高三理科数学第一轮复习§5.1:数列的概念与简单表示法
2022版高考数学一轮复习第5章数列第1节数列的概念与简单表示法教学案理北师大版
2022版高考数学一轮复习第5章数列第1节数列的概念与简单表示法教学案理北师大版第一节数列的概念与简单表示法[考纲传真]1.了解数列的概念和几种简单的表示方法(列表、图像、通项公式).2.了解数列是自变量为正整数的一类特殊函数.1.数列的有关概念概念数列数列的项数列的通项通项公式前n项和2.数列的表示方法数列有三种表示法,它们分别是列表法、图像法和解析法.3.an与Sn的关系若数列{an}的前n项和为Sn,则an=S1,n=1,含义按照一定顺序排列的一列数数列中的每一个数数列{an}的第n项an数列{an}的第n项an与n之间的关系能用公式an=f(n)表示,这个公式叫做数列的通项公式数列{an}中,Sn=a1+a2+…+an叫做数列的前n 项和Sn-Sn-1,n≥2.4.数列的分分类标准项数类型有穷数列无穷数列递增数列项与项间的大小关系[常用结论]an≥an-1,求数列的最大(小)项,一般可以利用数列的单调性,即用an≥an+1.an≤an-1,或an≤an+1满足条件项数有限项数无限an+1>anan+1<anan+1=an其中n∈N某递减数列常数列(n≥2,n∈N)某(n≥2,n∈N)求解,也可以转化为函数的最值问题或利用数形结合思想求解.[基础自测]某1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“某”)(1)相同的一组数按不同顺序排列时都表示同一个数列.(2)一个数列中的数是不可以重复的.(3)所有数列的第n项都能使用公式表达.(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.[答案](1)某(2)某(3)某(4)√1112.已知数列,,,…,1某22某33某4nA.n+,…,下列各数中是此数列中的项的是()()()()()1111B.C.D.35424854nn+2B[该数列的通项an=,结合选项可知B正确.]3.设数列{an}的前n项和Sn=n,则a8的值为()A.15B.16C.49D.64A[a8=S8-S7=8-7=15.故选A.]4.(教材改编)在数列{an}中,a1=1,an=1+3582A.B.C.D.2353D[∵a1=1,∴a2=1+-222-nan-1(n≥2),则a5等于()a1=1+1=2;a3=1-=1-=;a222a4=1+=1+2=3;a3a5=1-=1-=.]a4335.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式an=________.21115n-4[{an}是以1为首项,5为公差的等差数列,∴an=1+(n-1)某5=5n-4.]由an与Sn的关系求通项公式1221.已知数列{an}的前n项和为Sn=n+n+3,则数列{an}的通项公式an=________.434712,n=1152n+12,n≥21247[当n=1时,a1=S1=++3=.4312又当n≥2时,an=Sn-Sn-11221n-=n+n+3-43415=n+.2124712,n=1,∴a=15n+212,n≥2.n22+n-3+3]212.若数列{an}的前n项和Sn=an+,则{an}的通项公式an=________.33(-2)n-121[由Sn=an+得3321当n≥2时,Sn-1=an-1+,331212∴an=Sn-Sn-1=an+-an-1+333322=an-an-1.33即an=-2an-1,(n≥2).21又a1=S1=a1+,∴a1=1.33∴数列{an}是以首项为1,公比为-2的等比数列,∴an=(-2) n-1.]23.已知数列{an}满足a1+2a2+3a3+4a4+…+nan=3n-2n+1,求an.[解]设a1+2a2+3a3+4a4+…+nan=Tn,当n=1时,a1=T1=3某1-2某1+1=2,当n≥2时,2nan=Tn-Tn-1=3n-2n+1-[3(n-1)-2(n-1)+1]=6n-5,226n-5因此an=,n显然当n=1时,不满足上式.2,n=1,故数列的通项公式为an=6n-5,n≥2.n[规律方法]已知Sn求an的三个步骤(1)先利用a1=S1求出a1.(2)用n-1替换Sn中的n得出Sn-1,利用an=Sn-Sn-1(n≥2)便可求出当n≥2时an的表达式.(3)看a1是否符合n≥2时an的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应写成分段的形式.易错警示:利用an=Sn-Sn-1求通项时,应注意n≥2这一前提条件,易忽视验证n=1致误.由递推关系式求数列的通项公式【例1】分别求出满足下列条件的数列的通项公式.(1)a1=2,an+1=an+3n+2(n∈N);(2)a1=1,an=某nn-1an-1(n≥2,n∈N某);某(3)a1=1,an+1=3an+2(n∈N).[解](1)∵an+1-an=3n+2,∴an-an-1=3n-1(n≥2),∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=nn+2(n≥2).当n=1时,a1=某(3某1+1)=2符合公式,232n∴an=n+.22(2)当n≥2,n∈N时,某a2a3anan=a1某某某…某a1a2an-123n-2n-1n=1某某某…某某某=n,12n-3n-2n-1当n=1时,也符合上式,∴该数列的通项公式为an=n.(3)∵an+1=3an+2,∴an+1+1=3(an+1),又a1=1,∴a1+1=2,故数列{an+1}是首项为2,公比为3的等比数列,∴an+1=2·3n-1,因此an=2·3-1.[规律方法]由数列的递推关系求通项公式的常用方法(1)已知a1,且an-an-1=f(n),可用“累加法”求an.(2)已知a1(a1≠0),且an=f(n),可用“累乘法”求an.an-1(3)已知a1,且an+1=qan+b,则an +1+k=q(an+k)(其中k可由待定系数法确定),可转化为{an+k}为等比数列.易错警示:本题(1),(2)中常见的错误是忽视验证a1是否适合所求式.1(1)在数列{an}中,a1=2,an+1=an+ln1+,则an等于() nA.2+lnnC.2+nlnn(2)若a1=1,an+1=3an+3(1)A(2)n·3-2·3nn-1n+1B.2+(n-1)lnnD.1+n+lnn,则an=________.1n+1,[(1)∵an+1-an=ln1+=lnnn23n,n≥2,∴a2-a1=ln,a3-a2=ln,…,an-an-1=ln12n-1∴a2-a1+a3-a2+…+an-an-1=ln某某…某=lnn,n-112∴an-a1=lnnan=2+lnn(n≥2).将n=1代入检验有a1=2+ln1=2与已知符合,故an=2+lnn.(2)因为an+1=3an+3n+1,所以n+1=n+1,33an+1anan+1ana11所以n+1-n=1,又=,3333an1所以数列n是以为首项,1为公差的等差数列.33an12所以n=+(n-1)=n-,333所以an=n·3-2·3数列的性质nn-1.]。
年高三一轮总复习理科数学课件51数列的概念与简单表示法
33
【解析】 (1)解法一:因为 an=3nn+-116,所以数列{an}的最小项必为 an<0,即
n+1 3n-16<0.
3n-16<0,从而
16 n< 3 .
∴当 n 取最大值 5 时,an 的值最小.
28
典型的递推数列及处理方法
29
[自 主 演 练] 根据下列条件,求数列{an}的通项公式. (1)a1=1,an+1=an+2n; (2)a1=12,an=nn- +11an-1(n≥2). 解:(1)由题意知 an+1-an=2n, an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-1+2n-2+…+2+1=11--22n =2n-1.所以数列{an}的通项公式为 an=2n-1.
19
[自 主 演 练]
1.已知数列{an}的前 n 项和为 Sn,a1=1,Sn=2an+1,则 Sn=( )
A.2n-1
B.32n-1
C.23n-1
D.2n1-1
20
解析:解法一:由已知 Sn=2an+1,得 Sn=2(Sn+1-Sn),即 2Sn+1=3Sn,SSn+n 1=32, 而 S1=a1=1,所以 Sn=32n-1.故选 B.
