Cu_Zn_Al_Zr纳米纤维催化剂上的CO_2加氢合成甲醇过程_英文_
Cu-ZrO2-CeO2
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第1期·216·化工进展Cu-ZrO2-CeO2/γ-Al2O3催化甲醇水蒸气重整制氢反应的性能黄媛媛,巢磊,李工,丁嘉,郭剑桥(常州大学石油化工学院,江苏常州 213164)摘要:以γ-Al2O3为载体,采用浸渍法制备Cu-ZrO2-CeO2/γ-Al2O3催化剂,用XRD、N2吸附-脱附、H2-TPR、NH3-TPD、CO2-TPD等方法对其进行表征。
在连续流动常压固定床微型反应器上评价Cu-ZrO2-CeO2/γ-Al2O3催化剂对甲醇水蒸气重整制氢反应的催化性能,考察了反应温度、水醇比和质量空速对催化性能的影响,反应结果表明Cu-ZrO2-CeO2/γ-Al2O3催化剂具有较高的催化活性和稳定性,在温度为260℃、水醇摩尔比为1.2∶1、质量空速为3.6h–1的条件下,甲醇的转化率可达99%以上,氢气的选择性为98%以上,一氧化碳的选择性低于2.5%。
表征结果显示助剂CeO2和ZrO2的加入促进活性组分在载体表面的分散性,影响催化剂的孔结构和酸碱性,增强了催化剂的活性。
关键词:氧化铝;催化剂载体;选择性;制氢中图分类号:TQ314 文献标志码:A 文章编号:1000–6613(2017)01–0216–08DOI:10.16085/j.issn.1000-6613.2017.01.028Performance of Cu-ZrO2-CeO2/γ-Al2O3 catalysts for hydrogen productionfrom steam reforming of methanolHUANG Yuanyuan,CHAO Lei,LI Gong,DING Jia,GUO Jianqiao(School of Petrochemical Engineering,Changzhou University,Changzhou 213164,Jiangsu,China.)Abstract:Cu-ZrO2-CeO2/γ-Al2O3 catalysts were prepared by the impregnation method using γ-Al2O3 as the support. The catalysts were characterized by means of XRD,N2 adsorption-desorption,H2-TPR,CO2-TPD,NH3-TPD and BET. Hydrogen production by the steam reforming of methanol over the Cu-ZrO2-CeO2/γ-Al2O3 catalyst was studied in a fixed bed micro-reactor. The effects of reaction temperature,mole ratio of H2O to methanol,WHSV on the catalytic performance and the stability of the catalysts were investigated. The experimental results showed that the methanol conversion rate reached 99%,the selectivity of hydrogen was 98%,while the selectivity of carbon monoxide was only2.5% under the conditions of temperature 260℃,mole ratio of water to methanol of 1.2∶1,andWHSV of 3.6h–1. Characterization results showed that the addition of CeO2 and ZrO2 promoted the dispersion of the active component on the surface of the carrier,affected the pore structure and acidity of the catalysts,and increased their activity.Key words:alumina;catalyst support;selectivity;hydrogen production随着世界范围内环境法规的日益严格以及社会对洁净新能源关注的加深[1-2],氢能作为一种高效清洁的环境友好能源备受专家学者的青睐[3-5]。
沉淀法
沉淀法制备催化剂摘要:本文主要阐述了固体催化剂制备方法最常用的沉淀法。
分别简介了沉淀法发展中出现的单组份沉淀法、多组分沉淀法、均匀沉淀、超均匀沉淀、浸渍沉淀法和导晶沉淀法。
对各种方法进行了简要介绍及对比,其中着重介绍了共沉淀法的改进研究,最后对沉淀法的发展进行总结。
关键词:固体催化剂沉淀法工艺影响因素前言对大多数固体催化剂来说,通常都是将金属细小颗粒,负载于氧化铝、氧化硅或其他物质载体上而形成负载型催化剂,也有负载型的金属氧化物催化剂,还有先制成氧化物,然后用硫化氢或其他硫化物处理使之转化为硫化物催化剂。
这些过程可用多种方法实现,一般说来,以沉淀操作作为关键步骤的制造方法称沉淀法。
沉淀法是制备固体催化剂最常用的方法之一,沉淀法开始阶段总要先将两种或更多种溶液或固体物质的悬浮液加以混合,有时也是用简单的非沉淀的干法混合,导致沉淀。
接着进行过滤、洗涤、干燥、成型与焙烧等工艺。
而采用焙烧等高温处理时,会产生热扩散和固态反应,使各物种之间密切接触,催化剂才能分布更均匀。
沉淀法的优点是,可以使各种催化剂组分打到分子分布的均匀混合,而且最后的形状和尺寸不受载体形状的限制,还可以有效地控制孔径的大小和分布。
缺点是当两种或两种以上金属化合物同时存在时,由于沉淀速率和次序的差异,会影响固体的最终结构,重现性较差。
1沉淀法的类型随着催化实践的发展,沉淀的方法已由单组份沉淀法发展到多组分共沉淀法,并且产生均匀沉淀、超均匀沉淀、浸渍沉淀法和导晶沉淀法等,使沉淀法更趋完善。
1.1单组份沉淀法本法是通过沉淀与一种待沉淀组分溶液作用以制备单一组分沉淀物的方法,是催化剂制备中最常用的方法之一。
由于沉淀物质只含一个组分,操作不太困难,再与机械混合或其他操作单元相配合,既可用来制备非贵金属单组份催化剂或载体,又可用来制备多组分催化剂。
1.2多组分共沉淀法(共沉淀法)共沉淀法是将催化剂所需的两个或两个以上组分同时沉淀的一种方法。
其特点是一次可以同时获得几个组分,而且各个组分的分布比较均匀。
甲醇合成催化剂反应机理及应用1
甲醇合成催化剂的反应机理及应用新疆广汇新能源有限公司新疆哈密839000 杨林君摘要:本文介绍了甲醇合成反应的机理,合成催化剂的制备;对XNC-98催化剂的使用情况做了介绍。
关键词:甲醇合成催化剂甲醇是重要的有机化工原料,碳一化学的母体,广泛用于生产塑料、纤维、橡胶、染料、香料、医药和农药等,还是重要的有机溶剂。
甲醇在发达国家其产量仅次于乙烯、丙烯和苯,居第四位。
甲醇用作汽车发动机燃料,所谓甲醇汽油,今后随着石油不断开采资源日渐减少,直至枯竭,特别在我国少油多煤的资源下,甲醇用作汽车燃料将达亿吨/年以上,跃升化工产品的首位。
研究开发应用推广近代甲醇合成工艺与合成塔技术和建设大型化生产装置,成为我国甲醇工业大发展的必由之路[1]。
随着甲醇工业的发展,以低压法铜基催化剂为代表的甲醇合成技术得到了很大的发展。
国内近年来在合成催化剂的反应机理、性能及应用等方面研究不断深入,开发出具有世界先进水平的合成催化剂。
一甲醇合成反应的机理甲醇合成反应机理与活性中心的研究一直是甲醇合成反应过程的研究重点,其对高效催化剂的开发、实验现象本质特征的解释和反应结果的预测都具有重要意义。
一个合理的甲醇合成反应历程能够为反应条件的优化以及催化剂制备过程等催化体系的改进提供理论依据,为工业化生产提供理论支撑。
按合成甲醇直接碳源的不同,将机理划分为以下3种:CO与CO2共同作为直接碳源机理、CO作为直接碳源机理以及CO2作为直接碳源机理[2]。
1.1 CO直接作为碳源机理长期已来,在铜基催化剂上加氢合成甲醇的碳源问题都是研究者争论的焦点问题。
Herman 等研究了CO/H2体系在Cu/ZnO/Al2O3催化剂上的反应,认为反应的活性中心是Cu+,H2的解离吸附发生在ZnO上,并提出以下反应机理:CO+*(Cu2O)→CO*(Cu2O)H2+2*(ZnO)→2H*(ZnO)CO*(Cu2O)+H*(ZnO)→HCO*(Cu2O)+*(ZnO)H*(ZnO)+HCO*(Cu2O)→CH2O*(Cu2O)+*(ZnO)2H*(ZnO)+CH2O*(Cu2O)→CH3OH*(Cu2O)+2*(ZnO)CH3OH*(Cu2O)→CH3OH+*(Cu2O)式中:*指催化剂的活性吸附位。
碳酸二甲酯
Cu (Ι)分子筛催化制备碳酸二甲酯李安民李忠马青兰(太原理工大学)摘要:本实验主要对Cu (Ι)分子筛催化剂在甲醇氧化羰基化气相直接法制备碳酸二甲酯过程中的催化活性以及在该催化剂存在时的最佳实验温度进行了考察。
通过采用不同分子筛催化剂进行实验的结果分析表明:在350℃时,由CuCl和HY 型分子筛催化剂进行离子交换制得的催化剂对制备碳酸二甲酯具有较高的活性。
实验反应温度应控制在160℃-180℃之间。
