广东省东莞市东华初级中学2020--2021学年第一学期九年级期中测试数学试卷

合集下载

(广东东莞)2020-2021学年第一学期九年级期中测试-数学试题卷(人教版)参考答案及评分建议

(广东东莞)2020-2021学年第一学期九年级期中测试-数学试题卷(人教版)参考答案及评分建议

24
8
九年级数学参考答案第 5 页(共 5 页)
九年级数学参考答案第 3 页(共 5 页)
∴S 四边形 ODCE=S△COD+S△COE=S△BOE+S△COE=S△BOC.···································8 分 ∵O 为 AB 的中点,
∴ S△BOC
1 2
S△ABC
1 2
(1 a a) 2
1 a2 4
2
2
2
2
∴当 0<x≤12 时,S 随 x 的增大而增大,
∴当 x=12 时,S 有最大值,最大值为 108,·········································6 分
此时,15 1 x 15 1 12 9 . ······················································7 分
九年级数学参考答案第 2 页(共 5 页)
AE AF ∵在△AEB 和△AFC 中, EAB FAC ,
AB AC ∴△AEB≌△AFC(SAS), ∴BE=CF. ················································································4 分 (2)解:∵四边形 ACDE 为菱形,AB=AC=1, ∴DE=AE=AC=AB=1,AC∥DE, ∴∠AEB=∠ABE,∠ABE=∠BAC=45°, ∴∠AEB=∠ABE=45°. ···································································6 分 ∴△ABE 为等腰直角三角形,

2020-2021学年广东省东莞市东华初级中学初九年级上数学期中模拟测试卷1(无答案 )

2020-2021学年广东省东莞市东华初级中学初九年级上数学期中模拟测试卷1(无答案 )

2020-2021学年东莞市东华初级中学初三上数学期中模拟卷1一选择题(本大题共10小题,每小题3分,共30分)1.下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是( )2.若关于x的一元二次方程x²+2x+m-1=0有一个根是0,则另一根为()A.1B.-1 C -2 D 03.抛物线y=x²-9的顶点坐标是( )A.(0,-9)B.(-3,0)C.(-9,0)D.(3,0)4.若A(-2,y1),B(-1,y2),C(3,y3)为二次函数y=-x²的图象上的三点,则y1,y2,y3的大小关系是()A y1<y2<y3 A y3<y2<y1A y3<y1<y2 A y2<y1<y35.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=25°,则旋转角度是( )A 25° B. 15° C. 65° D. 40°6.如图,已知⊙O中,半径OC垂直于弦AB,垂足为D,若OD=3,OC=5,则AB的长为( )A.2B.4C.6D.87.如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°则∠CAB 为( )A.10°B.14°C.16D.26°8.如果关于x的一元二次方程kx²-4x-1=0有实数根,那么k应满足的条件是( )A.k>-4B.k-4且k≠0C.k-4且k≠0D.k19.二次函数y=ax²+bx+c(a≠0)的大致图象如图所示,则下列说法错误的是()A函数有最小值B对称轴是直线x=1C当x<0时,y随x的增大而减小 D.当x>时,y随x的增大而增大10.如图,已知在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF则以下结论①DE+BF=EF, ②S四边形ABCD=16 ,③BF=4/7,④S△AEF=50/7 中正确的个数是( )A.1B.2C.3D.4二.填空题(本大题7小题,每小题4分,共28分)11.一元二次方程x²=x的解为----------12.如果点P(x,y)关于原点的对称点为(2,3),则x+y=----------13.将抛物线y=2x²向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线解析式为----------14.平面直角坐标系中,以原点O为圆心,2为半径作⊙0,则点(2,2)与⊙0的位置关系为----------15.如图所示,P是⊙O外一点,PA,PB分别和○O切于A,B两点,C是弧AB上任意一点,过C作⊙0的切线分别交PA,PB于D,E若△PDE的周长为12,则PA的长为---------16.如图,抛物线y=ax²+c与直线y=mx+n交于(-1,p),B(3,q)两点,则不等式ax²-mx+c>n的解集是---------17.如图,在Rt△ABC中,∠ACB=90°AC=BC=4,点D为BC边的中点,将△ABC绕点D逆时针旋转45°,得到∠A1B1C1,B1C1与AB交于点E,则图中阴影部分四边形ACDE的面积为---------三解答题(一)(本大题3小题,每小题6分,共18分)18.解方程3x²-5x+1=019.如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1),(2,1),将△BOC绕点Q逆时针旋转90度,得到△B1OC1,画出△B1OC1,并写出B、C两点的对应点B1、C1的坐标20.某种品牌的手机经过7、8月份连续两次降价,每部售价由2500元降到了1600元若每次下降的百分率相同,(1)求每次下降的百分率;(2)若9月份继续保持相同的百分率降价,则这种品牌的手机售价为多少元?四、解答题(二)(本大题3小题,每小题8分,共24分)21.如图,已知抛物线y=x²-(k+1)x+1的顶点A在x轴的负半轴上,且与一次函数y=-x+1交于点B和点C,且OA=OC.(1)求k的值(2)求△ABC的面积22.如图,已知△ABC是等边三角形,在△ABC外有一点D,连接AD,BD,CD,将△ACD绕点A按顺时针方向旋转得到△ABE,AD与BE交于点F,∠BFD=97°(1)求∠ADC的大小(2)若∠BDC=7°,BD=3,CD=5,求AD的长22.某农场拟建一个梯形饲养场ABCD,其中ADcD分别靠现有墙DM,DN,其余用新墙砌成,墙DM长为9米,墙DN足够长,两面墙形成的角度为135°,新墙DE将饲养场隔成△CDE和矩形ABED两部分已知新建墙体总长为30米设AB=x米,梯形饲养场ABCD的面积为S米²(1)求S关于x的函数表达式;(2)当x为何值时,饲料场ABCD的面积最大,并求出最大面积五、解答题(三)(本大题2小题,每小题10分,共20分)24如图,AB、CD为OO的直径,弦AE∥CD,连接BE交CD于点F,过点E 作直线EP与CD的延长线交于点P,使∠PED=∠C(1)求证:PE是O的切线(2)求证:D平分∠BEP(3)若⊙0的半径为5,CF=2EF,求FD的长25.如图1,抛物线y=ax²+bx+c经过点A(-4,0),B(1,0),C(0,3),点P在抛物线y=ax²+bx+c上且在x的上方,点P的横坐标记为t(1)求抛物线的解析式;(2)如图2,过点P作y轴的平行线交直线AC于点,交x轴于点N当PM=2MN时,求t的值(3)在对称轴上是否存在一点Q,使得△QAC为直角三角形,若存在,请直接写出点Q的标,若不存在,请说明理由。

2020-2021东莞市九年级数学上期中一模试题(含答案)

2020-2021东莞市九年级数学上期中一模试题(含答案)

2020-2021东莞市九年级数学上期中一模试题(含答案)一、选择题1.若x 1是方程ax 2+2x+c =0(a≠0)的一个根,设M =(ax 1+1)2,N =2﹣ac ,则M 与N 的大小关系为( )A .M >NB .M =NC .M <ND .不能确定2.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )A .(6048,0)B .(6054,0)C .(6048,2)D .(6054,2)3.在平面直角坐标系中,二次函数y=x 2+2x ﹣3的图象如图所示,点A (x 1,y 1),B (x 2,y 2)是该二次函数图象上的两点,其中﹣3≤x 1<x 2≤0,则下列结论正确的是( )A .y 1<y 2B .y 1>y 2C .y 的最小值是﹣3D .y 的最小值是﹣44.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14-=xC .2(6)44x -=D .2(3)1x -=5.如果关于x 的方程240x x m -+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .5C .6D .86.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )A.30°B.60°C.90°D.120°7.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y(间)与定价x(元/间)之间满足y=14x﹣42(x≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为()A.252元/间B.256元/间C.258元/间D.260元/间8.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,则P′A∶PB=( )A.1∶2B.1∶2C.3∶2D.1∶39.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是()A.120B.19100C.14D.以上都不对10.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中涂色部分构成中心对称图形.该小正方形的序号是()A.①B.②C.③D.④11.一元二次方程x2+2x+2=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根12.如图,在⊙O中,AB是⊙O的直径,AB=10,AC CD DB==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=12∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1B.2C.3D.4二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.14.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.15.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .16.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.17.如图,四边形ABCD 是O 内接四边形,若3080BAC CBD ∠︒∠︒=,=,则BCD∠的度数为______.18.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,23A CD ︒∠==,则⊙O 的半径是_______.19.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.20.Rt △ABC 中,∠C =90°,若直角边AC =5,BC =12,则此三角形的内切圆半径为________.三、解答题21.小明和小亮进行摸牌游戏,如图,他们有四张除牌面数字不同外、其他地方完全相同的纸牌,牌面数字分别为4,5,6,7,他们把纸牌背面朝上,充分洗匀后,从这四张纸牌中摸出一张,记下数字放回后,再次重新洗匀,然后再摸出一张,再次记下数字,将两次数字之和做为对比结果.若两次数字之和大于11,则小明胜;若两次数字之和小于11,则小亮胜.(1)请你用列表法或树状图列出这个摸牌游戏中所有可能出现的结果.(2)这个游戏公平吗?请说明理由.22.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法. 例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n 中黑点的个数分别是 、 .请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有 个圆圈;第n 个点阵中有 个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.23.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?24.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价0.5元,其销量减少10件. (1)若涨价x 元,则每天的销量为____________件(用含x 的代数式表示); (2)要使每天获得700元的利润,请你帮忙确定售价.25.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于210cm ?(2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】把x1代入方程ax2+2x+c=0得ax12+2x1=-c,作差法比较可得.【详解】∵x1是方程ax2+2x+c=0(a≠0)的一个根,∴ax12+2x1+c=0,即ax12+2x1=-c,则M-N=(ax1+1)2-(2-ac)=a2x12+2ax1+1-2+ac=a(ax12+2x1)+ac-1=-ac+ac-1=-1,∵-1<0,∴M-N<0,∴M<N.故选C.【点睛】本题主要考查一元二次方程的解的概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.2.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差6个单位长度,根据这个规律可以求得B2018的坐标.【详解】∵A(32,0),B(0,2),∴OA=32,OB=2,∴Rt△AOB中,AB52 =,∴OA+AB1+B1C2=32+2+52=6,∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2),∴B 4的横坐标为:2×6=12, ∴点B 2018的横坐标为:2018÷2×6=6054,点B 2018的纵坐标为:2, 即B 2018的坐标是(6054,2).故选D .【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B 点之间的关系是解决本题的关键.3.D解析:D【解析】试题分析:抛物线y=x 2+2x ﹣3与x 轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项B ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项C ,y 的最小值是﹣4,该选项错误;选项D ,y 的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.4.A解析:A【解析】【分析】利用配方法把方程2680x x --=变形即可.【详解】用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17,故选A .【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.5.A解析:A【解析】【分析】根据根的判别式的意义得到16﹣4m >0,然后解不等式得到m <4,然后对各选项进行判断.【详解】根据题意得:△=16﹣4m >0,解得:m <4,所以m 可以取3,不能取5、6、8. 故选A .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6.D解析:D【解析】根据题意旋转角为∠ABA 1,由∠ABC=60°,∠C=90°,A 、B 、C 1在同一条直线上,得到∠ABA 1=180°-∠A 1BC 1=180°-60°=120°解:旋转角为∠ABA 1,∵∠ABC=60°,∠C=90°,∴∠ABA 1=180°-∠A 1BC 1=180°-60°=120°;故答案为D点评:本题考查了弧长的计算公式:l=n R 180π,其中l 表示弧长,n 表示弧所对的圆心角的度数. 7.B解析:B【解析】【分析】根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配方成顶点式后依据二次函数性质可得最值情况.【详解】设每天的利润为W 元,根据题意,得:W=(x-28)(80-y )-5000()128804245000x x ⎛⎫=--- ⎪⎝⎡⎤-⎢⎥⎣⎦⎭ 2112984164x x =-+- ()2125882254x =--+, ∵当x=258时,12584222.54y =⨯-=,不是整数, ∴x=258舍去, ∴当x=256或x=260时,函数取得最大值,最大值为8224元,又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元. 故选:B .【点睛】本题考查二次函数的实际应用,利用数学知识解决实际问题,解题的关键是建立函数模型,利用配方法求最值.解析:B【解析】【分析】【详解】解:如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=90°,又∵△ABC 是等腰直角三角形,∴AB =BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵BP =BP ′,∠ABP =∠CBP ′,AB =BC ,∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C ,∵P ′A :P ′C =1:3,∴AP =3P ′A ,连接PP ′,则△PBP ′是等腰直角三角形,∴∠BP ′P =45°,PP ′=2PB , ∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°,∴△APP ′是直角三角形,设P ′A =x ,则AP =3x ,根据勾股定理,PP ′=22'AP P A -=22(3)x x -=22x , ∴PP ′=2PB =22x ,解得PB =2x ,∴P ′A :PB =x :2x =1:2.故选B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P ′A 、P ′C 以及P ′B 2倍转化到同一个直角三角形中是解题的关键.9.C解析:C【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004=, 故选C . 点睛: 本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.10.D解析:D【分析】根据中心对称图形的概念,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形.将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图.【详解】解:将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图.故选:D.【点睛】本题考查的是利用旋转设计图案,中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.D解析:D【解析】【分析】求出b2-4ac的值,根据b2-4ac的正负即可得出答案.【详解】x2+2x+2=0,这里a=1,b=2,c=2,∵b2−4ac=22−4×1×2=−4<0,∴方程无实数根,故选D.【点睛】此题考查根的判别式,掌握运算法则是解题关键12.C解析:C【解析】【分析】【详解】解:∵弧AC=弧CD=弧DB,∴∠DOB=∠COD=∠BOE=60°,故①正确;∵AB为直径,且点E是点D关于AB的对称点∴∠E=∠ODE,AB⊥DE∴∠CED =30°=12∠DOB,故②正确;∵M和A重合时,∠MDE=60°,∴∠MDE+∠E=90°∴DM⊥CE故③不正确;根据轴对称的性质,可知D与E对称,连接CE,根据两点之间线段最短,可知这时的CM+DM最短,∵∠DOB=∠COD=∠BOE=60°∴CE为直径,即CE=10,故④正确.故选C.【点睛】本题考查了圆周角定理,圆中的有关计算问题和图形的轴对称的应用,关键是熟练地运用定理进行推理和计算,题型较好,综合性比较强,但难度不大.二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.14.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.15.【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°得到△BDE∴△ABC≌△BDE∠CBD=60°∴BD=BC=12cm∴△BCD为等边三角形∴CD=BC=BD=12cm在Rt△ACB中AB解析:【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,=13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为42.考点:旋转的性质.16.40°【解析】:在△QOC中OC=OQ∴∠OQC=∠OCQ在△OPQ中QP=QO∴∠QOP=∠QPO又∵∠QPO=∠OCQ+∠AOC∠AOC=30°∠QOP+∠QPO+∠OQC=180°∴3∠OCP解析:40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°17.70°【解析】【分析】先根据圆周角定理求出的度数再由圆内接四边形的性质即可得出结论【详解】∵四边形ABCD是内接四边形故答案为:70°【点睛】本题考查的是圆内接四边形的性质熟知圆内接四边形的对角互补解析:70°【解析】【分析】∠的度数,再由圆内接四边形的性质即可得出结论.先根据圆周角定理求出BAD【详解】80=,∠︒CBD==..∴∠∠︒80CAD CBD=∠︒BAC30==.∴∠︒+︒︒BAD3080110∵四边形ABCD是O内接四边形,∴∠︒∠︒︒︒=﹣=﹣=.BCD BAD180********故答案为:70°.【点睛】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.18.2【解析】【分析】连接BC由圆周角定理和垂径定理得出由直角三角形的性质得出得出求出即可【详解】解:连接BC如图所示:∵AB是⊙O的直径弦于H在中即⊙O的半径是2;故答案为:2【点睛】考查的是垂径定理解析:2 【解析】 【分析】连接BC ,由圆周角定理和垂径定理得出190,32ACB CH DH CD ︒∠====,由直角三角形的性质得出223,323,2AC CH AC BC AB BC =====,得出2,4BC AB ==,求出2OA =即可.【详解】解:连接BC ,如图所示:∵AB 是⊙O 的直径,弦CD AB ⊥于H ,19032ACB CH DH CD ∴∠︒=,===30A ∠︒=,223AC CH ∴==,在Rt ABC ∆中,30A ∠︒=,3232AC BC AB BC ∴==,=,24BC AB ∴=,=, 2OA ∴=,即⊙O 的半径是2; 故答案为:2【点睛】考查的是垂径定理、圆周角定理、含30角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.19.【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k 由已知条件可得h=2k=9再由条件:它在x 轴上截得的线段长为6求出a 的值即可【详解】解:由题意设此抛物线的解析式为:y=a (x-2)2+9 解析:2(2)9y x =--+【解析】 【分析】设此抛物线的解析式为:y=a (x-h )2+k ,由已知条件可得h=2,k=9,再由条件:它在x 轴上截得的线段长为6,求出a 的值即可. 【详解】解:由题意,设此抛物线的解析式为: y=a (x-2)2+9, ∵且它在x 轴上截得的线段长为6, 令y=0得,方程0=a (x-2)2+9, 即:ax 2-4ax+4a+9=0,∵抛物线ya (x-2)2+9在x 轴上的交点的横坐标为方程的根,设为x 1,x 2, ∴x 1+x 2=4,x 1•x 2=49a a+ , ∴|x 1-x 2|=21212()46x x x x +-=即16-4×49a a+=36 解得:a=-1, y=-(x-2)2+9,故答案为:y=-(x-2)2+9. 【点睛】此题主要考查了用顶点式求二次函数的解析式和一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根.20.2【解析】【分析】设ABBCAC 与⊙O 的切点分别为DFE ;易证得四边形OECF 是正方形;那么根据切线长定理可得:CE=CF=12(AC+BC-AB )由此可求出r 的长【详解】解:如图;在Rt △ABC ∠解析:2 【解析】 【分析】设AB 、BC 、AC 与⊙O 的切点分别为D 、F 、E ;易证得四边形OECF 是正方形;那么根据切线长定理可得:CE=CF=(AC+BC-AB ),由此可求出r 的长. 【详解】 解:如图;在Rt △ABC ,∠C=90°,AC=5,BC=12; 根据勾股定理AB=四边形OECF 中,OE=OF ,∠OEC=∠OFC=∠C=90°;∴四边形OECF 是正方形;由切线长定理,得:AD=AE ,BD=BF ,CE=CF ; ∴CE=CF=(AC+BC-AB );即:r=(5+12-13)=2.故答案为2.三、解答题21.(1)列表见解析;(2)游戏公平,理由见解析【解析】【分析】(1)首先根据题意列表,由表格求得所有等可能的结果;(2)根据小明获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平.【详解】解:(1)小亮小明和4567489101159101112610111213711121314总共有16种结果,每种结果出现的可能性是相同的,两次数字之和大于11的结果有6种,所以,P(小明获胜)63 == 168,两次数字之和小于11的结果有6种,所以,P(小亮获胜)63 == 168,因为,33=88,所以,这个游戏是公平的.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】【分析】根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n 个点阵中有:n×3(n ﹣1)+1=3n 2﹣3n+1;(2)代入271,列方程,方程有解则存在这样的点阵. 【详解】解:图10中黑点个数是6×10=60个;图n 中黑点个数是6n 个, 故答案为60个,6n 个;(1)如图所示:第1个点阵中有:1个, 第2个点阵中有:2×3+1=7个, 第3个点阵中有:3×6+1=17个, 第4个点阵中有:4×9+1=37个, 第5个点阵中有:5×12+1=61个, …第n 个点阵中有:n×3(n ﹣1)+1=3n 2﹣3n+1, 故答案为61,3n 2﹣3n+1; (2)3n 2﹣3n+1=271, n 2﹣n ﹣90=0, (n ﹣10)(n+9)=0, n 1=10,n 2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.【点睛】本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.23.(1)该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)售价应降低3元 【解析】 【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意列出关于x 的一元二次方程,求解方程即可;(2)设售价应降低y 元,则每天售出(200+50y )千克,根据题意列出关于y 的一元二次方程,求解方程即可. 【详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意得2100(1)196x +=解得10.440%x ==,2 2.4x =-(不合题意,舍去) 答:该基地这两年“早黑宝”种植面积的平均增长率为40%. (2)设售价应降低y 元,则每天可售出(20050)y +千克根据题意,得(2012)(20050)1750y y --+=整理得,2430y y -+=,解得11y =,23y =∵要减少库存∴11y =不合题意,舍去,∴3y = 答:售价应降低3元. 【点睛】本题考查一元二次方程与销售的实际应用,明确售价、成本、销量和利润之间的关系,正确用一个量表示另外的量然后找到等量关系是列出方程的关键. 24.(1)200-20x ;(2)15元. 【解析】试题分析:(1)如果设每件商品提高x 元,即可用x 表示出每天的销售量; (2)根据总利润=单价利润×销售量列出关于x 的方程,进而求出未知数的值. 试题解析:解:(1)200-20x ;(2)根据题意,得 (10-8+x )(200-20x )=700, 整理得 x 2-8x +15=0, 解得 x 1=5,x 2=3,因为要采取提高售价,减少售货量的方法增加利润, 所以取x =5.所以售价为10+5=15(元), 答:售价为15元.点睛:此题考查了一元二次方程在实际生活中的应用.解题的关键是理解题意,找到等量关系,列出方程.25.(1)3秒后,PQ 的长度等于;(2)PQB ∆的面积不能等于27cm . 【解析】 【分析】(1)由题意根据PQ=,利用勾股定理BP 2+BQ 2=PQ 2,求出即可;(2)由(1)得,当△PQB 的面积等于7cm 2,然后利用根的判别式判断方程根的情况即可; 【详解】解:(1)设x 秒后,PQ =,5BP x =-,2BQ x =, ∵222BP BQ PQ +=∴()()(22252x x -+=解得:13x =,21x =-(舍去)∴3秒后,PQ 的长度等于 (2)设t 秒后,5PB t =-,2QB t =,又∵172PQB S BP QB ∆=⨯⨯=,()15272t t ⨯-⨯=,∴2570t t -+=,25417252830∆=-⨯⨯=-=-<,∴方程没有实数根,∴PQB ∆的面积不能等于27cm . 【点睛】本题主要考查一元二次方程的应用,找到关键描述语“△PBQ 的面积等于27cm ”,得出等量关系是解决问题的关键.。