30
(2)因为 an=nn- +11an-1(n≥2), 所以当 n≥2 时,aan-n 1=nn- +11, 所以aan-n 1=nn- +11,aann- -12=n-n 2,…,aa32=42,aa21=13, 以上 n-1 个式子相乘得aan-n 1·aann--12·…·aa32·aa21=nn- +11·n-n 2·…·24·13,
数列的概念及简单表示法(高三一轮复习)
所以数列
S 2
n
是首项为S
2 1
=a
2 1
=1,公差为1的等差数列,所以S
2 n
=n,所以Sn=
n
(n∈N*).
数学 N 必备知识 自主学习 关键能力 互动探究
— 20 —
命题点2 由数列的递推公式求通项公式
考向1 累加法
例2
设数列
a
n
满足a1=1,且an+1-an=1(n∈N*),则数列
1 3
an+1,所以a2=3S1=3×
16 3
=16.当n≥2时,有an=Sn-Sn-1
=13an+1-13an,即an+1=4an.
所以从第二项起,数列an为首项为16,公比为4的等比数列,所以an= 4n(n≥2).
经检验,an=4n对n=1不成立,
所以an=136,n=1, 4n,n≥2.
数学 N 必备知识 自主学习 关键能力 互动探究
,所以a2=
4 2-a1
=
4 2-4
=-2,a3=
4 2-a2
=
4 2+2
=1,a4=
4 2-a3
=
4 2-1
=4,…,所以数列
a
n
是以3为周期的周期数列,又2
022=
673×3+3,所以a2 022=a673×3+3=1.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
4.(易错题)若数列
— 7—
4.数列的表示法 数列有三种表示法,它们分别是 8 列表法 、图象法和 9 解析法 .
数学 N 必备知识 自主学习 关键能力 互动探究
— 8—
常用结论► (1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有 关,还与这些“数”的排列顺序有关. (2)项与项数的概念:数列的项是指数列中某一确定的数,而项数是指数列的项 对应的位置序号. (3)若数列{an}的前n项和为Sn,则数列{an}的通项公式为an=SS1n,-nS=n-11,,n≥2.
高考数学一轮复习 5.1数列的概念及简单表示法讲解与练
第一节数列的概念与简单表示法[备考方向要明了]考什么怎么考1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.数列的概念在高考试题中常与其他知识综合进行考查,主要有:(1)以考查通项公式为主,同时考查S n与a n的关系,如2012年江西T16等.(2)以递推关系为载体,考查数列的各项的求法,如2012年新课标全国T16等.[归纳·知识整合]1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为这个数列的第1项(通常也叫做首项).2.数列的分类分类原则类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n +1>a n 其中n ∈N *递减数列 a n +1<a n 常数列 a n +1=a n摆动数列从第2项起有些项大于它的前一项,有些项小于它的前一项.3.数列的表示法数列的表示方法有列表法、图象法、公式法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.[探究] 1.数列的通项公式唯一吗?是否每个数列都有通项公式?提示:不唯一,如数列-1,1,-1,1,…的通项公式可以为a n =(-1)n或a n =⎩⎪⎨⎪⎧-1,n 为奇数,1,n 为偶数.有的数列没有通项公式.5.数列的递推公式若一个数列{a n }的首项a 1确定,其余各项用a n 与a n -1的关系式表示(如a n =2a n -1+1,n >1),则这个关系式就称为数列的递推公式.[探究] 2.通项公式和递推公式有何异同点? 提示:不同点相同点通项公式法可根据某项的序号,直接用代入法求出该项都可确定一个数列,都可求出数列的任何一项递推公式法 可根据第1项或前几项的值,通过一次或多次赋值,逐项求出数列的项,直至求出所需的项[自测·牛刀小试]1.(教材习题改编)已知数列{a n }的前4项分别为2,0,2,0,…,则下列各式不可以作为数列{a n }的通项公式的一项是( )A .a n =1+(-1)n +1B .a n =2sinn π2C .a n =1-cos n πD .a =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数解析:选B 若a n =2sinn π2,则a 1=2sin π2=2,a 2=2sin π=0,a 3=2sin 3π2=-2,a 4=2sin 2π=0.2.已知数列的通项公式为a n =n 2-8n +15,则3( ) A .不是数列{a n }中的项 B .只是数列{a n }中的第2项 C .只是数列{a n }中的第6项 D .是数列{a n }中的第2项或第6项解析:选D 令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.3.(教材习题改编)在数列{a n }中,a 1=1,a n =1+1a n -1(n ≥2),则a 5=( )A.32 B.53 C.74D.85解析:选D 由题意知,a 1=1,a 2=2,a 3=32,a 4=53,a 5=85.4.(教材改编题)已知数列2,5,22,…,根据数列的规律,25应该是该数列的第________项.解析:由于2=3×1-1,5=3×2-1,8=3×3-1,… 故可知该数列的通项公式为a n =3n -1 由25=3n -1,得n =7. 答案:75.若数列{a n }的前n 项和S n =n 2-10n (n =1,2,3,…),则此数列的通项公式为a n =________;数列{na n }中数值最小的项是第________项.解析:∵当n ≥2时,a n =S n -S n -1=(n 2-10n )-[(n -1)2-10(n -1)]=2n -11; 当n =1时,a 1=S 1=-9也满足a n =2n -11, ∴a n =2n -11.∴na n =2n 2-11n =2⎝ ⎛⎭⎪⎫n 2-112n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n -1142-12116=2⎝⎛⎭⎪⎫n -1142-1218.又∵n ∈N *,∴当n =3时,na n 取最小值. 答案:2n -11 3已知数列的前几项求通项公式[例1] 根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)12,34,78,1516,3132,…; (3)12,14,-58,1316,-2932,6164,…. [自主解答] (1)各数都是偶数,且最小为4,所以通项a n =2(n +1)(n ∈N *). (2)注意到分母分别是21,22,23,24,25,…,而分子比分母少1, 所以其通项a n =2n-12n (n ∈N *).(3)分母规律明显,而第2,3,4项的绝对值的分子比分母少3,因此可考虑把第1项变为-2-32,这样原数列可化为-21-321,22-322,-23-323,24-324,-25-325,26-326,…所以其通项a n =(-1)n 2n-32n (n ∈N *).———————————————————用观察法求数列的通项公式的技巧用观察归纳法求数列的通项公式,关键是找出各项的共同规律及项与项数n 的关系.当项与项之间的关系不明显时,可采用适当变形或分解,以凸显规律,便于归纳.当各项是分数时,可分别考虑分子、分母的变化规律及联系,正负相间出现时,可用(-1)n或(-1)n +1调节.1.写出下列数列的一个通项公式,使它的前几项分别是下列各数: (1)23,415,635,863,1099,…; (2)-1,13,-935,1763,-3399,…;(3)9,99,999,9 999,….解:(1)分子是连续的偶数,且第1个数是2,所以用2n 表示;分母是22-1,42-1,62-1,82-1,102-1,所以用(2n )2-1表示.所以a n =2n 2n2-1=2n 4n 2-1(n ∈N *). (2)正负交替出现,且奇数项为负,偶数项为正,所以用(-1)n表示; 1, 13, 935, 1763, 3399,…↕ ↕ ↕ ↕ ↕31×3, 53×5, 95×7, 177×9, 339×11,… 分母是连续奇数相乘的形式,观察和项数n 的关系,用(2n -1)(2n +1)表示; 分子是21+1,22+1,23+1,24+1,用2n+1表示.所以 a n =(-1)n·2n+12n -12n +1=(-1)n ·2n+14n 2-1(n ∈N *).(3) 9, 99, 999, 9 999,… ↕ ↕ ↕ ↕101-1, 102-1, 103-1, 104-1,… 所以a n =10n-1(n ∈N *).由a n 与S n 的关系求通项公式[例2] 已知数列{a n }的前n 项和为S n =3n-1,求它的通项公式a n . [自主解答] 当n ≥2时,a n =S n -S n -1=3n-1-(3n -1-1)=2×3n -1;当n =1时,a 1=S 1=2也满足a n =2×3n -1.故数列{a n }的通项公式为a n =2×3n -1.若将“S n =3n -1”改为“S n =n 2-n +1”,如何求解? 解:∵a 1=S 1=12-1+1=1, 当n ≥2时,a n =S n -S n -1=(n 2-n +1)-[(n -1)2-(n -1)+1]=2n -2.∴a n =⎩⎪⎨⎪⎧1n =1,2n -2n ≥2.———————————————————已知S n 求a n 时应注意的问题数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.2.