关键词:碳酸二甲酯,氧化羰基化,甲醇,分子筛Abstract: The reactivity of Cu(I) molecular sieve catalyst and optimal reaction temperature were studied when DMC was synthesized by the oxidative carbonylation of methanol. Through study different kinds of molecular sieve catalysts, the reactivity of catalyst attained by solid-state ion-exchangble between CuCl and HY is stronger than that of others. And the optimal temperature should be controlled between 160℃-180℃.Key words: dimethyl carbonate(DMC);oxidative carbonylation ;methanol ;molecular sieve0 引言碳酸二甲酯(DMC)为无色透明液体,微毒,沸点为90.5℃。
由于其分子结构中含有羰基、甲基和甲氧基等官能团,因而具备多种反应活性[1]。
例如,它可以与醇、酚、肼、酯等化合物发生甲基化、羰基化、甲酯化和酯交换反应。
CO2制备甲醇催化剂研究进展
2015年9月第23卷第9期 工业催化INDUSTRIALCATALYSIS Sept.2015Vol.23 No.9综述与展望收稿日期:2015-03-02 作者简介:韩 睿,1988年生,女,山东省梁山县人,硕士,工程师,从事甲醇催化剂研发及下游产品开发工作。
通讯联系人:韩 睿。
CO2制备甲醇催化剂研究进展韩 睿 ,唐家鹏,何平笙,郭新宇(江苏煤化工程研究设计院有限公司,江苏昆山215337)摘 要:通过将CO2有效转化为甲醇,真正实现“跨越油气时代”进入“甲醇时代”。
通常CO2加氢合成甲醇所用催化剂主要是铜基催化剂,添加其他金属元素或助剂以提高铜基催化剂催化性能。
介绍CO2制备甲醇催化剂早期的研究,综述近年来有关CO2制备甲醇催化剂研究进展,新研发的镍-镓结构催化剂可在低压(常压)下将CO2转化为甲醇,比传统的铜-锌-铝催化剂更有效,更多产甲醇。
介绍CO2与水反应合成甲醇反应所用催化剂以及光催化还原CO2生成甲醇的新思路和新途径。
关键词:有机化学工程;二氧化碳;甲醇;铜基催化剂doi:10.3969/j.issn.1008 1143.2015.09.004中图分类号:TQ426.94;TQ223.12+1 文献标识码:A 文章编号:1008 1143(2015)09 0677 05RecentadvancesinthecatalystsforpreparationofmethanolfromCO2HanRui,TangJiapeng,HePingsheg,GuoXinyu(JiangsuCoalChemicalEngineeringResearchandDesignInstituteCo.,Ltd.,Kunshan215337,Jiangsu,China)Abstract:‘Beyondoilandgas:methanoleconomic’couldbetrulyrealizedthrougheffectiveconversionofCO2tomethanol.IngeneralCu basedcatalystsareusedforsynthesisofmethanolbyCO2hydrogenation,andtheircatalyticperformancesareincreasedbyaddingothermetalsandadditives.TheresearchadvancesinthecatalystsforsynthesisofmethanolfromCO2hydrogenationwerereviewed.ComparedwithtraditionalCu Zn Alcatalysts,thenewnickel galliumcatalystcouldconvertedCO2intomethanolunderlowpressure/constantpressureandpossessedmoreeffectivecatalyticperformanceandhighermethanoloutput.ThesynthesisofmethanolthroughthereactionofCO2withwaterandthecatalystusedinthereactionwereintroduced.Inaddition,thenewideasandwaysforphotocatalyticreductionofCO2tomethanolwereputforward.Keywords:organicchemicalengineering;carbondioxide;methanol;Cu basedcatalystdoi:10.3969/j.issn.1008 1143.2015.09.004CLCnumber:TQ426.94;TQ223.12+1 Documentcode:A ArticleID:1008 1143(2015)09 0677 05 从减少大气污染和充分利用自然资源的角度出发,变CO2为宝,有效固定CO2,减少温室气体对环境的影响,并生产循环可再生能源均具有重要意义,是关系资源、能源和环境的重大课题。
甲醇水蒸气重整制氢Cu-Zn-Al尖晶石催化剂的研究
DOI: 10.19906/ki.JFCT.2021082甲醇水蒸气重整制氢Cu-Zn-Al 尖晶石催化剂的研究张楷文1,刘鑫尧1,张 磊1,* ,庆绍军2,张财顺1,刘雅杰3,高志贤1,*(1. 辽宁石油化工大学 石油化工学院,辽宁 抚顺 113001;2. 中国科学院山西煤炭化学研究所,山西 太原 030001;3. 晋中学院 化学化工系,山西 晋中 030619)摘 要:以硝酸铜、硝酸锌、拟薄水铝石和柠檬酸为原料,采用湿式球磨法合成了Cu-Zn-Al 三元尖晶石催化剂。
通过TG-DTA 、XRD 、N 2物理吸附-脱附、H 2-TPR 、XPS 等表征手段,研究不同Cu/Zn/Al 物质的量比对催化剂晶相组成、比表面积、还原性能、表面性质的影响,并通过甲醇水蒸气重整制氢反应(MSR )考察催化剂的缓释催化性能。
结果表明,与Cu-Al 二元尖晶石相比,Cu-Zn-Al 三元尖晶石的结晶度高、比表面积大、更难还原,表现出较好的催化活性,并且其缓释催化行为大不相同。
所有催化剂不经预还原处理,即可催化MSR 反应,在反应40 h 后趋于稳定。
其中,Cu ∶Zn ∶Al = 0.8∶0.2∶2.5(物质的量比)的Cu-Zn-Al 催化剂在反应温度265 ℃、水醇比为2、质量空速2.25 h −1的MSR 反应中表现出最高的稳定活性。
最后结合反应前后催化剂的表征数据,探讨了催化剂活性组分的缓释度,并基于此预测催化剂具有更长的稳定性。
关键词:球磨法;Cu-Zn-Al 尖晶石;甲醇水蒸气重整;缓释催化;制氢中图分类号: O64 文献标识码: ACu-Zn-Al spinel catalyst for hydrogen production from methanol steam reformingZHANG Kai-wen 1,LIU Xin-yao 1,ZHANG Lei 1,*,QING Shao-jun 2,ZHANG Cai-shun 1 ,LIU Ya-jie 3 ,GAO Zhi-xian1,*(1. School of Petrochemical Engineering , Liaoning Petrochemical University , Fushun 113001, China ;2. Shanxi Institute of Coal Chemistry , Chinese Academy of Sciences , Taiyuan 030001, China ;3. College of Chemistry and Chemical Engineering , Jinzhong University , Jinzhong 030619, China )Abstract: The Cu-Zn-Al ternary spinel catalysts were synthesized by the wet ball milling method using copper nitrate, zinc nitrate, pseudoboehmite and citric acid as the raw materials. TG-DTA, XRD, N 2 physical adsorption,H 2-TPR, XPS and other characterization methods were used to study the effects of different Cu/Zn/Al molar ratios on the crystal phase composition, specific surface area, reduction performance and surface properties of the catalysts, and the catalytic performances of the catalysts were investigated by methanol steam reforming (MSR) for hydrogen production. The results indicate that comparing with the binary Cu-Al spinel, Cu-Zn-Al ternary spinel catalysts have high crystallinity, large surface area and are difficult to be reduced, which show improved catalytic performance and totally different sustained release behavior. The Cu-Zn-Al spinel catalyst with Cu ∶Zn ∶Al =0.8∶0.2∶2.5 (molar ratio) exhibited the highest stable catalytic activity in MSR under a reaction temperature of265 ℃, water/methanol ratio of 2 and mass space velocity of 2.25 h −1. The findings of this work might be served as basic data for further research of such ternary spinel catalysts.Key words: ball-milling method ;Cu-Zn-Al spinel ;methanol steam reforming ;sustained release catalytic ;hydrogenproduction氢能的开发利用已成为实现“碳中和”的有效途径,其中,水[1]、生物质[2]、甲醇均可以作为氢能来源。
CNZ—甲醇制氢催化剂使用说明书
CNZ—甲醇制氢催化剂使用说明书CNZ---1型催化剂是一种以铜为活性组分。
由铜、锌、铝等的氧化物组成的新型催化剂。
其对甲醇蒸汽转化制氢和二氧化碳具有高活性和良好的选择性。
一、催化剂的主要特性1.型号:CNZ—1型2.外观颜色、外观尺寸和形状:催化剂为黑色圆柱体。
表面光滑,有光泽。
公称尺寸:φ5×5毫米4.堆密度:0.85~1.15公斤/升5.机械破碎强度:≥60牛[顿]/厘米6.催化活性采用模拟反应器测定反应器:φ25×1.5mm催化剂尺寸:φ5×5mm催化剂装量:60毫升还原条件:还原压力:常压还原温度:最高230℃还原空速:1000时-1还原时间:50小时还原气:含H2 0.5~2%的N2气(或脱硫天然气)测定条件:反应压力:常压反应温度:250℃左右水甲醇流量:60毫升/小时催化剂活性:时空产率≥600Nm3/m3催化剂.时二.催化剂的包装、贮存和装卸1.催化剂用塑料袋包装后装入铁桶内。
贮存在室内,严防受潮、受震和毒物污染。
搬运过程中不要在地上滚动。
不能从高于0.5米的地方落下,或撞击。
2.在正常情况下,催化剂可以贮存一年以上,对催化剂的活性和物理性能不会影响。
3.催化剂装入反应其前,应用3mm筛子过筛,除渠少量粉末。
并检查反应器有无堵塞物或遗留工具等。
4.催化剂装入反应器时,采用专用布袋或胶管。
将催化剂装入布袋再导入反应管中填装,直至管板表面为止。
装填时应防止催化剂架桥。
要求每根反应管所装催化剂数量相同,高度相同。
5.操作人员在装填催化剂时,严禁直接在催化剂上行走、踩踏。
应在催化剂上垫木板,站在木板上操作。
防止催化剂破碎。
6.催化剂装填完毕后,用空气或氮气将管内和管板上的催化剂粉末清除干净。
7.催化剂使用前要进行还原活化。
如需卸出活化后的催化剂,应对催化剂进行钝化。
三.催化剂的升温、还原和活化CNZ—1型催化剂有铜、锌、铝的氧化物组成。
使用前应进行还原。
1.还原条件:还原压力:常压还原空速:1000时-1还原气:含H2 0.5~10%的纯氮气(或脱硫天然气)2.还原气质量:O2<0.1%H2O<0.2%S<0.1ppm氧化物<0.1ppm油雾极微3.升温还原程序还原前必须检查还原用N2。
cu基催化剂co2制甲醇
cu基催化剂co2制甲醇
催化剂在CO2转化为甲醇反应中起到了重要的作用。
其中,Cu基催化剂是一类常用的催化剂之一。
Cu基催化剂在CO2制甲醇反应中的机理主要包括以下几个步骤:
1. CO2吸附:Cu表面上的活性位点吸附CO2分子,形成吸附态的CO2。
2. 活化:吸附态的CO2与氢气发生反应,被还原为活性的C和O物种,其中C物种为中间物。
3. 甲醇生成:中间物与氢气进一步反应,生成甲醇。
这一步通常是通过表面吸附的氢原子与中间物中的C或O原子发生反应,形成甲醇分子。
在实际应用中,为了提高催化剂的活性和选择性,通常会采取以下措施:
1. 优化催化剂的结构:调控Cu基催化剂的晶体结构、孔道结构和表面形貌,以增强催化剂表面的活性位点和催化性能。
2. 掺杂其他金属:将Cu基催化剂与其他金属进行掺杂,可以改变催化剂的电子结构和活性,提高CO2转化为甲醇的效率。
3. 优化反应条件:通过调节反应温度、压力和气体流速等条件,可
以进一步提高催化剂的活性和选择性。
总体而言,Cu基催化剂在CO2制甲醇反应中具有较高的催化活性和选择性,但仍然面临一些挑战,如催化剂的稳定性和催化反应的经济性等问题,需要进一步研究和优化。
甲醇合成原理方法与工艺
甲醇合成原理方法与工艺图1 煤制甲醇流程示意图煤气经过脱硫、变换,酸性气体脱除等工序后,原料气中的硫化物含量小于0.1mg/m3。
进入合成气压缩机,经压缩后的工艺气体进入合成塔,在催化剂作用下合成粗甲醇,并利用其反应热副产3.9MPa 中压蒸汽,降温减压后饱和蒸汽送入低压蒸汽管网,同时将粗甲醇送至精馏系统。
一、甲醇合成反应机理自CO加氢合成甲醇工业化以来,有关合成反应机理一直在不断探索和研究之中。
早期认为合成甲醇是通过CO在催化剂表面吸附生成中间产物而合成的,即CO是合成甲醇的原料。
但20世纪70年代以后,通过同位素示踪研究,证实合成甲醇中的原子来源于CO2,所以认为CO2是合成甲醇的起始原料。
为此,分别提出了CO和CO2合成甲醇的机理反应。
但时至今日,有关合成机理尚无定论,有待进一步研究。
为了阐明甲醇合成反应的模式,1987年朱炳辰等对我国C301型铜基催化剂,分别对仅含有CO或CO2或同时含有CO和CO2三种原料气进行了甲醇合成动力学实验测定,三种情况下均可生成甲醇,试验说明:在一定条件下,CO和CO2均可在铜基催化剂表面加氢生成甲醇。
因此基于化学吸附的CO连续加氢而生成甲醇的反应机理被人们普遍接受。
对甲醇合成而言,无论是锌铬催化剂还是铜基催化剂,其多相(非匀相)催化过程均按下列过程进行:①扩散——气体自气相扩散到气体一催化剂界面;②吸附——各种气体组分在催化剂活性表面上进行化学吸附;③表面吸附——化学吸附的气体,按照不同的动力学假说进行反应形成产物;④解析——反应产物的脱附;⑤扩散——反应产物自气体一催化剂界面扩散到气相中去。
甲醇合成反应的速率,是上述五个过程中的每一个过程进行速率的总和,但全过程的速率取决于最慢步骤的完成速率。
研究证实,过程①与⑤进行得非常迅速,过程②与④的进行速率较快,而过程③分子在催化剂活性界面的反应速率最慢,因此,整个反应过程的速率取决于表面反应的进行速率。
提高压力、升高温度均可使甲醇合成反应速率加快,但从热力学角度分析,由于CO、C02和H2合成甲醇的反应是强放热的体积缩小反应,提高压力、降低温度有利于化学平衡向生成甲醇的方向移动,同时也有利于抑制副反应的进行。
二氧化碳加氢合成甲醇纳米铜基催化剂研究进展
【中图分类】TQ223.121;TQ426
CO2是自然界最丰富的潜在碳源,而作为主要的温室效应气体,其大量排放,不仅是资源的严重浪费而且由此引起的环境公害显而易见.数十年来,如何消除CO2污染并加以综合利用,特别是加氢转化引起了人们的极大关注.与CO一样,CO2氢化也能得到甲醇、二甲醚和烃类,但由于分子中比CO多一个氧原子,在氢化中需要多消耗一个氢分子转化为无用的水,从而导致其经济可行性比CO氢化低.但为了解决环境问题,实现这种转化也势在必行.在从CO2氢化—燃料—CO2这一完整的能量循环中,其根本是廉价的氢源问题.人们设想是通过可更新能源如太阳能、水能和核能等来实现这种转化.甲醇是C1化学的重要产品,也是仅次于乙烯、氨的第三大商用化学品,世界甲醇的消费量在逐年增加.近年来,虽然国内甲醇工业有了很大的发展,但主要消费市场—长三角、珠三角地区的甲醇供应仍显紧张,价格不断攀升.CO2加氢合成甲醇是一个原子经济反应,研究这个反应对实现化学工业的资源再生利用和环境改善有着重要的现实意义.虽然由于氢源、催化剂等问题,这一工艺目前尚未工业化,但因其既可解决CO2废气的利用问题,又可开发生产甲醇的新途径,故其相关研究受到越来越广泛的关注[1~3].由于CO2化学惰性大,难于活化,所以实现CO2加氢合成甲醇工艺路线的关键在于高活性、高选择性催化剂的开发.Barker等[4]较系统的研究了ZrO2上负载IB族元素金属催化剂的CO2加氢反应活性,认为金属铜最适合于CO2加氢合成甲醇.纳米材料由于其特有的量子尺寸效应、宏观量子隧道效应等性能,显现出许多特有性质[5,6],因此纳米材料在催化领域的应用日益受到重视,国际上已把纳米粒子催化剂称为第四代催化剂.纳米金属基催化材料不仅具有纳米材料的表面效应,量子尺寸效应等性质,而且将金属无机氧化物的刚性,尺寸稳定性和热稳定性糅合在一起,从而产生许多特异的性能.因此纳米铜基催化剂的制备及催化性能的研究已成为当前国内外开展CO2加氢合成甲醇催化剂研究的发展趋势.
