,B ,a),(A ,B ,b),(A ,C ,a),(A ,C ,b),(B ,C ,a),(B ,C ,b),因此所求的概率为610=35,故选B . 8.(2019届云南质检)在2,0,1,8这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )A .34B .58C .12D .14解析:选C 分析题意可知,共有(0,1,2),(0,2,8),(1,2,8),(0,1,8)4种取法,符合题意的取法有2种,故所求概率P =12.9.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是( )A .16B .13C .12D .38解析:选 C 将两张卡片排在一起组成两位数,所组成的两位数有12,13,20,21,30,31,共6个,两位数为奇数的有13,21,31,共3个,故所组成的两位数为奇数的概率为36=12.10.(2019届银川模拟)已知甲、乙两人下棋,和棋的概率为12,乙胜的概率为13,则甲胜的概率和甲不输的概率分别为( )A .16,16 B .12,23 C .16,23D .23,12解析:选C 因为“甲胜”是“和棋或乙胜”的对立事件,所以甲胜的概率为1-12-13=16.设“甲不输”为事件A ,则A 可看作是“甲胜”与“和棋”这两个互斥事件的和事件,所以P(A)=16+12=23(或设“甲不输”为事件A ,则A ⎭⎪⎫可看作是“乙胜”的对立事件,所以P (A )=1-13=23. 11.(2019届吉林模拟)从分别写有0,1,2,3,4的五张卡片中取出一张卡片.记下数字后放回,再从中取出一张卡片,则两次取出的卡片上的数字之和恰好等于4的概率是________.解析:从0,1,2,3,4五张卡片中取出两张卡片的结果有25种,数字之和恰好等于4的结果有(0,4),(1,3),(2,2),(3,1),(4,0),共5种,所以数字之和恰好等于4的概率是P =15.答案:1512.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解:(1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔 4 000元”,由已知,得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.13.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(2)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率; (3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2 000元的人数有变化?说明理由.解:(1)由题知,样本中仅使用A 的学生有27+3=30(人),仅使用B 的学生有24+1=25(人),A ,B 两种支付方式都不使用的学生有5人,故样本中A ,B 两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A ,B 两种支付方式都使用的人数为40100×1 000=400.(2)记事件C 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”, 则P(C)=125=0.04.(3)记事件E 为“从样本仅使用B 的学生中随机抽查1人,该学生本月的支付金额大于2 000元”. 由(2)知,P(E)=0.04.可以认为有变化.理由如下:因为P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化,所以可以认为有变化.B 级·素养提升 |练能力|14.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石解析:选B 这批米内夹谷为28254×1 534≈169(石),故选B .15.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,向量m =(a ,b),n =(1,2),则向量m 与向量n 不共线的概率是( )A .16B .1112C .112D .118解析:选B 若m 与n 共线,则2a -b =0,即2a =b.(a ,b)的可能情况有36种,符合2a =b 的有(1,2),(2,4),(3,6),共3种,故共线的概率是336=112,从而不共线的概率是1-112=1112.16.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P(A)=2-a ,P(B)=3a -4,则实数a 的取值范围为( )A .⎝ ⎛⎦⎥⎤43,32B .⎝ ⎛⎦⎥⎤1,32C .⎝ ⎛⎭⎪⎫43,32 D .⎝ ⎛⎭⎪⎫12,43 解析:选A 由题意,知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,即⎩⎪⎨⎪⎧0<2-a<1,0<3a -4<1,2a -2≤1,解得43<a ≤32,所以实数a 的取值范围为⎝ ⎛⎦⎥⎤43,32.故选A .17.(2019届合肥模拟)某城市有连接8个小区A ,B ,C ,D ,E ,F ,G ,H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示.某人从道路网中随机地选择一条最短路径,由小区A 前往小区H ,则他经过市中心O 的概率为( )A .13B .23C .14D .34解析:选B 由题意知,此人从小区A 前往小区H 的所有最短路径为:A→B→C→E→H,A→B→O→E→H,A→B→O→G→H,A→D→O→E→H,A→D→O→G→H,A→D→F→G→H,共6条.记“此人经过市中心O”为事件M ,则M 包含的基本事件为:A→B→O→E→H,A→B→O→G→H,A→D→O→E→H,A→D→O→G→H,共4个,所以P(M)=46=23,即他经过市中心O 的概率为23.。
高三数学一轮(北师大版)第十一章+计数原理与概率(理)
[规范解答] (1)从8人中选出日语、俄语和韩语志愿者各1 名,其一切可能的结果组成的基本事件有
(A1 , B1 , C1) , (A1 , B1 , C2) , (A1 , B2 , C1) , (A1 , B2 , C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1, C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3, C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2, C2),(A3,B3,C1),(A3,B3,C2)共18个基本事件.
在半径为 1 的圆内一条直径上任取一点,过这个 点作垂直于直径的弦,求弦长超过圆内接等边三角形边长的概 率.
[规范解答] 如图,三角形 ACD 是圆内 接等边三角形,点 M、N 关于圆心 O 对称, 则过点 M 和 N 且与直径 AB 垂直的弦的弦 长等于内接三角形的边长,则 OM=ON=12.
试验所含的基本事件构成的区域为线 段 AB(不包含端点),其长度为 2.
求互斥事件、对立事件的概率
要分清互斥事件与对立事件的概念,对立事件是互斥事件 的一种特殊情况.对立事件一定是互斥事件,而互斥事件不一 定是对立事件.
甲、乙两人参加普法知识竞赛,共有 10 个不同 的题目,其中选择题 6 个,判断题 4 个,甲、乙两人依次各抽 一题.
(1)甲抽到选择题,乙抽到判断题的概率是多少? (2)甲、乙两人中至少有一人抽到选择题的概率是多少? [规范解答] (1)从 10 个题中依次各抽一题有 10×9 种结 果.其中甲抽到选择题,乙抽到判断题有 6×4=24 种结果, ∴所求事件的概率是:P=102×4 9=145.
由于-N 包含的基本事件有(A1,B1,C1),(A2,B1,C1),(A3, B1,C1),事件-N 由 3 个基本事件组成,
高三数学一轮(北师大版)第十一章+计数原理与概率(理)
北师大版 ·高考总复习
路漫漫其修远兮 吾将上下而求索
第十一章
计数原理与概率(理) 概率(文)
第十一章
第四节 随机事件的概率、互斥事件的概率
1 高考目标导航
3 课堂典例讲练
2 课前自主导学
4 课时作业
高考目标导航
考纲要求
1.了解随机事 件发生的不确定 性和频率的稳定 性,了解概率的 意义,了解频率 与概率的区别.
1.在下列六个事件中,随机事件的个数为( )
①如果a,b都是实数,那么a+b=b+a;②从分别标有号
数1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签;③没
有 水 分 , 种 子 发 芽 ; ④ 某 电 话 总 机 在 60s 内 接 到 至 少 10 次 呼
叫;⑤在101kPa下,水的温度达到50℃时沸腾;⑥同性电荷,
6.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为 “抽得红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= ________(结果用最简分数表示).
相互排斥.
A.2
B.3
C.4
D.5
[答案] [解析] 事件.
A ①⑥是必然事件;③⑤是不可能事件;②④随机
2.下列说法正确的是( ) A.某事件发生的频率为P(A)=1.1 B.不可能事件的概率为0,必然事件的概率为1 C.小概率事件就是不可能发生的事件,大概率事件就是 必然发生的事件 D.某事件发生的概率是随着试验次数的变化而变化的 [答案] B [解析] 概率、频率的值不能大于1,故A错;小概率事件 不一定不发生,大概率事件也不一定发生,故C错;概率是频 率的稳定值,不会随试验次数的变化而变化,故D错.
高三数学一轮(北师大版)第十一章+计数原理与概率(理)概率(文):课件+基础达标+专题整合+阶段测试
又 x≤8,x-2≥0,∴7<x≤8,x∈N+,即 x=8.
