重庆市高中数学人教版选修2-3(理科)第二章随机变量及其分布2.4正态分布
高中数学选修2-3精品课件2:2.4正态分布
P(1 <x<2)= P(-1.5 <x<-1)= P(-0.5 <x<1.5)=
正态分布0)
(
X0-
)
例题选讲 求正态总体N(1,4)在区间(2,3)内取值的概率?
P(2 <x<3)=( 1)- (0.5)=0.1498
( - 2 , + 2)
95.4%
( - 3 , +3 )
99.7%
小概率事件
正态总体在( - 2 , + 2)以外取值的概率是 4.6% 正态总体在( - 3 , + 3)以外取值的概率是 0.3%
O
4
x
6
小概率事件在一次实验中几乎不可能发生
控制上界 + 3
中心线
控制下界 -3
练习
1.设零件尺寸服从正态总体N(4,0.25)质检人员从工厂
生产的1000件产品中随机抽查一件,测得其尺寸为5.7,试问
这批产品是否合格?
控制上界
+ 3=4+3×0.5=5.5
控制下界
- 3=4-3×0.5=2.5
5.7(2.5,5.5)
该产品不合格
2.设零件尺寸服从正态总体N( 25,0. 09)为使生产的产品有 95%以上的合格率,求零件尺寸允许值的范围?
1234
x
=-2
=0
=3
N (0 ,4)
N (0, 1) y
-4 -3 -2 -1 O
1
N (0, 1/9)
=1/3
=1
=2
234
x
正态曲线的性质
高中数学《第二章随机变量及其分布2.4正态分布信息技术应用μ,σ对正...》207PPT课件
能说 说正态 曲线的特点 吗?
2曲 线 是单 峰 的,它 关 于直 线x μ
对 称;
3曲线在x μ处达到峰值;
4曲 线 与x轴 之 间 的 面 积 为1.
正态曲线下的面积规律
• X轴与正态曲线所夹面积恒等于1 。 • 对称区域面积相等。
S(-,-X)
S(X,)=S(-,-X)
例1: 在一次测试中,测量结果X服从正态分布 N(2,σ2)(σ>0),若X在(0,2)内取值的概率为
观察正态分布曲线的变化
用几何画板研究正态曲线随着 和变化的特点
信息技术 的应用
2. 正态曲线的特点
的意义
正态曲线 f x
1
x 2
e 2 2 , x ,
2
由图象可以知道
(1)曲线是单峰的,它关于直线 x 对称.
(2)曲线在 x 处达到峰值 1
.
2
参数反映随机变量取值的平均水平
我们从上图看到,正态总体在(μ-2σ,μ+2σ)以外取值的概率只有 4.5%,在
3 , 3 以外取值的概率只有 0.27%。
小概率事件:
.由图可知,正态分布几乎总取值于区间 3 , 3 之内,而在此区间以外
取值的概率只有 0.0027, 由于这些概率值很小(一般不超过 5%),通常称这些
标准正态曲线
正态曲线的函数表示式
f x
1
x 2
e 2 2 , x ,
2
标准正态曲线
y
当时
f x
1
e
x2 2
,
x
,
2
-3 -2 -1 0 1 2 3 x
称为标准正态分布的函数,其图象称为标准正态曲线.
从正态曲线分析,随机变量X在区间(a,b]内取值的 概率有什么几何意义?在理论上如何计算?
高中数学选修2-3课件2.4《正态分布》课件
重点一:熟记正态分布的函数表达式及正态曲线的
特点
B
例1、下列函数是正态密度函数的是( )
A. f (x)
1
(x )2
e 2 2 , , ( 0)都是实数
2
B.
f (x)
2
x2
e2
2
C. f (x)
1
( x1)2
e4
2 2
D. f (x)
1
x2
e2
2
练习1、若标准正态总体的函数为
1
x2
数的最大值等于 的解析式。 4
1
2
,求该正态分布的概率密度函数
2、如图,是一个正态曲线, 试根据图象写出其正态分布 的概率密度函数的解析式, 求出总体随机变量的期望和 方差。
y
1
2
5 10 15 20 25 30 35 x
3、正态曲线的性质
( x)
1
e
(
x )2 2 2
, x (, )
2
y
y
Y
a
bc
d
平均数
X
若用X表示落下的小球第1次与高尔顿板底部接触时的坐标,则X 是一个随机变量.X落在区间(a,b]的概率为:
b
P(a X b) a , (x)dx
2.正态分布的定义:
如果对于任何实数 a<b,随机变量X满足:
b
P(a X b) a , (x)dx
则称为X服从正态分布..记作 X~ N( μ,σ2)
取值的概率只有0.3 %。 际通( 运常 用3由称当中,于这a就这些只33些情考)时概况之虑正率发内这态,值个 生其总区很为他体间小小区的,(概称 间取一为 取率值值般事3几几不件乎原乎超。总则不取过. 可值5能%于.区 在)实间,
人教版高中数学选修2-3知识点汇总
人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。
分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。
做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
分步要做到“步骤完整”。
n元集合A={a1,a2⋯,a n}的不同子集有2n个。
1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。
从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。
排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。
从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。
组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。
1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。
(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。
高中数学选修2-3 第二章随机变量及其分布 2-1-1离散型随机变量
一区间内的一切值,无法一一列出,故不是离散型随机变
量.
答案: B
2.某人练习射击,共有5发子弹,击中目标或子弹打完 则停止射击,射击次数为X,则“X=5”表示的试验结果为 ()
A.第5次击中目标 B.第5次未击中目标 C.前4次均未击中目标 D.前5次均未击中目标 解析: 射击次数X是一随机变量,“X=5”表示试验 结果“前4次均未击中目标”. 答案: C
(4)体积为64 cm3的正方体的棱长. [思路点拨] 要根据随机变量的定义考虑所有情况.
(1)接到咨询电话的个数可能是0,1,2,…出现 哪一个结果都是随机的,因此是随机变量.
(2)该运动员在某场比赛的上场时间在[0,48]内,是随机 的,故是随机变量.
(3)获得的奖次可能是1,2,3,出现哪一个结果都是随机 的,因此是随机变量.