广东省东莞市东华初级中学2024-2025学年九年级上学期11月期中考试数学试题

广东省东莞市东华初级中学2024-2025学年九年级上学期11月期中考试数学试题

广东省东莞市东华初级中学2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.下面的图形中,是中心对称图形的是()A .B .C .D .2.用配方法解一元二次方程x 2﹣6x ﹣1=0时,下列变形正确的是()A .(x ﹣3)2=1B .(x ﹣3)2=10C .(x +3)2=1D .(x +3)2=103.已知关于x 的一元二次方程22210x x a -+-=有一个根为0x =,则a 的值为()A .0B .1±C .1D .1-4.下列一元二次方程没有实数根的是()A .2230x x --=B .2210x x ++=C .2 20x -=D .230x x ++=5.某超市1月份营业额为90万元.1月、2月、3月总营业额为144万元,设平均每月营业额增长率为x ,则下面所列方程正确的是()A .()2901144x +=B .()2901144x -=C .()9012144x +=D .()()290190114490x x +++-=6.抛物线2y x =是由某抛物线向左平移2个单位长度,再向下平移1个单位长度得到,此抛物线的解析式是()A .()221y x =++B .()221y x =-+C .()221y x =+-D .()221y x =--7.点()()()1122333,1,,5,,P y P y P y --均在二次函数()21y x c =--+的图象上,则1y ,2y ,3y 的大小关系是()A .231y y y >>B .213y y y >=C .132y y y =>D .123y y y =>8.如图,在Rt ABC △中,90ACB ∠=︒,5AC =,12BC =,将ABC V 绕点B 顺时针旋转60︒,得到BDE V ,连接DC 交AB 于点F ,则ACF △与BDF V 的周长之和为()A .44B .43C .42D .419.如图,在ΔA 中,108BAC ∠=︒,将ΔA 绕点A 按逆时针方向旋转得到AB C ''∆.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为()A .18︒B .20︒C .24︒D .28︒10.已知二次函数y =ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的对称轴是直线x =1,其图象的一部分如图所示,下列说法中:①abc <0;②2a+b =0;③当﹣1<x <3时,y >0;④a ﹣b+c <0;⑤2c ﹣3b >0.其中正确结论的个数是()A .2B .3C .4D .5二、填空题11.若点(),1P m 关于原点的对称点()2,Q n -,那么m n +=.12.一元二次方程22x x =的根是.13.已知1x ,2x 是方程2310x x -+=的两根,则代数式12121x x x x ++的值为.14.已知抛物线y =ax 2+x+c 与x 轴交点的横坐标为﹣1,则a+c =.15.如图,将ABC V 绕点(0,1)C -旋转180︒得到A B C ''△,设点A 的坐标为(,)a b ,则点A '的坐标为.三、解答题16.解方程:2470x x --=.17.如图,正方形ABCD 中,M 是对角线BD 上的一个动点(不与B 、D 重合),连接CM ,将CM 绕点C 顺时针旋转90°到CN ,连接MN ,DN ,求证:BM =DN .18.如图,四边形ABCD 的两条对角线AC ,B 互相垂直,垂足为O 点,且10AC BD +=,若四边形ABCD 有最大面积,则求出此时的AC 与B 的长及这个最大的面积.19.已知关于x 的方程()23220x k x k -+++=(1)求证:方程总有两个实数根(2)若方程有一个小于1的正根,求实数k 的取值范围20.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x 元(x 为正整数),每月的销售量为y 条.(1)求y 与x 的函数关系式;(2)设该网店每月获得的利润为w 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?21.综合与实践【主题】三角点阵前n 行的点数计算【素材】如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点,⋯⋯,第n 行有n 个点,⋯⋯,如果要用试验的方法,由上而下地逐行相加其点数,容易发现,前n 行的点数和是123(2)(1)n n n ++++-+-+ ,可以发现2[123(2)(1)][123(2)(1)][(1)(2)321]n n n n n n n n n ++++-+-+=++++-+-+++-+-++++ ,把两个中括号中的第一项相加,第二项相加,……,第n 项相加,上式等号的右边变形为这n 个小括号都等于1n +,整个式子等于(1)n n +,于是得到()()()11232112n n n n n ++++-+-+=+ .这就是说,三角点阵中前n 行的点数和是()112n n +.【实践探索】请你根据上述材料回答下列问题:(1)三角点阵中前n 行的点数和能是600吗?如果能,求出n ;如果不能,请说明道理.【拓展探索】(2)如果把图中的三角点阵中各行的点数依次换成2,4,6,…,2n ,…,请探究出前n 行的点数和满足的规律.(3)在(2)的条件下,这个三角点阵中前n 行的点数和能是600吗?如果能,求出n ;如果不能,请说明道理.22.如图,在ABC V 中,90ACB ∠=︒.将ABC V 绕点A 顺时针旋转m ︒得到()180ADE CAB m ∠<︒<︒ .CE 与AB 交于点F .(1)求证:AEC ABD ∠=∠.(2)设ABC n ∠=︒,直接写出当m 、n 满足什么条件时,BCF V 是等腰三角形.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。

广东省东莞市东华初级中学2020--2021学年第一学期九年级期中测试数学试卷

广东省东莞市东华初级中学2020--2021学年第一学期九年级期中测试数学试卷

2020-2021学年东莞市东华初级中学第一学期九年级期中测试数学试卷一选择题(本大题10小题,每小题3分,共30分)1下列图案中,是中心对称图形但不是轴对称图形的是( )2下列方程中,是一元二次方程的是( )1=0 B.ax²+bx+c=0 C.x²-2x-3=0 D.x²-2y-1=0A.x²-23.已知关于x的一元二次方程x²-3x+k+1=0,它的两根之积为-4.则k的值为( )A.-1B.4C.-4D.-51=0有实数根,则实数k的取值范围是( ) 4、若关于x的一元二次方程kx²-2x+2A.k<2B.k≥2C.k≤2且k≠0D.k<2且k≠05.如图,将△OAB绕点O逆时针旋转到△OA′B′,点B恰好落在边A′B′上.已知AB=4cm,BB′=1cm,则AB的长是( )A.1cmB.2cmC.3cmD.4cm6.已知二次函数y=-x²+2x+4,则下列关于这个函数图象和性质的说法,正确的是( )A.图象的开口向上B.图象的顶点坐标是(1,3)C.当x<1时,y随x的增大而增大D.图象与x轴有唯一交点7 下列说法正确的是( )A.等弦所对的弧相等B.三角形的外心到三角形三个顶点的距离相等C.垂直于半径的直线是圆的切线D.平分弦的直径垂直于弦,并且平分弦所对的弧8.如图,AB为⊙O的直径,C,D为⊙O上两点若∠BCD=40°;则∠ABD的大小为()A.20°B.40°C.50°D.60°9.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则BE的长为( )A.2B.4C.6D.810.如图,抛物线y=ax²+bx+c经过点(-1,0),与y轴交于(0,2)抛物线的对称轴为直线x=1,则下列结论中:①a+c=b②方程ax²+bx+c=2有两个不相等的实数根③2a-b=0 ④abc<0,其中正确的结论有( )A.1个B.2个C.3个D.4个二填空题(本大题7小题,每小题4分,共28分)一元二次方程x²-2=0的两分别为------------12.已知⊙O的直径为2,点A到圆心O的距离等于2,则点A与⊙O的位置关系是------------13将抛物线y=-3x²-1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为---------------14.已知x=-1是关于x的方程ax²+bx-2=0的一个根,则2020+2a-2b=-----------15.两条直角边长分别是6cm、8cm的直角三角形的内切圆半径为------16.如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)直接具有的关系为h=20t-4t²,则小球从飞出到落地所用的时间为-----------s17.如图,O是等边△ABC内一点,OA=1,O=∠AOB=150°,将线段BO绕点B逆时针旋转60°得到线段BO ′,连接AO,①点O 与0的距离为2;②OC=2;③四边形AOBO 的面积为435 ④△ABC 的边长为7 4个选项中,其中正确的结论为--------------(填正确的序号)三解答题(本大题3小题,每小题6分,共18分18. 已知:如图,C,D 是以AB 为直径的⊙O 上的两点,且OD ∥BC.求证:AD=DC19.△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:(1)画出△ABC 关于原点O 的中心对称图形△1A 1B 1C(2)写出点1A 、1B 、1C 的坐标20.已知抛物线y=a(x-h)²+k的顶点A(-1,2),且过点B(0,3)(1)求抛物线的表达式:(2)当-3≤x≤-2时,试求y的取值范围四、解答题(二)(本大题3小题,每小题8分,共24分)21.如图,将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,使点B落在AD 边上的点E处,连结BG交CE点H,连结BE(1)求证:BE平分∠AEC;(2)求证:BH=HG22.“阳光玫瑰”葡萄品种是广受各地消费者的青睐的优质新品种,在我国西部区域广泛种植,某葡萄种植基地2018年种植“阳光玫瑰”100亩,到2020年“阳光玫瑰”的种植面积达到196亩(1)求该基地这两年“阳光玫瑰”种植面积的平均增长率(2)市场调查发现,当“阳光玫瑰”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时尽量减少库存,已知该基地“阳光玫瑰”的平均成本价为12元/千克,若使销售“阳光玫瑰”每天获利1750元,售价应降低多少元?23.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计),且四块矩形花圃的面积相等(1)求证:AE=3BE;(2)设BC的长度为xm,矩形区域ABCD的面积为ym²,①求y与x之间的函数关系式(要求化成一般式),②请说明矩形区域ABCD的面积可否为340m²五、解答题(三)(大题2小题,每小题10分,共20分)24.如图,⊙O过ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与O相交于点H,射线AO交边CD于点E,交⊙O于点F,点在射线AO上,且∠PCD=2∠DAF(1)求证:△ABH是等腰三角形:(2)求证:直线PC是⊙O的切线(3)若AB=2,AD=√10,求⊙O的半径25.如图,已知抛物线y=-x2+bx+c与x轴交于点A(-1,0)、B(3,0),与y轴交于点C (1)求抛物线的解析式;(2)如图①点D的坐标为(1,0),点P为第象限内抛物线上的一点,求四边形BDC P产面积的最大值;(3)如图②,动点M从点O出发,以每秒1个单位长度的速度向点B运动,到达点B 时停止运动,且不与点O、B重合.设运动时间为t秒,过点M作x轴的垂线交抛物线于点N,交线段BC于点Q,连接OQ,是否存在t值,使得△BOQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由。