3.某同学有同样的画册2本,同样的集邮册3本,从中取 出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有
()
A.4种
B.10种
C.18种
D.20种
[答案] B [解析] 可分为两种情况:①画册 2 本,集邮册 2 本,则
不同的赠送方法有 C24=4×2 3=6 种.②画册 1 本,集邮册 3 本,
(3)排列数公式:Amn =_n_(_n_-__1_)_(n_-__2_)_…__(_n_-__m_+__1_)__. (4)全排列:n 个不同的元素全部取出的__排__列____,叫作 n
个___n不_!_同__元_.于素是的排一列个数全公式排写列成,阶A乘nn =的形n·(式n -为1_A)_·nm(_n=_-__n_2-_)n·_!…m__·!2_·,1 这= 里规定 0!=__1__.
则不同的赠送方法有 C14=4 种,∴共有 6+4=10 种.
4.(2014·辽宁高考)6把椅子摆成一排,3人随机就座,任
何两人不相邻的坐法种数为( )
A.144
B.120
C.72
D.24
[答案] D [解析] 就座 3 人占据 3 张椅子,在其余 3 张椅子形成的
四个空位中,任意选择 3 个,插入 3 张坐人的椅子,共有 A34=
2.组合 (1)组合的定义:从 n 个_不__同___的元素中取出 m(m≤n)个元 素为_一__组___叫作从 n 个不同的元素中取出 m(m≤n)个元素的一 个组合. (2)组合数的定义:从 n 个不同的元素中取出 m(m≤n)个元 素的__所__有__组__合__的个数,叫作从 n 个不同的元素中取出 m(m≤n) 个元素的组合数,用 Cnm表示.
北师版高考总复习一轮数学精品课件 第11章计数原理、概率、随机变量及其分布 概率与统计中的综合问题
1 1 3 3
2 1 3 3
3 1 3 1
P(ξ=0)=C3 ( ) = ,P(ξ=1)=C3 ( ) = ,P(ξ=2)=C3 ( ) = ,P(ξ=3)=C3 ( ) = , ....6
2
8
2
8
2
8
2
8
所以 ξ 的分布列为
分
ξ
P
0
1
1
8
2
3
8
3
3
8
1
8
........................................................................................................................... 7 分
(1)设X表示指定的两只小白鼠中分配到对照组的只数,求X的分布列和数
学期望;
关键点:结合题意弄清楚X服从的是超几何分布还是二项分布.
(2)试验结果如下:
对照组的小白鼠体重的增加量从小到大排序为
15.2
18.8 20.2
21.3
22.5 23.2
25.8
26.5 27.5
34.3
34.8 35.6
35.6
C47
C13 C34
P(η=1)=
C47
=
12
C23 C24
,P(η=2)=
35
C47
=
18
C33 C14
,P(η=3)=
35
C47
1
2
=
4
.
35
所以 η 的分布列为
η
P
所以 Eη=0×
北师版高考数学一轮总复习课后习题 第十一章 计数原理、概率、随机变量及其分布 课时规范练50
课时规范练50《素养分级练》P382基础巩固组1.已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则P 可表示坐标平面上第二象限的点的个数为( )A.6B.12C.24D.36答案:A解析:确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.2.如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况的种数为( )A.9B.11C.13D.15答案:C解析:按焊接点脱落的个数分成4类.脱落1个,有1,4,共2种情况;脱落2个,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;脱落3个,有(1,2,3),(1,2,4),(1,3,4),(2,3,4),共4种情况;脱落4个,有(1,2,3,4),共1种情况.由分类加法计数原理,焊接点脱落的不同情况的种数为2+6+4+1=13.故选C.3.(山东济南二模)由1,2,3,4,5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A.60个B.48个C.36个D.24个答案:C解析:先排个位,然后排万位,再排其他位置,所以由1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数共有2×3×A33=36个.4.(广东惠州一模)现有3名学生报名参加校园文化活动的3个项目,每人须报1项且只报1项,则恰有2名学生报同一项目的报名方法有( ) A.36种 B.18种 C.9种 D.6种答案:B解析:第一步,先从3名学生中选2名选报同一项目作为一个整体;第二步:从3个项目中选择2个项目排列即可,故不同的报名方法种数为C32·A32=18.5.(重庆八中高三开学考试)用黑白两种颜色随机地染如图所示表格中5个格子,每个格子染一种颜色,并且从左到右数,不管数到哪个格子,总有黑色格子不少于白色格子的染色方法种数为( )A.6B.10C.16D.20答案:B解析:依题意,第一个格子必须为黑色,则出现从左至右数,不管数到哪个格子,总有黑色格子不少于白色格子包含的情况有:①全染黑色,有1种方法;②第一个格子染黑色,另外四个格子中有1个格子染白色,剩余的都染黑色,有C41=4种方法;③第一个格子染黑色,另外四个格子中有2个格子染白色,剩余的染黑色,符合要求的有C21+C32=5种方法.所以出现从左至右数,不管数到哪个格子,总有黑色格子不少于白色格子的染色方法有1+4+5=10种.6.在一个正六边形的六个区域栽种观赏植物(如图),要求同一块区域种同一种植物,相邻的两块区域种不同的植物.现有3种不同的植物可供选择,则有种栽种方案.答案:66解析:根据题意,分3种情况讨论.①当A,C,E种同一种植物,此时共有3×2×2×2=24种方法;②当A,C,E种2种植物,此时共有C32×A32×2×1×1=36种方法;③当A,C,E种3种植物,此时共有A33×1×1×1=6种方法.则一共有24+36+6=66种栽种方案.7.一个三位数,个位、十位、百位上的数字依次为x,y,z,当且仅当y>x且y>z时,称这样的数为“凸数”(如341),则从集合{1,2,3,4,5}中取出三个不相同的数组成的“凸数”个数为.答案:20解析:由题意可得y只能取3,4,5.当y=3时,凸数有132,231共2个;当y=4时,凸数有142,241,143,341,243,342共6个;当y=5时,凸数有152,251,153,351,154,451,253,352,254,452,354,453共12个.综上,共有20个凸数.综合提升组8.过三棱柱中任意两个顶点连线作直线,在所有这些直线连线中构成异面直线的对数为( )A.18B.30C.36D.54答案:C解析:如图,分以下几类:棱柱侧棱与底面边之间所构成的异面直线有3×2=6对;棱柱侧棱与侧面对角线之间所构成的异面直线有3×2=6对;底面边与侧面对角线之间所构成的异面直线有6×2=12对;底面边与底面边之间所构成的异面直线有3×2=6对;侧面对角线与侧面对角线之间所构成的异面直线有6×2=6对.2所以满足条件的共有6+6+12+6+6=36对.9.已知正整数有序数对(a,b,c,d)满足:①a+b+c+d=12;②|a2-b2|=5.则满足条件的正整数有序数对(a,b,c,d)共有( ) A.24组 B.12组C.9组D.6组答案:B解析:由题意知,a,b,c,d为正整数,故由|a2-b2|=5可得|(a+b)(a-b)|=5,因为|a-b|≥1,故|a+b|≤5,则满足|a2-b2|=5的数为3和2,则有序数对(a,b)可能为(3,2),(2,3),再由a+b+c+d=12可得c+d=7,则(c,d)可能有(1,6),(6,1),(2,5),(5,2),(3,4),(4,3),共6种情况,故满足条件的正整数有序数对(a,b,c,d)共有2×6=12组.创新应用组10.(黑龙江齐齐哈尔模拟)学习涂色能锻炼手眼协调能力,更能提高审美能力.现有四种不同的颜色:湖蓝色、米白色、橄榄绿、薄荷绿,欲给小房子中的四个区域涂色,要求相邻区域不涂同一颜色,且橄榄绿与薄荷绿也不涂在相邻的区域内,则共有种不同的涂色方法.答案:66解析:当选择两种颜色时,因为橄榄绿与薄荷绿不涂在相邻的区域内,所以共有C42-1=5种选法,因此不同的涂色方法有5×2=10种;当选择三种颜色且橄榄绿与薄荷绿都被选中,则不同的涂色方法有2×2×2=8种;当选择三种颜色且橄榄绿与薄荷绿只有一个被选中,则不同的涂色方法有2×3×2×3=36种;当选择四种颜色时,不同的涂色方法有2×2×2+2×2=12种.所以共有10+8+36+12=66种不同的涂色方法.。
北师版高考总复习一轮数学精品课件 第11章计数原理、概率、随机变量及其分布 第3节 二项式定理
.