CO2加氢制备甲醇、二甲醚的研究
CO2加氢制备甲醇、二甲醚的研究摘要:CO2催化加氢合成甲醇、二甲醚是解决CO2减排的有效途径之一,具有环保、经济等意义.本文从新的视角综述了CO2催化加?浜铣杉状肌⒍?甲醚催化剂的研究进展和研究特点,并从催化剂的制备方法、沉淀剂的选择、焙烧时间、催化剂载体、助剂等方面进行了系统综述.关键词:CO2;甲醇;二甲醚;催化剂;前言:现代工业的发展使CO2排放量急骤增加,由此引发的环境问题也日益得到人们的重视,因此研究CO2的利用具有重要意义。
利用CO2加氢合成二甲醚是一项很有意义的工作。
二甲醚是重要的有机中间体[1],在有机合成、制药、轻工等行业有着广泛用途。
同时二甲醚也可以作为代替汽油的清洁燃料[2]。
所以说CO2催化加氢转化为二甲醚的研究具有重大的工业价值并兼有化工、能源、环保等多重意义。
二氧化碳是主要的温室气体之一,对温室效应有着重要的影响。
随着工业的不断发展,化石燃料的消费猛增,空气中的二氧化碳含量日益增加,严重破坏了人类的生存环境,二氧化碳的综合利用已成为迫切需要进行的研究。
二甲醚是重要的有机化工品,既是许多化工产品的重要原料,也是化石燃料的理想替代品。
不论从经济还是从环境的角度出发,通过二氧化碳加氢合成二甲醚都是对二氧化碳回收利用的有效途径。
目前制备二甲醚主要采用甲醇催化脱水法或混合气直接合成法。
一:合成催化剂的研究对CO2直接加氢合成二甲醚催化剂的研究,目前国内主要集中于南京工业大学、天津大学、华东理工大学、四川大学、江苏石油化工学院和长岭炼化有限责任公司催化剂厂等。
其研究主要内容在于催化剂中各组分含量的配比、催化剂的改性、助剂的添加、脱水催化剂的选择及不同催化剂制备方法对催化剂活性的影响。
二、原理分析二氧化碳加氢合成二甲醚经过近十多年的发展,虽在催化剂材料选择和合成条件方面取得一定的成果,但未达到工业化程度,需进行进一步研究。
按溴丙烷和三正丙胺摩尔比1∶1,采用冷凝回流法制备溴化四正丙基胺(TPAB),考察了反应温度、反应时间以及溶剂对产率和干燥温度对TPAB变质的影响。
年产20万吨甲醇合成工艺设计
1 总论1.1 概述甲醇作为及其重要的有机化工原料,是碳一化学工业的基础产品,在国民经济中占有重要地位。
长期以来,甲醇都是被作为农药,医药,染料等行业的工业原料,但随着科技的进步和发展,甲醇将被使用于越来越多的领域。
1. 生产的发展1)世界甲醇工业的发展总体上说,世界甲醇工业从90年代开始经历了1991-1998的供需平衡,1998-1999的供大于求,从2000年初至今的供求基本平衡三个基本阶段。
[1]据Nexant Chen Systems公司的最新统计,全球2004年甲醇生产能力为4226.5万t/a[2]以下是最近几年的甲醇需求统计。
全球主要地区甲醇消费构成2001年2002年2003年2004年按用途分甲醛940(31) 970(32) 1010(32) 1050(33) MTBE 830(28) 810(26) 780(25) 760(22)(其中美国)470(16) 430(14) 340(11) 270(8)醋酸270(9) 290(9) 300(10) 310(10) MMA 90(3) 90(3) 100(3) 100(3)其他880(29) 900(29) 930(30) 970(30)需求合计3020(100) 3060(100) 3100(100) 3180(100)按地区分亚洲920(30) 940(31) 990(32) 1040(33)北美1000(33) 1000(33) 980(31) 970(31)西欧630(21) 640(21) 650(21) 670(21)其他470(16) 480(16) 490(16) 500(16)需求合计3020(100) 3060(100) 3110(100) 3180(100) 从上表可以看出,到2004年为止,甲醇仍主要用于制造甲醛和MTBE。
用于制造甲醛的甲醇用量随年份成增长趋势,而MTBE 的需求量则逐年降低。
亚洲需求量增长比较迅速,和此相反,北美地区需求则在减少。
甲醇合成的原理及工艺
一、甲醇合成原理1、化学反应合成甲醇的主要化学反应为CO和H2在多相铜基催化剂上的反应:CO+2H2⇋CH3OH(g)-90.8kJ/mol反应气体中含有CO2时,发生以下反应:CO2+3H2⇋CH3OH(g)+H2O-49.5kJ/mol同时CO2和H2发生CO的逆变换反应:CO2+H2⇋CO+H2O(g)+41.3kJ/mol反应过程中除生成甲醇外,还伴随一些副反应的发生,生成少量的烃、醇、醛、醚、酸和酯等化合物。
这些副反应的产物还可以进一步发生脱水、缩合、酰化或酮化等反应,生成烯烃、酯类、酮类等副产物。
当催化剂中含有碱类化合物时,这些化合物的生成更快。
副产物不仅消耗原料,而且影响甲醇的质量和催化剂的寿命。
尤其是生成甲烷的反应为一个强放热反应,不利于反应温度的操作控制,且甲烷不能随着产品冷凝,在循环系统中循环,更不利于主反应的化学平衡和反应速率。
2、甲醇合成反应的特点(1)放热反应甲醇合成是一个可逆放热反应,为了使反应过程能够向着有利于生成甲醇的方向进行,适应最佳温度曲线的要求,达到较好的产量,需及时移走热量。
(2)体积缩小反应从化学反应可以看出,无论是CO还是CO2分别与H2合成CH3OH,都是体积缩小的反应,因此压力增高,有利于反应向着生成CH3OH的方向进行。
(3)可逆反应即在CO、CO2和H2合成生成CH3OH的同时,甲醇也分解为CO2、CO和H2,合成反应的转化率与压力、温度和氢碳比ƒ=(H2-CO2)/(CO+CO2)有关。
(4)催化反应在有催化剂时,合成反应才能较快进行。
二、甲醇合成催化剂随着英国ICI公司铜‐锌‐铝催化剂的研制成功,甲醇生产进入了低温(220~280℃)、中低压(5~10MPa)时代。
近年来,低压铜基催化剂的使用逐渐普遍,各种新型甲醇催化剂层出不穷,无论活性、选择性、寿命等各方面均大大超过前代产品,从而推动甲醇生产实现了长周期、低能耗、低成本运行。
1、铜基催化剂(1)CuO‐ZnO‐Al2O3催化剂英国ICI公司开发的CuO‐ZnO‐Al2O3催化剂是比较有代表性的铜基催化剂。
纳米抗菌材料的分类_制备_抗菌机理及其应用
18沈海军 史友进(南京航空航天大学航空宇航学院,南京 210016)[摘 要] 全面阐述了纳米抗菌材料的分类、制备方法及其抗菌机理,介绍了纳米抗菌材料在建材、陶瓷洁具、纺织品、日用塑料等领域的应用。
本文的工作对相关工作者了解纳米抗菌材料的制备、抗菌性能与应用前景具有实际的参考价值。
[关键词] 纳米抗菌材料,制备,抗菌机理1. 引 言纳米抗菌材料是近年来出现的一种特征尺寸在1~100nm的新型保健抗菌材料。
它克服了传统有机抗菌产品在安全性、广谱性、抗药性和耐热加工性等方面的缺陷,能满足人们生活舒适水平和卫生水平不断提高的要求,已开始在建材、陶瓷洁具、塑料、纺织品等领域取得应用[1,2]。
目前,纳米抗菌材料的物理特性、制备技术、性能测试等方面的研究已经开展[3,4],并取得了飞速的发展,受到了世界各国的普遍关注。
本文将从纳米抗菌材料的分类、制备方法、抗菌机理以及应用等几个方面出发,对纳米抗菌材料进行概述。
通过本文,读者可对纳米抗菌材料的制备、杀菌特性以及应用有较全面的了解。
2. 纳米抗菌材料分类纳米抗菌材料按维数可分为零维纳米抗菌微粒、一维纳米抗菌线、二维纳米抗菌膜和三维纳米抗菌块。
按材质来源可分为天然纳米抗菌材料、有机物纳米抗菌材料及无机物纳米抗菌材料。
除此之外,纳米抗菌材料还可按材料的结构形态、载体类型和抗菌有效成分等进行分类。
(1)按材料结构形态划分纳米抗菌材料按结构形态可分为纳米抗菌微粒、纳米抗菌固体和纳米抗菌组装结构。
纳米抗菌微粒指的是线度为1~100nm的具有抗菌功能的粒子的聚合体,这种聚合体的几何尺寸一般在微米或亚微米量级,其形态也不限于球形,还有片状、棒状、针状、网状等。
纳米抗菌固体又称为纳米抗菌结构材料,是指由纳米抗菌微粒聚集而成的凝聚体,该凝聚体的本身尺寸可以是宏观;纳米抗菌固体又可进一步划分为纳米块状抗菌材料、纳米薄膜抗菌材料和纳米纤维抗菌材料。
纳米抗菌组装结构是指由人工组装合成的纳米抗菌材料体系,是由纳米抗菌微粒以及纳米抗菌丝或抗菌管为基本单元,在一维、二维和三维空间组装排列成具有纳米结构的材料体系。
甲醇的合成
甲醇的合成甲醇的合成目录:1. 介绍甲醇2. 甲醇的合成方法3. 重要的反应路径4. 常见的合成催化剂5. 甲醇合成的条件和工艺6. 甲醇合成的应用和前景7. 结论1. 介绍甲醇甲醇,也被称为木精或甲醇酒精,是一种无色、具有特殊气味的化学物质。
它是一种普遍使用的化工原料和溶剂,并且在能源领域也有广泛的应用。
甲醇的化学式为CH3OH,是由一个碳原子、三个氢原子和一个羟基组成。
它是最简单的醇类化合物,也是一个重要的有机合成原料。
2. 甲醇的合成方法甲醇可以通过多种方法合成,其中最常用的方法是通过一氧化碳和氢气的反应,即加氢合成方法。
具体的反应方程式为:CO + 2H2 -> CH3OH甲醇合成还可以通过其他反应途径,如甲烷水合物的解离、天然气重整和生物质气化等。
3. 重要的反应路径甲醇的合成反应是一个复杂的过程,涉及多个反应路径。
在加氢合成法中,主要的反应路径包括气相和液相反应。
在气相反应中,一氧化碳首先与氢气进行反应生成甲醛,然后再通过一系列连续的加氢反应步骤转化为甲醇。
在液相反应中,催化剂通常会被溶解在金属盐中,一氧化碳和氢气在此种环境中发生反应生成甲醛和甲醇。
4. 常见的合成催化剂甲醇的合成需要使用催化剂来促进反应的进行。
常见的甲醇合成催化剂包括铜基催化剂、铁基催化剂和锌基催化剂等。
铜基催化剂是最常用的甲醇合成催化剂,它通常与锌和铝等辅助金属一起使用,以提高催化活性和选择性。
5. 甲醇合成的条件和工艺甲醇合成的条件和工艺对于实现高效、高选择性的合成过程至关重要。
一般来说,甲醇合成需要较高的压力(通常在几十到数百个大气压之间)和适当的温度(通常在180-280°C之间)。
反应过程中还需要适量的催化剂和反应物的比例,以及合适的反应时间。
6. 甲醇合成的应用和前景甲醇是一种重要的化工原料和燃料,具有广泛的应用前景。
它可以作为溶剂、反应试剂和合成化学品的原料,并可用于气体和液体燃料的制备。
合成气制甲醇方程式
合成气制甲醇方程式
合成气制甲醇(Methanol Synthesis)通常是通过合成气(一氧化碳和氢气的混合物)的催化反应而实现的。
这个过程的方程式如下:CO+2H2→CH3OH
这个反应是由一种催化剂促进的,通常是以铜为基础的催化剂,也可能包括锌、铝、铬等元素的氧化物。
这个方程式表示一氧化碳(CO)和氢气(H₂)在催化剂的作用下反应生成甲醇(CH₃OH)。
这是一个重要的化学反应,因为甲醇是一种有用的化学品,可用于制备其他化学产品,也可作为燃料使用。
这种合成方法是工业上生产甲醇的主要途径之一。
1/ 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CATALYSIS, KINETICS AND REACTORSChinese Journal of Chemical Engineering, 17(1) 88—94 (2009)Methanol Synthesis from CO2 Hydrogenation with a Cu/Zn/Al/ZrFibrous Catalyst*AN Xin (安欣), ZUO Yizan (左宜赞), ZHANG Qiang (张强) and WANG Jinfu (王金福)**Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engi-neering, Tsinghua University, Beijing 100084, ChinaAbstract A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydro-genation. V arious factors that affect the activity of the catalyst, including the reaction temperature, pressure and space velocity, were investigated. The kinetic parameters in Graaf’s kinetic model for methanol synthesis were ob-tained. A quasi-stable economical process for CO2 hydrogenation through CO circulation was simulated and higher methanol yield was obtained.Keywords kinetics, CO2 hydrogenation, methanol, Cu/Zn/Al/Zr catalyst1 INTRODUCTIONThe greenhouse effect is a threat to the living en-vironment of mankind. The transformation of CO2 into useful chemicals, e.g. methanol, is an attractive way to protect the global environment since CO2 is an important greenhouse gas and methanol itself is a useful raw chemical and solvent [1, 2]. For methanol synthesis, Cu/Zn based catalysts were always used [3-16]. V arious catalysts, including Cu/Zn/Al, Cu/Zn/Cr, Cu/Zn/Zr, Cu/Zn/Ga, Cu/Zn/Ge et al. [7-11, 14, 15], were developed for methanol synthesis. It is believed that Cu adsorbs CO2 and Zn adsorbs H2, and the reaction takes place on the surface of the catalyst. Thus, a catalyst with good Cu/Zn dispersion is a key factor for high yield and selectivity for methanol syn-thesis. Among many catalysts, the Cu/Zn/Al catalyst has been commonly used in various studies, and a lot of modified Cu/Zn/Al based catalysts were reported recently [8, 11, 15, 17]. Using the phase separation ef-fect of nanoparticles on a catalyst surface, a fibrous Cu/Zn/Al/Zr catalyst that is active for methanol pro-duction from CO2 hydrogenation was prepared by our group recently [16]. A 5% Zr addition led to a metha-nol space time yield 80% higher than that on the commercial catalyst that is the present catalyst of choice in China.However, for