2020-2021学年广东省东莞中学初中部九年级(上)期中数学试卷(含解析)

2020-2021学年广东省东莞中学初中部九年级(上)期中数学试卷(含解析)

2020-2021学年广东省东莞中学初中部九年级第一学期期中数学试卷一、选择题(共10小题).1.﹣的相反数是()A.﹣B.C.﹣2D.22.下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.3﹣=2D.(x﹣y)2=x2﹣y23.2020年2月11日,联合国及农业组织向全球发出沙漠蝗虫灾害预警,30多个国家遭蝗虫灾难,巴基斯坦当前蝗虫数目约为4000亿只,4000亿用科学记数法表示为()A.4×103亿B.4×107亿C.4×1010亿D.4×1011亿4.下列图形,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.若x1、x2是一元二次方程x2+3x﹣5=0的两根,则x1+x2的值是()A.3B.﹣3C.5D.﹣56.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7B.5C.4D.37.不等式组的解集是()A.x>4B.x>﹣1C.﹣1<x<4D.x<﹣18.如图,⊙O的弦AB垂直平分半径OC,若⊙O的半径为2,则弦AB的长为()A.B.C.D.9.等腰三角形的底边长为6,腰长是方程x2﹣8x+15=0的一个根,则该等腰三角形的周长为()A.12B.16C.12或16D.1510.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣5,0),对称轴为直线x =﹣2,给出四个结论:①c>0;②抛物线与轴的另一个交点坐标为(3,0);③4a﹣b =0;④若M(﹣3,y1)与N(,y2)是抛物线上两点,则y1<y2.其中,正确结论的个数是()A.1B.2C.3D.4二、填空题(共7小题).11.(4分)函数y=自变量x的取值范围是.12.(4分)分解因式:2x2﹣18=.13.(4分)方程=的解为.14.(4分)若代数式a2﹣a﹣1=0,则代数式3a2﹣3a﹣8=.15.(4分)一个多边形的每一个外角为30°,那么这个多边形的边数为.16.(4分)如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C 在反比例函数y=的图象上,则k的值为.17.(4分)已知有理数a≠1,我们把为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:﹣|﹣3|+(π﹣2017)0﹣()﹣2.19.(6分)先化简,再求值:÷(1+),其中x=+1.20.(6分)如图,△ABC内接于⊙O.(1)作∠B的平分线与⊙O交于点D(用尺规作图,不用写作法,但要保留作图痕迹);(2)在(1)中,连接AD,若∠BAC=60°,∠C=66°,求∠DAC的大小.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)在国家的调控下,某市商品房成交价由今年8月份的50000元/m2下降到10月份的40500元/m2.(1)问8、9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/m2?请说明理由.22.(8分)如图,在平面直角坐标系中,一次函数y=kx+1的图象交y轴于点D,与反比例函数y=的图象在第一象限相交于点A.过点A分别作x轴、y轴的垂线,垂足为点B、C.(1)点D的坐标为;(2)当四边形OBAC是正方形时,求k值.23.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD 的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A 的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b=,c=,点B的坐标为;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.25.(10分)如图,已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,得到△ODC,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求y与x的函数关系式.参考答案一、选择题(共10小题).1.﹣的相反数是()A.﹣B.C.﹣2D.2解:﹣的相反数是,故选:B.2.下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.3﹣=2D.(x﹣y)2=x2﹣y2解:A.2a+3a=5a,因此选项A不符合题意;B.(﹣3a)2=9a2,因此选项B不符合题意;C.3﹣=(3﹣1)=2,因此选项C符合题意;D.(x﹣y)2=x2﹣2xy+y2,因此选项D不符合题意;故选:C.3.2020年2月11日,联合国及农业组织向全球发出沙漠蝗虫灾害预警,30多个国家遭蝗虫灾难,巴基斯坦当前蝗虫数目约为4000亿只,4000亿用科学记数法表示为()A.4×103亿B.4×107亿C.4×1010亿D.4×1011亿解:4000亿=4×103亿,故选:A.4.下列图形,既是轴对称图形,又是中心对称图形的是()A.B.C.D.解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.5.若x1、x2是一元二次方程x2+3x﹣5=0的两根,则x1+x2的值是()A.3B.﹣3C.5D.﹣5解:∵x1、x2是一元二次方程x2+3x﹣5=0的两根,∴x1+x2=﹣3.故选:B.6.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7B.5C.4D.3解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.7.不等式组的解集是()A.x>4B.x>﹣1C.﹣1<x<4D.x<﹣1解:,由①得:x>4,由②得:x>﹣1,不等式组的解集为:x>4,故选:A.8.如图,⊙O的弦AB垂直平分半径OC,若⊙O的半径为2,则弦AB的长为()A.B.C.D.解:连接OA,如图:∵弦AB垂直平分半径OC,OC=2,∴OE=OC=1,AE=BE,在Rt△AOE中,由勾股定理得:AE===,∴AB=2AE=2,故选:D.9.等腰三角形的底边长为6,腰长是方程x2﹣8x+15=0的一个根,则该等腰三角形的周长为()A.12B.16C.12或16D.15解:∵x2﹣8x+15=0,∴(x﹣3)(x﹣5)=0,则x﹣3=0或x﹣5=0,解得x1=3,x2=5,①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去;②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+6=16,故选:B.10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣5,0),对称轴为直线x =﹣2,给出四个结论:①c>0;②抛物线与轴的另一个交点坐标为(3,0);③4a﹣b =0;④若M(﹣3,y1)与N(,y2)是抛物线上两点,则y1<y2.其中,正确结论的个数是()A.1B.2C.3D.4解:由函数图象可得,c>0,故①正确,∵二次函数y=ax2+bx+c的图象过点A(﹣5,0),对称轴为直线x=﹣2,∴抛物线与x轴的另一个交点坐标为(1,0),故②错误,∵对称轴为x=﹣=﹣2,得4a﹣b=0,故③正确,∵函数图象开口向下,对称轴为直线x=﹣2,∴点M(﹣3,y1)比点N(,y2)离对称轴近,∴y1>y2,故④错误;故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将正确答案填写在答题卡相应的位置上11.(4分)函数y=自变量x的取值范围是x≥5.解:根据题意得,x﹣5≥0,解得x≥5.故答案为:x≥512.(4分)分解因式:2x2﹣18=2(x+3)(x﹣3).解:原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)13.(4分)方程=的解为x=1.解:两边同时乘2x(x+3),得x+3=4x,解得x=1.经检验x=1是原分式方程的根.14.(4分)若代数式a2﹣a﹣1=0,则代数式3a2﹣3a﹣8=﹣5.解:移项得:a2﹣a=1,两边同时乘3得:3a2﹣3a=3,∴3a2﹣3a﹣8=3﹣8=﹣5.故答案为:﹣5.15.(4分)一个多边形的每一个外角为30°,那么这个多边形的边数为12.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.16.(4分)如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C 在反比例函数y=的图象上,则k的值为﹣6.解:连接AC,交y轴于点D,∵四边形ABCO为菱形,∴AC⊥OB,且CD=AD,BD=OD,∵菱形OABC的面积为12,∴△CDO的面积为3,∴|k|=6,∵反比例函数图象位于第二象限,∴k<0,则k=﹣6.故答案为:﹣6.17.(4分)已知有理数a≠1,我们把为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是﹣7.5解:∵a1=﹣2,∴a2==,a3==,a4==﹣2,∴这个数列以﹣2,,,依次循环,且﹣2+=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣))﹣2=﹣=﹣7.5,故答案为﹣7.5.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:﹣|﹣3|+(π﹣2017)0﹣()﹣2.解:原式==.19.(6分)先化简,再求值:÷(1+),其中x=+1.解:原式=•=当x=+1时,原式==20.(6分)如图,△ABC内接于⊙O.(1)作∠B的平分线与⊙O交于点D(用尺规作图,不用写作法,但要保留作图痕迹);(2)在(1)中,连接AD,若∠BAC=60°,∠C=66°,求∠DAC的大小.解:(1)如图所示,BD即为所求.(2)∵∠BAC=60°、∠C=66°,∴∠ABC=180°﹣∠BAC﹣∠C=54°,由作图可知BD平分∠ABC,∴∠DAC=∠DBC=∠ABC=27°.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)在国家的调控下,某市商品房成交价由今年8月份的50000元/m2下降到10月份的40500元/m2.(1)问8、9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/m2?请说明理由.解:(1)设这两月平均每月降价的百分率是x,根据题意得:50000(1﹣x)2=40500,解得:x1=10%,x2=1.9(不合题意,舍去),答:8、9两月平均每月降价的百分率是10%;(2)不会跌破30000元/m2.40500(1﹣x)2=40500×0.92=32805>30000,∴12月份该市的商品房成交均价不会跌破30000元/m2.22.(8分)如图,在平面直角坐标系中,一次函数y=kx+1的图象交y轴于点D,与反比例函数y=的图象在第一象限相交于点A.过点A分别作x轴、y轴的垂线,垂足为点B、C.(1)点D的坐标为(0,1);(2)当四边形OBAC是正方形时,求k值.解:(1)由于点D是一次函数y=kx+1的图象与y轴的交点,当x=0时,y=kx+1=1,所以点D的坐标为(0,1);故答案为:(0,1);(2)正方形OBAC中,OB=AB,设OB=AB=a,则点A(a,a),代入反比例函数解析式得,∴a2=16,∴x=4或x=﹣4(不合题意,含去),∴A的坐标为A(4,4),代入一次函数y=kx+1中,得4=4k+1,解得.23.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD 的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A 的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b=﹣2,c=﹣3,点B的坐标为(﹣1,0);(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,解得:b=﹣2,c=﹣3.∴抛物线的解析式为y=x2﹣2x﹣3.∵令x2﹣2x﹣3=0,解得:x1=﹣1,x2=3.∴点B的坐标为(﹣1,0).故答案为:﹣2;﹣3;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP1=90°.由(1)可知点A的坐标为(3,0).设AC的解析式为y=kx﹣3.∵将点A的坐标代入得3k﹣3=0,解得k=1,∴直线AC的解析式为y=x﹣3.∴直线CP1的解析式为y=﹣x﹣3.∵将y=﹣x﹣3与y=x2﹣2x﹣3联立解得x1=1,x2=0(舍去),∴点P1的坐标为(1,﹣4).②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.∵将x=3,y=0代入得:﹣3+b=0,解得b=3.∴直线AP2的解析式为y=﹣x+3.∵将y=﹣x+3与y=x2﹣2x﹣3联立解得x1=﹣2,x2=3(舍去),∴点P2的坐标为(﹣2,5).综上所述,P的坐标是(1,﹣4)或(﹣2,5).(3)如图2所示:连接OD.由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=3,OD⊥AC,∴D是AC的中点.又∵DF∥OC,∴.∴点P的纵坐标是.∴,解得:.∴当EF最短时,点P的坐标是:(,)或(,).25.(10分)如图,已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,得到△ODC,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求y与x的函数关系式.解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为:60;(2)如图1,∠BAP=90°,OB=4,∠ABO=30°,∴,由旋转得:△BOC是等边三角形,BC=OB=4,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴,∴=×OP×AC,∴;(3)①当时,M在OC上运动,N在OB上运动,如图2,过点N作NE⊥OC且交OC于点E.则,∴.∴;②当时,M在BC上运动,N在OB上运动,如图3,作MH⊥OB于H,则,∴;③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.则MN=12﹣2.5x,,∴;综上所述,y=.。

(广东东莞)2020-2021学年第一学期九年级期中测试-数学试题卷(人教版)答题卡

(广东东莞)2020-2021学年第一学期九年级期中测试-数学试题卷(人教版)答题卡

请在各题目的答题区域内作答,超出矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出矩形边框限定区域的答案无效
(1 请(在2各题目的答题区域内作答,超出矩形边框限定区域的答案无效 23.(1)
请在各题目的答题区域内作答,超出矩形边框限定区域的答案无效
25.(1)
(2)
(2)
五、解答题(三)(本大题 2 小题,每小题 10 分,共 20 分) 24.(1)
(3)
(2)
请在各题目的答题区域内作答,超出矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出矩形边框限定区域的答案无效
请 勿 在 此 区 域 内 作 答
2020-2021 学年第一学期九年级期中测试 数学答题卡
请在各题目的答题区域内作答,超出矩形边框限定区域的答案无效
学校: 姓名: 班级:
条形码 粘贴处
考试编号
注意事项:
1.答题前,考生先将自己的信息填写清楚。
2.选择题作答必须用 2B 铅笔填涂,修改时用橡
皮擦干净。
3.非选择题作答必须用黑色签字笔填写,答题
11. 13. 15. 17.
12. 14. 16.
三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分) 18.
19. 20.
请在各题目的答题区域内作答,超出矩形边框限定区域的答案无效
四、解答题(二)(本大题 3 小题,每小题 8 分,共 24 分) 21.(1)
(2)
22.(1) (2)
不得超过答题边框区域。
4.保持答题卡卡面清,不要折叠,不要弄破。
5.正确填涂:
6.错误填涂:

东华学校九年级数学上第一次月考试卷

东华学校九年级数学上第一次月考试卷

2020—2021学年第一学期东华学校九月质量检测九年级数学试卷说明:1.全卷共4页,满分120分,考试用时120分钟。

2.答案写在答题卷上,在试卷上作答无效。

3.用黑色字迹钢笔或签字笔按各题要求写在答题卷上,不能用铅笔和红色字迹的笔。

一、选择题(在下列各题的四个选项中,只有一项是符合题意的.共10个小题,每小题3分,共30分)1.抛物线2222,2,21y x y x y x ==-=+共有的性质是( )A .开口向上B .对称轴都是y 轴C .都有最高点D .顶点都是原点2.使分式的值等于0的x 的值是( ) A .2 B .﹣2 C .±2 D .±43.已知m 是方程x 2﹣x ﹣1=0的一个根,则代数式m 2﹣m 的值等于( )A .﹣1B .0C .1D .24.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x (x +1)=1056B .x (x ﹣1)=1056×2C .x (x ﹣1)=1056D .2x (x +1)=10565.一个面积为120平方米的矩形苗圃,它的长比宽多2米,则苗圃长是( )A .10B .12C .13D .146.已知一元二次方程x 2﹣8x +15=0的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( )A .13B .11或13C .11D .12 7.函数223y x x =-+的图象顶点坐标是( )A. (1,4)-B. (1,2)-C. (1,2)D. (0,3)8.一元二次方程x 2﹣2x ﹣1=0的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根9.在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )10.若二次函数y =ax 2+bx +c (a ≠0)的图象如图所示.则实数a ,b ,c 的大小关系是( )A .b >c >aB .a >b >cC .b >a >cD .a >c >b二、填空题(本大题共7个小题,每小题4分,共28分)11.若x 2+mx +9是一个完全平方式,则m 的值是 .12.关于x 的方程kx 2+3x ﹣1=0有两个实数根,则k 的取值范围是 .13.已知抛物线2(2)y x =-+,当x 时,y 随x 的增大而增大.14.x 2﹣4x +3=(x ﹣ )2﹣1.15.已知方程x 2+mx+3=0的一个根是1,则它的另一个根是 .16.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则△BEQ 周长的最小值为 .17.关于x 的方程a (x +m )2+b =0的解是x 1=1,x 2=﹣2(a 、m 、b 均为常数,a ≠0),则方程a (x +m +2)2+b =0的解是 .三、解答题(一)(本大题共3个小题,每小题6分,共18分)18.(1)解方程:x 2﹣3x+2=0. (2)已知:关于x 的方程x 2+kx ﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k 值.19.某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?20.一个直角三角形的两条直角边的和是14 cm,面积是24 cm2,求两条直角边的长.四、解答题(二)(本大题共3个小题,每小题8分,共24分)21.抛物线y=ax2与直线y=2x-3交于点A(1,b).(1)求a,b的值;(2)求抛物线y=ax2与直线y=-2的两个交点B,C的坐标(B点在C点右侧)22.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?23.如图①:要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?如图②:设每个横彩条的宽为2x,用含x的代数式表示:AB=cm;AD=cm;矩形ABCD 的面积为cm2;列出方程并完成本题解答.五、解答题(三)(本大题共2个小题,每小题10分,共20分)24.如图,已知二次函数c x ax y +-=42的图像经过点A (―1(1)求该二次函数的解析式;(2)直接写出该抛物线的对称轴及顶点C 的坐标;(3)点B 是该抛物线与y 轴的交点,求四边形ABCD 的面积.25.如图,A 、B 、C 、D 为矩形的四个顶点,AB =16cm ,AD =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm /s 的速度向点B 移动,一直到达B 为止,点Q 以2cm /s 的速度向D 移动.(1)当P 点到达B 点时,DQ = 、△PCQ 的面积是(2)P 、Q 两点从出发开始到几秒时,四边形PBCQ 的面积为33cm 2;(3)P 、Q 两点从出发开始到几秒时,点P 和点Q 的距离是10cm .x O y 5 -1 A CB D。

2020-2021学年广东省东莞市东华初级中学初三上数学期中复习模拟卷

2020-2021学年广东省东莞市东华初级中学初三上数学期中复习模拟卷

2020-2021学年东莞市东华初级中学初三上数学期中复习模拟卷一选择题(每小题3分,共30分)1、下列图形中,既是轴对称图形又是中心对称图形的是( )2.若⊙O的半径为4cm,点A到圆心的距离为3cm,那A与⊙O的位置关系是()A、点A在圆内B、点A在上C点A在圆D、不能确定3.在平面直角坐标系中,点P(=1,2)关于点的过点的标为( )A.(-1,-2) B、(1,-2) C、(2,-1) D .(-2,1)4 已知1是方程x²+m-3=0的根,则方程的另一根是( )A.3 B -3 C、-4 D 25、一元二次方程x²-2x+m=0总有实数想,则m应满是的条件是( )Am>-1 B.m≥1 C m≥-1 D、M≤16、如图,AB为⊙O的直径,已知∠ACD=20°,则∠BAD的度数为( )A、40° B.50°C、60°D、70°7.如图,将△AC绕点A逆时针旋转100°,得到△ADE若点D在线段BC的延长线上,则∠B的大小为( )A. 30°B、40° C 50° D. 60°8.如图,直径AB⊥CD,∠CAB=30°,⊙O的半径为4,则CD的长度为( )A.2√3 B、4√3 C、25 D. 49.下列语句错误的是( )A.直径是弦B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心D.平分弧的半径垂直于弧所对的弦10.在一坐标系中,一次函数y=ax+2与二次函数y=x²+a的图象可能是()二、填空题(每小题4分,共28分)11.一元二次方程(x-1)²=0的解为-----------12,二次函数y=ax²+bx+c的图象如图所示,当y>0时,自变量x的取值范围是-----------13.若三角形的两直角边分别是3cm、4cm,则其外接圆半径长为-----------14.如图,⊙O中,CD是切线,切点是D,∠A=20°,则∠C的度数是-----------15.炮弹的升空高度h(m)与飞行时间t(s)的函数关系式是h=-t²+8t,落到地面时爆炸,则炮弹从点火到落地爆炸,经过的时间为-----------16.如图,在Rt△ABC中,∠ABC=90°AB=BC=1,将Rt△ABC绕A点逆时针旋转45°后得到Rt△ADE,则CD=-----------17.如图,MN是半径为1的⊙的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为-----------三、解答题(每小题6分,共18分)18.解方程:(x-3)(x-1)=319.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图①画出△ABC关于原点0的中心对称图形△A1B1C1②画出将△ABC绕点A逆时针旋转90°得到△AB2C2,△A1B1C1中顶点A1坐标为-----------20.如图,△ABC的内切圆OO与BC,CA,AB分别相切于点D,E,F,且AB=18cm,BC=26cm,CA=28cm,求AF,BD,CE的长四解答题(每小题8分,共24分)21.某种电脑病传播非常快,如果一台电脑被感染,经过两轮传播后就会有64电脑被感染(1)每轮传播中一台电脑会感染几台电脑?(2)若病物得不到有效控制,3传染后,被感染的电脑会不会超过500台?22如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转到△ABF的位置,(1)连接E试判断△AEF的形状,并说明理由:(2)若四边形ABCF的面积为36,DE=2,求EF的长。

2023_2024学年广东省东莞市九年级上册期中数学模拟测试卷(含解析)

2023_2024学年广东省东莞市九年级上册期中数学模拟测试卷(含解析)

2023_2024学年广东省东莞市九年级上册期中数学模拟测试卷一、选择题(每小题3分,共30分)1.(3分)一元二次方程x2﹣3x=0的根是( )A.x=3B.x1=0,x2=﹣3C.x1=0,x2=D.x1=0,x2=32.(3分)已知关于x的一元二次方程x2+mx﹣8=0的一个根为1,则m的值为( )A.1B.﹣8C.﹣7D.73.(3分)抛物线y=﹣x2+4x+2的对称轴是直线( )A.x=﹣2B.x=2C.x=4D.x=﹣44.(3分)将方程x2+8x+9=0左边变成完全平方式后,方程是( )A.(x+4)2=7B.(x+4)2=25C.(x+4)2=﹣9D.(x+4)2=﹣7 5.(3分)一元二次方程2x2+3x+2=0的根的情况是( )A.有两个不相等实根B.有两个相等的实根C.无实根D.无法判定6.(3分)把抛物线y=x2的图象向上平移2个单位,再向右平移3个单位,所得函数解析式为( )A.y=(x+2)2﹣3B.y=(x+2)2+3C.y=(x﹣3)2﹣2D.y=(x﹣3)2+27.(3分)关于二次函数y=﹣x2+2x+3,下列说法正确的是( )A.图象与y轴的交点坐标为(3,0)B.图象的对称轴在y轴的左侧C.图象与x轴有两个交点D.函数的最大值为38.(3分)随着中考结束,初三某毕业班的每一个同学都向其他同学赠送一张自己的照片留作纪念,全班共送了2256张照片,若该班有x名同学,则根据题意可列出方程为( )A.x(x﹣1)=2256B.x(x+1)=2256C.2x(x﹣1)=2256D.x(x﹣1)=22569.(3分)已知二次函数y=kx2﹣3x﹣1的图象和x轴有交点,则k的取值范围是( )A.B.C.且k≠0D.且k≠010.(3分)在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+4x﹣b的图象可能是( )A.B.C.D.二、填空题(每小题4分,共28分)11.(4分)方程(x﹣1)(x+3)=0的根是 .12.(4分)抛物线y=2(x﹣1)2+3的顶点坐标是 .13.(4分)若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是 .14.(4分)若点A(﹣1,y1),B(4,y2)在函数y=﹣x2+4x+c的图象上,则y1 y2(用“<”、“>”或者“=”连接).15.(4分)若x=a是方程x2+3x﹣2023=0的一个实数根,则2a2+6a﹣1的值为 .16.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c>0的解集是 .17.(4分)如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象给出下列结论:①abc>0,②b2>4ac,③9a﹣3b+c>0,④a﹣b≤m(am+b)(m为任意实数).以上正确的结论有 .(请把正确结论的序号填在横线上)三、解答题(每题6分,共18分)18.(6分)解方程:x2﹣4x﹣3=0.19.(6分)已知2+是方程x2﹣4x+c=0的一个根,求方程的另一个根及c的值.20.(6分)已知一个抛物线经过点(3,0),(﹣1,0)和(2,﹣6).(1)求这个二次函数的解析式;(2)求这个二次函数图象的顶点坐标和对称轴.四、解答题(每小题8分,共24分)21.(8分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.22.(8分)某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,这一想法能实现吗?请说明理由.23.(8分)中秋国庆双节期间,东莞市中心广场的音乐喷泉对公众表演.如图,圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立平面直角坐标系,点A在x轴上,x轴上的点C、D为水柱的落水点.已知雕塑OA高为米,水柱在与OA的水平距离为5米处达到最高点,落水点C、D之间的距离为22米.(1)求:喷出水柱的最大高度为多少米?(2)若需要在线段OD上的点E处竖立另一座雕塑EF,OE=10m,EF=1.9m,EF⊥OD.问:雕塑顶部F是否会碰到水柱?请通过计算说明理由.五、解答题(每小题10分,共20分)24.(10分)某水果商场经销一种高档水果,原售价每千克50元,连续两次降价后每千克售价32元,每次下降的百分率相同.(1)求每次下降的百分率.(2)已知这种水果每千克盈利10元,每天可售出500千克.经市场调查发现,若每千克涨价1元,日销售量将减少20千克,在进货价不变的情况下,商场决定采取适当的涨价措施,但规定每千克涨价不能超过8元且涨价为整数元:①现该商场要保证每天盈利6000元,那么每千克应涨价多少元?②涨价多少元时盈利最多,最多有多少元?25.(10分)如图,抛物线y=ax2+2x﹣3a经过A(1,0),B(b,0),C(0,c)三点.(1)求b,c的值;(2)点P在抛物线上,当S△ABP=10,求点P的坐标;(3)在抛物线对称轴上找一点P,使PA+PC的值最小,求点P的坐标;(4)点M为x轴上一动点,抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.数学试卷答案一、选择题(每小题3分,共30分)1.D;2.D;3.B;4.A;5.C;6.D;7.C;8.A;9.C;10.B;二、填空题(每小题4分,共28分)11.x1=1或x2=﹣3;12.(1,3);13.m<1;14.<;15.4045;16.﹣1<x<3;17.②④;三、解答题(每题6分,共18分)18. ;19. ;20.(1)y=2x2﹣4x﹣6;(2)顶点坐标为(1,﹣8);对称轴为直线x=1.;四、解答题(每小题8分,共24分)21. ;22.(1)鸡场的长(AB)为15m,宽(BC)为6m.(2)该扶贫单位不能建成一个100m2的矩形养鸡场.;23.(1)6米;(2)雕塑顶部F会碰到水柱.理由见解答.;五、解答题(每小题10分,共20分)24.(1)20%;(2)①5元;②涨价7元或8元时盈利最多,最多为6120元.;25.(1)b=﹣3,c=﹣3;(2)点P(2,5)或(﹣4,5);(3)P(﹣1,﹣2);(4)存在,点N的坐标为(﹣2,﹣3)或(﹣1+,3)或(﹣1﹣,3).;。

2020-2021东莞市九年级数学上期中第一次模拟试题(含答案)

2020-2021东莞市九年级数学上期中第一次模拟试题(含答案)