·x18-4r.由
2 研考点 精准突破
考点一 二项展开式的通项及其应用(多考向探究预测)
考向1求形如(a+b)n(n∈N*)的二项展开式中的特定项(或系数)
1 5
例1(1)(2023·北京,5) (2- ) 的展开式中x的系数为( D )
A.-80
B.-40
C.40
D.80
解析
解得
1 5
(2x- ) 的展开式的通项为
解析 (
2
1 6
( + ) 的展开式中含x3项的系数为30,则实
.
1 6
+ ) 的展开式的通项为
6-2k=2,则 k=2,令 6-2k=3,则
6-k 1 k
Tk+1=C6 x ( ) =C6 x6-2k,k=0,1,2,3,4,5,6,令
3
k= (舍去),所以(ax+1)(
2
项的系数为 aC62 =15a=30,所以 a=2.
2n-4r=0,解得
r= ,又
2
D.7
2 -
Tr+1=C (3 )
1
n-r 2n-4r
=3
C x ,令
2
0≤r≤n,且 r 为整数,所以 n 为 2 的倍数,所以 n=6.
考向2求形如(a+b)m(c+d)n(m,n∈N*)的两个多项式积的展开式问题
例2(1)(2022·新高考Ⅰ,13) 1- (x+y)8的展开式中x2y6的系数为
(x2+x+y)5 的展开式中,x5y2 的系数为C52 C31 =30.
(方法二)(x2+x+y)5 表示 5 个(x2+x+y)之积,所以 x5y2 可从其中 5 个因式中,两个
2018届北师大版高三数学一轮复习练习:第十一章 计数
基础巩固题组(建议用时:30分钟)一、选择题1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有()A.30个B.42个C.36个D.35个解析∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.答案 C2.某校举行乒乓球赛,采用单淘汰制,要从20名选手中决出冠军,应进行比赛的场数为()A.18B.19C.20D.21解析因为每一场比赛都有一名选手被淘汰,即一场比赛对应一个失败者,要决出冠军,就要淘汰19名选手,故应进行19场比赛.答案 B3.(2016·合肥质检)有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则有几种不同的选择方式()A.24B.14C.10D.9解析第一类:一件衬衣,一件裙子搭配一套服装有4×3=12种方式,第二类:选2套连衣裙中的一套服装有2种选法.∴由分类加法计数原理,共有12+2=14(种)选择方式.答案 B4.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为()A.20B.25C.32D.60解析依据题意知,后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.答案 C5.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15D.21解析当x=2时,x≠y,点的个数为1×7=7(个).当x≠2时,由P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=14(个).答案 B6.用10元、5元和1元来支付20元钱的书款,不同的支付方法的种数为()A.3B.5C.9D.12解析只用一种币值有2张10元,4张5元,20张1元,共3种;用两种币值的有1张10元,2张5元;1张10元,10张1元;3张5元,5张1元;2张5元,10张1元;1张5元,15张1元,共5种;用三种币值的有1张10元,1张5元,5张1元,共1种.由分类加法计数原理得,共有3+5+1=9(种). 答案 C7.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个解析将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C12=2种,共有2×2×2×2×2=32个.故选A.答案 A8.(2016·全国Ⅱ卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9解析由题意可知E→F共有6种走法,F→G共有3种走法,由乘法计数原理知,共有6×3=18种走法,故选B.答案 B二、填空题9.(2017·西安质检)如果把个位数是1,且恰有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个(用数字作答).解析当相同的数字不是1时,有C13个;当相同的数字是1时,共有C13C13个,由分类加法计数原理知共有“好数”C13+C13C13=12(个).答案1210.如图所示,在连结正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).解析把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案4011.如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法(用数字作答).解析区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×4×4+5×4×3×3=260种涂色方法.答案26012.有六名同学报名参加三个智力竞赛项目(不一定六名同学都能参加),(1)每人恰好参加一项,每项人数不限,则有________种不同的报名方法;(2)每项限报一人,且每人至多参加一项,则有________种不同的报名方法;(3)每项限报一人,但每人参加的项目不限,则有________种不同的报名方法(用数字作答).解析(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有报名方法36=729(种).(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).答案(1)729(2)120(3)216能力提升题组(建议用时:10分钟)13.(2017·衡水调研)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279解析0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).答案 B14.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对解析与正方体的一个面上的一条对角线成60°角的对角线有8条,故共有8对.正方体的12条面对角线共有12×8=96(对),且每对均重复计算一次,故共有962=48(对).答案 C15.一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有________种(用数字作答).解析根据题意,从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法.由分步乘法计数原理知共有6×4×2=48种不同游览线路.答案4816.(2016.汉中模拟)回文数是指从左到右与从右到左读都一样的正整数,如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,...,99.3位回文数有90个:101,111,121,...,191,202, (999)则(1)4位回文数有________个;(2)2n+1(n∈N*)位回文数有________个.解析(1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法,中间两位一样,有10种填法,共计9×10=90(种)填法,即4位回文数有90个.(2)根据回文数的定义,此问题也可以转化成填方格.结合计数原理,知有9×10n种填法.答案(1)90(2)9×10n。
2018届北师大版高三数学一轮复习练习:第十一章 计数原理、概率、随机变量及其分布 第8讲 含解析 精品
基础巩固题组 (建议用时:40分钟)一、选择题1.(2014·全国Ⅱ卷)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8B.0.75C.0.6D.0.45解析 记事件A 表示“一天的空气质量为优良”,事件B 表示“随后一天的空气质量为优良”,P (A )=0.75,P (AB )=0.6.由条件概率,得P (B |A )=P (AB )P (A )=0.60.75=0.8. 答案 A2.(2017·衡水模拟)先后抛掷硬币三次,则至少一次正面朝上的概率是( ) A.18B.38C.58D.78解析 三次均反面朝上的概率是⎝ ⎛⎭⎪⎫123=18,所以至少一次正面朝上的概率是1-18=78. 答案 D3.(2016·青岛一模)设随机变量X 服从正态分布N (1,σ2),则函数f (x )=x 2+2x +X 不存在零点的概率为( ) A.14B.13C.12D.23解析 ∵函数f (x )=x 2+2x +X 不存在零点,∴Δ=4-4X <0,∴X >1,∵X ~N (1,σ2),∴P (X >1)=12,故选C. 答案 C4.(2017·上饶模拟)某居民小区有两个相互独立的安全防范系统A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为18和p ,若在任意时刻恰有一个系统不发生故障的概率为940,则p =( )A.110B.215C.16D.15解析 由题意得18(1-p )+⎝ ⎛⎭⎪⎫1-18p =940,∴p =215,故选B.答案 B5.