人教版高中数学选修2-3 第二章 随机变量及其分布
第二章 随机变量及其分布
2.1 离散型随机变量及其分布列 2.1.1 离散型随机变量
课前预习
1.在一块地里种下10颗树苗,成活的树苗棵树为X. [问题1] X取什么数字? [提示] X=0,1,2…10.
2.掷一枚硬币,可能出现正面向上,反面向上两种结 果.
3.一个袋中装有5个白球和5个红球,从中任取3个.其 中所含白球的个数记为ξ,则随机变量ξ的值域为________.
解析: 依题意知,ξ的所有可能取值为0,1,2,3,故ξ的 值域为{0,1,2,3}.
答案: {0,1,2,3}
4.写出下列随机变量ξ可能取的值,并说明随机变量ξ =4所表示的随机试验的结果.
[问题2] 这种试验的结果能用数字表示吗? [提示] 可以,用数1和0分别表示正面向上和反面向 上. [问题3] 10件产品中有3件次品,从中任取2件,所含次 品个数为x,试写出x的值. [提示] x=0,1,2.
数学人教A选修2-3讲义:第二章 随机变量及其分布2.1.2 离散型随机变量的分布列(一) (最新)
2.1.2 离散型随机变量的分布列(一)学习目标 1.理解取有限个值的离散型随机变量及其分布列的概念.2.了解分布列对于刻画随机现象的重要性.3.掌握离散型随机变量分布列的表示方法和性质.知识点 离散型随机变量的分布列思考 掷一枚骰子,所得点数为X ,则X 可取哪些数字?X 取不同的值时,其概率分别是多少?你能用表格表示X 与P 的对应关系吗? 答案 (1)x =1,2,3,4,5,6,概率均为16.(2)X 与P 的对应关系为梳理 (1)离散型随机变量的分布列的概念一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:此表称为离散型随机变量X 的概率分布列,简称为X 的分布列. (2)离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,3,…,n ;② i =1np i =1.1.在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( × ) 2.在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( × )3.在离散型随机变量分布列中,所有概率之和为1.( √ )类型一 离散型随机变量分布列的性质例1 设随机变量X 的分布列为P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率解 (1)由a +2a +3a +4a +5a =1,得a =115.(2)∵P ⎝⎛⎭⎫X =k 5=115k (k =1,2,3,4,5), ∴P ⎝⎛⎭⎫X ≥35=P ⎝⎛⎭⎫X =35+P ⎝⎛⎭⎫X =45+P (X =1)=315+415+515=45. (3)当110<X <710时,只有X =15,25,35时满足,故P ⎝⎛⎭⎫110<X <710 =P ⎝⎛⎭⎫X =15+P ⎝⎛⎭⎫X =25+P ⎝⎛⎭⎫X =35 =115+215+315=25. 反思与感悟 利用分布列及其性质解题时要注意以下两个问题 (1)X 的各个取值表示的事件是互斥的.(2)不仅要注意∑i =1np i =1,而且要注意p i ≥0,i =1,2,…,n .跟踪训练1 (1)设随机变量ξ只能取5,6,7,…,16这12个值,且取每一个值概率均相等,若P (ξ<x )=112,则x 的取值范围是________.(2)设随机变量X 的分布列为P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 (1)(5,6] (2)37解析 (1)由条件知P (ξ=k )=112,k =5,6,…,16, P (ξ<x )=112,故5<x ≤6.(2)由已知得随机变量X 的分布列为∴k 2+k 4+k 8=1,∴k =87. ∴P (X ≥2)=P (X =2)+P (X =3)=k 4+k 8=27+17=37.类型二 求离散型随机变量的分布列命题角度1 求离散型随机变量y =f (ξ)的分布列 例2 已知随机变量ξ的分布列为分别求出随机变量η1=12ξ,η2=ξ2的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关的随机变量分布列的求法解 由η1=12ξ知,对于ξ取不同的值-2,-1,0,1,2,3时,η1的值分别为-1,-12,0,12,1,32, 所以η1的分布列为由η2=ξ2知,对于ξ的不同取值-2,2及-1,1,η2分别取相同的值4与1,即η2取4这个值的概率应是ξ取-2与2的概率112与16的和,η2取1这个值的概率应是ξ取-1与1的概率14与112的和,所以η2的分布列为反思与感悟 (1)若ξ是一个随机变量,a ,b 是常数,则η=aξ+b 也是一个随机变量,推广到一般情况有:若ξ是随机变量,f (x )是连续函数或单调函数,则η=f (ξ)也是随机变量,也就是说,随机变量的某些函数值也是随机变量,并且若ξ为离散型随机变量,则η=f (ξ)也为离散型随机变量.(2)已知离散型随机变量ξ的分布列,求离散型随机变量η=f (ξ)的分布列的关键是弄清楚ξ取每一个值时对应的η的值,再把η取相同的值时所对应的事件的概率相加,列出概率分布列即可.跟踪训练2 已知随机变量ξ的分布列为分别求出随机变量η1=-ξ+12,η2=ξ2-2ξ的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关随机变量分布列的求法解 由η1=-ξ+12,对于ξ=-2,-1,0,1,2,3,得η1=52,32,12,-12,-32,-52,相应的概率值为112,14,13,112,16,112.故η1的分布列为由η2=ξ2-2ξ,对于ξ=-2,-1,0,1,2,3,得η2=8,3,0,-1,0,3. 所以P (η2=8)=112,P (η2=3)=14+112=13,P (η2=0)=13+16=12,P (η2=-1)=112.故η2的分布列为命题角度2 利用排列、组合求分布列例3 某班有学生45人,其中O 型血的有10人,A 型血的有12人,B 型血的有8人,AB 型血的有15人.现从中抽1人,其血型为随机变量X ,求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 将O ,A ,B ,AB 四种血型分别编号为1,2,3,4, 则X 的可能取值为1,2,3,4.P (X =1)=C 110C 145=29,P (X =2)=C 112C 145=415,P (X =3)=C 18C 145=845,P (X =4)=C 115C 145=13.故X 的分布列为反思与感悟 求离散型随机变量分布列的步骤 (1)首先确定随机变量X 的取值; (2)求出每个取值对应的概率; (3)列表对应,即为分布列.跟踪训练3 一袋中装有5个球,编号分别为1,2,3,4,5.在袋中同时取3个球,以X 表示取出的3个球中的最小号码,写出随机变量X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 随机变量X 的可能取值为1,2,3.当X =1时,即取出的3个球中最小号码为1,则其他2个球只能在编号为2,3,4,5的4个球中取,故有P (X =1)=C 24C 35=610=35;当X =2时,即取出的3个球中最小号码为2,则其他2个球只能在编号为3,4,5的3个球中取,故有P (X =2)=C 23C 35=310;当X =3时,即取出的3个球中最小号码为3,则其他2个球只能是编号为4,5的2个球,故有P (X =3)=C 22C 35=110.因此,X 的分布列为类型三 离散型随机变量的分布列的综合应用例4 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有的白球的个数; (2)求随机变量ξ的分布列; (3)求甲取到白球的概率.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)设袋中原有n 个白球,由题意知 17=C 2nC 27=n (n -1)27×62=n (n -1)7×6, 可得n =3或n =-2(舍去),即袋中原有3个白球. (2)由题意,ξ的可能取值为1,2,3,4,5. P (ξ=1)=37;P (ξ=2)=4×37×6=27;P (ξ=3)=4×3×37×6×5=635;P (ξ=4)=4×3×2×37×6×5×4=335;P (ξ=5)=4×3×2×1×37×6×5×4×3=135.