2020-2021东莞市九年级数学上期中第一次模拟试题(含答案)一、选择题1.若关于x 的一元二次方程4x 2-4x+c=0有两个相等实数根,则c 的值是( ) A .-1 B .1C .-4D .42.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若∠ACD=25°,则∠BOD 的度数为( )A .100°B .120°C .130°D .150°3.如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( )A .4.75B .4.8C .5D .44.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .5.用配方法解方程2410x x -+=,配方后的方程是 ( ) A .2(2)3x +=B .2(2)3x -=C .2(2)5x -=D .2(2)5x +=6.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( ) A .(1,-5) B .(3,-13) C .(2,-8) D .(4,-20) 7.若2245a a x -+-=,则不论取何值,一定有( ) A .5x >B .5x <-C .3x ≥-D .3x ≤-8.已知关于x 的方程()211230mm x x +-+-=是一元二次方程,则m 的值为( )A .1B .-1C .±1D .29.一元二次方程2410x x --=配方后可化为( )A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -= 10.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2B .m =﹣3,n =2C .m =2,n =3D .m =﹣2,n =﹣311.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米.A .2B .4C .6D .812.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .2二、填空题13.已知方程x 2﹣3x+k=0有两个相等的实数根,则k=_____.14.如图,△ABC 内接于⊙O ,∠ACB =90°,∠ACB 的角平分线交⊙O 于D .若AC =6,BD =52,则BC 的长为_____.15.如图,二次函数y =ax 2+bx+c 的图象经过(﹣1,0)(3,0)两点,给出的下列6个结论:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③4a+2b+c<0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3;⑥3a+2c<0.其中不正确的有_____.16.女生小琳所在班级共有40名学生,其中女生占60%.现学校组织部分女生去市三女中参观,需要从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是.17.Rt△ABC中,∠C=90°,若直角边AC=5,BC=12,则此三角形的内切圆半径为________.18.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为¼BB ,则图中阴影部分的面积为_____.19.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=______cm.20.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交»AB于点E,以点O为圆心,OC的长为半径作»CD交OB于点D,若OA=2,则阴影部分的面积为 .三、解答题21.一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x 个,白球有2x 个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜. (1)当x=3时,谁获胜的可能性大? (2)当x 为何值时,游戏对双方是公平的?22.如图,△DEF 是△ABC 经过某种变换得到的图形,点A 与点D ,点B 与点E , 点C 与点F 分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D ,点B 与点E ,点C 与点F 的坐标,并说说对应点的坐标有哪些特征;(2)若点P (a+3,4﹣b )与点Q (2a ,2b ﹣3)也是通过上述变换得到的对应点,求a ,b 的值.(3)求图中△ABC 的面积.23.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w (元),求每月获得利润w (元)与销售单价x (元)之间的函数关系式,并确定自变量x 的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少? (3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)24.如图,在平面直角坐标系中,二次函数21262y x x =-++的图象交x 轴于点A ,B(点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围;(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n +6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值.25.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x=60时 ,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式. (3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据一元二次方程根的判别式可得:当△=0时,方程有两个相等的实数根;当△>0时,方程有两个不相等的实数根;当△<0时,方程没有实数根. 【详解】解:根据题意可得: △=2(4) -4×4c=0,解得:c=1 故选:B . 【点睛】本题考查一元二次方程根的判别式.2.C解析:C 【解析】【分析】根据圆周角定理求出∠AOD即可解决问题.【详解】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C.【点睛】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,3.B解析:B【解析】【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F在CD上时,FC+FD=PQ有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【详解】如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴FC+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选B.【点睛】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.4.B解析:B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形. 故选B.5.B解析:B 【解析】 【分析】根据配方法可以解答本题. 【详解】 x 2−4x +1=0, (x−2)2−4+1=0, (x−2)2=3, 故选:B . 【点睛】本题考查解一元二次方程−配方法,解答本题的关键是解一元二次方程的方法.6.C解析:C 【解析】 【分析】 【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C . 【点睛】本题考查二次函数的性质.7.D解析:D 【解析】 【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3. 【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∴不论a 取何值,x ≤﹣3. 故选D . 【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.8.B解析:B【解析】 【分析】根据一元二次方程的定义得出m-1≠0,m 2+1=2,求出m 的值即可. 【详解】∵关于x 的方程()211230m m x x +-+-=是一元二次方程,∴m 2+1=2且m-1≠0, 解得:m=-1, 故选:B . 【点睛】本题考查了对一元二次方程的定义的理解和运用,注意:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2,且二次项系数不为0.9.D解析:D 【解析】 【分析】根据移项,配方,即可得出选项. 【详解】 解:x 2-4x-1=0, x 2-4x=1, x 2-4x+4=1+4, (x-2)2=5, 故选:D . 【点睛】本题考查了解一元二次方程的应用,能正确配方是解题的关键.10.B解析:B 【解析】 【分析】根据“关于y 轴对称的点,横坐标互为相反数,纵坐标相同”解答. 【详解】∵点A (m ,2)与点B (3,n )关于y 轴对称, ∴m =﹣3,n =2. 故选:B . 【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数; (2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.B解析:B 【解析】 【分析】根据旋转的性质和图形的特点解答. 【详解】∵图案绕点O 旋转120°后可以和自身重合,∠AOB 为120° ∴图形中阴影部分的面积是图形的面积的13, ∵图形的面积是12cm 2,∴图中阴影部分的面积之和为4cm 2; 故答案为B . 【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.12.C解析:C 【解析】 【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12bx a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12bx a =-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12bx a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0, 所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++,∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12bx a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-,根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C . 【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.二、填空题13.【解析】∵x2﹣3x+k=0有两个相等的实数根∴△=∴9﹣4k=0∴k=故答案为解析:94 【解析】∵x 2﹣3x +k=0有两个相等的实数根,∴△=2(3)410k --⨯⨯=,∴9﹣4k=0, ∴k=94. 故答案为94. 14.8【解析】【分析】连接AD 根据CD 是∠ACB 的平分线可知∠ACD=∠BCD=45°故可得出AD=BD 再由AB 是⊙O 的直径可知△ABD 是等腰直角三角形利用勾股定理求出AB 的长在Rt △ABC 中利用勾股定解析:8【解析】【分析】连接AD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.【详解】连接AD,∵∠ACB=90°,∴AB是⊙O的直径.∵∠ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴AD=BD=52.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴AB=22+=10.AD BD∵AC=6,∴BC=2222-=-=8.AB AC106故答案为:8.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.⑤【解析】【分析】①由图象可知a>0b<0则问题可解;②根据图象与x轴交点问题可解;③由图象可知当x=2时对应的点在x轴下方x=2时函数值为负;④由图象可知抛物线对称轴为直线x=1当x>1时y随x值解析:⑤【解析】【分析】①由图象可知,a>0,b<0,则问题可解;②根据图象与x轴交点,问题可解;③由图象可知,当x=2时,对应的点在x轴下方,x=2时,函数值为负;④由图象可知,抛物线对称轴为直线x=1,当x>1时,y随x值的增大而增大;⑤由图象可知,当y>0时,对应x>3或x<-1;⑥根据对称轴找到ab之间关系,再代入a﹣b+c=0,问题可解.综上即可得出结论.【详解】解:①∵抛物线开口向上,对称轴在y轴右侧,与y轴交于负半轴,∴a >0,﹣2b a>0,c <0, ∴b <0, ∴ab <0,说法①正确;②二次函数y =ax 2+bx+c 的图象经过(﹣1,0)(3,0)两点,∴方程ax 2+bx+c =0的根为x 1=﹣1,x 2=3,说法②正确;③∵当x =2时,函数y <0,∴4a+2b+c <0,说法③正确;④∵抛物线与x 轴交于(﹣1,0)、(3,0)两点,∴抛物线的对称轴为直线x =1,∵图象开口向上,∴当x >1时,y 随x 值的增大而增大,说法④正确;⑤∵抛物线与x 轴交于(﹣1,0)、(3,0)两点,且图象开口向上,∴当y <0时,﹣1<x <3,说法⑤错误;⑥∵当x =﹣1时,y =0,∴a ﹣b+c =0,∴抛物线的对称轴为直线x =1=﹣2b a, ∴b =﹣2a ,∴3a+c =0,∵c <0,∴3a+2c <0,说法⑥正确.故答案为⑤.【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数图象上点的坐标特征,解答关键是根据二次函数性质结合函数图象解答问题. 16.;【解析】【分析】先求出小琳所在班级的女生人数再根据概率公式计算可得【详解】∵小琳所在班级的女生共有40×60=24人∴从小琳所在班级的女生当中随机抽取一名女生参加小琳被抽到的概率是故答案为 解析:124; 【解析】【分析】 先求出小琳所在班级的女生人数,再根据概率公式计算可得.【详解】∵小琳所在班级的女生共有40×60%=24人, ∴从小琳所在班级的女生当中随机抽取一名女生参加,小琳被抽到的概率是124.故答案为1 24.17.2【解析】【分析】设ABBCAC与⊙O的切点分别为DFE;易证得四边形OECF 是正方形;那么根据切线长定理可得:CE=CF=12(AC+BC-AB)由此可求出r的长【详解】解:如图;在Rt△ABC∠解析:2【解析】【分析】设AB、BC、AC与⊙O的切点分别为D、F、E;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=(AC+BC-AB),由此可求出r的长.【详解】解:如图;在Rt△ABC,∠C=90°,AC=5,BC=12;根据勾股定理AB=四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;∴四边形OECF是正方形;由切线长定理,得:AD=AE,BD=BF,CE=CF;∴CE=CF=(AC+BC-AB);即:r=(5+12-13)=2.故答案为2.18.【解析】分析:连接DBDB′先利用勾股定理求出DB′=A′B′=再根据S阴=S扇形BDB′-S△DBC-S△DB′C计算即可详解:△ABC绕AC的中点D逆时针旋转90°得到△AB′C此时点A′在斜边解析:3 2π【解析】分析:连接DB、DB′,先利用勾股定理求出2212=5+,2222=22+,再根据S阴=S扇形BDB′-S△DBC-S△DB′C,计算即可.详解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,连接DB、DB′,则2212=5+,2222=22+∴S 阴=9052531222222=36042()ππ⨯-⨯÷-÷-. 故答案为5342π-. 点睛:本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【解析】试题解析∵将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置使点A 恰好落在边DE 上∴DC=AC∠D=∠CAB∴∠D=∠DAC∵∠ACB=∠DCE=90°∠B=30°∴∠D=∠CAB=6 解析:23【解析】试题解析∵将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置,使点A 恰好落在边DE 上,∴DC =AC ,∠D =∠CAB ,∴∠D =∠DAC ,∵∠ACB =∠DCE =90°,∠B =30°,∴∠D =∠CAB =60°,∴∠DCA =60°,∴∠ACF =30°,可得∠AFC =90°,∵AB =8cm ,∴AC =4cm ,∴FC =4cos30°3. 【点睛】此题主要考查了旋转的性质以及直角三角形的性质,正确得出∠AFC 的度数是解题关键.20.【解析】试题解析:连接OEAE ∵点C 为OA 的中点∴∠CEO=30°∠EOC=60°∴△AEO 为等边三角形∴S 扇形AOE=∴S 阴影=S 扇形AOB-S 扇形COD-(S 扇形AOE-S △COE )=== 312π+. 【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯⨯()=323 432ππ-+=3 122π+.三、解答题21.(1)当x=3时,B同学获胜可能性大(2)当x=4时,游戏对双方是公平的【解析】【分析】(1)比较A、B两位同学的概率解答即可.(2)根据游戏的公平性,列出方程解答即可.【详解】(1)A同学获胜可能性为,B同学获胜可能性为,因为<,当x=3时,B同学获胜可能性大.(2)游戏对双方公平必须有:,解得x=4,所以当x=4时,游戏对双方是公平的.【点睛】本题主要考查随机事件的概率的概念.22.见解析【解析】【分析】(1)利用坐标格可读出各点坐标,观察坐标数值即可发现两个对应点关于原点O 对称;(2)由(1)中得到的对应点之间关于原点O 对称的关系即可求解;(3)通过观察坐标格,将△ABC 的面积转化为几个面积的差即可.【详解】解:(1)A (2,3)与D (﹣2,﹣3);B (1,2)与E (﹣1,﹣2);C (3,1)与F (﹣3,﹣1).对应点的坐标的特征:横坐标互为相反数,纵坐标互为相反数;(2)由(1)可得a+3=﹣2a ,4﹣b=﹣(2b ﹣3).解得a=﹣1,b=﹣1;(3)三角形ABC 的面积=2×2﹣×2×1﹣×2×1﹣×1×1=. 【点睛】本题结合了平面直角坐标系考察了中心对称的知识.23.(1)21070010000w x x =-+-(20≤x≤32);(2)当销售单价定为32元时,每月可获得最大利润,最大利润是2160元;(3)3600.【解析】【分析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;(3)根据抛物线的性质和图象,求出每月的成本.【详解】解:(1)由题意,得:w=(x ﹣20)•y=(x ﹣20)•(﹣10x+500)=21070010000x x -+-,即21070010000w x x =-+-(20≤x≤32);(2)对于函数21070010000w x x =-+-的图象的对称轴是直线x=7002(10)-⨯-=35. 又∵a=﹣10<0,抛物线开口向下.∴当20≤x≤32时,W 随着X 的增大而增大,∴当x=32时,W=2160答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.(3)取W=2000得,210700100002000x x -+-=解这个方程得:1x =30,2x =40.∵a=﹣10<0,抛物线开口向下,∴当30≤x≤40时,w≥2000.∵20≤x≤32,∴当30≤x≤32时,w≥2000.设每月的成本为P (元),由题意,得:P=20(﹣10x+500)=﹣200x+10000∵k=﹣200<0,∴P 随x 的增大而减小,∴当x=32时,P 的值最小,P 最小值=3600.答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.考点:1.二次函数的应用;2.最值问题;3.二次函数的最值.24.(1)()()2060A B -,,,,26x -剟;(2)m n ,的值分别为72,1. 【解析】【分析】 (1)把y =0代入二次函数的解析式中,求得一元二次方程的解便可得A 、B 两点的坐标,再根据函数图象不在x 轴下方的x 的取值范围得y≥0时x 的取值范围;(2)根据题意写出B 2,B 3的坐标,再由对称轴方程列出n 的方程,求得n ,进而求得m 的值.【详解】解:(1)令0y =,则212602x x -++=, ∴1226x x =-=,, ∴()()2060A B -,,,. 由函数图象得,当0y …时,26x -剟. (2)由题意得()()236B n m B n m --,,,, 函数图象的对称轴为直线2622x -+==. ∵点23B B ,在二次函数图象上且纵坐标相同,∴()622n n -+-=,∴1n =, ∴()()217121622m =-⨯-+⨯-+=, ∴m n ,的值分别为712,. 【点睛】本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集以及平移的性质,难度不大,关键是正确运用函数的性质解题.25.(1)y=-2x+200(30≤x≤60)(2)w=-2(x -65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】【分析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b,根据题意得806010050k bk b=+⎧⎨=+⎩解得:k2b200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2 +2000)(3)W =-2(x-65)2 +2000∵30≤x≤60∴x=60时,w有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.。

2022-2023学年广东省东莞市东华初级中学九年级(上)期中数学试题及答案解析

2022-2023学年广东省东莞市东华初级中学九年级(上)期中数学试题及答案解析

2022-2023学年广东省东莞市东华初级中学九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列式子是一元二次方程的是( )A. x2−5x−3B. x2−1=yC. 5x+1=0D. 7−x(x−1)=52. 将抛物线y=3x2向左平移2个单位后所得抛物线的表达式是( )A. y=3(x+2)2B. y=(3x−2)2C. y=3x2+2D. y=3x2−23. 在同一平面内,已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是( )A. 点P在⊙O圆外B. 点P在⊙O上C. 点P在⊙O内D. 无法确定4. 关于x的一元二次方程kx2+2x−1=0有两个不相等的实数根,则k的取值范围是( )A. k>−1B. k>−1且k≠0C. k<1D. k<1且k≠05. 对于二次函数y=3x2+2,下列说法错误的是( )A. 最小值为2B. 图象与y轴没有公共点C. 当x<0时,y随x的增大而减小D. 其图象的对称轴是y轴6. 如图,四边形ABCD内接于☉O,∠A=110°,则∠BOD的度数是( )A. 70°B. 110°C. 120°D. 140°7. 如图,AB、AC、BD是⊙O的切线,切点分别为P、C、D,若AB=4,AC=3,则BD的长是( )A. 2.5B. 2C. 1.5D. 18. 2022年北京冬奥会女子冰壶比赛,有若干支队伍参加了单循环比赛(每两队之间都赛一场),单循环比赛共进行了45场,共有多少支队伍参加比赛?设共有x支队伍参加比赛,则所列方程为( )A. x(x+1)=45B. x(x+1)=452C. x(x−1)=45D. x(x−1)=4529. 如图,抛物线y=ax2+bx+c与x轴交于点A(1,0),对称轴为直线x=−1,当y>0时,x的取值范围是( )A. −1<x<1B. −3<x<1C. x<1D. x>−110. 函数y=ax+1与y=ax2+ax+1(a≠0)的图象可能是( )A. B.C. D.二、填空题(本大题共5小题,共15.0分)11. 若一元二次方程x2−6x−5=0的两根分别为x1,x2,则两根的和x1+x2=______.12. 一元二次方程2x2=8的解为______.13. 如图,AB是⊙O的直径,点C在圆上,且∠ABC=55°.则∠BAC=______.14. 如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则边心距OM的长为______.15. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc<0;②a−b+c>0;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的序号有______.三、解答题(本大题共8小题,共75.0分。