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *.求数列{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2.由已知a 1=S 1>1,因此a 1=2. 又由a n +1=S n +1-S n=16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2), 得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0,即a n +1-a n =3,从而{a n }是公差为3,首项为2的等差数列,故{a n }的通项公式为a n =3n -1.由递推关系式求数列的通项公式[例3] 根据下列条件,确定数列{a n }的通项公式.(1)a 1=1,a n +1=3a n +2; (2)a 1=1,a n =n -1na n -1(n ≥2); (3)a 1=2,a n +1=a n +3n +2. [自主解答] (1)∵a n +1=3a n +2, ∴a n +1+1=3(a n +1),即a n +1+1a n +1=3. ∴数列{a n +1}为等比数列,公比q =3. 又a 1+1=2,∴a n +1=2×3n -1.∴a n =2×3n -1-1.(2)∵a n =n -1na n -1(n ≥2), ∴a n -1=n -2n -1a n -2,…,a 2=12a 1. 以上(n -1)个式子相乘得 a n =a 1×12×23×…×n -1n =a 1n =1n .(3)∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n 3n +12(n ≥2).当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n 2.———————————————————由递推公式求通项公式的常用方法已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解. 当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+fn 时,用累加法求解;当出现a na n -1时,用累乘法求解.3.(2012·大纲全国卷)已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3;(2)求数列{a n }的通项公式.解:(1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3;由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1. 当n >1时有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 1=1,a 2=31a 1,a 3=42a 2,…a n -1=n n -2a n -2,a n =n +1n -1a n -1,将以上n 个等式两端分别相乘,整理得a n =n n +12.综上可知,数列{a n }的通项公式a n =n n +12.数列函数性质的应用[例4] 已知数列{a n }. (1)若a n =n 2-5n +4, ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围. [自主解答] (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3.②∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94的对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.———————————————————函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.4.若数列⎩⎨⎧⎭⎬⎫nn +4⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k =________. 解析:法一:由题意知,⎩⎪⎨⎪⎧k k +4⎝ ⎛⎭⎪⎫23k ≥k -1k +3⎝ ⎛⎭⎪⎫23k -1,kk +4⎝ ⎛⎭⎪⎫23k ≥k +1k +5⎝ ⎛⎭⎪⎫23k +1,解得10≤k ≤1+10. ∵k ∈N *,∴k =4.法二:设a n =n (n +4)⎝ ⎛⎭⎪⎫23n ,则 a n +1-a n =(n +1)(n +5)⎝ ⎛⎭⎪⎫23n +1-n (n +4)⎝ ⎛⎭⎪⎫23n=⎝ ⎛⎭⎪⎫23n ⎣⎢⎡⎦⎥⎤23n +1n +5-n n +4=⎝ ⎛⎭⎪⎫23n 10-n 23. 当n ≤3时,a n +1-a n >0,即a n +1>a n , 当n ≥4时,a n +1-a n <0,即a n +1<a n , 故a 1<a 2<a 3<a 4,且a 4>a 5>a 6>…. 所以数列中最大项是第4项. 答案:41个关系——数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.3类问题——数列通项公式的求法及最大(小)项问题 (1)由递推关系求数列的通项公式常用的方法有: ①求出数列的前几项,再归纳出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用叠加法、累乘法、迭代法. (2)由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式; ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n . (3)数列{a n }的最大(小)项的求法可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.创新交汇——数列与函数的交汇问题1.数列的概念常与函数、方程、解析几何、不等式等相结合命题.2.正确理解、掌握函数的性质(如单调性、周期性等)是解决此类问题的关键. [典例] (2012·上海高考)已知f (x )=11+x .各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.[解析] ∵a n +2=11+a n ,又a 2 010=a 2 012=11+a 2 010,∴a 22 010+a 2 010=1. 又a n >0,∴a 2 010=5-12. 又a 2 010=11+a 2 008=5-12,∴a 2 008=5-12,同理可得a 2 006=…=a 20=5-12.又a 1=1,∴a 3=12,a 5=11+a 3=23,a 7=11+a 5=35,a 9=11+a 7=58,a 11=11+a 9=813. ∴a 20+a 11=5-12+813=135+326. [答案]135+326[名师点评]1.本题具有以下创新点(1)数列{a n }的递推关系式,以函数f (x )=11+x为载体间接给出;(2)给出的递推关系式不是相邻两项,即a n 与a n -1(n ≥2)之间的关系,而是给出a n 与a n+2之间的关系式,即奇数项与奇数项、偶数项与偶数项之间的递推关系. 2.解决本题的关键有以下两点 (1)正确求出数列{a n }的递推关系式; (2)正确利用递推公式a n +2=11+a n,分别从首项a 1推出a 11和从a 2 010推出a 20. [变式训练]1.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a n n的最小值为( ) A.172B.212C .10D .21解析:选B 由已知条件可知:当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=33+2+4+…+2(n -1)=n 2-n +33,又n =1时,a 1=33适合, 故a n =n 2-n +33.又a n n=n +33n-1, 令f (n )=n +33n-1,f (n )在[1,5]上为减函数,f (n )在[6,+∞)上为增函数,又f (5)=535,f (6)=212, 所以f (5)>f (6).故f (n )=a n n 的最小值为212.2.已知函数f (x )=⎩⎪⎨⎪⎧2x-1x ≤0,f x -1+1x >0,把函数g (x )=f (x )-x 的零点按从小到大的顺序排成一个数列,则该数列的通项公式为( )A .a n =n n -12(n ∈N *)B .a n =n (n -1)(n ∈N *) C .a n =n -1(n ∈N *)D .a n =2n-2(n ∈N *)解析:选C 据已知函数关系式可得f (x )=⎩⎪⎨⎪⎧2x-1x ≤0,2x -10<x ≤1,2x -2+11<x ≤2,…,此时易知函数g (x )=f (x )-x 的前几个零点依次为0,1,2,…,代入验证只有C 符合.一、选择题(本大题共6小题,每小题5分,共30分) 1.数列1,23,35,47,59,…的一个通项公式a n 是( )A.n2n +1 B.n 2n -1 C.n2n -3D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故通项为n2n -1.2.已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若数列{a n }为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是有3>2λ,即λ<32.由λ<1可得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件.3.数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大值是( )A .310B .19 C.119D.1060解析:选C 因为a n =1n +90n,运用基本不等式得1n +90n≤1290,由于n ∈N *,不难发现当n =9或10时,a n =119最大.4.