CO2 hydrogenation, there is a competing process between the reverse water shift reaction and methanol synthesis reaction. The reverse water shift reaction reaches thermodynamic equilib-rium fast, while the methanol synthesis reaction is much slower. Although the catalyst showed a high activity and high methanol yield, CO, which was the product of the reverse water shift reaction, was present in the final product. From the viewpoint of the utility of the carbon source, no CO should be produced dur-ing methanol synthesis process because CO can be recycled into the reactor for methanol synthesis. To understand the concept further, the first step is to un-derstand the catalytic behavior and develop the kinetic model. There have been some kinetic studies of methanol synthesis from CO2 hydrogenation. The catalysts were Cu/Zn/Al, Pt-Ca/C, or Cu/Zr based, which showed lower activity than the novel fibrous Cu/Zn/Al/Zr catalyst [3-6, 13, 17]. Kinetics data for the Cu/Zn/Al/Zr catalyst on CO2 hydrogenation to methanol had not been reported, and the kinetic model was developed in this work as a basis for us to under-stand the catalytic behavior and design a process of CO2 hydrogenation.In this work, the fibrous Cu/Zn/Al/Zr catalyst was used in CO2 hydrogenation to methanol at various temperature, pressure and space velocity. Base on the regression parameters fitted to the assumed Graaf’s kinetic model, a CO2 hydrogenation process that CO cycle in the system was simulated, the space time yield of methanol increased, which was helpful for scaling up this process in future.2 EXPERIMENTALThe fibrous Cu/Zn/Al/Zr catalyst was prepared by a novel co-precipitation procedure reported re-cently [17]. Typically, the solution of Cu(NO3)2 · 6H2O, Zn(NO3)2 · 6H2O, Al(NO3)3 · 6H2O and ZrOCl2 with a concentration of 0.6 mol·L-1 were mixed with a ratio of 6︰3︰0.5︰0.5, then the mixture was precipitated with the solution Na2CO3 at 353 K with strong stirring for 1 h. After filtration and washing, the catalyst was dried at 120°C for 12 h and calcined at 350°C for 4 h to give the Cu/Zn/Al/Zr catalyst. The prepared catalyst was ground into powder and mixed with SiO2, and load into the fixed bed reactor.The catalytic reaction on the Cu/Zn/Al/Zr cata-lyst was carried out in a fixed bed reactor. The reactorReceived 2008-05-19, accepted 2008-11-11.* Supported by the National Natural Science Foundation of China (20576060, 20606021), and the Specialized Research Fund for the Doctoral Program of Higher Education (20050003030).** To whom correspondence should be addressed. E-mail: wangjfu@Chin. J. Chem. Eng., Vol. 17, No. 1, February 2009 89is with a diameter of 12 mm and a length of 500 mm. The catalyst is packed at the middle section (about 100 mm) of the reactor, where the temperature was uniform. All of the gas, including the hydrogen, nitro-gen, and carbon dioxide, is of purity above 99.999%. Thus, other impurity in industrial, such as CO, H 2S, COS, was neglected. Before reaction, the catalyst was reduced with a 5% H 2/95% N 2 mixture at atmospheric pressure by raising the temperature slowly to the reac-tion temperature over 10 h. Then the reduction gas was switched to the reaction gas and the pressure was raised to the reaction pressure to start the reaction. The first sample of the effluent was taken 2 h after steady reaction conditions were established, and then samples were taken every 30 min for online analysis of the effluent composition. The reaction temperature was controlled by furnace heating and the pressure was controlled by the feeding rate.The structure of the catalysts was studied by us-ing Transmission Electron Microscope (TEM) and N 2 adsorption method. The morphology of the Cu/Zn/Al/Zr catalyst was characterized by a JEM 2010 high resolution scanning electron microscope (SEM) operated at 120.0 kV . The BET surface area was obtained with a high resolution BET equipment described in Li et al [18].The reaction equipment is connected on-line to a GC 7890II gas chromatograph provided with a ther-mal conductivity detector (TCD), a Porapak T (5 m) column parallel connected with a TDX-01 (3 m) col-umn. All detector and columns are placed in the oven and operate within the 0-150°C range. A Porapak T column was used for separation of MeOH and H 2O, and a TDX-01 column was used for separation of H 2, CO, and CO 2. CO 2 conversion, MeOH yield and CO yield are defined as follows:2,in 2,out22,inCO CO CO CO n n X n −=(1)32CH OH,out MeOH CO ,in n Y n = (2)2CO,out CO CO ,inn Y n =(3)where n CO and 2CO n are the molar flow rates of CO, and CO 2, respectively. Subscripts “in” and “out” de-note represent the inlet and outlet.Space time yield of MeOH, S MeOH , which de-scribes the amount of MeOH, CO production on per gram catalyst per second, is defined and calculated using the following equation:2MeOH MeOH CO MeOH 0.001S Y V M =×××(kg·g -1)/22.4 (L·mol -1) (4)where Y MeOH is the yield of MeOH, 2CO V the space velocity of CO 2, and M MeOH the molecular weight of MeOH.3 METHANOL SYNTHESIS FROM CO 2 HY-DROGENATIONA fibrous Cu/Zn/Al/Zr catalyst (12︰6︰1︰1) was used to catalyze methanol synthesis in the fixed bed. As shown in Fig. 1, the Cu/Zn/Al/Zr catalyst ex-isted as regular one-dimensional nanomaterial ag-glomerates. In the fibrous Cu/Zn/Al/Zr catalyst, the effect of Zr incorporation on the metallic function used for methanol synthesis were two aspects, the first is the phase separation effect [16, 19], which was at-tributed from fibrous agglomerate morphology and the slow rate for Cu/Zn sintering, The second factor for the high activity of a Cu/Zn/Al/Zr catalyst is related to the effect of ion doping and valence compensation. Zr 4+ dissolved in the ZnO crystal causes the formation of positive ion defects on the surface of Cu-ZnO. These defects can adsorb Cu + and form and stabilize more active sites, Cu 0-Cu +-O-Zn 2+, on the catalyst sur-face [16]. Thus, a high performance of methanol cata-lyst that with a BET surface area of 70.9 m 2·g -1 was obtained. This was used in the CO2 hydrogenation.Figure 1 TEM images of the fibrous catalystIf the space velocity was above 900 ml·(g cat)-1·h -1 in the present reactor, the external diffusion was not shown. Furthermore, the size of the catalyst particles should be less than 0.35 mm to avoid internal diffu-sion, which similar to previous reports [20-23]. In the present studies, the space velocities in the kinetic ex-periments were all above 1000 ml·(g cat)-1·h -1, and the particle size of the Cu/Zn/Al/Zr catalyst was less than 0.05 mm. The thermodynamics of methanol syn-thesis reactions were also studied similar to the previ-ous reports [24]. The equilibrium constants at different temperatures were calculated using van Hoff equation as below:0R f 2ln p H K T RT∆∂⎛⎞=⎜⎟∂⎝⎠ (5) These were used to calculate the equilibrium