所以ξ的分布列为(3)因为甲先取,所以甲只有可能在第一次、第三次和第五次取到白球,记“甲取到白球”为事件A ,则P (A )=P (ξ=1)+P (ξ=3)+P (ξ=5)=2235.反思与感悟 求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率,即必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.跟踪训练4 北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(1)求选取的5只恰好组成完整的“奥运会吉祥物”的概率;(2)若完整的选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X 表示所得的分数,求X 的分布列. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用解 (1)选取的5只恰好组成完整的“奥运会吉祥物”的概率P =C 12·C 13C 58=656=328.(2)X 的取值为100,80,60,40.P (X =100)=C 12·C 13C 58=328,P (X =80)=C 23(C 22·C 13+C 12·C 23)+C 33(C 22+C 23)C 58=3156, P (X =60)=C 13(C 22·C 23+C 12·C 33)+C 23·C 33C 58=1856=928, P (X =40)=C 22·C 33C 58=156.所以X 的分布列为1.已知随机变量X 的分布列如下:则P (X =10)等于( ) A.239 B.2310 C.139D.1310 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 P (X =10)=1-23-…-239=139.2.已知随机变量X 的分布列如下表所示,其中a ,b ,c 成等差数列,则P (|X |=1)等于( )A.13 B.14 C.12D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 由分布列的性质得a +b +c =3b =1,∴b =13.∴P (|X |=1)=P (X =1)+P (X =-1) =1-P (X =0)=1-13=23.3.已知随机变量X 的分布列如下表(其中a 为常数):则下列计算结果错误的是( ) A .a =0.1 B .P (X ≥2)=0.7 C .P (X ≥3)=0.4 D .P (X ≤1)=0.3考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 易得a =0.1,P (X ≥3)=0.3,故C 错误. 4.设ξ是一个离散型随机变量,其分布列为则P (ξ≤0)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2-12解析 由分布列的性质,得1-2q ≥0,q 2≥0, 12+(1-2q )+q 2=1, 所以q =1-22,q =1+22(舍去). P (ξ≤0)=P (ξ=-1)+P (ξ=0) =12+1-2×⎝⎛⎭⎫1-22=2-12. 5.将一枚骰子掷两次,求两次掷出的最大点数ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 由题意知ξ=i (i =1,2,3,4,5,6), 则P (ξ=1)=1C 16C 16=136;P(ξ=2)=3C16C16=336=112;P(ξ=3)=5C16C16=5 36;P(ξ=4)=7C16C16=7 36;P(ξ=5)=9C16C16=936=14;P(ξ=6)=11C16C16=1136.所以抛掷两次掷出的最大点数构成的分布列为1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值时的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.一、选择题1.设随机变量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么()A.n=3 B.n=4C.n=10 D.n=9考点离散型随机变量分布列的性质及应用题点由分布列的性质求参数答案 C解析由题意知P(X<4)=3P(X=1)=0.3,∴P(X=1)=0.1,又nP(X=1)=1,∴n=10.2.若随机变量η的分布列如下:则当P(η<x)=0.8时,实数x的取值范围是()A.x≤1 B.1≤x≤2C .1<x ≤2D .1≤x <2考点 离散型随机变量分布列的性质及应用 题点 由分布列的性质求参数 答案 C解析 由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1) =0.1+0.2+0.2+0.3=0.8, ∴P (η<2)=0.8,故1<x ≤2.3.若随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵P (X =1)+P (X =2)+P (X =3)+P (X =4) =a ⎝⎛⎭⎫1-15=1,∴a =54. ∴P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝⎛⎭⎫1-13=54×23=56. 4.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则函数f (x )=x 2+2x +ξ有且只有一个零点的概率为( ) A.16 B.13 C.12 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 B解析 由题意知⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,解得b =13.∵f (x )=x 2+2x +ξ有且只有一个零点, ∴Δ=4-4ξ=0,解得ξ=1, ∴P (ξ=1)=13.5.设离散型随机变量X 的分布列为若随机变量Y =X -2,则P (Y =2)等于( ) A .0.3 B .0.4 C .0.6 D .0.7考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 由0.2+0.1+0.1+0.3+m =1,得m =0.3. 又P (Y =2)=P (X =4)=0.3.6.抛掷2枚骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12 D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两枚骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2). 故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.7.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列的公差的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤-13,13 C .[-3,3]D .[0,1] 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求参数 答案 B解析 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质,得(a -d )+a +(a +d )=1,故a =13.由⎩⎨⎧13-d ≥0,13+d ≥0,解得-13≤d ≤13.二、填空题8.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 47解析 设二级品有k 个,则一级品有2k 个,三级品有k 2个,总数为72k 个.