(2013·银川模拟)设数列{a n }满足:a 1=2,a n +1=1-1a n,记数列{a n }的前n 项之积为T r ,则T 2 013的值为( )A .-12B .-1 C.12D .2解析:选B 由a 2=12,a 3=-1,a 4=2可知,数列{a n }是周期为3的周期数列,从而T 2013=(-1)671=-1.5.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( ) A .9 B .8 C .7D .6解析:选B 由a n =⎩⎪⎨⎪⎧S nn =1S n -S n -1n ≥2=⎩⎪⎨⎪⎧-8n =1,2n -10n ≥2,得a n =2n -10.由5<2k -10<8得7.5<k <9,由于k ∈N *,所以k =8. 6.(2012·福建高考)数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 012等于( )A .1 006B .2 012C .503D .0解析:选A 由题意知,a 1+a 2+a 3+a 4=2,a 5+a 6+a 7+a 8=2,…,a 4k +1+a 4k +2+a 4k +3+a 4k +4=2,k ∈N ,故S 2 012=503×2=1 006.二、填空题(本大题共3小题,每小题5分,共15分)7.根据下图5个图形及相应点的个数的变化规律,猜测第n 个图中有________个点.解析:观察图中5个图形点的个数分别为1,1×2+1,2×3+1,3×4+1,4×5+1,故第n 个图中点的个数为(n -1)×n +1=n 2-n +1. 答案:n 2-n +18.数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n⎝ ⎛⎭⎪⎫0≤a n<12,2a n-1⎝ ⎛⎭⎪⎫12≤a n<1,若a 1=67,则a 2 013=________.解析:因为a 1=67∈⎣⎢⎡⎭⎪⎫12,1,所以a 2=2a 1-1=2×67-1=57.因为a 2=57∈⎣⎢⎡⎭⎪⎫12,1,所以a 3=2a 2-1=2×57-1=37.因为a 3=37∈⎣⎢⎡⎭⎪⎫0,12,所以a 4=2a 3=2×37=67.显然a 4=a 1,根据递推关系,逐步代入,得a 5=a 2,a 6=a 3,…故该数列的项呈周期性出现,其周期为3,根据上述求解结果,可得a 3k +1=67,a 3k +2=57,a 3k +3=37(k ∈N ).所以a 2 013=a 3×671=a 3=37.答案:379.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,则b 10=________.解析:∵a n +a n +1=b n ,a n ·a n +1=2n, ∴a n +1·a n +2=2n +1,∴a n +2=2a n .又∵a 1=1,a 1·a 2=2,∴a 2=2, ∴a 2n =2n,a 2n -1=2n -1(n ∈N *),∴b 10=a 10+a 11=64. 答案:64三、解答题(本大题共3小题,每小题12分,共36分)10.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3…·a n =n 2,求a 3+a 5的值.解:∵a 1·a 2·a 3·…·a n =n 2, ∴a 1a 2=4,a 1a 2a 3=9,解得a 3=94.同理a 5=2516.∴a 3+a 5=6116.11.已知数列{a n }的前n 项和S n ,分别求它们的通项公式a n . (1)S n =2n 2+3n ; (2)S n =2n+1.解:(1)由题可知,当n =1时,a 1=S 1=2×12+3×1=5,当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1. 当n =1时,4×1+1=5=a 1,故a n =4n +1. (2)当n =1时,a 1=S 1=2+1=3, 当n ≥2时,a n =S n -S n -1=(2n +1)-(2n -1+1)=2n -1.当n =1时,21-1=1≠a 1,故a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2.12.已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解:(1)a 1=2,a n =S n -S n -1=2n -1(n ≥2), 故b n=⎩⎪⎨⎪⎧1n n ≥2,23n =1.(2)∵c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=-n -12n +22n +3n +1<0.∴{c n }是递减数列.1.根据数列的前几项,写出下列各数列的一个通项公式: (1)-1,7,-13,19,…; (1)0.8,0.88,0.888,…; (3)32,1,710,917,…; (4)0,1,0,1,….解:(1)符号问题可通过(-1)n或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n(6n -5).(2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…故a n =89⎝⎛⎭⎪⎫1-110n .(3)将数列统一为32,55,710,917,…,对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…,联想到数列1,4,9,16,…,即数列{n 2},可得分母的通项公式为c n =n 2+1,故可得它的一个通项公式为a n =2n +1n 2+1.(4)a n =⎩⎪⎨⎪⎧n 为奇数,1 n 为偶数或a n =1+-1n2或a n =1+cos n π2.2.已知数列{a n }的通项公式a n =(n +1)⎝ ⎛⎭⎪⎫1011n (n ∈N *),试问数列{a n }有没有最大项?若有,求最大项和最小项的项数;若没有,说明理由.解:∵a n +1-a n =(n +2)⎝ ⎛⎭⎪⎫1011n +1-(n +1)⎝ ⎛⎭⎪⎫1011n =⎝ ⎛⎭⎪⎫1011n·9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n ; 故a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…∴数列中有最大项,最大项为第9、10项, 即a 9=a 10=1010119.3.设数列{a n }的前n 项和为S n ,点⎝⎛⎭⎪⎫n ,S n n(n ∈N *)均在函数y =3x -2的图象上.(1)求数列{a n }的通项公式; (2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解:(1)依题意得,S nn=3n -2,即S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5; 当n =1时,a 1=S 1=3×12-2×1=1=6×1-5.所以a n =6n -5(n ∈N *). (2)由(1)得b n =3a n a n +1=36n -5[6n +1-5]=12⎝ ⎛⎭⎪⎫16n -5-16n +1,故T n =∑i =1nbi=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1 =12⎝⎛⎭⎪⎫1-16n +1.因此,使得12⎝ ⎛⎭⎪⎫1-16n +1<m 20(n ∈N *)成立的m 必须且仅需满足12≤m 20,即m ≥10,故满足要求的最小正整数m 为10.4.(2012·浙江高考)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .解:(1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=4n -1,易知当n =1时也满足通式a n =4n -1, 所以a n =4n -1,n ∈N *.由4n -1=a n =4log 2b n +3,得b n =2n -1,n ∈N *.(2)由(1)知a n ·b n =(4n -1)·2n -1,n ∈N *,所以T n =3+7×2+11×22+…+(4n -1)·2n -1,2T n =3×2+7×22+…+(4n -5)·2n -1+(4n -1)·2n,2T n -T n =(4n -1)2n-[3+4(2+22+…+2n -1)]=(4n -5)2n+5.故T n =(4n -5)2n+5,n ∈N *.。
高三一轮复习第五章 第一节数列的概念与简单表示法