conver-sions and yields for given initial conditions. In theChin. J. Chem. Eng., Vol. 17, No. 1, February 200990following parts, various factors, including reaction temperature, pressure, and space velocity have a large effect on methanol synthesis.3.1 The effect of reaction temperatureCO 2 hydrogenation takes place at temperatures from 483 to 543 K. The relationship between reaction temperature and CO 2 conversion or methanol yield is shown in Fig. 2. Methanol synthesis and the reverse water shift reaction occurred in the reactor. When the reaction temperature was higher, the reaction rate in-creased, and more CO 2 was converted into methanol when the system is far from thermodynamic equilib-rium. At 523 K, CO 2 conversion can reach 0.258. However, the CO 2 conversion was decreased to 0.251 when the temperature was 543 K because of thermo-dynamic equilibrium. With the increase of temperature, the CO 2 conversion reached to thermodynamic gradu-ally. Moreover, methanol yield, which is the lower line in Fig. 2, showed trends similar to CO 2 conversion. It was noticed that only a fraction of CO 2 was converted to methanol, while the rest was converted to CO. Methanol yield increased from 11.4% at 483 K to 17.9% at 523 K, which is 36% higher than the yield at 483 K. However, although methanol synthesis is an exothermic process and the temperature increasing further is not favorable, but because the reverse water shift reaction is endothermic, which resulted in that the methanol yield was decreased. We can also see that methanol synthesis was more sensitive than the reverse water shift reaction with respect to the reaction temperature. The fibrous catalyst has its highest methanol yield at 523 K at a space velocity of 6000ml·(g cat)-1·h -1and a pressure of 5 MPa.Figure 2 Relationship between the reaction temperature and CO 2 conversion and methanol yield from the experi-mental (exp.) results and thermodynamic (ther.) predictions [2H y ︰2CO y =3︰1, p =5 MPa, SV =6000 ml·(g cat)-1·h -1]conversion, exp.; ★ conversion, ther.; yield, exp.; ● yield, ther.3.2 The effect of pressureFrom the thermodynamics, a high pressure is beneficial for methanol production from CO 2. On the fibrous Cu/Zn/Al/Zr catalyst, the relationship between the pressure and CO 2 conversion and methanol yield is shown in Fig. 3. At 2.0 MPa, CO 2conversion was just 0.190. When the pressure was increased to 5.0 MPa, CO 2 conversion was increased to 0.258. When the pressure increased, the difference between the ex-perimental results and thermodynamic equilibrium was also increased. Furthermore, the yield of metha-nol also showed similar trends: methanol yield was 0.061 and 0.179 at pressures of 2.0 and 5.0 MPa, re-spectively. It was also observed that the methanol yield increased faster than the CO 2 conversion which meant that methanol synthesis was more sensitive than the reverse water shift reaction with respect to the re-action pressure. This is in agreement with many other reports. A high pressure was also effective for the Cu/Zn/Al/Zr catalyst in our case. Meanwhile, the flow rate through the reactor was also increased. Too high a reaction pressure has a much higher requirement for the material of the facility and also poses a safety problem.Figure 3 Relationship between the pressure and CO 2 con-version and methanol yield from the experimental (exp.) re-sults and thermodynamic (ther.) predictions [SV =6000 ml·(g cat)-1·h -1, 2H y ︰2CO y = 3︰1, T =523 K]◆ conversion, exp.;conversion, ther.; yield, exp.;yield, ther.3.3 The effect of the space velocityThe space velocity, which is a parameter that re-flects the reactor efficiency, was also tested with aH 2/CO 2 ratio of 3 and a pressure of 5.0 MPa. Spacevelocities from 1000 to 10000 ml·(g cat)-1·h -1 were used to test the catalytic behavior. At the space velocity of 1000 ml·(g cat)-1·h -1, CO 2 conversion was about0.262. When it was increased to 10000 ml·(g cat)-1·h -1,Chin. J. Chem. Eng., Vol. 17, No. 1, February 2009 91the CO 2 conversion was decreased to 0.232. A de-creasing trend was shown in CO 2 conversion and methanol yield. But it was noticed that the CO 2 con-version decrease was 11.4%, while the methanol yield was decreased 31.0% from a space velocity of 1000ml·(g cat)-1·h -1 to 10000 ml·(g cat)-1·h -1. With a higher space velocity, more reactant was introduced into the reactor and the residence time was shorter, and CO 2 conversion decreased. Here, the reverse water shift reaction was much faster than the methanol synthe-sis reaction, and the higher space velocity had less effect on the reverse water shift reaction than methanol syn-thesis, which caused methanol yield to decrease more. 4 KINETICS FOR METHANOL SYNTHESIS FROM CO 2 HYDROGENATION 4.1 Kinetic modelingV arious kinetic models have been proposed for this process. Natta derived a model based on the ZnO/Cr 2O 3 catalyst of the high pressure process, which has now been almost completely abandoned owing to the present favor of the low pressure process [25]. Bakemeier et al . noted an important discrepancy between their experimental observations on ZnO/Cr 2O 3 and Natta’s kinetics, particularly in the case of CO 2 rich feeds [26]. For this reason, a CO 2 de-pendency was introduced into the equation using a Langmuir type isotherm. Leonov et al . [27] were the first to model methanol synthesis kinetics over a Cu/ZnO/Al 2O 3 catalyst. Their model again assumed CO to be the source of carbon in methanol and did not account for the influence of CO 2 in the feed. Klier et al . no longer considered CO to be the only carbon source, but still considered it the most important source of carbon in methanol [28]. Villa et al . realized that a thorough modeling of the methanol synthesis system should also include a description of the water gas shift reaction [29]. Graaf et al . considered both the hydrogenation of CO and CO 2 and the water gas shift reaction [30, 31]. Inspired by the work of Herman et al . [32], Graaf et al . proposed a dual site mechanism, with CO and CO 2 adsorbing on an s1 type site and H 2 and water adsorbing on a site s 2. The formation of methanol from CO and CO 2 occurs through successive hydro-genations, while the water gas shift reaction proceeds along a formate route. Assuming adsorption and de-sorption to be in equilibrium and taking every elemen-tary step in each of the three overall reactions in turn as rate determining, Graaf et al . examined 48 possible models and used statistical discrimination to get the final set of kinetic equations, which are used below.In our case, the fibrous Cu/Zn/Al/Zr catalyst showed high activity for producing methanol from CO 2 hydrogenation. Thus, there are three independent reac-tions present in methanol synthesis from CO 2, namely, Methanol synthesis from CO:23CO 2H CH OH 90.4+=− kJ·mol -1 (6)Reverse water gas