2022-2023学年广东省东莞市东华初级中学九年级上学期期中数学试卷

2022-2023学年广东省东莞市东华初级中学九年级上学期期中数学试卷

2022~2023学年广东省东莞市东城初级中学初三(上)数学期中考试一、选择题:本题共10小题,每小题3分,共30分.1.下列式子是一元二次方程的是()A.x2﹣5x﹣3 B.x2﹣1=y C.5x+1=0 D.7﹣x(x﹣1)=52.将抛物线y=3x2向左平移2个单位后所得抛物线的表达式是()A.y=3(x+2)2B.y=(3x−2)2C.y=3x2+2 D.y=3x2−23.在同一平面内,已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是()A.点P在⊙O圆外B.点P在⊙O上C.点P在⊙O内D.无法确定4.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0C.k<1 D.k<1且k≠05.对于二次函数y=3x2+2,下列说法错误的是()A.最小值为2 B.图象与y轴没有公共点C.当x<0时,y随x的增大而减小D.其图象的对称轴是y轴6.如图,四边形ABCD内接于⊙O,∠A=110°,则∠BOD的度数是()A.70°B.110°C.120°D.140°7.如图,AB、AC、BD是⊙O的切线,切点分别为P、C、D,若AB=4,AC=3,则BD的长是()A.2.5 B.2 C.1.5 D.18.2022年北京冬奥会女子冰壶比赛,有若干支队伍参加了单循环比赛(每两队之间都赛一场),单循环比赛共进行了45场,共有多少支队伍参加比赛?设共有x支队伍参加比赛,则所列方程为()A.x(x+1)=45 B.()4521=+xxC.x(x﹣1)=45 D.()4521=-xx9.如图,抛物线y=ax2+bx+c与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1 B.﹣3<x<1 C.x<1 D.x>﹣110.函数y=ax+1与y=ax2+ax+1(a≠0)的图象可能是()A.B.C.D.二、填空题:本题共5小题,每小题3分,共15分.11.若一元二次方程x2﹣6x﹣5=0的两根分别为x1,x2,则两根的和x1+x2=.12.一元二次方程2x2=8的解为.13.如图,AB是⊙O的直径,点C在圆上,且∠ABC=55°.则∠BAC=.14.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则边心距OM的长为.15.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论:①abc <0;②a ﹣b +c >0;③4a +2b +c >0;④2c <3b ;⑤a +b <m (am +b )(m ≠1的实数),其中正确结论的序号有 .三、解答题(一):本题共3小题,每小题8分,共24分 16.解方程:2x 2﹣5x ﹣1=0.17.如图,△ABC 分别交⊙O 于点A ,B ,D ,E ,且CA =CB .求证:AD =BE .18.如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OA ,A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y (m )与水平距离x (m )之间的关系式是()04722>++-=x x x y . (1)柱子OA 的高度是 米;(2)若不计其他因素,水池的半径至少为多少米,才能使喷出的水流不至于落在池外?四、解答题(二):本小题共3小题,每小题9分,共27分.19.用一条长40厘米的绳子围成一个矩形,设其一边长为x厘米.(1)若矩形的面积为96平方厘米,求x的值;(2)矩形的面积是否可以为103平方厘米?如果能,请求x的值;如果不能,请说明理由.20.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)若∠ACO=25°,求∠BCD的度数.(2)若EB=4cm,CD=16cm,求⊙O的直径.21.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为23元时,销售量为34本;当销售单价为25元时,销售量为30本.(1)求y与x之间的函数关系式;(2)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获得利润最大?最大利润是多少?五、解答题(三):本小题共2小题,每小题12分,共24分.22.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,过点C 作CE ⊥AD 交AD 的延长线于点E ,延长EC ,AB 交于点F ,∠ECD =∠BCF . (1)求证:CE 为⊙O 的切线; (2)求证:CD =CB ;(3)若DE =2,CD =6,求⊙O 的半径.23.如图,已知抛物线c x ax y +-=232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线221-=x y 与y 轴的交点,连接AC . (1)求B 、C 两点坐标以及抛物线的解析式; (2)证明:△ABC 为直角三角形;(3)求抛物线的顶点D 的坐标,并求出四边形ACDB 的面积;(4)在抛物线的对称轴上有一点P ,当△ACP 周长的最小时,直接写出点P 的坐标.。

2020-2021东莞市九年级数学上期中一模试题及答案

2020-2021东莞市九年级数学上期中一模试题及答案

2020-2021东莞市九年级数学上期中一模试题及答案一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.﹣3的绝对值是( )A .﹣3B .3C .-13D .133.若x 1是方程ax 2+2x+c =0(a≠0)的一个根,设M =(ax 1+1)2,N =2﹣ac ,则M 与N 的大小关系为( )A .M >NB .M =NC .M <ND .不能确定 4.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤- 5.如图,Rt AOB 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .6.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣5m+4=0有一个根为0,则m 的值等于( )A .1B .1或4C .4D .07.将函数y=kx 2与y=kx+k 的图象画在同一个直角坐标系中,可能的是( ) A . B . C . D .8.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )A .1∶2B .1∶2C .3∶2D .1∶39.如图,直线y=kx+c 与抛物线y=ax 2+bx+c 的图象都经过y 轴上的D 点,抛物线与x轴交于A 、B 两点,其对称轴为直线x=1,且OA=OD .直线y=kx+c 与x 轴交于点C (点C 在点B 的右侧).则下列命题中正确命题的是( )①abc>0; ②3a+b>0; ③﹣1<k <0; ④4a+2b+c<0; ⑤a+b<k .A .①②③B .②③⑤C .②④⑤D .②③④⑤10.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A .4个B .3个C .2个D .1个 11.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 12.如图,弦AB 的长等于⊙O 的半径,点C 在弧AMB 上,则∠C 的度数是( )A .30ºB .35ºC .25ºD .60º二、填空题13.已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若1211+x x =﹣1,则k 的值为_____. 14.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC =105°,则∠C = __.15.已知1x =是关于x 的方程2230ax x -+=的一个根,则a =__________.16.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.17.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点C (0,4),D 是OA 中点,将△CDO 以C 为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C 与点O 重合,写出此时点D 的对应点的坐标:_____.18.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.19.如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为 米.20.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为 .三、解答题21.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?22.“a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:x2﹣4x+5=(x)2+;(2)已知x2﹣4x+y2+2y+5=0,求x+y的值;(3)比较代数式:x2﹣1与2x﹣3的大小.23.为打造“文化九中,书香校园”,阜阳九中积极开展“图书漂流”活动,旨在让全体师生共建共享,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.24.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣2x+80(20≤x≤40),设这种健身球每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?25.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.2.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 3.C解析:C【解析】【分析】把x1代入方程ax2+2x+c=0得ax12+2x1=-c,作差法比较可得.【详解】∵x1是方程ax2+2x+c=0(a≠0)的一个根,∴ax12+2x1+c=0,即ax12+2x1=-c,则M-N=(ax1+1)2-(2-ac)=a2x12+2ax1+1-2+ac=a(ax12+2x1)+ac-1=-ac+ac-1=-1,∵-1<0,∴M-N<0,故选C.【点睛】本题主要考查一元二次方程的解的概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.4.D解析:D【解析】【分析】由﹣2a2+4a﹣5=﹣2(a﹣1)2﹣3可得:x≤﹣3.【详解】∵x=﹣2a2+4a﹣5=﹣2(a﹣1)2﹣3≤﹣3,∴不论a取何值,x≤﹣3.故选D.【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.5.D解析:D【解析】【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=12×OD×CD=12t2(0≤t≤3),即S=12t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.6.C解析:C【分析】先把x=0代入方程求出m的值,然后根据一元二次方程的定义确定满足条件的m的值.【详解】解:把x=0代入方程得m²−5m+4=0,解得m₁=4,m₂=1,而a−1≠0,所以m=4.故选C.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.7.C解析:C【解析】【分析】根据题意,利用分类讨论的方法,讨论k>0和k<0,函数y=kx2与y=kx+k的图象,从而可以解答本题.【详解】当k>0时,函数y=kx2的图象是开口向上,顶点在原点的抛物线,y=kx+k的图象经过第一、二、三象限,是一条直线,故选项A、B均错误,当k<0时,函数y=kx2的图象是开口向下,顶点在原点的抛物线,y=kx+k的图象经过第二、三、四象限,是一条直线,故选项C正确,选项D错误,故选C.【点睛】本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.B解析:B【解析】【分析】【详解】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵BP=BP′,∠ABP=∠CBP′,AB=BC,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:3,∴AP=3P′A,连接PP′,则△PBP ′是等腰直角三角形,∴∠BP ′P =45°,PP ′=2PB , ∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°,∴△APP ′是直角三角形,设P ′A =x ,则AP =3x ,根据勾股定理,PP ′=22'AP P A -=22(3)x x -=22x , ∴PP ′=2PB =22x ,解得PB =2x ,∴P ′A :PB =x :2x =1:2.故选B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P ′A 、P ′C 以及P ′B 2倍转化到同一个直角三角形中是解题的关键.9.B解析:B【解析】试题解析:∵抛物线开口向上,∴a >0.∵抛物线对称轴是x=1,∴b <0且b=-2a .∵抛物线与y 轴交于正半轴,∴c >0.∴①abc >0错误;∵b=-2a ,∴3a+b=3a-2a=a >0,∴②3a+b >0正确;∵b=-2a ,∴4a+2b+c=4a-4a+c=c >0,∴④4a+2b+c <0错误;∵直线y=kx+c 经过一、二、四象限,∴k <0.∵OA=OD ,∴点A 的坐标为(c ,0).直线y=kx+c 当x=c 时,y >0,∴kc+c >0可得k >-1.∴③-1<k<0正确;∵直线y=kx+c与抛物线y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=kx+c,得x1=0,x2=k b a -由图象知x2>1,∴k ba->1∴k>a+b,∴⑤a+b<k正确,即正确命题的是②③⑤.故选B.10.B解析:B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B.11.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x++=,289x x+=-,2228494x x++=-+,所以()247x+=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.12.A解析:A【解析】【分析】连OA ,OB,可得△OAB 为等边三角形,可得:60∠=,AOB 即可得∠C 的度数. 【详解】连OA ,OB ,如图,∵OA=OB=AB ,∴△OAB 为等边三角形,60AOB ∴∠=,又12C AOB ∠=∠, 16030.2C ∴∠=⨯= 故选:A .【点睛】本题考查了圆周角的性质,掌握圆周角的性质是解题的关键.二、填空题13.【解析】【分析】利用根与系数的关系结合=﹣1可得出关于k 的方程解之可得出k 的值由方程的系数结合根的判别式△>0可得出关于k 的不等式解之即可得出k 的取值范围进而可确定k 的值此题得解【详解】∵关于x 的一 解析:【解析】【分析】利用根与系数的关系结合1211+x x =﹣1可得出关于k 的方程,解之可得出k 的值,由方程的系数结合根的判别式△>0可得出关于k 的不等式,解之即可得出k 的取值范围,进而可确定k 的值,此题得解.【详解】∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0的两根为x 1,x 2,∴x 1+x 2=﹣(2k +3),x 1x 2=k 2,∴1211+x x =1212x x x x +=﹣223k k +=﹣1, 解得:k 1=﹣1,k 2=3.∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根,∴△=(2k +3)2﹣4k 2>0,解得:k >﹣34, ∴k 1=﹣1舍去.∴k =3.故答案为:3.【点睛】 本题考查了一元二次方程根与系数的关系及根的判别式,熟练运用根与系数的关系及根的判别式是解决问题的关键.14.【解析】【分析】先根据∠AOC 的度数和∠BOC 的度数可得∠AOB 的度数再根据△AOD 中AO=DO 可得∠A 的度数进而得出△ABO 中∠B 的度数可得∠C 的度数【详解】解:∵∠AOC 的度数为105°由旋转可解析:45︒【解析】【分析】先根据∠AOC 的度数和∠BOC 的度数,可得∠AOB 的度数,再根据△AOD 中,AO=DO ,可得∠A 的度数,进而得出△ABO 中∠B 的度数,可得∠C 的度数.【详解】解:∵∠AOC 的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD 中,AO=DO ,∴∠A=12(180°-40°)=70°, ∴△ABO 中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【点睛】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.15.-1【解析】试题解析:把代入得解得:故答案为解析:-1【解析】试题解析:把1x =代入2230ax x -+=,得,230.a -+=解得: 1.a =-故答案为 1.-16.40°【解析】:在△QOC中OC=OQ∴∠OQC=∠OCQ在△OPQ中QP=QO∴∠QOP=∠QPO又∵∠QPO=∠OCQ+∠AOC∠AOC=30°∠QOP+∠QPO+∠OQC=180°∴3∠OCP解析:40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°17.(42)【解析】【分析】利用图象旋转和平移可以得到结果【详解】解:∵△CDO绕点C逆时针旋转90°得到△CBD′则BD′=OD=2∴点D坐标为(46);当将点C与点O重合时点C向下平移4个单位得到△解析:(4,2).【解析】【分析】利用图象旋转和平移可以得到结果.【详解】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为(4,2).【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.18.【解析】【分析】根据题意可以画出相应的树状图从而可以求得甲乙两人恰好分在同一组的概率【详解】如下图所示小亮和大刚两人恰好分在同一组的情况有4种共有16种等可能的结果∴小亮和大刚两人恰好分在同一组的概解析:1 4【解析】【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率.【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果,∴小亮和大刚两人恰好分在同一组的概率是41 164,故答案为:14.【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答19.【解析】试题分析:设小道进出口的宽度为x米依题意得(30-2x)(20-x)=532整理得x2-35x+34=0解得x1=1x2=34∵34>30(不合题意舍去)∴x=1答:小道进出口的宽度应为1米解析:【解析】试题分析:设小道进出口的宽度为x米,依题意得(30-2x)(20-x)=532,整理,得x2-35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.考点:一元二次方程的应用.20.【解析】试题解析:连接OEAE∵点C为OA的中点∴∠CEO=30°∠EOC=60°∴△AEO为等边三角形∴S扇形AOE=∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===解析:3212π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯()=323 43ππ-+=3 12π+三、解答题21.(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.【解析】分析:(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.详解:(1)若降价3元,则平均每天销售数量为20+2×3=26件.(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,∴x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.点睛:此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.22.(1)﹣2,1;(2)1;(3)x2﹣1>2x﹣3【解析】【分析】(1)直接配方即可;(2)先配方得到非负数和的形式,再根据非负数的性质得到x、y的值,再求x+y的值;(3)将两式相减,再配方即可作出判断.【详解】解:(1)x2﹣4x+5=(x﹣2)2+1;(2)x2﹣4x+y2+2y+5=0,(x﹣2)2+(y+1)2=0,则x﹣2=0,y+1=0,解得x=2,y=﹣1,则x+y=2﹣1=1;(3)x2﹣1﹣(2x﹣3)=x2﹣2x+2=(x﹣1)2+1,∵(x﹣1)2≥0,∴(x﹣1)2+1>0,∴x2﹣1>2x﹣3.【点睛】本题考查了配方法的综合应用,配方的关键步骤是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.23.(1)1440人;(2)20%【解析】【分析】(1)5月份借阅了名著类书籍的人数是1000(1+10%),则6月份借阅了名著类书籍的人数为:5月份借阅了名著类书籍的人数+340人;(2)根据增长后的量=增长前的量×(1+增长率).设平均每年的增长率是x,列出方程求解即可.【详解】解:(1)由题意,得5月份借阅了名著类书籍的人数是:1000×(1+10%)=1100(人),则6月份借阅了名著类书籍的人数为:1100+340=1440(人);(2)设平均增长率为x.1000(1+x)2=1440,解得:x=0.2.答:从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率为20%.【点睛】本题是一道数学应用题中的增长率问题的实际问题,考查了列一元二次方程解实际问题的运用及一元二次方程的解法的运用,解答中对结果验根是否符合题意是解答的关键.24.(1)w 与x 的函数关系式为w=-2x 2+120x-1600.(2)销售单价定为30元时,每天销售利润最大,最大销售利润200元.(3)该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元.【解析】试题分析:(1)用每件的利润()20x -乘以销售量即可得到每天的销售利润,即()()()2020280w x y x x =-=--+,然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()2230200y x =--+,然后根据二次函数的最值问题求解;(3)求函数值为150所对应的自变量的值,即解方程()2230200150x --+=,然后利用销售价不高于每件28元确定x 的值.试题解析:(1)根据题意可得:()20w x y =-⋅, ()()20280x x =--+,221201600x x =-+-,w 与x 之间的函数关系为:221201600w x x =-+-;(2)根据题意可得:()2221201600230200w x x x =-+-=--+,∵20-<,∴当30x =时,w 有最大值,w 最大值为200.答:销售单价定为30元时,每天销售利润最大,最大销售利润200元.(3)当150w =时,可得方程()2230200150x --+=.解得1225,35x x ==,∵3528>,∴235x =不符合题意,应舍去.答:该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元.25.(1)12;(2)13【解析】【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:21 42 =;故答案为:1 2 .(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率) =41 123=.【点睛】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.。