课时作业1.在数列{a n }中,a n =n 2-9n -100,则最小的项是( ) A .第4项 B .第5项C .第6项D .第4项或第5项【解析】 ∵a n =(n -92)2-814-100,∴n =4或5时,a n 最小.【答案】 D2.数列{a n }:1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n (n ∈N +)B .a n =(-1)n -12n +1n 3+3n (n ∈N +)C .a n =(-1)n +12n -1n 2+2n (n ∈N +)D .a n =(-1)n -12n +1n 2+2n(n ∈N +)【解析】 观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D .【答案】 D3.(2022·福建福州质检)已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 019=( )A .1B .0C .2 019D .-2 019【解析】 ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 019=a 1=1.【答案】 A4.(2022·大庆二模)已知数列{a n }满足:a n ={(3-a )n -3,n ≤7a n -6,n >7(n ∈N *),且数列{a n }是递增数列,则实数a 的取值范围是( )A .(94,3)B .[94,3)C .(1,3)D .(2,3)【解析】 根据题意,a n=f(n)={(3-a)n-3,n≤7a n-6,n>7,n∈N*,要使{a n}是递增数列,必有{3-a>0a>1(3-a)×7-3<a8-6,据此有:{a<3a>1a>2或a<-9,综上可得2<a<3.【答案】 D5.(2022·黄冈模拟)已知数列{a n}的前n项和为S n=n2-2n+2,则数列{a n}的通项公式为( )A.a n=2n-3 B.a n=2n+3C.a n={1,n=12n-3,n≥2D.a n={1,n=12n+3,n≥2【解析】 当n=1时,a1=S1=1,当n≥2时,a n=S n-S n-1=2n-3,由于a1的值不适合上式,故选C.【答案】 C6.(多选)(2022·常州期末)已知数列{a n}中,a1=2,a n+1=1+a n1-a n,使a n=-12的n可以是( )A.2 019 B.2 021C.2 022 D.2 023【解析】 由题意可知,a1=2,a2=-3,a3=-12,a4=13,a5=2,a6=-3,a7=-12,a8=13,可得数列{a n}的周期为4,所以a2 019=a3=-12,a2 021=a1=2,a2 022=a2=-3,a2 023=a3=-12,所以使a n=-12的n可以是2 019,2 023,故答案选AD.【答案】 AD7.(2022·石家庄二模)在数列{a n}中,已知a1=2,a2=7,a n+2等于a n a n+1(n∈N*)的个位数,则a2 015=( )A.8 B.6C.4 D.2【解析】 由题意得a3=4,a4=8,a5=2,a6=6,a7=2,a8=2,a9=4,a10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a2 015=a335×6+5=a5=2.【答案】 D8.(多选)已知数列{a n}满足a1=-12,a n+1=11-a n,则下列各数是{a n}的项的有( )A.-2 B.2 3C.32D.3【解析】 ∵数列{a n}满足a1=-12,a n+1=11-a n,∴a2=11-(-12)=23,a3=11-a2=3,a4=11-a3=-12=a1,∴数列{a n}是周期为3的数列,且前3项为-12,23,3,故选BD.【答案】 BD9.(多选)下列四个命题中,正确的有( )A.数列{n+1n}的第k项为1+1kB.已知数列{a n}的通项公式为a n=n2-n-50,n∈N*,则-8是该数列的第7项C.数列3,5,9,17,33,…的一个通项公式为a n=2n-1D.数列{a n}的通项公式为a n=nn+1,n∈N*,则数列{a n}是递增数列【解析】 对于A,数列{n+1n}的第k项为1+1k,A正确;对于B,令n2-n-50=-8,得n=7或n=-6(舍去),B正确;对于C,将3,5,9,17,33,…的各项减去1,得2,4,8,16,32,…,设该数列为{b n},则其通项公式为b n=2n(n∈N*),因此数列3,5,9,17,33,…的一个通项公式为a n=b n+1=2n+1(n∈N*),C错误;对于D,a n=nn+1=1-1n+1,则a n+1-a n=1n+1-1n+2=1(n+1)(n+2)>0,因此数列{a n}是递增数列,D正确.故选ABD.【答案】 ABD10.(2022·太原二模)已知数列{a n}满足a1=1,a n-a n+1=na n a n+1(n∈N*),则a n=________.【解析】 由已知得1a n+1-1a n=n,∴1a n-1a n-1=n-1,1a n-1-1a n-2=n-2,…,1a2-1a1=1,∴1a n -1a1=n (n -1)2,∴1an =n 2-n +22,∴a n =2n 2-n +2.【答案】 2n 2-n +211.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.【解析】 由题意知a 1·a 2·a 3·…·a n -1=(n -1)2,∴a n =(nn -1)2(n ≥2),∴a 3+a 5=(32)2+(54)2=6116. 【答案】 611612.数列{a n }满足12a 1+122a 2+…+12n a n =2n +5,n ∈N *,则a n =________.【解析】 在12a 1+122a 2+…+12n a n =2n +5中,用n -1代换n 得12a 1+122a 2+…+12n -1a n -1=2(n -1)+5 (n ≥2),两式相减得12n a n =2,a n =2n +1,又12a 1=7,即a 1=14,故a n={14,n =1,2n +1,n ≥2.【答案】 {14,n =1,2n +1,n ≥213.根据下列条件,确定数列{a n }的通项公式. (1)a 1=1,a n +1=3a n +2; (2)a 1=1,a n +1=(n +1)a n ; (3)a 1=2,a n +1=a n +ln (1+1n).【解】 (1)∵a n +1=3a n +2, ∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3,又a 1+1=2, ∴a n +1=2·3n -1,∴a n =2·3n -1-1.(2)∵a n +1=(n +1)a n ,∴a n +1an =n +1.∴a nan -1=n ,a n -1a n -2=n -1,…a 3a 2=3,a 2a1=2,a 1=1. 累乘可得,a n =n ×(n -1)×(n -2)×…×3×2×1=n! 故a n =n!(3)∵a n +1=a n +ln (1+1n ),∴a n +1-a n =ln (1+1n )=ln n +1n.∴a n -a n -1=ln nn -1,a n -1-a n -2=ln n -1n -2,…a 2-a 1=ln 21,∴a n -a 1=ln n n -1+ln n -1n -2+…+ln 21=ln n .又a 1=2,∴a n =ln n +2.14.设数列{a n }的前n 项和为S n .已知a 1=a (a ∈R 且a ≠3),a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 【解】 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列, 因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2, a n +1-a n =4×3n -1+(a -3)2n -2 =2n -2[12·(32)n -2+a -3],当n≥2时,a n+1≥a n 12·(32)n-2+a-3≥0 a≥-9.又a2=a1+3>a1.综上,所求a的取值范围是[-9,3)∪(3,+∞).。
2022数学第五章数列第一节数列的概念与简单表示法教师文档教案文
第一节数列的概念与简单表示法授课提示:对应学生用书第88页[基础梳理]1.数列的有关概念概念含义数列按照一定顺序排列的一列数数列的项数列中的每一个数数列的通项数列{a n}的第n项a n通项公式数列{a n}的第n项a n与n之间的关系能用公式a n=f(n)表示,这个公式叫作数列的通项公式前n项和数列{a n}中,S n=a1+a2+…+a n叫作数列的前n项和2。
数列的表示方法列表法列表格表示n与a n的对应关系图像法把点(n,a n)画在平面直角坐标系中公式法通项公式把数列的通项使用公式表示的方法递推公式使用初始值a1和a n+1=f(a n)或a1,a2和a n+1=f(a n,a n-1)等表示数列的方法3.a n与S n的关系若数列{a n}的前n项和为S n,则a n=错误!4.数列的分类1.与函数的关系:数列是一种特殊的函数,定义域为N+或其有限子集数列的图像是一群孤立的点.2.周期性:若a n+k=a n(n∈N+,k为非零正整数),则{a n}为周期数列,k为{a n}的一个周期.[四基自测]1.(基础点:数列的项)已知数列{a n}的通项公式为a n=9+12n,则在下列各数中,不是{a n}的项的是()A.21B.33C.152 D.153答案:C2.(基础点:数列递推关系)在数列{a n}中,a1=1,a n=1+错误!(n≥2),则a4=()A.错误!B.错误!C.错误!D.错误!答案:B3.(基础点:数列的前n项和)设S n为数列{a n}的前n项和,已知S4=0,a5=5,则S5为________.答案:54.(易错点:数列的通项公式)数列1,错误!,错误!,错误!,错误!,…的一个通项公式a n=________.答案:错误!授课提示:对应学生用书第89页考点一数列的项与通项公式挖掘1判断通项公式/ 自主练透[例1](1)下列公式可作为数列{a n}:1,2,1,2,1,2,…,的通项公式的是()A.a n=1 B.a n=错误!C.a n=2-错误!D.a n=错误![解析]由a n=2-错误!可得a1=1,a2=2,a3=1,a4=2,…。
高考数学一轮复习第五章数列5.1数列的概念与简单表示法课件理
【知识梳理】 1.数列的有关概念
概念
含义
数列 数列的项 数列的通项
按照_一__定__顺__序__排列的一列数
数列中的_________ 每一个数
数列{an}的第n项an
概念 通项公式 前n项和
含义
数列{an}的第n项an与n之间的关系能用 公式_a_n=_f_(_n_)_表示,这个公式叫做数列 的通项公式
将第一项看成 这样,先不考虑符号,则分母为3,5, 7,9,…可归纳为 233 n, +1,分子为3,8,15,24,…将其每一项
加1后变成4,9,16,25,…可归纳为(n+1)2,综上,数列的
通项公式an= 1nn1211nn22n.