shift:222CO H CO H O 41.0+=++ kJ·mol -1 (7)Methanol synthesis from CO 2:2232CO 3H CH OH H O 49.3+=+− kJ·mol -1 (8)Since the time for reaction (7) to reach thermody-namic equilibrium is very short, it is valid to believe that even for CO 2 hydrogenation, the CO can be con-verted into CO 2 and adsorb on the Cu site, so the ki-netics is the same for CO hydrogenation and CO 2 hy-drogenation. Among the above models, Graaf’s model [30, 31] gave a better fit and was chosen in our case. The kinetic rate equations for (6)-(8) are as follows: ()()()23222222213/21/21CO CO H CH OH H f11/21/2CO CO CO CO H H O H O H /1/r k K f f f f K K f K f f f K K =⎡⎤−⎣⎦⎡⎤+++⎣⎦(9)()()()22222222222CO H H O CO f22CO 1/21/2CO CO COCO H H O H O H /1/r f f f f K k K K f K f f f K K =−⎡⎤+++⎣⎦(10)()()()22232222222233/23/23CO CO H CH OH H O H f 31/21/2CO CO CO CO H H O H O H /1/r k K f f f f f K K f K f f f K K =⎡⎤−⎣⎦⎡⎤+++⎣⎦(11)where K f1、K f2 and K f3 are the equilibrium constants of the three reactions, respectively. They were deter-mined by the thermodynamic model proposed byWang et al [33]. K CO , 2CO K , 220.5H O H/K K , are the ad-sorption equilibrium constants of CO, CO 2, H 2O and H 2 [32]. The expressions, ()exp /i i i k A E RT =−, are the rate constants of each individual reaction. The ex-perimental data as show in Figs. 2-4 are used to fit the kinetic model and the fugacity in Eqs. (9)-(11) was assumed equally to the partial pressure. As we know the reactor size and catalyst amount in the reactor, then the conversion of the CO 2 can be obtained by integration. The parameter estimation was the optimi-zation value of F which was defined as follows:()()222CO ,exp CO ,cal 12MeOH,exp MeOH,cal Mj F X X Y Y =⎡=−+⎣⎤−⎦∑ (12)where X and Y was obtained by integration of the re-action rate. The initial value of each parameter was estimated and the simplex method was used as the algorithms to realize the optimization. It was convergedChin. J. Chem. Eng., Vol. 17, No. 1, February 200992when the residual was less than 10-9. The best fit ki-netic parameters are listed in Table 1. Now a model for methanol synthesis on Cu/Zn/Al/Zr catalyst was obtained and it can be used predicted the CO 2 conver-sions and methanol yields. The prediction value can be compared with the experimental results as shown in Fig. 5. The fit is good, with an average deviation of about 5%, and can be predicted the methanol synthesisas follows.Figure 5 Comparison of model and experimental results Table1 Regression parameters of the kinetic modelParameterA iB i or i E −K CO 8.3965×10-111.1827×105 2CO K1.7214×10-108.1287×104221/2H O H /K K 4.3676×10-12 1.1508×105k 1 4.0638×10-6 41.169510−× k 2 9.0421×108 51.128610−×k 3 1.5188×10-3352.660110−×Note:exp /i i i K A B RT =, exp /i i i k A E RT =−.4.2 Simulation of the CO cycle process with the empirical kinetic modelOnce the Cu/Zn/Al/Zr catalytic behavior has been quantified, a process, which contains the metha-nol synthesis in a fixed bed reactor can be simulated with the above kinetic model. When CO was added into the feeding gas, the reactant ratio was changed, and then the reaction rate also changed. This can be predicted using the Graaf’s model with the regression parameters. Take an example, 3% CO 2 was replaced by CO in the feed gas to the reactor, the calculation result was shown in Fig. 6. It can be seen that both the methanol yield increased. With temperature higher, the increase is more obviously. At 533 K, then the yield of methanol was increase from 0.145 to 0.182 (Fig. 6). With CO addition in the reactant, higher CO 2 and H 2 concentration can be obtained, then more CO 2 and H 2 molecular will absorb on the catalyst surface and yield of the methanol increased.Figure 6 Effect of CO in the methanol synthesis process [2H y ︰2CO CO ()3y y +=, SV =6000 ml·(g cat)-1·h -1] ■ CO 0.03y =; ● CO 0y =It is noticed that CO is inevitably produced formethanol production in a single reactor. Both CO and CO 2 exist in the effluent gas of the reactor. For an in-dustrial process, CO should be separated from the product at first. It even can be fed into the reactor to accelerate the methanol production in the reactor and cycle in the economic process. Thus, a process with CO recycle was design as shown in Fig. 7. The light component, such as CO, unreacted H 2, CO 2, can be separated in the first distiller and mixed with inlet. The methanol can also obtain at the cooler. The key for the zero CO production process was the highly efficient separation of the effluent gas and delicate control of reactor operation. Those were difficult to realize in our experiment. However, the operation pa-rameters, including the product composition with a fixed value of ()22CO CO H /y y y +, temperature andFigure 4 Relationship between the space velocity and CO 2 conversion and methanol yield (2H y ︰2CO y =3︰1, T =523 K, p =5 MPa)Chin. J. Chem. Eng., Vol. 17, No. 1, February 200993pressure, can be obtained by simulation with the present kinetic model for the designated reactor size. For a stable zero CO production in CO2 hydrogenation, the CO amount that exits the reactor must be equal to the CO amount that enters the reactor. So the stable state can be obtained from the iteration from the design calculation based on the kinetic model. Here, the space velocity was assumed at 6000 ml·(g cat)-1·h-1, the ratio of H2 to CO2 and CO was 3, the ratio of CO to CO2 is 3︰22, the reactor size is the same as we used in the Cu/Zn/Al/Zr catalyst evaluation, thus, the operated temperature is related to the pressure. By iterative calculation, the relation between the reaction pressure and temperature can be obtained and was shown in Table 2. When the temperature increased, the related operating pressure also increased. Mean-while, the space time yield of methanol predicted from the proposed operation is shown in Table 2. Compared with that without recycle, the yield of methanol in-creased. This was mainly attributed CO acceleration as shown in Fig. 6 and the CO recycle in the methanol synthesis process. From the simulation results, the CO cycle is really important concept for increase the space time yield of methanol in industry process in future.Table 2 Methanol yield from CO2 hydrogenation with/without CO recycle and pressures for astable process with CO recycle at various temperaturesSpace time yield of MeOH/g·(g cat)-1·h-1 T/K P/MPaWith recycle Without recycle 503 2.51 0.255 0.193513 3.07 0.303 0.237523 3.83 0.350 0.278533 4.78 0.389 0.3135 CONCLUSIONSA fibrous Cu/Zn/Al/Zr catalyst was used to cata-lyze CO2 hydrogenation. High CO2 conversion and methanol yield were obtained at the optimum reaction temperature, high pressure and low space velocity. The kinetics parameters used were obtained by regres-sion from experimental data. Simulation results showed good agreement with the experimental