∴ξ的分布列为∴P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47. 9.由于电脑故障,使得随机变量X 的分布列中部分数据丢失,以□代替,其表如下:根据该表可知X 取奇数值时的概率是________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 0.6解析 由离散型随机变量的分布列的性质,可求得P (X =3)=0.25,P (X =5)=0.15,故X 取奇数值时的概率为P (X =1)+P (X =3)+P (X =5)=0.20+0.25+0.15=0.6.10.把3枚骰子全部掷出,设出现6点的骰子个数是X ,则有P (X <2)=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2527解析 P (X <2)=P (X =0)+P (X =1)=5363+C 13×5263=2527.11.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________.考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 答案解析 由题意知X =1,2,3. P (X =1)=A 3443=38;P (X =2)=C 23A 2443=916;P (X =3)=A 1443=116.∴X 的分布列为三、解答题12.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)设“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举事件A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 (1)由x 2-x -6≤0, 得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0, 所以事件A 包含的基本事件为(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有 P (ξ=0)=16,P (ξ=1)=26=13,P (ξ=4)=26=13,P (ξ=9)=16.故ξ的分布列为13.将一枚骰子掷两次,第一次掷出的点数减去第二次掷出的点数的差为X ,求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 第一次掷出的点数与第二次掷出的点数的差X 的可能取值为-5,-4,-3,-2,-1,0,1,2,3,4,5, 则P (X =-5)=136,P (X =-4)=236=118,…, P (X =5)=136.故X 的分布列为四、探究与拓展14.袋中有4个红球,3个黑球,从袋中任取4个球,取到1个红球得1分,取到1个黑球得3分,记得分为随机变量ξ,则P (ξ≤6)=________. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 答案1335 解析 取出的4个球中红球的个数可能为4,3,2,1,相应的黑球个数为0,1,2,3,其得分ξ=4,6,8,10,则P (ξ≤6)=P (ξ=4)+P (ξ=6)=C 44×C 03C 47+C 34×C 13C 47=1335. 15.在一次购物抽奖活动中,假设某10张奖券中有一等奖奖券1张,可获价值50元的奖品;有二等奖奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 的分布列,并求出P (5≤X ≤25)的值.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)该顾客中奖的概率P =1-C 26C 210=1-13=23.(2)X 的可能取值为0,10,20,50,60. P (X =0)=C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115.故随机变量X 的分布列为所以P (5≤X ≤25)=P (X =10)+P (X =20)=25+115=715.。
高中数学选修2-3(人教A版)第二章随机变量及其分布2.2知识点总结含同步练习及答案
第二章随机变量及其分布 2.2二项分布及其应用
一、学习任务 1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题. 2. 能通过实例理解相互独立事件的定义及概率计算公式,并能综合利用互斥事件的概率加法公 式即对立事件的概率乘法公式. 3. 理解独立重复试验的概率及意义,理解事件在 n 次独立重复试验中恰好发生 k 次的概率 公式,并能利用 n 次独立重复试验的模型模拟 n 次独立重复试验. 二、知识清单
(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 P1 ,则
¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯) P1 = P (¯¯ A A B B ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯) = P (¯¯ A A B B 1 2 = (1 − )2 (1 − )2 2 5
n−k k P (X = k) = Ck , k = 0, 1, 2, ⋯ , n. n p (1 − p)
此时称随机变量 X 服从二项分布(binnomial distribution),记作 X ∼ B(n, p)),并称 p 为 成功概率. 例题: 下列随机变量 X 的分布列不属于二项分布的是( ) A.投掷一枚均匀的骰子 5 次,X 表示点数 6 出现的次数 B.某射手射中目标的概率为 p ,设每次射击是相互独立的,X 为从开始射击到击中目标所需要 的射击次数 C.实力相等的甲、乙两选手举行了 5 局乒乓球比赛,X 表示甲获胜的次数 D.某星期内,每次下载某网站数据后被病毒感染的概率为 0.3,X 表示下载 n 次数据后电脑被 病毒感染的次数 解:B 选项 A,试验出现的结果只有两个:点数为 6 和点数不为 6 ,且点数为 6 的概率在每一次试验 都为
高中数学选修2-3 第二章随机变量及其分布 2-1-2离散型随机变量的分布列
所以随机变量ξ的分布列为:
ξ3
4
5
6
P
1 20
3 20
3 10
1 2
[规律方法] 1.确定离散型随机变量ξ的分布列的关键是 要搞清ξ取每一个值对应的随机事件,进一步利用排列、组 合知识求出ξ取每一个值的概率.对于随机变量ξ取值较多或 无穷多时,应由简单情况先导出一般的通式,从而简化过 程.
2.一般分布列的求法分三步:(1)首先确定随机变量ξ的 取值有哪些;(2)求出每种取值下的随机事件的概率;(3)列 表对应,即为分布列.
人教版高中数学选修2-3 第二章 随机变量及其分布
2.1.2 离散型随机变量的分布列
课前预习
1.抛掷一个骰子,用X表示骰子向上一面的点数. [问题1] X的可能取值是什么? [提示] X=1、2、3、4、5、6. [问题2] X取不同值时,其概率分别是多少? [提示] 都等于16.
2.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3 只,以ξ表示取出的3只球中的最小号码.
特别提醒: 两点分布的试验结果只有两个可能性,且 其概率之和为1.
2.解决超几何分布问题的关注点 (1)超几何分布是概率分布的一种形式,一定要注意公 式中字母的范围及其意义,解决问题时可以直接利用公式求 解,但不能机械地记忆; (2)超几何分布中,只要知道M,N,n就可以利用公式 求出X取不同m的概率P(X=m),从而求出X的分布列.
课堂练习
1.下列表中能成为随机变量X的分布列的是( )
A. X -1
0
1
P -0.1 0.5 0.6
B. X -1
0
1
P 0.3 0.7 -0.1
C. X
-1
0
人教版高中数学第二章2.4正态分布
归纳升华
解答此类题目的关键在于将待求的问题向(μ-σ,μ +σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)这三个区间进行
转化,然后利用上述区间的概率求出相应概率,在此过程 中依然会用到化归思想及数形结合思想.