2n1
2n1
③把数列改写成 1, 0, 1, 0, 1, 0分, 1母, 0依, 次为 12345678
答案:(1)5 030 (2)
5k 5k 1
2
【加固训练】
1.数列
则 是该数列的 ( )
2,5, 2 2, 2 5
A.第6项
B.第7项
C.第10项
D.第11项
【解析】选B.原数列可写成
因为
所以20=2+(n-1)×3,所以n=27, . 5,8, 2 5 20,
2.根据下图5个图形及相应点的个数的变化规律,猜测 第n个图中有________个点.
1,2,3,…,而分子1,0,1,0,…周期性出现,因此数列 的通项可表示为
an
12[11n1]11n1.
n
2n
④将数列统一为 3,5,7,对9 ,于分子3,5,7,9,…, 2 5 10 17
高三数学人教版A版数学(理)高考一轮复习教案数列的概念与简单表示法1
第一节 数列的概念与简单表示法数列的概念及表示方法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式). (2)了解数列是自变量为正整数的一类函数. 知识点一 数列的概念 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫作这个数列的项.排在第一位的数称为这个数列的第1项(通常也叫作首项).2.数列的分类分类原则 类型 满足条件 按项数有穷数列 项数有限 无穷数列 项数无限按项与项 间的大小 关系递增数列a n +1≥a n 其中n ∈N +递减数列 a n +1≤a n 常数列a n +1=a n ,摇摆数列 从第2项起有些项大于它的前一项,有些项小于它的前一项易误提醒1.由前n 项写通项、数列的通项并不唯一.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.[自测练习]1.数列{a n }:1,-58,715,-924,…,的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N +) B .a n =(-1)n -12n +1n 3+3n (n ∈N +) C .a n =(-1)n+12n -1n 2+2n(n ∈N +)D .a n =(-1)n-12n +1n 2+2n(n ∈N +) 解析:观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D.答案:D2.已知数列的通项公式为a n =n 2-8n +15,则3( ) A .不是数列{a n }中的项 B .只是数列{a n }中的第2项 C .只是数列{a n }中的第6项 D .是数列{a n }中的第2项或第6项解析:令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.答案:D知识点二 数列与函数关系及递推公式 1.数列与函数的关系从函数观点看,数列可以看作定义域为正整数集N +(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.必记结论 a n 与S n 的关系若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[自测练习]3.在数列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( ) A .30 B .31 C .32D .33解析:a 5=2a 4+1=2(2a 3+1)+1=22a 3+2+1=23a 2+22+2+1=24a 1+23+22+2+1=31.答案:B4.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式是________. 解析:当n =1时,a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1.故a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥2考点一 由数列的前几项求数列的通项公式|1.下列公式可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2 D .a n =(-1)n -1+32解析:由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…. 答案:C2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)-11×2,12×3,-13×4,14×5,…; (3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以通项公式a n =2(n +1)(n ∈N +).(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1).(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数. (4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.用观察法求数列的通项公式的两个技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.(2)对于正负符号变化,可用(-1)n 或(-1)n +1来调整.考点二 由a n 与S n 的关系求通项a n |已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ;(2)S n =3n +b . [解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N +,求{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2),得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是以公差为3,首项为2的等差数列,故{a n }的通项公式为a n=3n -1.考点三 由递推关系式求数列的通项公式|递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.归纳起来常见的探究角度有: 1.形如a n +1=a n f (n ),求a n . 2.形如a n +1=a n +f (n ),求a n .3.形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . 4.形如a n +1=Aa nBa n +C (A ,B ,C 为常数),求a n .探究一 形如a n +1=a n f (n ),求a n .1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2).解:因为a n =n -1n a n -1(n ≥2),所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .探究二 形如a n +1-a n =f (n ),求a n . 2.在数列{a n }中,a 1=2,a n +1=a n +3n +2.解:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n2.探究三 形如a n +1=Aa n +B (A ≠0且A ≠1)求a n . 3.在数列{a n }中a 1=1,a n +1=3a n +2.解:因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n -1-1.探究四 形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n .4.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.解:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).已知数列的递推关系,求数列的通项时,通常利用累加法、累乘法、构造法求解. 1.形如a n =a n -1+f (n )(n ≥2,n ∈N *)时,用累加法求解. 2.形如a na n -1=f (n )(a n -1≠0,n ≥2,n ∈N *)时,用累乘法求解.3.形如a n =a n -1+m (n ≥2,n ∈N *)时,构造等差数列求解;形如a n =xa n -1+y (n ≥2,n ∈N *)时,构造等比数列求解.16.函数思想在数列中的应用 【典例】 已知数列{a n }. (1)若a n =n 2-5n +4. ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围. [思路点拨] (1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N *上单调递增,但自变量不连续.从二次函数的对称轴研究单调性.[解] (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3. ②∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, ∴对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4, 所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. [方法点评]1.本题给出的数列通项公式可以看作是一个定义在正整数集上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决.2.本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数. 3.在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取. [跟踪练习] 已知数列{a n }的通项公式是a n =(n +1)⎝⎛⎭⎫1011n,试问该数列中有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解:法一:∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2),即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n ,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,解得9≤n ≤10.又n ∈N *, ∴n =9或n =10,∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.A 组 考点能力演练1.已知数列{a n }满足a 1=0,a n +1=a n +2a n +1+1,则a 13=( ) A .143 B .156 C .168D .195解析:由a n +1=a n +2a n +1+1得a n +1+1=(a n +1+1)2,所以a n +1+1-a n +1=1,又a 1=0,则a n +1=n ,a n =n 2-1,则a 13=132-1=168.