2020-2021东莞市初三数学上期中第一次模拟试题附答案

2020-2021东莞市初三数学上期中第一次模拟试题附答案

2020-2021东莞市初三数学上期中第一次模拟试题附答案一、选择题1.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >02.在平面直角坐标系中,二次函数y=x 2+2x ﹣3的图象如图所示,点A (x 1,y 1),B (x 2,y 2)是该二次函数图象上的两点,其中﹣3≤x 1<x 2≤0,则下列结论正确的是( )A .y 1<y 2B .y 1>y 2C .y 的最小值是﹣3D .y 的最小值是﹣43.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c >0;②若点B (32-,1y )、C (52-,2y )为函数图象上的两点,则12y y <; ③2a ﹣b=0; ④244ac b a-<0,其中,正确结论的个数是( )A .1B .2C .3D .44.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1 B .3 C .5 D .75.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣5m+4=0有一个根为0,则m 的值等于( )A .1B .1或4C .4D .0 6.如图所示,⊙O 是正方形ABCD 的外接圆,P 是⊙O 上不与A 、B 重合的任意一点,则∠APB 等于( )A .45°B .60°C .45° 或135°D .60° 或120°7.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )A .B .C .D .8.下列事件中,属于必然事件的是( )A .任意数的绝对值都是正数B .两直线被第三条直线所截,同位角相等C .如果a 、b 都是实数,那么a +b =b +aD .抛掷1个均匀的骰子,出现6点朝上9.用1、2、3三个数字组成一个三位数,则组成的数是偶数的概率是( )A .13B .14C .15D .16 10.一元二次方程x 2+2x +2=0的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 11.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 2 12.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( )A .-41B .-35C .39D .45 二、填空题13.如图,将Rt ABC V 绕直角顶点C 顺时针旋转90o ,得到DEC V ,连接AD ,若25BAC ∠=o ,则BAD ∠=______.14.已知:如图,CD 是O e 的直径,AE 切O e 于点B ,DC 的延长线交AB 于点A ,20A ∠=o ,则DBE ∠=________度.15.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.16.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60o ,则该直尺的宽度为____________cm .17.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,23A CD ︒∠==,则⊙O 的半径是_______.18.Rt △ABC 中,∠C =90°,若直角边AC =5,BC =12,则此三角形的内切圆半径为________.19.如图所示过原点的抛物线是二次函数2231y ax ax a =-+-的图象,那么a 的值是_____.20.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有_____.(填序号)三、解答题21.某商场销售某种型号防护面罩,进货价为40元/个.经市场销售发现:售价为50元/个时,每周可以售出100个,若每涨价1元,就会少售出5个.供货厂家规定市场售价不得低于50元/个,且商场每周销售数量不得少于80个.(1)确定商场每周销售这种型号防护面罩所得的利润w(元)与售价x(元/个)之间的函数关系式.(2)当售价x(元/个)定为多少时,商场每周销售这种防护面罩所得的利润w(元)最大?最大利润是多少?22.某店铺经营某种品牌童装,购进时的单价是40元,根据市场调查,当销售单价是60元时,每天销售量是200件,销售单价每降低1元,就可多售出20件.(1)求出销售量y件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润W(元)与销售单价x元)之间的函数关系式;(3)若装厂规定该品牌童装的销售单价不低于56元且不高于60元,则此服装店销售该品牌童装获得的最大利润是多少?23.如图,点C是⊙O的直径AB延长线上的一点,且有BO=BD=BC.(1)求证:CD是⊙O的切线;(2)若半径OB=2,求AD的长.24.某公司委托旅行社组织一批员工去某风景区旅游,旅行社收费标准为:如果人数不超过30人,人均旅游费用为800元;如果人数多于30人,那么每增加一人,人均旅游费降低10元;但人均旅游费不低于550元,公司支付给旅行社30000元,求该公司参加旅游的员工人数.25.已知关于x的方程220++-=.x ax a(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】利用抛物线开口方向确定a 的符号,利用对称轴方程可确定b 的符号,利用抛物线与y 轴的交点位置可确定c 的符号.【详解】∵抛物线开口向下,∴a <0,∵抛物线的对称轴在y 轴的右侧,∴x =﹣2b a>0, ∴b >0, ∵抛物线与y 轴的交点在x 轴上方,∴c >0,故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点. 2.D解析:D【解析】试题分析:抛物线y=x 2+2x ﹣3与x 轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项B ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项C ,y 的最小值是﹣4,该选项错误;选项D ,y 的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.3.B解析:B【解析】【分析】【详解】∵抛物线与y 轴交于正半轴,∴c >0,①正确;∵对称轴为直线x=﹣1,∴x <﹣1时,y 随x 的增大而增大,∴y 1>y 2②错误;∵对称轴为直线x=﹣1, ∴﹣2b a=﹣1, 则2a ﹣b=0,③正确;∵抛物线的顶点在x 轴的上方, ∴244ac b a->0,④错误; 故选B.4.C解析:C【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称,∴13m -=-,25n -=-,解得:2m =-,7n =,则275m n +=-+=故选C .【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.5.C解析:C【解析】【分析】先把x =0代入方程求出m 的值,然后根据一元二次方程的定义确定满足条件的m 的值.【详解】解:把x =0代入方程得m²−5m +4=0,解得m ₁=4,m ₂=1,而a−1≠0,所以m =4.故选C .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.6.C解析:C【解析】【分析】首先连接OA,OB,由⊙O是正方形ABCD的外接圆,即可求得∠AOB的度数,又由圆周角定理,即可求得∠APB的度数.【详解】连接OA,OB,∵⊙O是正方形ABCD的外接圆,∴∠AOB=90°,若点P在优弧ADB上,则∠APB=12∠AOB=45°;若点P在劣弧AB上,则∠APB=180°-45°=135°.∴∠APB=45°或135°.故选C.7.B解析:B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.C解析:C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A. 任意数的绝对值都是正数是随机事件,错误;B. 两直线被第三条直线所截,内错角相等是随机事件,错误;C. 如果a、b都是实数,那么a+b=b+a是必然事件,正确;D. 抛掷1个均匀的骰子,出现6点朝上是随机事件,错误;故选D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.A解析:A【解析】【分析】【详解】解:用1,2,3三个数字组成一个三位数的所有组合是:123,132,213,231,312,321,是偶数只有2个,所以组成的三位数是偶数的概率是13;故选A.10.D解析:D【解析】【分析】求出b2-4ac的值,根据b2-4ac的正负即可得出答案.【详解】x2+2x+2=0,这里a=1,b=2,c=2,∵b2−4ac=22−4×1×2=−4<0,∴方程无实数根,故选D.【点睛】此题考查根的判别式,掌握运算法则是解题关键11.C解析:C【解析】【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【详解】∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l10,圆锥侧面展开图的面积为:S侧=12×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.【点睛】本题主要考查圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.12.C解析:C【解析】【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a2-5a-1=0,a+b=5,ab=-1,把22a3ab8b2a++-变形为2(a2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】∵a,b为方程2x5x10--=的两个实数根,∴a2-5a-1=0,a+b=5,ab=-1,∴22a3ab8b2a++-=2(a2-5a-1)+3ab+8(a+b)+2=2×0+3×(-1)+8×5+2=39.故选:C.【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1、x2,则x1+x2=ba-,x1·x2=ca;熟练掌握韦达定理是解题关键.二、填空题13.【解析】【分析】根据旋转的性质可得AC=CD再判断出△ACD是等腰直角三角形然后根据等腰直角三角形的性质求出∠CAD=45°由∠BAD=∠BAC+∠CAD 可得答案【详解】∵Rt△ABC绕其直角顶点C解析:70o【解析】【分析】根据旋转的性质可得AC=CD,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,由∠BAD=∠BAC+∠CAD可得答案.【详解】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°∘.【点睛】本题考查了旋转的性质、等腰直角三角形的判定与性质,熟练掌握相关性质并准确识图是解题的关键.14.55【解析】【分析】连接BC由CD是⊙O的直径知道∠CBD=90°由AE是⊙O的切线知道∠DBE=∠1∠2=∠D又∠1+∠D=90°即∠1+∠2=90°;而∠A+∠2=∠1由此即可求出∠1即求出∠D解析:55【解析】【分析】连接BC,由CD是⊙O的直径知道∠CBD=90°,由AE是⊙O的切线知道∠DBE=∠1,∠2=∠D,又∠1+∠D=90°,即∠1+∠2=90°;而∠A+∠2=∠1,由此即可求出∠1,即求出∠DBE.【详解】如图,连接BC,∵CD是⊙O的直径,∴∠CBD=90°,∵AE是⊙O的切线,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°①,∠A+∠2=∠1②,-②得∠1=55°即∠DBE=55°.故答案为:∠DBE=55°.【点睛】本题考查的是弦切角的性质及圆周角定理,三角形内角与外角的关系,是一道较简单的题目.15.15【解析】试题分析:利用圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长和扇形的面积公式求解圆锥的侧面积=•2π•3•5=15π故答案为15π考点:圆锥的计算解析:15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π. 故答案为15π.考点:圆锥的计算. 16.【解析】【分析】连接OCODOC 与AD 交于点E 根据圆周角定理有根据垂径定理有:解直角即可【详解】连接OCODOC 与AD 交于点E 直尺的宽度:故答案为【点睛】考查垂径定理熟记垂径定理是解题的关键解析:533【解析】 【分析】连接OC ,OD ,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC ,OD ,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒= 直尺的宽度:105533 3.333CE OC OE =-==故答案为533 【点睛】 考查垂径定理,熟记垂径定理是解题的关键. 17.2【解析】【分析】连接BC 由圆周角定理和垂径定理得出由直角三角形的性质得出得出求出即可【详解】解:连接BC 如图所示:∵AB 是⊙O 的直径弦于H 在中即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理解析:2【解析】【分析】连接BC ,由圆周角定理和垂径定理得出190,32ACB CH DH CD ︒∠====,由直角三角形的性质得出223,323,2AC CH AC BC AB BC =====,得出2,4BC AB ==,求出2OA =即可.【详解】解:连接BC ,如图所示:∵AB 是⊙O 的直径,弦CD AB ⊥于H ,19032ACB CH DH CD ∴∠︒=,=== 30A ∠︒Q =,223AC CH ∴==,在Rt ABC ∆中,30A ∠︒=,3232AC BC AB BC ∴==,=,24BC AB ∴=,=,2OA ∴=,即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.18.2【解析】【分析】设ABBCAC 与⊙O 的切点分别为DFE ;易证得四边形OECF 是正方形;那么根据切线长定理可得:CE=CF=12(AC+BC-AB )由此可求出r 的长【详解】解:如图;在Rt△ABC∠解析:2【解析】【分析】设AB 、BC 、AC 与⊙O 的切点分别为D 、F 、E ;易证得四边形OECF 是正方形;那么根据切线长定理可得:CE=CF=(AC+BC-AB ),由此可求出r 的长.【详解】解:如图;在Rt △ABC ,∠C=90°,AC=5,BC=12;根据勾股定理AB=四边形OECF 中,OE=OF ,∠OEC=∠OFC=∠C=90°;∴四边形OECF 是正方形;由切线长定理,得:AD=AE ,BD=BF ,CE=CF ;∴CE=CF=(AC+BC-AB );即:r=(5+12-13)=2.故答案为2. 19.-1【解析】∵抛物线过原点∴解得又∵抛物线开口向下∴解析:-1【解析】∵抛物线2231y ax ax a =-+-过原点,∴210a -=,解得1a =±,又∵抛物线开口向下,∴1a =-. 20.③④【解析】【分析】【详解】由抛物线的开口向下可得a <0;由与y 轴的交点为在y 轴的正半轴上可得c >0;因对称轴为x==1得2a=-b 可得ab 异号即b >0即可得abc <0所以①错误;观察图象根据抛物线 解析:③④【解析】【分析】【详解】由抛物线的开口向下,可得a <0;由与y 轴的交点为在y 轴的正半轴上,可得c >0;因对称轴为x=2b a-=1,得2a=-b ,可得a 、b 异号,即b >0,即可得abc <0,所以①错误; 观察图象,根据抛物线与x 轴的交点可得,当x=-1时,y <0,所以a-b+c <0,即b >a+c ,所以②错误;观察图象,抛物线与x 轴的一个交点的横坐标在-1和0之间,根据对称轴为x=2b a -=1可得抛物线与x 轴的一个交点的横坐标在2和3之间,由此可得当x=2时,函数值是4a+2b+c >0,所以③正确;由抛物线与x 轴有两个交点,可得b 2-4ac >0,所以④正确.综上,正确的结论有③④.【点睛】本题考查了二次函数y=ax 2+bx+c (a≠0)的图象与系数的关系:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;a 还可以决定开口大小,a 越大开口就越小.②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异) ③常数项c 决定抛物线与y 轴交点, 抛物线与y 轴交于(0,c ).④抛物线与x 轴交点个数:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.三、解答题21.(1)2555014000w x x =-+-;(2)当售价定为54元时,每周获得的利润最大,最大利润为1120元.【解析】【分析】(1)根据所得利润=每件利润×销售量,可以列出w 与x 之间的函数关系式并化简为二次函数一般形式;(2)由市场售价不得低于50元/个,且商场每周销售数量不得少于80个的销售任务可以确定x 的取值范围,然后结合二次函数图像性质可以解答本题.【详解】解:(1)根据题意,得()()()()240100550403505555014000w x x x x x x =---=--=-+-⎡⎤⎣⎦,因此,利润与售价之间的函数关系式为2555014000w x x =-+-(2)∵销售量不得少于80个,∴100-5(x-50)≥80,∴x≤54,∵x≥50,∴50≤x≤54,2555014000w x x =-+-()2 511014000x x =---()222511055 5514000x x =--+-- 2 5(55)1125x =--+∵a=-5<0,开口向下,对称轴为直线x=55,∴当50≤x≤54时,w 随着x 的增大而增大,∴当x=54时,w 最大值=()2554551125=1120--+,因此,当售价定为54元时,每周获得的利润最大,最大利润为1120元.【点睛】本题考查二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值.22.(1)y =﹣20x +1400(40≤x ≤60);(2)W =﹣20x 2+2200x ﹣56000;(3)商场销售该品牌童装获得的最大利润是4480元.【解析】【分析】(1)销售量y 件为200件加增加的件数(60-x )×20; (2)利润w 等于单件利润×销售量y 件,即W=(x-40)(-20x+1400),整理即可; (3)先利用二次函数的性质得到w=-20x 2+2200x-56000=-20(x-55)2+4500,而56≤x≤60,根据二次函数的性质得到当56≤x≤60时,W 随x 的增大而减小,把x=56代入计算即可得到商场销售该品牌童装获得的最大利润.【详解】(1)根据题意得,y =200+(60﹣x )×20=﹣20x+1400, ∴销售量y 件与销售单价x 元之间的函数关系式为: y =﹣20x+1400,(2)设该品牌童装获得的利润为W (元)根据题意得,W =(x ﹣40)y=(x ﹣40)(﹣20x+1400)=﹣20x 2+2200x ﹣56000,∴销售该品牌童装获得的利润W 元与销售单价x 元之间的函数关系式为:W =﹣20x 2+2200x ﹣56000;(3)根据题意得56≤x≤60,W =﹣20x 2+2200x ﹣56000=﹣20(x ﹣55)2+4500∵a =﹣20<0,∴抛物线开口向下,当56≤x≤60时,W 随x 的増大而减小,∴当x =56时,W 有最大值,W max =﹣20(56﹣55)2+4500=4480(元), ∴商场销售该品牌童装获得的最大利润是4480元.【点睛】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.23.(1)见解析;(2)23【解析】【分析】(1)由于BO=BD=BC ,根据等边三角形的判定和性质,三角形外角性质可得∠ODC=90°,从而根据切线的判定方法即可得到结论.(2)由AB 为⊙O 的直径得∠BDA=90°,而BO=BD=2, AB=2BO=4,根据勾股定理可求出AD .【详解】解:(1)证明:如图,连接OD ,∵BO=BD=DO ,∴△OBD 是等边三角形.∴∠OBD=∠ODB=60°.∵BD=BC ,∴∠BDC=12∠OBD=30°. ∴∠ODC=90°.∴OD ⊥CD .∵OD 为⊙O 的半径,∴CD 是⊙O 的切线.(2)∵AB 为⊙O 的直径,∴∠BDA=90°.∵BO=BD=2,∴AB=2BO=4.∴2223AD AB BD -= 24.该公司有50人参加旅游. 【解析】【分析】设该公司有x 人参加旅游,由308002400030000⨯=<,可得出x 30>,分30x 55<≤及x 55>两种情况考虑,由总价=单价⨯数量,可得出关于x 的一元二次方程(一元一次方程),解之即可得出结论.【详解】设该公司有x 人参加旅游.308002400030000⨯=<Q ,x 30∴>.()308005501055(+-÷=人).根据题意得:当30x 55<≤时,有()x 80010x 3030000⎡⎤--=⎣⎦,化简得:2x 110x 30000-+=,解得:1x 50=,2x 60(=舍去);当x 55>时,有550x 30000=, 解得:600x (11=舍去). 答:该公司有50人参加旅游.【点睛】本题考查了一元二次方程的应用以及一元一次方程的应用,分30x 55<≤及x 55>两种情况,列出关于x 的方程是解题的关键.25.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.。