[变式训练] 某年级的一次信息技术测验成绩近似 服从正态分布 N(70,102),如果规定低于 60 分为不及格, 求:
归纳升华 1.充分利用正态曲线的对称性和曲线与 x 轴之间面积 为 1. 2.熟记 P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ), P(μ-3σ<X≤μ+3σ)的值.
3.注意概率值的求解转化:
(1)P(X<a)=1-P(X≥a);
(2)P(X<μ-a)=P(X≥μ+a);
1-P(μ-b<X<μ+b)
得 σ=4.
故该正态分布的概率密度函数是 φμ,σ(x)=4 12πe- 3x22 ,
x∈(-∞,+∞). 答案:φμ,σ(x)=4 12πe-x322,x∈(-∞,+∞)
类型 2 利用正态曲线的对称性求概率
[典例 2] 在一次测试中,测量结果 X 服从正态分布 N(2,σ 2)(σ>0),若 X 在(0,2)内取值的概率为 0.2,求:
解答。听课时关键应该弄清楚老师讲解问题的思路。
三、听问题。
对于自己预习中不懂的内容,上课时要重点把握。在听讲中要特别注意老师和课本中是怎么解释的。如果老师在讲课中一带而过,并没有详细解答, 大家要及时地把它们记下来,下课再向老师请教。
四、听方法。
在课堂上不仅要听老师讲课的结论而且要认真关注老师分析、解决问题的方法。比如上语文课学习汉字,一般都是遵循着“形”、“音”、“义”
《正态分布》人教版高中数学选修2-3PPT课件(第2.4课时)
第2章 随机变量及其分布
2.4 正态分布
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-3
讲解人: 时间:2020.6.1
课前导入
你见过高尔顿板吗? 在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为 通道,前面挡有一块玻璃.让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层 层小木块碰撞,最后掉入高尔顿板下方的某一球槽内.
B. μ1<μ2, 1> 2 D. μ1>μ2, 1> 2
解析:由正态分布性质知,x=μ为正态密度函数图像的对 称轴,故μ1<μ2,又 越小,图像越瘦高,故 1< 2.
课堂练习
B 2. 设随机变量X服从正态分布N(2,9),若P(X>c+1)=P(X<c-1),则c等于( )
A.1
B.2
C.3
D.4
课前导入
下图就是一块高尔顿板示意图
球 球槽
课前导入
如果把球槽编号,就可以考察球到底是落在第几号球槽中.重复进行高尔顿板试验,随着试验次 数的增加,掉入各个球槽内的小球的个数就会越来越多,堆积的高度也会越来越高.各个球槽内 的堆积高度反映了小球掉入各球槽的个数多少.
这节课我们就学习——正态分布
新知探究
A.三角形的正投影一定是三角形 B.长方体的正投影一定是长方形
C.球的正投影一定是圆
D.圆锥的正投影一定是三角形
【答案】C 【详解】 A. 三角形的正投影不一定是三角形,错误 C. 球的正投影一定是圆,正确 故选C.
B. 长方体的正投影不一定是长方形,错误 D. 圆锥的正投影不一定是三角形,错误
2014-2015学年高中数学(人教版选修2-3)配套课件第二章 2.4 正态分布
栏 目 链 接
递减 当 x>0 时,f(x)单调____________ ;
递增 . 当 x<0 时,f(x)单调__________
基 础 梳 理
(μ-3σ,μ+ 3σ) 4.3σ原则:正态总体几乎取值于区间___________ 之
内,而在此区间以外取值的概率只有________ ,通常认为 0.002 6 这种情况在一次试验中几乎不可能发生.
第二章
随机变量及其分布
2.4 正态分布
栏 目 链 接
1.利用实际问题的直方图,了解正态分布曲线
的特点及曲线所表示的意义. 2.了解变量落在区间(μ-s,μ+s],(μ-2s,μ+ 2s],(μ-3s,μ+3s]的概率大小. 3.会用正态分布去解决实际问题.
栏 目 链 接
栏 目 链 接
基 础 梳 理
μ σ 总体的平均数和标准差,即 E(ξ)=________ ,D(ξ)=______.
2
(2)其函数图象称为正态曲线.
基 础 梳 理
例如:如果随机变量 ξ 的概率密度函数为:φμ,σ(x)= 1 e 2π
标准正态分布. , x∈(-∞, +∞), 则称 ξ 服从______________ 此
栏 目 链 接
栏 目 链 接
)
解析:因为随机变量 ξ 服从正态分布 N(3,4),因为 P(ξ<2a-3)=p(ξ>a+2),所以 2a-3 与 a+2 关于 x=3 7 对称,所以 2a-3+a+2=6,所以 3a=7,所以 a= . 3 故选 A. 答案:A
栏 目 链 接
题型一 正态分布的相关概念用
例1 把一条正态曲线C1沿着横轴方向向右移动2个
栏 目 链 接
A.μ1<μ2 B.曲线 C1 与 x 轴相交 C.σ1>σ2 D.曲线 C1、C2 分别与 x 轴所夹的面积相等
2014-2015学年高中数学选修2-3 第2章 随机变量及其分布第二章2.4
研一研·问题探究、课堂更高效
(5)当 σ 一定时,曲线随着 μ 的变化而沿 x 轴平移;
(6)当 μ 一定时,曲线的形状由 σ 确定,σ 越小,曲线越“瘦
本 课 时 栏 目 开 关
高”;σ 越大,曲线越“矮胖”.
研一研·问题探究、课堂更高效
例 1 如图是一个正态曲线,试根据图象 写出其正态分布的概率密度函数的解析 式,并求出总体随机变量的期望和方差.
图象与 x=a,x=b 及 x 轴所围成的曲边梯形的面积 .
研一研·问题探究、课堂更高效
问题 3 正态分布是客观存在的规律,高尔顿板试验只不过是 验证了这一规律而已.在现实生活中,很多随机变量都服从 或近似地服从正态分布,你能举出实例吗?
本 课 时 栏 目 开 关
答
例如长度测量误差;某一地区同龄人群的身高、体重、
肺活量等;一定条件下生长的小麦株高、穗长、单位面积产 量等.