(2016·天津南开调研)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( ) A.C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B.C 912⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫58238 C.C 911⎝ ⎛⎭⎪⎫582⎝ ⎛⎭⎪⎫382D.C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582 解析 由题意知第12次取到红球,前11次中恰有9次红球2次白球,由于每次取到红球的概率为38, 所以P (X =12)=C 911⎝ ⎛⎭⎪⎫389×⎝ ⎛⎭⎪⎫582×38. 答案 D 二、填空题6.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析 设种子发芽为事件A ,种子成长为幼苗为事件B (发芽又成活为幼苗). 依题意P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.8×0.9=0.72,即这粒种子能成长为幼苗的概率为0.72. 答案 0.727.假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的随机变量,记一天中从甲地去乙地的旅客人数800<X ≤900的概率为p 0,则p 0=________.解析 由X ~N (800,502),知μ=800,σ=50, 又P (700<X ≤900)=0.954 4,则P (800<X ≤900)=12×0.954 4=0.477 2.答案 0.477 28.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.解析 ∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59,解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927. 答案 1927 三、解答题9.(2015·湖南卷)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列.解 (1)记事件A 1为“从甲箱中摸出的1个球是红球”, A 2为“从乙箱中摸出的1个球是红球”, B 为“顾客抽奖1次能获奖”, 则B 表示“顾客抽奖1次没有获奖”.由题意A 1与A 2相互独立,则A 1与A 2相互独立,且B =A 1·A 2, 因为P (A 1)=410=25,P (A 2)=510=12,所以P (B )=P (A 1·A 2)=⎝ ⎛⎭⎪⎫1-25·⎝ ⎛⎭⎪⎫1-12=310,故所求事件的概率P (B )=1-P (B )=1-310=710. (2)设“顾客抽奖一次获得一等奖”为事件C , 由P (C )=P (A 1·A 2) =P (A 1)·P (A 2)=15,顾客抽奖3次可视为3次独立重复试验,则X ~B ⎝ ⎛⎭⎪⎫3,15,于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125, P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为10.复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析甲、乙、丙三位同学通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响.(1)求甲、乙、丙三位同学中恰好有一人通过复检的概率; (2)设只要通过后三关就可以被录取,求录取人数X 的分布列.解 (1)设A ,B ,C 分别表示事件“甲、乙、丙通过复检”,则所求概率P =P (A B C )+P (A B C )+P (A B C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275. (2)甲被录取的概率为P 甲=0.5×0.6=0.3,同理P乙=0.6×0.5=0.3,P丙=0.75×0.4=0.3.∴甲、乙、丙每位同学被录取的概率均为0.3,故可看成是独立重复试验,即X ~B (3,0.3),X 的可能取值为0,1,2,3,其中P (X =k )=C k 3(0.3)k·(1-0.3)3-k .故P (X =0)=C 03×0.30×(1-0.3)3=0.343, P (X =1)=C 13×0.3×(1-0.3)2=0.441, P (X =2)=C 23×0.32×(1-0.3)=0.189, P (X =3)=C 33×0.33=0.027,故X 的分布列为(建议用时:25分钟)11.(2016·郑州二模)先后掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为“x +y 为偶数”,事件B 为“x ≠y ”,则概率P (B |A )=( ) A.12B.14C.13D.23解析 若x +y 为偶数,则x ,y 两数均为奇数或均为偶数.故P (A )=2×3×36×6=12,又A ,B 同时发生,基本事件一共有2×3×3-6=12个,∴P (AB )=126×6=13,∴P (B |A )=P (AB )P (A )=1312=23.答案 D12.(2017·长沙模拟)排球比赛的规则是5局3胜制(无平局),甲在每局比赛获胜的概率都为23,前2局中乙队以2∶0领先,则最后乙队获胜的概率是( ) A.49B.827C.1927D.4081解析 乙队3∶0获胜的概率为13,乙队3∶1获胜的概率为23×13=29,乙队3∶2获胜的概率为⎝ ⎛⎭⎪⎫232×13=427.∴最后乙队获胜的概率为P =13+29+427=1927,故选C. 答案 C13.某一部件由三个电子元件按如图所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.解析 设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000小时的事件为(AB +AB +AB )C ,∴该部件的使用寿命超过1 000小时的概率 P =⎝ ⎛⎭⎪⎫12×12+12×12+12×12×12=38.答案 3814.(2016·山东卷节选)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星对”得3分;如果只有一人猜对,则“星对”得1分;如果两人都没猜对,则“星对”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求: (1)“星队”至少猜对3个成语的概率; (2)“星队”两轮得分之和X 的分布列.解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D . 由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D ) =P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+ P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝ ⎛⎭⎪⎫14×23×34×23+34×13×34×23=23.所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144, P (X =3)=34×23×14×13+14×13×34×23=12144=112, P (X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512,P (X =6)=34×23×34×23=36144=14. 可得随机变量X 的分布列为。
2018届北师大版高三数学一轮复习练习:第十一章 计数
基础巩固题组(建议用时:30分钟)一、选择题1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是()A.9B.10C.18D.20解析由于lg a-lg b=lg ab(a>0,b>0),∴lg ab有多少个不同的值,只需看ab不同值的个数.从1,3,5,7,9中任取两个作为ab有A25种,又13与39相同,31与93相同,∴lg a-lg b的不同值的个数有A25-2=18.答案 C2.(2016·四川卷)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.72解析由题意,可知个位可以从1,3,5中任选一个,有A13种方法,其他数位上的数可以从剩下的4个数字中任选,进行全排列,有A44种方法,所以奇数的个数为A13A44=3×4×3×2×1=72,故选D.答案 D3.有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次.A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名.请你分析一下,这五位学生的名次排列的种数为() A.6 B.18 C.20 D.24解析由题意知,名次排列的种数为C13A33=18.答案 B4.10名同学合影,站成了前排3人,后排7人,现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为()A.C27A55B.C27A22C.C27A25D.C27A35解析首先从后排的7人中抽2人,有C27种方法;再把2个人在5个位置中选2个位置进行排列有A25种.由分步乘法计数原理知不同调整方法种数是C27A25. 答案 C5.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种解析分两类,第一类:甲排在第一位时,丙排在最后一位,中间4个节目无限制条件,有A44种排法;第二类:甲排在第二位时,从甲、乙、丙之外的3个节目中选1个节目排在第一位有C13种排法,其他3个节目有A33种排法,故有C13A33种排法.