东莞东华初级中学2023-2024学年九年级上学期期中模拟数学试题(原卷版)

东莞东华初级中学2023-2024学年九年级上学期期中模拟数学试题(原卷版)

九年级数学2023-2024年期中复习模拟卷 培优卷一、选择题(每小题3分,共30分)1. 下列图形是中心对称图形的是( )A. B.C. D.2. 已知关于x 的一元二次方程2(2)10x m x m +−++=有两个相等的实数根,则m 的值是( )A. 4±B. 8C. 0D. 0或83. 在同一平面直角坐标系内,一次函数y ax b =+与二次函数25y ax x b =++的图象可能是( )A. B.C. D.4. 关于x 的一元二次方程2(3)10x k x k +−+−=根的情况,下列说法正确的是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定5. 抛物线2y ax bx c ++经过点()1,0−、()3,0,且与y 轴交于点()0,5−,则当2x =时,y 的值为( )A. 5−B. 3−C. 1−D. 56. 如图,四边形ABCD 内接于O ,F 是CD 上一点,且 BFCD =,连接CF 并延长交AD 的延长线于点E ,连接AC ,若105ABC ∠=°,25BAC ∠=°,则E ∠的度数为( )A. 40°B. 45°C. 50°D. 55°7. 将含有30°角的直角三角板OAB 如图放置在平面直角坐标中,OB 在x 轴上,若OA =2,将三角板绕原点O 顺时针旋转75°,则点A 的对应点A ′的坐标为( )A.1) B. (1C.) D.) 8. 某病毒人传人,3人感染病毒后如果不隔离,那么经过两轮传染将会有75人感染,假设每轮每人传染的人数相同.则每轮每人传染的人数为( )A. 4人B. 5人C. 6人D. 7人9. 若m 、n (n <m )是关于x 一元二次方程1﹣(x ﹣a )(x ﹣b )=0的两个根,且b <a ,则m ,n ,b ,a 的大小关系是( )A. m <a <b <nB. a <m <n <bC. b <n <m <aD. n <b <a <m 10. 已知二次函数2(1)1y x m x =+−+,当x >1时,y 随x 的增大而增大,而m 的取值范围是( ) A 1m =− B. 3m = C. 1m ≤− D. 1m ≥−二、填空题(每小题4分,共 28分)11. 若关于x 的一元二次方程 ()221320m x x m m −−+−+=有一个解是0x =,则 m 的值是_______. 12. 如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=°,2OA =,将AOB 绕点O 逆时针旋转90°,点B 的对应点B ′的坐标是______的.13. 若关于x 的方程222310x mx m m +++−=有两个实数根12x x 、,则()21212x x x x ++的最小值为_______.14. 已知二次函数y =3x 2+c 的图象与正比例函数y =4x 的图象只有一个交点,则c 的值为________. 15. 如图,等边三角形ABC 内有一点P ,分别连结AP 、BP 、CP ,若6AP =,8BP =,CP 10=.则ABP BPC S S +△△=_______.16. 如图,四边形ABCD 内接于O ,AB 为O 的直径,过点C 作CE AD ⊥交AD 的延长线于点E ,延长EC ,AB 交于点F ,ECD BCF =∠∠,若2DE =,6CD =,则O 的半径=_______.17. 已知关于x 的方程()21210a x x a −+−−=的根都是一整数,那么符合条件的整数a 有_____个. 三、解答题(一)(本大题共3小题,每题6分,共 18分)18. 解方程:(1)()()22232x x −=−;(2)()()22132120x x −+−+=.19. 关于x 方程()2212104x a x a +−++=. 的(1)方程有两个相等的实数根,求a 的值;(2)方程有两个不相等实数根,求a 的取值范围.20. 如图所示,已知AB 为O 的直径,CD 是弦,且AB CD ⊥于点E .连接AC 、OC 、BC .(1)若25ACO ∠=°,求BCD ∠的度数.(2)若4cm EB =,16CD cm =,求O 的直径.四、解答题(二)(本大题共3小题,每题8分,共 24分)21. 在Rt ABC △中,9030ABC ACB ∠=°∠=°,,将ABC 绕点C 顺时针旋转一定的角度α得到DEC ,点A 、B 的对应点分别是D 、E .(1)当点E 恰好在AC 上时,如图1,求ADE ∠的大小;(2)若60α=°时,点F 是边AC 中点,如图2,求证:四边形BEDF 是平行四边形.22. 如图,AB 是O的直径,AB =,M 是弧AB 的中点,OC OD ⊥,COD △绕点O 旋转与AMB的两边分别交于E 、F (点E 、F 与点A 、B 、M 均不重合),与O 分别交于P 、Q 两点.(1)求证:OE OF =;(2)连接PM 、QM ,试探究:在COD △绕点O 旋转的过程中,PMQ ∠是否为定值?若是,求出的PMQ ∠的大小;若不是,请说明理由;23. 小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P 距地面0.7m ,水柱在距喷水头P 水平距离5m 处达到最高,最高点距地面3.2m ;建立如图所示的平面直角坐标系,并设抛物线的表达式为()2y a x h k =−+,其中x (m )是水柱距喷水头的水平距离,y (m )是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P 水平距离3m ,身高1.6m 的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.五、解答题(三)(本大题共2小题,每题 10分,共20分)24. 已知关于x 的一元二次方程()()21x m 1x m 102−+++=有实数根. (1)求m 的值;(2)先作()()221y x m 1x m 12=−+++图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求2n 4n −的最大值和最小值.25. 如图(示意图),某跳水运动员进行10m 跳台跳水训练,水面边缘点E 的坐标为3,10.2 −−运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处点A 的坐标为51,4.正常情况下,运动员在距水面高度5m以前,必须完成规定的翻腾、打开动作,并调整的好入水姿势,否则就会失误.运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的函数解析式并求出入水处点B 的坐标.(2)若运动员在空中调整好入水姿势时,恰好距点E 的水平距离为5m ,该运动员此次跳水是否失误了?通过计算说明.(3)在该运动员入水点的正前方有M ,N 两点,且21m 2EM =,27m 2EN =,该运动员入水后运动路线对应的抛物线的函数解析式为. ()2y a x h k =−+,且顶点C 距水面5m ,若该运动员出水点D 在MN之间(包括M ,N 两点),请直接写出a 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年东莞市东华初级中学第一学期九年级期中测试数学试卷
一选择题(本大题10小题,每小题3分,共30分)
1下列图案中,是中心对称图形但不是轴对称图形的是( )
2下列方程中,是一元二次方程的是( )
1=0 B.ax²+bx+c=0 C.x²-2x-3=0 D.x²-2y-1=0
A.x²-
2
3.已知关于x的一元二次方程x²-3x+k+1=0,它的两根之积为-
4.则k的值为( )
A.-1
B.4
C.-4
D.-5
1=0有实数根,则实数k的取值范围是( ) 4、若关于x的一元二次方程kx²-2x+
2
A.k<2
B.k≥2
C.k≤2且k≠0
D.k<2且k≠0
5.如图,将△OAB绕点O逆时针旋转到△OA′B′,点B恰好落在边A′B′上.已知AB=4cm,BB′=1cm,则AB的长是( )
A.1cm
B.2cm
C.3cm
D.4cm
6.已知二次函数y=-x²+2x+4,则下列关于这个函数图象和性质的说法,正确的是( )
A.图象的开口向上
B.图象的顶点坐标是(1,3)
C.当x<1时,y随x的增大而增大
D.图象与x轴有唯一交点
7 下列说法正确的是( )
A.等弦所对的弧相等
B.三角形的外心到三角形三个顶点的距离相等
C.垂直于半径的直线是圆的切线
D.平分弦的直径垂直于弦,并且平分弦所对的弧
8.如图,AB为⊙O的直径,C,D为⊙O上两点若∠BCD=40°;则∠ABD的大小为()
A.20°
B.40°
C.50°
D.60°
9.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则BE的长为( )
A.2
B.4
C.6
D.8
10.如图,抛物线y=ax²+bx+c经过点(-1,0),与y轴交于(0,2)
抛物线的对称轴为直线x=1,则下列结论中:①a+c=b
②方程ax²+bx+c=2有两个不相等的实数根③2a-b=0 ④abc<0,
其中正确的结论有( )
A.1个
B.2个
C.3个
D.4个
二填空题(本大题7小题,每小题4分,共28分)
一元二次方程x²-2=0的两分别为------------
12.已知⊙O的直径为2,点A到圆心O的距离等于2,则点A与⊙O的位置关系是------------
13将抛物线y=-3x²-1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为---------------
14.已知x=-1是关于x的方程ax²+bx-2=0的一个根,则2020+2a-2b=-----------
15.两条直角边长分别是6cm、8cm的直角三角形的内切圆半径为------
16.如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)直接具有的关系为h=20t-4t²,则小球从飞出到落地所用的时间为-----------s
17.如图,O是等边△ABC内一点,OA=1,O=∠AOB=150°,将线段BO绕点B逆时针旋
转60°得到线段BO ′,连接AO,①点O 与0的距离为2;②OC=2;③四边形AOBO 的面积为4
35 ④△ABC 的边长为7 4个选项中,其中正确的结论为--------------(填正确的序号)
三解答题(本大题3小题,每小题6分,共18分
18. 已知:如图,C,D 是以AB 为直径的⊙O 上的两点,且OD ∥BC.求证:AD=DC
19.△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形
的边长为1个单位长度.按要求作图:
(1)画出△ABC 关于原点O 的中心对称图形△1A 1B 1C
(2)写出点1A 、1B 、1C 的坐标
20.已知抛物线y=a(x-h)²+k的顶点A(-1,2),且过点B(0,3)
(1)求抛物线的表达式:
(2)当-3≤x≤-2时,试求y的取值范围
四、解答题(二)(本大题3小题,每小题8分,共24分)
21.如图,将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,使点B落在AD 边上的点E处,连结BG交CE点H,连结BE
(1)求证:BE平分∠AEC;
(2)求证:BH=HG
22.“阳光玫瑰”葡萄品种是广受各地消费者的青睐的优质新品种,在我国西部区域广泛种植,某葡萄种植基地2018年种植“阳光玫瑰”100亩,到2020年“阳光玫瑰”的种植面积达到196亩
(1)求该基地这两年“阳光玫瑰”种植面积的平均增长率
(2)市场调查发现,当“阳光玫瑰”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时尽量减少库存,已知该基地“阳光玫瑰”的平均成本价为12元/千克,若使销售“阳光玫瑰”每天获利1750元,售价应降低多少元?
23.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计),且四块矩形花圃的面积相等
(1)求证:AE=3BE;
(2)设BC的长度为xm,矩形区域ABCD的面积为ym²,
①求y与x之间的函数关系式(要求化成一般式),
②请说明矩形区域ABCD的面积可否为340m²
五、解答题(三)(大题2小题,每小题10分,共20分)
24.如图,⊙O过ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与O相交于点H,射线AO交边CD于点E,交⊙O于点F,点在射线AO上,且∠PCD=2∠DAF
(1)求证:△ABH是等腰三角形:
(2)求证:直线PC是⊙O的切线
(3)若AB=2,AD=√10,求⊙O的半径
25.如图,已知抛物线y=-x2+bx+c与x轴交于点A(-1,0)、B(3,0),与y轴交于点C (1)求抛物线的解析式;
(2)如图①点D的坐标为(1,0),点P为第象限内抛物线上的一点,求四边形BDC P产面积的最大值;
(3)如图②,动点M从点O出发,以每秒1个单位长度的速度向点B运动,到达点B 时停止运动,且不与点O、B重合.设运动时间为t秒,过点M作x轴的垂线交抛物线于点N,交线段BC于点Q,连接OQ,是否存在t值,使得△BOQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由。

相关文档
最新文档