研一研·问题探究、课堂更高效
问题 4 1 μ 正态曲线 φμ,σ(x)= e-x- , x∈R 中的参数 μ, σ 2 σ 2πσ
2 2
有何意义?
答
本 课 时 栏 目 开 关
μ 可取任意实数,表示平均水平的特征数,E(X)=μ;σ>0
2 2
(1)曲线位于 x 轴 上方 ,与 x 轴 不相交 ; (2)曲线是单峰的,它关于直线 x=μ 对称;
1 (3)曲线在 x=μ 处达到峰值 σ 2π ;
Байду номын сангаас
(4)曲线与 x 轴之间的面积为 1 ;
填一填·知识要点、记下疑难点
(5)当 σ 一定时,曲线的位置由 μ 确定,曲线随着 μ 的变化而 沿 x 轴平移,如图①; (6)当 μ 一定时,曲线的形状由 σ 确定,σ 越小 ,曲线越“瘦
人教版高中数学章节目录
第一章集合与函数概念
集合
函数及其表示
函数的基本性质
第二章基本初等函数(Ⅰ)
指数函数
对数函数
幂函数
第三章函数的应用
函数与方程
函数模型及其应用
人教版高中数学必修二目录
第一章空间几何体
空间几何体的结构
空间几何体的三视图和直观图
空间几何体的表面积与体积
第二章点、直线、平面之间的位置关系
3.3 导数在研究函数中的应用
3.4 生活中的优化问题举例
人教版高中数学选修1-2目录
第一章 统计案例
1.1 回归分析的基本思想及其初步应用
1.2 独立性检验的基本思想及其初步应用
第二章 推理与证明
2.1 合情推理与演绎推理
2.2 直接证明与间接证明
第三章 数系的扩充与复数的引入
3.1 数系的扩充和复数的概念
2.2 二项分布及其应用
2.3 离散型随机变量的均值与方差
2.4 正态分布
第三章 统计案例
3.1 回归分析的基本思想及其初步应用
3.2 独立性检验的基本思想及其初步应用
人教版高中数学选修4-1目录
第一讲 相似三角形的判定及有关性质
一 平行线等分线段定理
二 平行线分线段成比例定理
三 相似三角形的判定及性质
2.2 直接证明与间接证明
2.3 数学归纳法
第三章 数系的扩充与复数的引入
3.1 数系的扩充和复数的概念
3.2 复数代数形式的四则运算
人教版高中数学选修2-3目录
第一章 计数原理
1.1 分类加法计数原理与分步乘法计数原理
1.2 排列与组合
1.3 二项式定理
高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分
所以P(X=0)=CC06C13034=310,P(X=1)=CC16C13024=330, P(X=2)=CC26C13014=12,P(X=3)=CC36C13004=130. 所以X的概率分布为:
X
0
1
2
3
P
1 30
3 10
1
1
2
6
(2)由(1)知他能及格的概率为P(X=2)+P(X=3)=
4.从4名男生和2名女生中选3人参加演讲比赛,则 所选3人中女生人数不超过1人的概率是________.
解析:设所选女生人数为X,则X服从超几何分布, 其中N=6,M=2,n=3,
则P(X≤1)=P(X=0)+P(X=1)=CC02C36 34+CC12C36 24=45. 答案:45
5.在掷一枚图钉的随机试验中,令X=
复习课件
高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分布与超几何分布同步课件 新人教A版选修2-3
1
第二章 随机变量及其分布
2.1 离散型随机变量及其分布列 2.1.2 离散型随机变量的分布列 第 2 课时 两点分布与超几何分布
[学习目标] 1.理解两点分布,并能进行简单的应用 (重点). 2.理解超几何分布及其推导过程,并能进行简 单的应用(重点、难点).
X0
1 …M
P
C0MCnN--0M CnN
C1MCnN--1M CnN
…
CmMCnN--mM CnN
如果随机变量 X 的分布列为超几何分布列,则称随
机变量 X 服从超几何分布.
温馨提示 两点分布的随机变量 X 只能取 0 和 1,否 则,只取两个值的分布不是两点分布.
高二年级下学期新课标A版高中数学选修2-3 第二章随机变量及其分布
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
1.设有一正态总体,它的概率密度曲线是函数 f(x)的图象,
且 f(x)=φμ,σ(x)= 18πe-x-8102,则这个正态总体的均值与标
准差分别是( )
A.10 与 8
B.10 与 2
C.8 与 10
D.2 与 10
解析: 由正态密度函数的定义可知,总体的均值μ=
数学 选修2-3
10,方差σ2=4,即σ=2.
答案: B
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
2.设 X~N-2,14,则 X 落在(-3.5,-0.5)内的概率是
()
A.95.44%
B.99.74%
C.4.56%
D.0.26%
解析: 由 X~N-2,14知,μ=-2,σ=12,则 P(-3.5<X≤ -0.5)=P-2-3×12<X≤-2+3×12=0.997 4.
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
200个产品尺寸的频率分布直方图
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
若数据无限增多且组距无限缩小,那么频率分布直方图的 顶边缩小乃至形成一条光滑的曲线,我们称此曲线为总体密度 曲线.
解析: (1)根据正态曲线的特点, 由 P(2≤X≤4)=0.682 6, P(X<2)+P(2≤X≤4)+P(X>4)=1, ∴P(X>4)=P(X<2)=1-P2≤ 2 X≤4=0.158 7.
高中数学《第二章随机变量及其分布2.4正态分布信息技术应用μ,σ对正...》181PPT课件
人教A版 ·选修2-3
路漫漫其修远兮 吾将上下而求索
成才之路 ·高中新课程 ·学习指导 ·数学 ·人教A版 ·选修2-2 、2-3
第二章
随机变量及其分布
第二章 随机变量及其分布
成才之路 ·高中新课程 ·学习指导 ·数学 ·人教A版 ·选修2-2 、2-3
第二章
2.4 正态分布
第二章 随机变量及其分布
课前自主预习
第二章 2.4
成才之路 ·高中新课程 ·学习指导 ·数学 ·人教A版 ·选修2-2 、2-3
1.称函数 φμ,σ(x)=
1 2πσ
e-x2-σμ22 ,x∈(-∞,+∞)的图象
为 正态分布密度曲线 ,简称 正态曲线 ,其中 μ 和 σ(σ>0)为
参数.