依分类加法计数原理,知共有A44+C13A33=42种编排方案.答案 B6.(2016·东北三省四市联考)甲、乙两人要在一排8个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则有多少种坐法()A.10B.16C.20D.24解析一排共有8个座位,现有两人就坐,故有6个空座.∵要求每人左右均有空座,∴在6个空座的中间5个空中插入2个座位让两人就坐,即有A25=20种坐法.答案 C7.(2017·安庆模拟)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168解析法一先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品中2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个人,其形式为“□小品1□相声□小品2□”.有A22A34=48种安排方法,故共有36+36+48=120种安排方法.法二先不考虑小品类节目是否相邻,保证歌舞类节目不相邻的排法共有A33·A34=144(种),再剔除小品类节目相邻的情况,共有A33·A22·A22=24(种),于是符合题意的排法共有144-24=120(种).答案 B8.(2017·青岛模拟)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种解析一个路口有3人的分配方法有C13C22A33(种);两个路口各有2人的分配方法有C23C22A33(种).∴由分类加法计数原理,甲、乙在同一路口的分配方案为C13C22A33+C23C22A33=36(种).答案 C二、填空题9.7位身高均不等的同学排成一排照相,要求中间最高,依次往两端身高逐渐降低,共有________种排法(用数字作答).解析先排最中间位置有一种排法,再排左边3个位置,由于顺序一定,共有C36种排法,再排剩下右边三个位置,共一种排法,所以排法种数为C36=20(种). 答案2010.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种(用数字作答).解析把g、o、o、d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共一种排法,所以总的排法种数为A24=12(种).其中正确的有一种,所以错误的共A24-1=12-1=11(种).答案1111.(2016·呼和浩特二模)从5台甲型和4台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各1台,则不同的取法共有________种(用数字作答). 解析甲型2台乙型1台或甲型1台乙型2台,故共有C25C14+C15C24=70种方法.答案7012.(2017·淮北一模)寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有________种(用数字作答).解析设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符的坐法,设E同学坐在自己的座位上,则其他四位都不坐自己的座位,则有:BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA 共9种坐法,则恰有一人坐对与自己车票相等座位的坐法有9×5=45种坐法. 答案45能力提升题组(建议用时:20分钟)13.甲、乙等5人在9月3号参加了纪念抗日战争胜利阅兵庆典后,在天安门广场排成一排拍照留念,甲和乙必须相邻且都不站在两端的排法有()A.12种B.24种C.48种D.120种解析甲乙相邻,将甲乙捆绑在一起看作一个元素,共有A44A22种排法,甲乙相邻且在两端有C12A33A22种排法,故甲乙相邻且都不站在两端的排法有A44A22-C12A33A22=24(种).答案 B14.设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为() A.60 B.90C.120D.130解析因为x i∈{-1,0,1},i=1,2,3,4,5,且1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3,所以x i中至少两个为0,至多四个为0.①x i(i=1,2,3,4,5)中4个0,1个为-1或1,A有2C15个元素;②x i中3个0,2个为-1或1,A有C25×2×2=40个元素;③x i中2个0,3个为-1或1,A有C35×2×2×2=80个元素;从而,集合A中共有2C15+40+80=130个元素.答案 D15.(2017·黄冈模拟)在某班进行的演进比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为________(用数字作答).解析若第一个出场是男生,则第二个出场的是女生,以后的顺序任意排,方法有C12C13A33=36种;若第一个出场的是女生(不是女生甲),则剩余的2个女生排列好,2个男生插空,方法有C12A22A23=24种.故所有出场顺序的排法种数为36+24=60.答案6016.(1)现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,问名额分配的方法共有多少种?(2)已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,那么最多可确定多少个不同的点?解(1)法一每个学校至少一个名额,则分去7个,剩余3个名额分到7所学校的方法种数就是要求的分配方法种数.分类:若3个名额分到一所学校有7种方法;若分配到2所学校有C27×2=42(种);若分配到3所学校有C37=35(种).∴共有7+42+35=84(种)方法.法二10个元素之间有9个间隔,要求分成7份,相当于用6块档板插在9个间隔中,共有C69=84种不同方法.所以名额分配的方法共有84种.(2)①从集合B中取元素2时,确定C13A33个点.②当从集合B中取元素1,且从C中取元素1,则确定的不同点有C13×1=C13.③当从B中取元素1,且从C中取出元素3或4,则确定的不同点有C12A33个. ∴由分类加法计数原理,共确定C13A33+C13+C12A33=33(个)不同点.。
2018届北师大版高三数学一轮复习练习第十一章计数原理、概率、随机变量及其分布第6讲Word版含解析
基础巩固题组 (建议用时:30分钟)一、选择题1.在区间[-2,3]上随机选取一个数x ,即x ≤1,故所求的概率为( ) A.45B.35C.25D.15解析 在区间[-2,3]上随机选取一个数x ,且x ≤1,即-2≤x ≤1,故所求的概率为P =35. 答案 B2.如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机扔一粒豆子,它落在阴影区域内的概率是13,则阴影部分的面积是( )A.π3B.πC.2πD.3π解析 设阴影部分的面积为S ,且圆的面积S ′=π·32=9π.由几何概型的概率,得S S ′=13,则S =3π.答案 D3.(2015·山东卷)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( ) A.34B.23C.13D.14解析 由-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1,得12≤x +12≤2,解得0≤x ≤32,所以事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为322=34,故选A. 答案 A4.(2017·陕西师大附中检测)若将一个质点随机投入如图所示的长方形ABCD中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8解析 设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积=12π×121×2=π4. 答案 B5.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.π12B.1-π12C.π6D.1-π6解析 设“点P 到点O 的距离大于1”为事件A .则事件A 发生时,点P 位于以点O 为球心,以1为半径的半球的外部. ∴V 正方体=23=8,V 半球=43π·13×12=23π.∴P (A )=23-23π23=1-π12.答案 B6.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( ) A.16B.13C.12D.23解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B ,E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含C ,F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12. 答案 C7.设不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4B.π-22C.π6D.4-π4解析 如图所示,正方形OABC 及其内部为不等式组表示的区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到原点距离大于2的区域,易知该阴影部分的面积为4-π,因此满足条件的概率是4-π4.故选D.答案 D8.(2017·华师附中联考)在区间[0,4]上随机取两个实数x ,y ,使得x +2y ≤8的概率为( ) A.14B.316C.916D.34 解析 由x ,y ∈[0,4]知(x ,y )构成的区域是边长为4的正方形及其内部,其中满足x +2y ≤8的区域为如图所示的阴影部分. 