答案:C2.(2015·杭州质检)已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( ) A .0 B .- 3 C. 3D.32解析:本题由数列递推关系式,推得数列{a n }是周期变化的,找出规律,再求a 20.由a 1=0,a n +1=a n -33a n +1(n ∈N *),得a 2=-3,a 3=3,a 4=0,…由此可知:数列{a n }是周期变化的,且三个一循环,所以可得a 20=a 2=-3,故选B.答案:B3.在数列{a n }中,a 3=8,a n +1=⎩⎪⎨⎪⎧a n +2(n 为奇数),2a n(n 为偶数),则a 5等于( )A .12B .14C .20D .22解析:本题考查数列的基本性质.代入得a4=a3+2=10,a5=2a4=20.答案:C4.在数列{a n}中,有a n+a n+1+a n+2(n∈N*)为定值,且a7=2,a9=3,a98=4,则此数列{a n}的前100项的和S100=()A.200 B.300C.298 D.299解析:由题意,知a n+a n+1+a n+2=a n+1+a n+2+a n+3,则a n=a n+3,所以数列{a n}是周期为3的周期数列,则a1=a4=a7=…=a97=a100=2,a2=a5=…=a98=4,a3=a6=a9=…=a99=3,所以数列的前100项和为(a1+a2+a3)×33+a100=299,故选D.答案:D5.已知在数列{a n}中,a1=2,a2=7,若a n+2等于a n a n+1(n∈N*)的个位数,则a2 016的值为()A.8 B.6C.4 D.2解析:因为a1a2=2×7=14,所以a3=4;因为a2a3=7×4=28,所以a4=8;因为a3a4=4×8=32,所以a5=2;因为a4a5=8×2=16,所以a6=6;因为a5a6=2×6=12,所以a7=2;因为a6a7=6×2=12,所以a8=2;依次计算得a9=4,a10=8,a11=2,a12=6,所以从第3项起,数列{a n}成周期数列,周期为6,因为2 016=2+335×6+4,所以a2 016=6.答案:B6.已知在数列{a n}中,a1=1,a2=0,若对任意的正整数n,m(n>m),有a2n-a2m=a n-a n+m,则a2 015=________.m解析:令n=2,m=1,则a22-a21=a1a3,得a3=-1;令n=3,m=2,则a23-a22=a1a5,得a5=1;令n=5,m=2,则a25-a22=a3a7,得a7=-1,所以猜想当n为奇数时,{a n}为1,-1,1,-1,…,所以a2 015=-1.答案:-17.若数列{(n-a)2}是递增数列,则实数a的取值范围是________.解析:由题意得,对任意的n∈N*.(n+1-a)2>(n-a)2恒成立,即2a<2n+1恒成立,所以2a<(2n+1)min=3,则a<32.答案:⎝⎛⎭⎫-∞,32 8.(2016·蚌埠检查)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2, a n 为偶数,3a n +1, a n 为奇数,如果a 1=1,则a 1+a 2+…+a 2 014=________.解析:由题意知a 1=1,a 2=3×1+1=4,a 3=2,a 4=1,a 5=4,a 6=2,…,所以{a n }的周期为3,因为2 014=3×671+1,所以a 1+a 2+a 3+…+a 2 014=(1+4+2)×671+1=4 698.答案:4 6989.已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5,设c n =⎩⎪⎨⎪⎧a n ,a n ≤b n ,b n ,a n >b n .若在数列{c n }中,c 8>c n (n ∈N *,n ≠8),求实数p 的取值范围. 解:由题意得,c 8是数列{c n}中的最大项,所以⎩⎪⎨⎪⎧-7+p >22,-9+p ≤24,-8+p >4,23>-9+p ,解得12<p <17.10.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4, a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2. ∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 知5<2-a 2<6,∴-10<a <-8. 故a 的取值范围为(-10,-8).B 组 高考题型专练1.(2012·高考大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n =32,而S 1=a 1=1,所以S n =⎝⎛⎭⎫32n -1,故选B.答案:B2.(2011·高考四川卷)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( )A .3×44B .3×44+1C .45D .45+1解析:法一:a 1=1,a 2=3S 1=3,a 3=3S 2=12=3×41,a 4=3S 3=48=3×42,a 5=3S 4=3×43,a 6=3S 5=3×44.故选A.法二:当n ≥1时,a n +1=3S n ,则a n +2=3S n +1,∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1,∴该数列从第2项开始是以4为公比的等比数列,又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1 (n =1),3×4n -2 (n ≥2),∴当n =6时,a 6=3×46-2=3×44.答案:A3.(2014·高考新课标全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 解析:由a n +1=11-a n ,得a n =1-1a n +1,∵a 8=2,∴a 7=1-12=12, a 6=1-1a 7=-1,a 5=1-1a 6=2,…, ∴{a n }是以3为周期的数列,∴a 1=a 7=12. 答案:124.(2012·高考上海卷)已知f (x )=11+x.各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.解析:∵a n +2=11+a n,a 1=1,∴a 3=12, a 5=11+12=23,a 7=11+23=35,a 9=11+35=58,a 11=11+58=813,又a 2 010=a 2 012, 即a 2 010=11+a 2 010⇒a 22 010+a 2 010-1=0, ∴a 2 010=5-12⎝ ⎛⎭⎪⎫a 2 010=-5-12舍去. 又a 2 010=11+a 2 008=5-12, ∴1+a 2 008=25-1=5+12,即a 2 008=5-12,依次类推可得a 2 006=a 2 004=…=a 20=5-12,故a 20+a 11=5-12+813=135+326. 答案:135+3265.(2015·高考江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析:由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,则1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111 =2⎝⎛⎭⎫1-111=2011. 答案:2011。
数列的概念及简单表示法课件-2025届高三数学一轮复习
3.已知数列{ }满足 =
,且+
=
,则
+
=_____.
−
解析:由+ =
两边同时取倒数可得
= + ,即
+
+
+
又 = ,所以数列{ }是首项为2,公差为3的等差数列,所以 =
所以 =
.
−
+ ,构造等差数列写出通项公式.
思路二:通过待定系数法构造等比数列写出通项公式.
思路三:运用迭代法求通项公式.
解析:方法一(构造等差数列):因为+ = −
+
− ,两边同除
+
+
以 −
,得
−
= ,又
=− .
+
−
−
−
所以数列{
}是以− 为首项,1为公差的等差数列.
解析:当 = 时, = = ;当 ≥ 时, = − − = − ,又
, = ,
= 不满足上式,所以 =
− , ≥ .
30
2.已知数列{}中, = − + ∈ ∗ ,则此数列最大项的值是____.
− ⋅ − .
+ −
− + −
−
− − + × −
− ]
= ⋯ = −
−
= ሺ−
−
+ − −
] + × −
2025年高考数学一轮复习 第六章 数列-第一节 数列的概念及简单表示法【课件】
数列的项
每一个数
数列中的__________
数列的通项
数列{ }的第项
通项公式
数列{ }的前项和
数列{ }的第项 与它的序号之间的对应关系可以用一个式子来
表示,这个式子叫作这个数列的通项公式
1 + 2 + ⋯ +
数列{ }中, =________________叫作数列的前项和
第六章 数列
第一节 数列的概念及简单表示法
1
1 强基础 知识回归
2
2 研考点 题型突破
课标解 通过日常生活和数学中的实例,了解数列的概念和表示方法(列表、图象、通项公
读
式),了解数列是一种特殊函数.
01
强基础 知识回归
知识梳理
一、数列的有关概念
概念
数列
含义
确定的顺序
按照____________排列的一列数
2
2
3
1
, 4 = 2 ;五边形数: , 5 = 2 − ;六边形数: , 6 = 22 − ,可以推
2
2
测 , 的表达式,由此计算 20,23 =( B )
A.4 020
B.4 010
C.4 210
D.4 120
[解析] 由题意可得 , = + , , = + , , = − ,
[解析] 当 = 时, = = ;当 ≥ 时,
= − − = + − [ −
+ ] = − , = 不满足上式,所以
, = ,
, = ,
高三数学必背知识点:数列的概念与简单表示法