2.一般地,如果对于任意实数 a<b,随机变量 X 满足
第二章 2.4
成才之路 ·高中新课程 ·学习指导 ·数学 ·人教A版 ·选修2-2 、2-3
[ 解 析 ] (1) 设 学 生 的 得 分 情 况 为 随 机 变 量 X , X ~ N(70,102),则 μ=70,σ=10.
分析在 60~80 之间的学生的比为: P(70-10<X≤70+10)=0.6826, 所以不及格的学生的比为12(1-0.6826)=0.1587, 即成绩不及格的学生占 15.87%.
第二章 2.4
成才之路 ·高中新课程 ·学习指导 ·数学 ·人教A版 ·选修2-2 、2-3
(2)成绩在 80~90 内的学生的比为 12[P(70-2×10<X≤70+2×10)-0.6826] =12(0.9544-0.6826)=0.1359. 即成绩在 80~90 间的学生占 13.59%.
(精编)人教版高中数学选修2-3全部教案
高中数学教案选修全套人教版选修2-3第一章计数原理1.1分类加法计数原理与分部乘法计数原理探究与发现子集的个数有多少1.2排列与组合探究与发现组合数的两个性质1.3二项式定理小结第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用阅读与思考这样的买彩票方式可行吗?探究与发现服从二项分布的随机变量取何值时概率最大2.3离散型随机变量的均值与方差2.4正态分布信息技术应用µ,б对正态分布的影响小结第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用实习作业小结第一章计数原理1.1分类加法计数原理和分步乘法计数原理第一课时1 分类加法计数原理(1)提出问题问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?(2)发现新知分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有nmN+=种不同的方法.(3)知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下: A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9(种).变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢? 一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条? 解:从总体上看,如,蚂蚁从顶点A 爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以, 第一类, m1 = 1×2 = 2 条 第二类, m2 = 1×2 = 2 条第三类, m3 = 1×2 = 2 条所以, 根据加法原理, 从顶点A 到顶点C1最近路线共有 N = 2 + 2 + 2 = 6 条练习: ( 1 )一件工作可以用 2 种方法完成,有 5 人只会用第 1 种方法完成,另有 4 人只会用第 2 种方法完成,从中选出 l 人来完成这件工作,不同选法的种数是_ ; ( 2 )从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条,从 A 村经 B 的路线有_条.第二课时2 分步乘法计数原理 (1)提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6×9 = 54 个不同的号码. (2)发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有 nm N ⨯= 种不同的方法. (3)知识应用例1.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法? 分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生. 解:第 1 步,从 30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有 24 种不同选择.根据分步乘法计数原理,共有30×24 =720 种不同的选法.一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法. 理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事. 3.理解分类加法计数原理与分步乘法计数原理异同点 ①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.例2 .如图,要给地图A 、B 、C 、D 四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?解: 按地图A 、B 、C 、D 四个区域依次分四步完成,第一步, m1 = 3 种, 第二步, m2 = 2 种, 第三步, m3 = 1 种, 第四步, m4 = 1 种, 所以根据乘法原理, 得到不同的涂色方案种数共有N = 3 × 2 ×1×1 = 6第三课时3 综合应用例1. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书. ①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法? ③从书架上任取两本不同学科的书,有多少种不同的取法? 【分析】①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理. ②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是123N m m m =++=4+3+2=9;( 2 )从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是123N m m m =⨯⨯=4×3×2=24 .(3)26232434=⨯+⨯+⨯=N 。
高二数学选修2_3第二章随机变量和分布
§2.1.1离散型随机变量一、教学目标1.复习古典概型、几何概型有关知识。
2.理解离散型随机变量的概念,学会区分离散型与非离散型随机变量。
3. 理解随机变量所表示试验结果的含义,并恰当地定义随机变量.重点:离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量.难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.二、复习引入:1.试验中不能的随机事件,其他事件可以用它们来,这样的事件称为。
所有基本事件构成的集合称为,常用大写希腊字母表示。
2.一次试验中的两个事件叫做互斥事件(或称互不相容事件)。
互斥事件的概率加法公式。
3. 一次试验中的两个事件叫做互为对立事件,事件A的对立事件记作,对立事件的概率公式4.古典概型的两个特征:(1) .(2) .5.概率的古典定义:P(A)= 。
6.几何概型中的概率定义:P(A)= 。
三、预习自测:1.在随机试验中,试验可能出现的结果,并且X是随着试验的结果的不同而的,这样的变量X叫做一个。
常用表示。
2.如果随机变量X的所有可能的取值,则称X为。
四、典例解析:例1写出下列各随机变量可能取得值:(1)抛掷一枚骰子得到的点数。
(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。
(3)抛掷两枚骰子得到的点数之和。
(4)某项试验的成功率为0.001,在n次试验中成功的次数。
(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值例2随机变量X为抛掷两枚硬币时正面向上的硬币数,求X的所有可能取值及相应概率。
变式训练一只口袋装有6个小球,其中有3个白球,3个红球,从中任取2个小球,取得白球的个数为X,求X的所有可能取值及相应概率。
例3△ABC中,D,E分别为AB,AC的中点,向△ABC部随意投入一个小球,求小球落在△ADE 中的概率。
五、当堂检测1.将一颗均匀骰子掷两次,不能作为随机变量的是:()(A)两次出现的点数之和;(B)两次掷出的最大点数;(C)第一次减去第二次的点数差;(D)抛掷的次数。
高中数学选修2-3优质课件:§2.4 正态分布
+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.26%,95.44%和99.74%.若
某校高一年级1 000名学生的某次考试成绩X服从正态分布N(90,152),则
此次考试成绩在区间(60,120)内的学生大约有
A.997人
B.972人
√C.954人
D.683人
12345
解析 答案
4.设 X~N-2,14,则 X 落在(-3.5,-0.5]内的概率是
(2)正态曲线的性质 ①曲线位于x轴 上方 ,与x轴不相交; ②曲线是单峰的,它关于直线 x=μ 对称;
1 ③曲线在 x=μ 处达到峰值 σ 2π ; ④曲线与x轴之间的面积为 1 ; ⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图 甲所示; ⑥当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”,总体的分 布越分散;σ越小,曲线越“瘦高”,总体的分布越集中,如图乙所示:
解答
(3)P(X>5). 解 P(X>5)=P(X≤-3)=12[1-P(-3< X≤5)] =12[1-P(1-4< X≤1+4)]=0.022 8.