易知A (4,2),S 正方形=16, S 阴影=(2+4)×42=12.故“使得x +2y ≤8”的概率P =S 阴影S 正方形=34.答案 D9.已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P -ABC <12V S -ABC 的概率是( ) A.78B.34C.12D.14解析 当点P 到底面ABC 的距离小于32时, V P -ABC <12V S -ABC .由几何概型知,所求概率为P =1-⎝ ⎛⎭⎪⎫123=78.答案 A10.设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( )A.34+12π B.12+1πC.12-1πD.14-12π解析 因为复数z =(x -1)+y i(x ,y ∈R )且|z |≤1,所以|z |=(x -1)2+y 2≤1,即(x -1)2+y 2≤1,即点(x ,y )在以(1,0)为圆心、1为半径的圆及其内部,而y ≥x 表示直线y =x 左上方的部分(图中阴影弓形),所以所求概率为弓形的面积与圆的面积之比,即P =14·π·12-12×1×1π·12=14-12π. 答案 D 二、填空题11.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.解析 由|x |≤m ,得-m ≤x ≤m .当m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去. 当2<m <4时,由题意得m -(-2)6=56,解得m =3. 答案 312.如图,在长方体ABCD -A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A -A 1BD 内的概率为________. 解析 因为V A -A 1BD =V A 1-ABD =13AA 1×S △ABD =16×AA 1×S 矩形ABCD=16V长方体,故所求概率为V A -A 1BD V 长方体=16.答案 1613.(2016·山东卷)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.解析 直线y =kx 与圆(x -5)2+y 2=9相交的充要条件是圆心(5,0)到直线y =kx 的距离小于3.则|5k -0|k 2+1<3,解之得-34<k <34,故所求事件的概率P =34-⎝ ⎛⎭⎪⎫-341-(-1)=34.答案 3414.(2017·唐山模拟)如图,将半径为1的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为________.解析 顺次连接星形的四个顶点,则星形区域的面积等于(2)2-4⎝ ⎛⎭⎪⎫14×π×12-12×12=4-π,又因为圆的面积等于π×12=π,因此所求的概率等于4-ππ=4π-1.答案4π-1 能力提升题组 (建议用时:25分钟)15.在区间[-1,4]内取一个数x ,则2x -x 2≥14的概率是( ) A.12B.13C.25D.35解析 由2x -x 2≥14,得-1≤x ≤2.又-1≤x ≤4. ∴所求事件的概率P =2-(-1)4-(-1)=35.答案 D16.如图,“天宫一号”运行的轨迹是如图的两个类同心圆,小圆的半径为2 km ,大圆的半径为4 km ,卫星P 在圆环内无规则地自由运动,运行过程中,则点P 与点O 的距离小于3 km 的概率为( ) A.112B.512C.13D.15解析 根据几何概型公式,小于3 km 的圆环面积为π(32-22)=5π;圆环总面积为π(42-22)=12π,所以点P 与点O 的距离小于3 km 的概率为P (A )=5π12π=512. 答案 B17.已知平面区域D ={(x ,y )|-1≤x ≤1,-1≤y ≤1},在区域D 内任取一点,则取到的点位于直线y =kx (k ∈R )下方的概率为( ) A.12B.13C.23D.34解析 由题设知,区域D 是以原点为中心的正方形,根据图形的对称性知,直线y =kx 将其面积平分,如图,故所求概率为12.答案 A18.(2017·合肥质检)在区间[0,π]上随机取一个实数x ,使得sin x ∈⎣⎢⎡⎦⎥⎤0,12的概率为( ) A.1πB.2πC.13D.23解析 由0≤sin x ≤12,且x ∈[0,π], 解之得x ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤56π,π.故所求事件的概率P =⎝ ⎛⎭⎪⎫π-56π+⎝ ⎛⎭⎪⎫π6-0π-0=13.答案 C19.(2017·成都诊断)如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形,直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为( ) A.117B.217C.317D.417解析 ∵大正方形的面积是34,∴大正方形的边长是34,由直角三角形的较短边长为3,得四个全等直角三角形的直角边分别是5和3,则小正方形边长为2,面积为4,∴小花朵落在小正方形内的概率为P =434=217. 答案 B20.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.23B.13C.89D.π4解析 V 圆柱=2π,V 半球=12×43π×13=23π,V 半球V 圆柱=13,故点P 到O 的距离大于1的概率为23. 答案 A21.(2015·湖北卷)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A.p 1<p 2<12 B.p 2<12<p 1 C.12<p 2<p 1D.p 1<12<p 2解析 (x ,y )构成的区域是边长为1的正方形及其内部,其中满足x +y ≤12的区域如图1中阴影部分所示,所以p 1=12×12×121×1=18,满足xy ≤12的区域如图2中阴影部分所示,所以p 2=S 1+S 21×1=12+S 21>12,所以p 1<12<p 2,故选D.答案 D22.在区间[-π,π]内随机取出两个数分别记为a ,b ,则函数f (x )=x 2+2ax -b 2+π2有零点的概率为( ) A.1-π8B.1-π4C.1-π2D.1-3π4解析 由函数f (x )=x 2+2ax -b 2+π2有零点,可得Δ=(2a 2)-4(-b 2+π2)≥0,整理得a 2+b 2≥π2,如图所示,(a ,b )可看成坐标平面上的点,试验的全部结果构成的区域为Ω={(a ,b )|-π≤a ≤π,-π≤b ≤π},其面积S Ω=(2π)2=4π2. 事件A 表示函数f (x )有零点,所构成的区域为M ={(a ,b )|a 2+b 2≥π2},即图中阴影部分,其面积为S M =4π2-π3,故P (A )=S M S Ω=4π2-π34π2=1-π4. 答案 B23.(2017·安徽江南名校联考)AB 是半径为1的圆的直径,M 为直径AB 上任意一点,过点M 作垂直于直径AB 的弦,则弦长大于3的概率是________. 解析 依题意知,当相应的弦长大于3时,圆心到弦的距离小于12-⎝ ⎛⎭⎪⎫322=12,因此相应的点M 应位于线段AB 上与圆心的距离小于12的地方,所求的概率等于12. 答案 1224.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为________.解析 由已知条件,可知蜜蜂只能在一个棱长为1的小正方体内飞行,结合几何概型,可得蜜蜂“安全飞行”的概率为P =1333=127. 答案 12725.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.解析 ∵去看电影的概率P 1=π×12-π×(12)2π×12=34, 去打篮球的概率P 2=π×(14)2π×12=116, ∴不在家看书的概率为P =34+116=1316. 答案 131626.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为________.解析 由0<y <2ax -x 2(a >0). 得(x -a )2+y 2<a 2. 因此半圆域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4”,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa 2=12+1π.答案 12+1π。
北师版高考数学一轮总复习课后习题 第十一章 计数原理、概率、随机变量及其分布 课时规范练56