高三数学必背知识点:数列的概念与简单表示法1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义能够看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,所以,在同一数列中能够出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,因为它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少能够对数列实行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性能够分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这个列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,所以,通项公式的归纳不但要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就能够求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这个项有下面的对应关系:序号:1234567项:45678910这就是说,上面能够看成是一个序号集合到另一个数的集合的映射.所以,从映射、函数的观点看,数列能够看作是一个定义域为正整集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.因为数列的项是函数值,序号是自变量,数列的通项公式也就是相对应函数和解析式.数列是一种特殊的函数,数列是能够用图象直观地表示的.数列用图象来表示,能够以序号为横坐标,相对应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度能够不同,从数列的图象表示能够直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.5.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①数列①还能够用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。
高考数学大一轮复习配套课时训练:第五篇 数列 第1节 数列的概念与简单表示法(含答案)
第五篇数列(必修5)第1节数列的概念与简单表示法课时训练练题感提知能【选题明细表】A组一、选择题1.设数列{a n}的前n项和S n=n2,则a8的值为( A )(A)15 (B)16 (C)49 (D)64解析:由a8=S8-S7=64-49=15,故选A.2.(2013华师大附中高三模拟)数列{a n}中,a1=1,a n=+1,则a4等于( A )(A)(B)(C)1 (D)解析:由a1=1,a n=+1得,a2=+1=2,a3=+1=+1=,a4=+1=+1=.故选A.3.下列数列中,既是递增数列又是无穷数列的是( C )(A)1,,,,…(B)-1,-2,-3,-4,…(C)-1,-,-,-,…(D)1,,,…,解析:根据定义,属于无穷数列的是选项A、B、C(用省略号),属于递增数列的是选项C、D,故满足要求的是选项C.故选C.4.下列关于星星的图案中,星星的个数依次构成一个数列,该数列的一个通项公式是( C )(A)a n=n2-n+1 (B)a n=(C)a n=(D)a n=解析:从题图中可观察星星的构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6个;n=4时,有10个;…∴a n=1+2+3+4+…+n=,故选C.5.下面五个结论:①数列若用图象表示,从图象上看都是一群孤立的点;②数列的项数是无限的;③数列的通项公式是唯一的;④数列不一定有通项公式;⑤将数列看做函数,其定义域是N*(或它的有限子集{1,2,…,n}).其中正确的是( B )(A)①②④⑤ (B)①④⑤(C)①③④(D)②⑤解析:②中数列的项数也可以是有限的,③中数列的通项公式不唯一,故选B.6.(2013东莞模拟)数列{a n}满足:a1+3a2+5a3+…+(2n-1)·a n=(n-1)·3n+1+3,则数列{a n}的通项公式a n=( C ) (A)3n-1(B)(2n-1)·3n(C)3n(D)(2n-1)·3n-1解析:当n≥2时,有a1+3a2+5a3+…+(2n-3)·a n-1=(n-2)·3n+3,两式相减得(2n-1)a n=(n-1)3n+1-(n-2)3n,即(2n-1)a n=(2n-1)·3n,故a n=3n.又a1=3满足a n=3n,故选C.7.(2013太原一模)已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( C ) (A)[,3) (B)(,3)(C)(2,3) (D)(1,3)解析:由题意,a n=f(n)=要使{a n}是递增数列,必有解得,2<a<3.故选C.二、填空题8.数列-,,-,,…的一个通项公式为.解析:观察各项知,其通项公式可以为a n=.答案:a n=9.(2013广西一模)数列{a n}中,已知a1=1,a2=2,a n+1=a n+a n+2(n∈N*),则a7= .解析:由a n+1=a n+a n+2,得a n+2=a n+1-a n.所以a3=a2-a1=1,a4=a3-a2=-1,a5=a4-a3=-1-1=-2.a6=a5-a4=-2-(-1)=-1,a7=a6 -a5=-1-(-2)=1.答案:110.(2013清远调研)已知数列{a n}的前n项和S n=n2+2n-1,则a1+a25= .解析:∵S n=n2+2n-1,∴a1=S1=2.当n≥2时,a n=S n-S n-1=n2+2n-1-[(n-1)2+2(n-1)-1]=2n+1.∴a n=∴a1+a25=2+51=53.答案:5311.(2013东莞市高三模拟)已知数列{a n}的前n项和S n=n2-3n,若它的第k项满足2<a k<5,则k= .解析:a1=S1=1-3=-2,当n≥2时a n=S n-S n-1=n2-3n-(n-1)2+3(n-1),∴a n=2n-4,由2<a k<5得2<2k-4<5,则3<k<,所以k=4.答案:4三、解答题12.数列{a n}的通项公式是a n=n2-7n+6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?解:(1)当n=4时,a4=42-4×7+6=-6.(2)是.令a n=150,即n2-7n+6=150,解得n=16或n=-9(舍去),即150是这个数列的第16项.(3)令a n=n2-7n+6>0,解得n>6或n<1(舍).故数列从第7项起各项都是正数.13.(2013潮州期末质检)数列{a n}的前n项和S n=,若a1=,a2=.(1)求数列{a n}的前n项和S n;(2)求数列{a n}的通项公式;(3)设b n=,求数列{b n}的前n项和T n.解:(1)由S1=a1=,得=;由S2=a1+a2=,得=.∴解得故S n=.(2)当n≥2时,a n=S n-S n-1=-==由于a1=也适合a n=.∴a n=.(3)b n===-.∴数列{b n}的前n项和T n=b1+b2+…+b n-1+b n=1-+-+…+-+-=1-=.B组14.对于数列{a n},a1=4,a n+1=f(a n),依照下表则a2015=( D )(A)2 (B)3 (C)4 (D)5解析:由题意a2=f(a1)=f(4)=1,a3=f(a2)=f(1)=5,a4=f(a3)=f(5)=2,a5=f(a4)=f(2)= 4,a6=f(a5)=f(4)=1.则数列{a n}的项周期性出现,其周期为4,a2015=a4×503+3=a3=5.故选D.15.已知数列{a n}的通项a n=n2(7-n)(n∈N*),则a n的最大值是.解析:设f(x)=x2(7-x)=-x3+7x2,当x>0时,由f′(x)=-3x2+14x=0得,x=.当0<x<时,f′(x)>0,则f(x)在上单调递增,当x>时,f′(x)<0,f(x)在上单调递减,所以当x>0时,f(x)max=f.又n∈N*,4<<5,a4=48,a5=50,所以a n的最大值为50.答案:5016.已知数列{a n}的通项公式为a n=n2-n-30.(1)求数列的前三项,60是此数列的第几项?(2)n为何值时,a n=0,a n>0,a n<0?(3)该数列前n项和S n是否存在最值?说明理由. 解:(1)由a n=n2-n-30,得a1=12-1-30=-30,a2=22-2-30=-28,a3=32-3-30=-24.设a n=60,则60=n2-n-30.解之得n=10或n=-9(舍去).∴60是此数列的第10项.(2)令a n=n2-n-30=0,解得n=6或n=-5(舍去).∴a6=0.令n2-n-30>0,解得n>6或n<-5(舍去).∴当n>6(n∈N*)时,a n>0.令n2-n-30<0,解得0<n<6.∴当0<n<6(n∈N*)时,a n<0.(3)S n存在最小值,不存在最大值.由a n=n2-n-30=-30,(n∈N*)知{a n}是递增数列,且a1<a2<…<a5<a6=0<a7<a8<a9<…,故S n存在最小值S5=S6,不存在最大值.。
一轮复习理科数学第五篇 数列(必修5) 第1节 数列的概念与简单表示法
如果数列{an}的第n项与 序号n
之间的关系可以用一个式子来表示,那
么这个公式叫做这个数列的通项公式.
6.数列的递推公式
如果已知数列{an}的首项(或前几项),且从第二项开始的任何一项an与它的前
一项an-1(或前几项)间的关系可以用一个式子来表示,即an=f(an-1)或an=f(an-1,
an-2),那么这个式子叫做数列{an}的递推公式.
21
22
23
24
故
an=(-1)n
2n 2n
3
.
反思归纳
根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征: (1)分式中分子、分母的各自特征; (2)相邻项的联系特征; (3)拆项后的各部分特征; (4)符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.
【跟踪训练 1】 (1)数列 1,3,6,10,…的一个通项公式是( ) (A)an=n2-(n-1) (B)an=n2-1
an 1
(A) 3 2
(B) 5 3
(C) 8 5
(D) 2 3
解析:a2=1+ 1 ,a3=1+ 1 = 1 ,a4=1+ 1 =3,a5=1+ 1 = 2 .故选 D.
a1
a2 2
a3
a4 3
4.已知an=n2+λ n,且对于任意的n∈N*,数列{an}是递增数列,则实数λ 的取值
范围是
解:(1)数列中各项的符号可通过(-1)n表示,从第2项起,每一项的绝对值总比 它的前一项的绝对值大6,故通项公式为an=(-1)n(6n-5).
(2)0.8,0.88,0.888,…;
解:(2)数列变为 8 (1- 1 ), 8 (1- 1 ), 8 (1- 1 ),…
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
解析
第五章:数列 §5.1:数列的概念与简单表示法
解析
第五章:数列 §5.1:数列的概念与简单表示法
解析
第五章:数列 §5.1:数列的概念与简单表示法
解析
第五章:数列 §5.1:数列的概念与简单表示法
解析
第五章:数列 §5.1:数列的概念与简单表示法
解析
解析
第五章:数列 §5.1:数列的概念与简单表示法
解析
第五章:数列 §5.1:数列的概念与简单表示法
解析
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
解析
第五章:数列 §5.1:数列的概念与简单表示法
解析
第五章:数列 §5.1:数列的概念与简单表示法
解析
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法
第五章:数列 §5.1:数列的概念与简单表示法