results.A process for CO2 hydrogenation with CO recycle is proposed. Base on the simulation, the space time yield of methanol increased and there is no CO in the prod-uct stream, which shows good potential application for industry.NOMENCLATUREf i fugacity of component j, PaK f i equilibrium constant for reaction iK j equilibrium constant for adsorption of component jM molecular weight, g·mol-1p pressure,MPar reaction speed, mol·(g cat)-1·s-1S space time yield, g·(g cat)-1·h-1T temperature,KV space time velocity, ml·(g cat)-1·h-1X conversionY yieldREFERENCES1 Jean-Paul, L., “Methanol synthesis: a short review of technologyimprovements”, Catal. Today, 64, 3-8 (2001).2 Hironori, A., “Research and development on new synthetic routesfor basic chemicals by catalytic hydrogenation of CO2 studies”, Surf.Sci. Catal, 114, 19-30 (1998).3 Roman-Martinez, M.C., Cazorla-Amoros, D., Linares-Solano, A.,Salinas Martinez, C., “CO2 hydrogenation under pressure on cata-lysts Pt-Ca/C”, Appl. Catal. A, 134, 159-167 (1996).4 Takeshi, K., Itaru, H., Hirotaka, M., Kozo, M., Kenji, U., Taiki, W.,Masahiro, S., “Kinetic study of methanol synthesis from carbon di-oxide and hydrogen”, Appl. Organometal. Chem., 15, 121-126 (2001).5 Kenji, U., Kozo, M., Takeshi, K., Taiki, W., Masahiro, S., “Methanolsynthesis from CO2 and H2 in a bench-scale test plant”, Appl. Or-ganometal. Chem., 14, 819-825 (2000).6 Ortelli, E.E., Wambaca, J., Wokaun A., “Methanol synthesis reac-tions over a CuZr based catalyst investigated using periodic varia-tions of reactant concentrations”, Appl. Catal. A, 216, 227-241 (2001).7 Melian-Cabrera, I., Granados, M.L., Terreros, P., Fierro, J.L.G.,“CO2 hydrogenation over Pd-modified methanol synthesis catalysts”,Catal. Today, 45, 251-256 (1998).8 Melian-Cabrera, I., Granados, M.L., Fierro, J.L.G., “Effect of Pd onCu-Zn catalysts for the hydrogenation of CO2 to methanol: stabiliza-tion of Cu metal against CO2 oxidation”, Catal. Lett., 79, 165-170(2002).9 Melian-Cabrera, I., Granados, M.L., Fierro, J.L.G., “Reverse topo-tactic transformation of a Cu-Zn-Al catalyst during wet Pd impreg-nation: Relevance for the performance in methanol synthesis fromCO2/H2 mixtures”, J. Catal., 210, 273-284 (2002).10 Melian-Cabrera, I., Granados, M.L., Fierro, J.L.G., “Structural reversi-bility of a ternary CuO-ZnO-Al2O3 ex hydrotalcite-containing mate-rial during wet Pd impregnation”, Catal. Lett., 84, 153-161 (2002).11 Cao, Y., Chen, L.F., Dai, W.L., Fan, K.N., Wu, D., Sun, Y.H.,“Preparation of high performance Cu/ZnO/Al2O3 catalyst formethanol synthesis from CO2 hydrogenation by coprecipita-tion-reduction”, Chem. J. Chin. U., 24, 1296-1298 (2003).12 An, X., Ren, F., Li, J.L., Wang, J.F., “A highly active Cu/ZnO/Al2O3nanofiber catalyst for methanol synthesis through CO2 and CO hy-drogenation”, Chin. J. Catal., 26, 729-730 (2005).13 Yang, R.Q., Zhang, Y., Noritatsu, T., “Spectroscopic and kineticanalysis of a new low-temperature methanol synthesis reaction”,Catal. Lett., 106, 153-159 (2006).14 Schuyten, S., Wolf, E.E., “Selective combinatorial studies on Ce andZr promoted Cu/Zn/Pd catalysts for hydrogen production viaFigure 7 Proposed CO2 hydrogenation process with CO recycled in the systemChin. J. Chem. Eng., Vol. 17, No. 1, February 2009 94methanol oxidative reforming”, Catal. Lett., 106, 7-14 (2006).15 Zhang, X.R., Wang, L.C., Yao, C.Z., Cao, Y., Dai, W.L., He, H.Y.,Fan, K.N., “A highly efficient Cu/ZnO/Al2O3 catalyst via gel-coprecipitation of oxalate precursors for low-temperature steam reforming of methanol”, Catal. Lett., 102, 183-190 (2005).16 An, X., Li, J.L., Zuo, Y.Z., Zhang, Q., Wang, D.Z., Wang, J.F., “ACu/Zn/Al/Zr fibrous catalyst that is an improved CO2 hydrogenation to methanol catalyst”, Catal. Lett., 118, 264-269 (2007).17 Sahibzada, M., Metcalfe, I.S., Chadwick, D., “Methanol synthesisfrom CO/CO2/H2 over Cu/ZnO/Al2O3 at differential and finite con-versions”, J. Catal., 174, 111-118 (1998).18 Li, F.X., Wang, Y., Wang, D.Z., Wei, F., “Characterization of sin-gle-wall carbon nanotubes by N2 adsorption”, Carbon, 42, 2375-2383 (2004).19 Zhang, Q., Qian, W.Z., Wen, Q., Liu, Y., Wang, D.Z., Wei, F., “Theeffect of phase separation in Fe/Mg/Al/O catalysts on the synthesis of DWCNTs from methane”, Carbon, 45, 1645-1650 (2007).20 Wang, J.Y., Wang, X.H., Zeng, C.Y., Wu, C.Z., “Intrinsic kinetics ofdimethyl ether synthesis directly from CO2 hydrogeneration”, Acta Petrol Ei Sinica, 23, 62-68 (2007). (in Chinese)21 Chen, L.J., Guo, S.H., Zhao, D.S., “Oxidative desulfurization ofsimulated gasoline over metal oxide-loaded molecular sieve”, Chin.J. Chem. Eng., 15, 520-523 (2007).22 An, X., Zuo, Y.Z., Zhang, Q., Wang, D.Z., Wang, J.F., “Dimethyl ethersynthesis from CO2 hydrogenation on a CuO-ZnO-Al2O3-ZrO2/ HZSM-5 bifunctional catalyst”, Ind. Eng. Chem. Res., 47, 6547-6554 (2008).23 Ma, L., Zhang, Y., Yang, J.C., “Purification of lactic acid by hetero-geneous catalytic distillation using ion-exchange resins”, Chin. J.Chem. Eng., 13, 24-31 (2005).24 An, X., Li, J.L., Wang, J.F., “Thermodynamic analysis for directsynthesis of dimethyl ether from CO and/or CO2 hydrogenation”,Nat. Gas Chem. Ind., 32, 5-8 (2007). (in Chinese)25 Natta, G., In Catalysis, Emmett, P.H., Eds, Reinhold, New York,USA, 3, 349 (1955).26 Bakemeier, H., Laurer, P.R., Schroder, W., “Development and appli-cation of a mathematical model of the methanol synthesis”, Chem.Eng. Prog. Symp. Ser., 66, 1-10 (1970).27 Leonov, V.E., Karavaev, M.M., Tsybina, E.N., Petrishcheva, G.S.,“Kinetics of methanol synthesis on a low-temperature catalyst”, Ki-net. Katal, 14, 970-975 (1973).28 Klier, K., Chatikavanij, V., Herman, R.G., Simmons, G.W., “Cata-lytic synthesis of methanol from CO/H2 (IV) the effects of carbon dioxide”, J. Catal., 74, 343-360 (1982).29 Villa, P., Forzatti, P., Buzzi-Ferraris, G., Garone, G., Pasquon, I.,“Synthesis of alcohols from carbon oxides and hydrogen (1) Kinet-ics of the low-pressure methanol synthesis”, Ind. Eng. Chem. Proc-ess. Des. Dev., 24, 12-19 (1985).30 Graaf, G.H., Stamhuis, E.J., Beenackers, A.A.C.M., “Kinetics oflow-pressure methanol synthesis”, Chem. Eng. Sci., 43, 3185-3195 (1988).31 Graaf, G.H., Scholtens, H., Stamhuis, E.J., Beenackers, A.A.C.M.,“Intra-particle diffusion limitations in low-pressure methanol syn-thesis”, Chem. Eng. Sci., 45, 773-783 (1990).32 Herman, R.G., Klier, K., Simmons, G.W., Finn, B.P., Bulko, J.B.,Kobylinski, T.P., “Catalytic synthesis of methanol from carbon monoxide/hydrogen (I) Phase composition, electronic properties, and activities of the copper/zinc oxide/M2O3 catalysts”, J. Catal., 56, 407-429 (1979).33 Wang, C.W., Ding, B.Q., Zhu, B.C., Luo, Z.C., “Study on phaseequilibrium for binary system of gas components, methanol and wa-ter in three-phase methanol synthesis process with liquid paraffin”, J.Chem. Eng. Chin. U., 14, 588-592 (2000).。