课时规范练56《素养分级练》P3851.(山东泰安三模)已知随机变量X 服从正态分布N(3,σ2),若P(X<2)·P(X>4)=136,则P(2<X<3)=( )A.13B.14C.16D.19答案:A解析:因为随机变量X 服从正态分布N(3,σ2),由对称性可知,P(X<2)=P(X>4),又P(X<2)·P(X>4)=136,所以P(X<2)=P(X>4)=16,故P(2<X<3)=1-P (X<2)-P (X>4)2=1-16-162=13.2.(山东济南历城二中检测)从一批含有13件正品,2件次品的产品中不放回地抽3次,每次抽取1件,设抽到的次品数为ξ,则E(5ξ+1)=( ) A.2 B.1 C.3 D.4答案:C解析:ξ的可能取值为0,1,2. P(ξ=0)=C 133C 153=2235, P(ξ=1)=C 21C 132C 153=1235, P(ξ=2)=C 22C 131C 153=135.∴ξ的分布列为于是E(ξ)=0×2235+1×1235+2×135=25,故E(5ξ+1)=5E(ξ)+1=5×25+1=3.3.(东北师大附中高三开学考试)下图是一块高尔顿板示意图.在一块木块上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为1,2,3,4,5,6,用X 表示小球落入格子的号码,假定底部6个格子足够长,投入160粒小球,则落入3号格的小球大约有 粒.答案:50解析:设A=“向右下落”,则A =“向左下落”,且P(A)=P(A )=12,设Y=X-1,∵小球下落过程中共碰撞5次, ∴Y~B 5,12,∴P(Y=k)=P(X=k+1)=C 5k12k1-125-k=C 5k 125,k=0,1,2,3,4,5,∴P(X=3)=C52125=516,故投入160粒小球,则落入3号格的小球大约有160×516=50粒.4.(广东广州一模)某从事智能教育技术研发的科技公司开发了一个“AI作业”项目,并且在甲、乙两个学校的高一学生中做用户测试.经过一个阶段的试用,为了解“AI作业”对学生学习的促进情况,该公司随机抽取了200名学生,对他们的“向量数量积”知识点掌握的情况进行调查,样本调查结果如下表:假设每位学生是否掌握“向量数量积”知识点相互独立.(1)从样本中没有掌握“向量数量积”知识点的学生中随机抽取2名学生,用ξ表示抽取的2名学生中使用“AI作业”的人数,求ξ的分布列和数学期望;(2)用样本频率估计概率,从甲校高一学生中抽取一名使用“AI作业”的学生和一名不使用“AI作业”的学生,用“X=1”表示该名使用“AI作业”的学生基本掌握了“向量数量积”知识点,用“X=0”表示该名使用“AI作业”的学生没有掌握“向量数量积”知识点,用“Y=1”表示该名不使用“AI 作业”的学生基本掌握了“向量数量积”知识点,用“Y=0”表示该名不使用“AI 作业”的学生没有掌握“向量数量积”知识点.比较方差D(X)和D(Y)的大小关系. 解:(1)依题意,ξ=0,1,2, 且P(ξ=0)=C 200C 402C 602=2659,P(ξ=1)=C 201C 401C 602=80177, P(ξ=2)=C 202C 400C 602=19177,所以ξ的分布列为故E(ξ)=1×80177+2×19177=23.(2)由题意,易知X 服从二项分布X~B 1,45,D(X)=45×15=425,Y 服从二项分布Y~B 1,23,D(Y)=23×13=29,故D(X)<D(Y).5.(福建厦门模拟)某公司全年圆满完成预定的生产任务,为答谢各位员工一年来的锐意进取和辛勤努力,公司决定在联欢晚会后,拟通过摸球兑奖的方式对500位员工进行奖励,规定:每位员工从一个装有4张奖券的箱子中,一次随机摸出2张奖券,奖券上所标的面值之和就是该员工所获得的奖励额.(1)若箱子中所装的4张奖券中有1张面值为80元,其余3张均为40元,试比较员工获得80元奖励与获得120元奖励的概率的大小;(2)公司对奖励总额的预算是6万元,预定箱子中所装的4张奖券有两种方案:第一种方案是2张面值20元和2张面值100元;第二种方案是2张面值40元和2张面值80元.为了使员工得到的奖励总额尽可能地符合公司的预算且每位员工所获得的奖励额相对均衡,请问选择哪一种方案比较好?并说明理由.解:(1)用X 表示员工所获得的奖励额. 因为P(X=80)=C 32C 42=12,P(X=120)=C 31C 11C 42=12,所以P(X=80)=P(X=120).故员工获得80元奖励与获得120元奖励的概率相等. (2)第一种方案中4张奖券的面值为20,20,100,100, 设员工所获得的奖励额为X 1,则X 1的分布列为所以X 1的数学期望为E(X 1)=40×16+120×23+200×16=120,X 1的方差为D(X 1)=(40-120)2×16+(120-120)2×23+(200-120)2×16=64003;第二种方案中4张奖券的面值为40,40,80,80,设员工所获得的奖励额为X 2,则X 2的分布列为所以X 2的数学期望为E(X 2)=80×16+120×23+160×16=120,X 2的方差为D(X 2)=(80-120)2×16+(120-120)2×23+(160-120)2×16=16003,又因为500E(X 1)=500E(X 2)=60000(元),所以两种方案奖励额的数学期望都符合要求,但第二种方案的方差比第一种方案的小,故应选择第二种方案. 6.(山东德州模拟)教育部门最近出台了“双减”政策,即有效减轻义务教育阶段学生过重作业负担和校外培训负担,持续规范校外培训(包括线上培训和线下培训).“双减”政策的出台对校外的培训机构经济效益产生了严重影响.某大型校外培训机构为了规避风险,寻求发展制定科学方案,工作人员对的前200名报名学员消费等情况进行了统计整理,其中消费情况数据如表.消费金额/千[3,5) [5,7) [7,9) [9,11) [11,13)[13,15](1)该大型校外培训机构转型方案之一是将文化课主阵地辅导培训向音体美等兴趣爱好培训转移,为了深入了解当前学生的兴趣爱好,工作人员利用分层随机抽样的方法在消费金额为[9,11)和[11,13)的学员中抽取了5人,再从这5人中选取3人进行有奖问卷调查,求抽取的3人中消费金额为[11,13)的人数的分布列和数学期望;(2)以频率估计概率,假设该大型校外培训机构所有学员的消费可视为服从正态分布N(μ,σ2),μ,σ2分别为报名前200名学员消费的平均数x以及方差s2(同一区间的数据用区间的中点值替代).(ⅰ)试估计该机构学员消费金额为[5.2,13.6)的概率(保留一位小数); (ⅱ)若从该机构所有学员中随机抽取4人,记消费金额为[5.2,13.6)的人数为η,求η的分布列及方差.参考数据:√2≈1.4;若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ≤μ+σ)≈0.682 6,P(μ-2σ<ξ≤μ+2σ)≈0.9544,P(μ-3σ<ξ≤μ+3σ)≈0.997 4.×5=2,消费解:(1)由题意得,抽中的5人中消费金额为[9,11)的人数为25×5=3,设消费金额为[11,13)的人数为X,则金额为[11,13)的人数为35X=1,2,3,所以P(X=1)=C 22C 31C 53=310,P(X=2)=C 21C 32C 53=35,P(X=3)=C 20C 33C 53=110,X 的分布列为则E(X)=1×310+2×35+3×110=95.(2)(ⅰ)由题意得μ=x =4×0.15+6×0.25+8×0.3+10×0.1+12×0.15+14×0.05=8,σ2=(4-8)2×0.15+(6-8)2×0.25+(10-8)2×0.1+(12-8)2×0.15+(14-8)2×0.05=8,所以σ=√8=2√2≈2.8,所以P(5.2≤ξ<13.6)≈P(8-2.8≤ξ<8+2×2.8)≈0.8. (ⅱ)由题意及(ⅰ)得η~B 4,45,所以P(η=0)=C 445154=1625,P(η=1)=C 4145153=16625,P(η=2)=C 42452152=96625,P(η=3)=C 4345315=256625,P(η=4)=C 4445415=256625,η的分布列为D(η)=np(1-p)=4×45×15=1625.。
北师版高考数学一轮总复习课后习题 第十一章 计数原理、概率、随机变量及其分布 课时规范练54
课时规范练54《素养分级练》P384基础巩固组1.某次期中考试数学试卷的第7,8两道单选题难度系数较小,甲同学答对第7道题的概率为23,连续答对两道题的概率为12.用事件A 表示“甲同学答对第7道题”,事件B 表示“甲同学答对第8道题”,则P(B|A)=( ) A.13B.12C.23D.34答案:D解析:由题可知P(A)=23,P(AB)=12.故P(B|A)=P (AB )P (A )=34.2.(河南濮阳一模)已知甲、乙两人进行羽毛球比赛,比赛规则是3局2胜制,即先赢2局者胜.甲每局获胜的概率为34,则本次比赛甲获胜的概率为( ) A.2132B.2732C.1516D.1316答案:B解析:本次比赛甲获胜有3种可能:①第1,3局甲胜,第2局乙胜;②第2,3局甲胜,第1局乙胜;③第1,2局甲胜.则本次比赛甲获胜的概率为P=34×14×34+14×34×34+34×34=2732.3.(广东韶关二模)某一部件由三个电子元件按下图方式连接而成,元件1和元件2同时正常工作,或元件3正常工作,则部件正常工作,设三个电子元件正常工作的概率均为34,且各个元件能否正常工作相互独立,那么该部件正常工作的概率为( )A.764B.1532C.2732D.5764答案:D解析:讨论元件3正常与不正常,第一类,元件3正常,上部分正常或不正常都不影响该部件正常工作,则正常工作的概率为34×1=34.第二类,元件3不正常,上部分必须正常,则正常工作的概率为14×34×34=964,故概率为34+964=5764.4.(新高考Ⅰ,8)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立答案:B解析:由已知得P(甲)=16,P(乙)=16,P(丙)=56×6=536,P(丁)=66×6=16,P(甲丙)=0,P(甲丁)=16×6=136,P(乙丙)=16×6=136,P(丙丁)=0.由于P(甲丁)=P(甲)·P(丁)=136,根据相互独立事件的性质,知事件甲与丁相互独立,故选B.5.(多选)(山东潍坊模拟)已知事件A,B 满足A ⊆B,且P(B)=0.5,则一定有( )A.P(A B)>0.5B.P(B |A)<0.5C.P(A B )<0.25D.P(A|B)>0.5 答案:BC解析:对于A,因为A ⊆B,所以A B ⊆B,所以P(A B)≤P(B)=0.5,故A 错误;对于B,因为A ⊆B,所以A∩B =⌀,所以P(B |A)=P (BA )P (A )=0,故B 正确;对于C,因为A ⊆B,所以A∩B =⌀,所以P(A B )=0,故C 正确;对于D,因为A ⊆B,所以A∩B=A,所以P(A∩B)=P(A),若A=⌀,则P(A|B)=P (AB )P (B )=0,故D 错误.6.(山东威海三模)设随机事件A,B,已知P(A)=0.4,P(B|A)=0.3,P(B|A )=0.2,则P(AB)= ,P(B)= .