解答
引申探究 本例条件不变,若P(X>c+1)=P(X<c-1),求c的值.
解 因为X服从正态分布N(1,22),所以对应的正态曲线关于x=1对称. 又P(X>c+1)=P(X<c-1),
解析 答案
(2)设X~N(6,1),求P(4<X≤5). 解 由已知得μ=6,σ=1. ∵P(5<X≤7)=P(μ-σ<X≤μ+σ)=0.682 6, P(4<X≤8)=P(μ-2σ<X≤μ+2σ)=0.954 4. 如图,由正态分布的对称性知, P(4<x≤5)=P(7<x≤8), ∴P(4<x≤5)=12[P(4< x≤8)-P(5< x≤7)] =12×0.271 8=0.135 9.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市高中数学人教版选修2-3(理科)第二章随机变量及其分布 2.4正态分布姓名:________ 班级:________ 成绩:________
一、选择题 (共8题;共16分)
1. (2分) (2015高三上·包头期末) 已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P (0<ξ<2)=()
A . 0.6
B . 0.4
C . 0.3
D . 0.2
2. (2分) (2017高二下·曲周期中) 在一次英语考试中,考试的成绩服从正态分布(100,36),那么考试成绩在区间(88,112]内的概率是()
A . 0.6826
B . 0.3174
C . 0.9544
D . 0.9974
3. (2分)已知随机变量ξ服从正态分布N(0,σ2),P(ξ>2)=0.023,则P(﹣2≤ξ≤2)=()
A . 0.997
B . 0.954
C . 0.488
D . 0.477
4. (2分)(2017·漳州模拟) 已知随机变量ξ服从正态分布N(2,σ2),若P(0≤ξ≤2)=0.3,则P(ξ≥4)=()
A . 0.2
B . 0.3
C . 0.6
D . 0.8
5. (2分)(2017·包头模拟) 已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在(3,6)内的概率为()
附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6826,P(μ﹣2σ<ξ<μ+2σ)=0.9544.
A . 0.2718
B . 0.0456
C . 0.3174
D . 0.1359
6. (2分)已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)等于()
A . 0.6
B . 0.4
C . 0.3
D . 0.2
7. (2分) (2017高二下·大名期中) 已知随机变量X~B(6,0.4),则当η=﹣2X+1时,D(η)=()
A . ﹣1.88
B . ﹣2.88
C . 5.76
D . 6.76
8. (2分)(2017·葫芦岛模拟) 某年高考中,某省10万考生在满分为150分的数学考试中,成绩分布近似服从正态分布N(110,100),则分数位于区间(130,150]分的考生人数近似为()
(已知若X~N(μ,σ2),则P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544,P(μ﹣3σ<X<μ+3σ)=0.9974.
A . 1140
B . 1075
C . 2280
D . 2150
二、填空题 (共3题;共3分)
9. (1分) (2017高二下·平顶山期末) 已知随机变量ξ服从正态分布N(3,100),且P(ξ≤5)=0.84,则P(1≤ξ≤5)=________.
10. (1分)(2020·许昌模拟) 在我市的高二期末考试中,理科学生的数学成绩,已知
,则从全市理科生中任选一名学生,他的数学成绩小于110分的概率为________.
11. (1分)(2017·合肥模拟) 已知随机变量X~N(1,σ2),若P(X>0)=0.8,则P(X≥2)=________.
三、解答题 (共3题;共30分)
12. (10分)(2019·江苏) 在平面直角坐标系xOy中,设点集,
令 .从集合Mn中任取两个不同的点,用随机变量X表示它们之间的距离.
(1)当n=1时,求X的概率分布;
(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).
13. (10分)(2019·唐山模拟) 苹果可按果径(最大横切面直径,单位: .)分为五个等级:
时为1级,时为2级,时为3级,时为4级,时为5级.不同果
径的苹果,按照不同外观指标又分为特级果、一级果、二级果.某果园采摘苹果10000个,果径均在内,从中随机抽取2000个苹果进行统计分析,得到如图1所示的频率分布直方图,图2为抽取的样本中果径在80以上的苹果的等级分布统计图.
附:若随机变量服从正态分布,则
,, .
(1)假设服从正态分布,其中的近似值为果径的样本平均数(同一组数据用该区间的中点值代替),,试估计采摘的10000个苹果中,果径位于区间的苹果个数;
(2)已知该果园今年共收获果径在80以上的苹果,且售价为特级果12元,一级果10元,二级果9元 .设该果园售出这苹果的收入为,以频率估计概率,求的数学期望.
14. (10分)(2019·呼和浩特模拟) 随着科技的发展,网购已经逐渐融入了人们的生活,在家里不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,所以选择网购的人数在逐年增加.某网店统计了2014年一2018年五年来在该网店的购买人数(单位:人)各年份的数据如下表:
年份()12345
2427416479(1)依据表中给出的数据,是否可用线性回归模型拟合与时间(单位:年)的关系,请通过计算相关系数加以说明,(若,则该线性相关程度很高,可用线性回归模型拟合)
附:相关系数公式
参考数据
(2)该网店为了更好的设计2019年的“双十一”网购活动安排,统计了2018年“双十一”期间8个不同地区的网购顾客用于网购的时间x(单位:小时)作为样本,得到下表
地区
时间0.9 1.6 1.4 2.5 2.6 2.4 3.1 1.5
①求该样本数据的平均数;
②通过大量数据统计发现,该活动期间网购时间近似服从正态分布,如果预计2019年“双十一”期间的网购人数大约为50000人,估计网购时间的人数.
(附:若随机变量服从正态分布则,
参考答案一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共3题;共3分)
9-1、
10-1、
11-1、
三、解答题 (共3题;共30分)
12-1、
12-2、13-1、13-2、
14-1、14-2、。