答案:0.12 0.24 解析:P(B|A)=P (AB )P (A )=0.3⇒P(AB)=0.3P(A)=0.3×0.4=0.12,P(B|A )=(AB P (A )=0.2⇒P(A B)=0.2P(A )=0.2×(1-0.4)=0.12,P(B)=P(AB)+P(A B)=0.12+0.12=0.24.综合提升组7.(山东淄博三模)甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱,分别以A 1,A 2和A 3表示由甲箱取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱取出的球是红球的事件,则下列结论正确的是( )A.事件B 与事件A i (i=1,2,3)相互独立B.P(A 1B)=522C.P(B)=25D.P(A 2|B)=845答案:BD解析:由题意P(A 1)=12,P(A 2)=15,P(A 3)=310,若A 1发生,此时乙袋有5个红球,3个白球和3个黑球,则P(B|A 1)=511,若A 2发生,此时乙袋有4个红球,4个白球和3个黑球,则P(B|A 2)=411,若A 3发生,此时乙袋有4个红球,3个白球和4个黑球,则P(B|A 3)=411,所以P(A 1B)=P(B|A 1)P(A 1)=522,B 正确;P(A 2B)=P(B|A 2)P(A 2)=455,P(A 3B)=P(B|A 3)P(A 3)=655,P(B)=P(B|A 1)P(A 1)+P(B|A 2)P(A 2)+P(B|A 3)P(A 3)=922,C 错误;则P(A 1)P(B)≠P(A 1B),P(A 2)P(B)≠P(A 2B),P(A 3)P(B)≠P(A 3B),A 错误;P(A 2|B)=P (A 2B )P (B )=P (B |A 2)P (A 2)P (B )=845,D 正确.故选BD.创新应用组8.(山东日照三模)若将整个样本空间想象成一个1×1的正方形,任何事件都对应样本空间的一个子集,且事件发生的概率对应子集的面积.则如图所示的涂色部分的面积表示( )A.事件A 发生的概率B.事件B 发生的概率C.事件B 不发生条件下事件A 发生的概率D.事件A,B 同时发生的概率 答案:A解析:由题意可得,如图所示的涂色部分的面积为P(A|B)P(B)+[1-P(B)]P(A|B)=P(AB)+P(B)P(A|B)=P(AB)+P(A B)=P(A).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础巩固题组 (建议用时:40分钟)
一、选择题
1.某射手射击所得环数X 的分布列为
A.0.28
B.0.88
C.0.79
D.0.51
解析 P (X >7)=P (X =8)+P (X =9)+P (X =10) =0.28+0.29+0.22=0.79. 答案 C
2.设X 是一个离散型随机变量,其分布列为:
则q 的值为( ) A.1 B.32±336 C.32-336
D.32+336 解析 由分布列的性质知⎩⎪⎨⎪⎧2-3q ≥0,q 2
≥0,
13+2-3q +q 2
=1,
解得q =32-33
6. 答案 C
3.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( ) A.0
B.12
C.13
D.23
解析由已知得X的所有可能取值为0,1,
且P(X=1)=2P(X=0),由P(X=1)+P(X=0)=1,
得P(X=0)=1
3.
答案 C
4.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是()
A.ξ=4
B.ξ=5
C.ξ=6
D.ξ≤5
解析“放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6. 答案 C
5.从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是()
A.4
35 B.
6
35 C.
12
35 D.
36
343
解析如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问
题,故所求概率为P=C23C14
C37=12 35.
答案 C
二、填空题
6.设离散型随机变量X的分布列为
若随机变量Y=|X
解析由分布列的性质,知
0.2+0.1+0.1+0.3+m=1,∴m=0.3.
由Y=2,即|X-2|=2,得X=4或X=0,∴P(Y=2)=P(X=4或X=0)
=P(X=4)+P(X=0)
=0.3+0.2=0.5.
答案0.5
7. (2017·九江调研)袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X,则P(X≤6)=________.
解析P(X≤6)=P(取到3只红球1只黑球)+P(取到4只红球)=C34C13
C47
+C44
C47
=13
35.
答案13 35
8.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为________.
解析η的所有可能值为0,1,2.
P(η=0)=C11C11
C12C12
=1
4
,
P(η=1)=C11C11×2
C12C12
=1
2
,
P(η=2)=C11C11
C12C12
=1
4.
∴η的分布列为
答案
三、解答题
9.(2017·合肥模拟)某高校一专业在一次自主招生中,对20名已经选拔入围的学生进行语言表达能力和逻辑思维能力测试,结果如下表:
由于部分数据丢失,只知道从这20名参加测试的学生中随机抽取一人,抽到
语言表达能力优秀或逻辑思维能力优秀的学生的概率为2 5.
(1)从参加测试的语言表达能力良好的学生中任意抽取2名,求其中至少有一名逻辑思维能力优秀的学生的概率;
(2)从参加测试的20名学生中任意抽取2名,设语言表达能力优秀或逻辑思维能力优秀的学生人数为X,求随机变量X的分布列.
解(1)用A表示“从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生”,
∵语言表达能力优秀或逻辑思维能力优秀的学生共有(6+n)名,
∴P(A)=6+n
20=
2
5,解得n=2,∴m=4,
用B表示“从参加测试的语言表达能力良好的学生中任意抽取2名,其中至少有一名逻辑思维能力优秀的学生”,
∴P(B)=1-C26
C29=
7
12.
(2)随机变量X的可能取值为0,1,2.
∵20名学生中,语言表达能力优秀或逻辑思维能力优秀的学生人数共有8名,
∴P(X=0)=C212
C220=
33
95,
P(X=1)=C18C112
C220=
48
95,
P(X=2)=C28
C220=
14
95,
∴X的分布列为
X 012
10.元的顾客,将获得一次摸奖机会,规则如下:
奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回地每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.
(1)求1名顾客摸球3次停止摸奖的概率;
(2)记X 为1名顾客摸奖获得的奖金数额,随机变量X 的分布列. 解 (1)设“1名顾客摸球3次停止摸奖”为事件A , 则P (A )=A 23A 34
=1
4,
故1名顾客摸球3次停止摸球的概率为1
4. (2)随机变量X 的所有取值为0,5,10,15,20.
P (X =0)=14,P (X =5)=2A 24=16,P (X =10)=1A 24+A 22A 34=1
6,P (X =15)=C 12·A 22A 34
=16,
P (X =20)=A 33A 44
=1
4.
所以,随机变量X 的分布列为
(建议用时:20分钟)
11.随机变量X 的分布列如下:
其中a ,b ,c A.16
B.13
C.12
D.23
解析∵a,b,c成等差数列,∴2b=a+c.又a+b+c=1,∴b=1 3,
∴P(|X|=1)=a+c=2
3.
答案 D
12.若随机变量X的分布列为
则当P(X<a)=
A.(-∞,2]
B.[1,2]
C.(1,2]
D.(1,2)
解析由随机变量X的分布列知:P(X<-1)=0.1,P(X<0)=0.3,P(X<1)=0.5,P(X<2)=0.8,则当P(X<a)=0.8时,实数a的取值范围是(1,2].
答案 C
13.(2017·石家庄调研)为检测某产品的质量,现抽取5件产品,测量产品中微量元素x,y的含量(单位:毫克),测量数据如下:
.
现从上述5件产品中,随机抽取2件,则抽取的2件产品中优等品数X的分布列为________.
解析5件抽测品中有2件优等品,则X的可能取值为0,1,2.P(X=0)=C23 C25=
0.3,
P(X=1)=C13·C12
C25
=0.6,
P(X=2)=C22
C25
=0.1.
∴优等品数X的分布列为
答案
14.盒内有大小相同的94个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.
(1)求取出的3个球中至少有1个红球的概率;
(2)求取出的3个球得分之和恰为1分的概率;
(3)设X为取出的3个球中白色球的个数,求X的分布列.
解(1)P=1-C37
C39=
7
12.
(2)记“取出1个红色球,2个白色球”为事件B,“取出2个红色球,1个黑色
球”为事件C,则P(B+C)=P(B)+P(C)=C12C23
C39+
C22C14
C39=
5
42.
(3)X可能的取值为0,1,2,3,X服从超几何分布,所以
P(X=k)=C k3C3-k
6
C39,k=0,1,2,3.
故P(X=0)=C36
C39=
5
21,P(X=1)=
C13C26
C39=
15
28,
P(X=2)=C23C16
C39=
3
14,P(X=3)=
C33
C39=
1
84.
所以X的分布列为。