第2章质点动力学1动力学

合集下载

大学物理第一章-质点运动学和第二章-质点动力学基础

大学物理第一章-质点运动学和第二章-质点动力学基础
Ax Bx Ay B y Az Bz
i
k
j
这样:A B ( Ax i Ay j Az k ) ( Bx i B y j Bz k )
矢量的数积(数乘): mA mAx i mAy j mAz k
z
Δr r ( A)
o
A
B
r ( B) y
x rA x Ai y A j rB xB i yB j 位移 r rB rA ( x x )i ( y y ) j B A B A 三维空间
r ( xB x A )i ( yB y A ) j ( zB z A )k 2 2 2 r x y z 位移的大小为
瞬时加速度 与瞬时速度的定义相类似,瞬时加速速度是一个 极限值 2 v
a lim
t 0
d r d v dt dt2 t
瞬时加速度简称加速度,它是矢量,在直角坐 标系中用分量表示:
2 d vx d x ax 2 dt dt d vy d2 y ay dt dt2 d vz d 2 z az dt dt2
§1-1
参考系与坐标系
时间
要定量描述物体的位臵与运动情况,就要运用 数学手段,采用固定在参考系上的坐标系。
常用的坐标系有直角坐标系 (x,y,z) ,极坐标系 (,),球坐标系(R,, ),柱坐标系(R, ,z )。 z z
z y x o x

o
R y R

参考方向
2. 空间和时间
切向单位矢量
法向单位矢量 n
et
显然,轨迹上各点处,自然坐标轴的方位不断变化。

大学物理课件 第2章,质点动力学

大学物理课件 第2章,质点动力学

本章题头§2-1 牛顿运动定律英国物理学家, 经典物理学的奠基人.创立了经典力学的 基本体系光学,牛顿致力于光的颜色和光 的本性数学,建立了二项式定理,创立 了微积分牛顿 Issac Newton (1643-1727)天文学,发现了万有引力定律, 创制反射望远镜,初步观察到了 行星运动的规律。

一、牛顿第一定律 (Newton first law)惯性定律 任何物体都保持静止或匀速直线运动的状态, 直到受到力的作用迫使它改变这种状态为止。

意义惯性以及力的概念 1、定义了物体(质点)的惯性;2、说明了力是物体运动状态改变的原因定义了惯性参考系二、牛顿第二定律 (Newton second law)质点加速度的大小与所受合力的大小成正比 , 与质点自身的质量成反比; 加速度方向与合力方向相同。

牛顿第二定律的数学形式为 Fma 原始形式:F dPd mv dmvm dvdtdtdtdt当 v c 时,m 为常量 Fm dvmadt宏观低速运动时1、瞬时性: 之间一一对应(同生、同向、同变、同灭) n 2、力的叠加性:F F1 F2 Fi Fii =13、矢量性:具体运算时应写成分量式直角坐标系中: Fma maximay jmaz k Fxmaxmdv x dt Fyma ymdv y dt Fzmazmdvz dt 自然坐标系中: Fmam at anF mdv dtFnmv24、说明了质量是物体惯性的量度5、在一般情况下力, F是一个变力常见的几中变力形式:F F x kx常见的几中变力形式:F F t F F v kv弹性力 打击力 阻尼力6、适用对象:质点 7、成立的参考系:惯性系 8、成立的条件:宏观低速10'T 三、牛顿第三定律(Newton third law)物体A 以力F AB 作用于物体B 时, 物体B 也必定同时以力F BA 作用于物体A , F AB 与F BA 大小相等, 方向相反, 并处于同一条直线上,(物体间相互作用规律)mmT P 'P 地球F AB = F BA作用力与反作用力:1、它们总是成对出现。

第2章质点和质点系动力学

第2章质点和质点系动力学


静止在车厢中的小球受到绳的拉力和重力的作用,
这两个力的合力不为零,小球与车厢一起以加速度运动,
符合牛顿第二定律。
在车厢参考系看来, 相对车厢小球静止,而受到的合力不为零, 这是由于车厢不是惯性系,因此牛顿第二定律不适用。
引入惯性力 (ma0 ) ,
T

拉力、重力、惯性力
这三个力的合力为零,
ma0
m
a0
引入惯性力后

牛顿第二定律
W
适用于车厢
这个非惯性系
等效原理 (阅读)

《大学基础物理学》清华大学出版社(2003)-56页
N
m
N
mg
a
/
m
mg
2.参考系之间加速转动

相对惯性系转动的参考系也不是惯性系。
要在转动参考系中应用牛顿第二定律也要引进惯性力,
但其中的惯性力与加速平动参考系中的惯性力不同。
fd kv
三 惯性力

1.参考系之间加速平动

a K K 系为惯性系,K / 系相对 系作加速平动,加速度为 0
m 若质量为 的质点,在力 F
K a 相对于 系的加速度为 ,相对
的作用下,
K /系的加速度为
a
/
/
a a a0
对于 K 系F,由 于m设a 为惯m性(a系/,牛a顿0 )第二定律是成立
f
R —地球半径
—地球自转的角速度
—物体所在处的纬度
力学第2次课结束
例1

在皮带运输机中, 设砖块与皮带之间的,
静摩擦系数为 s ,
砖块的质量为 m ,

大学物理——第2章-质点和质点系动力学

大学物理——第2章-质点和质点系动力学
2 2 2 α + a1 cos2 α
a1 = cot α 方 向: tanθ = ax g
由式④得:
ay
θ 为 a 与 x 正向夹角
FN = m(g + a1) cosα
10
例2-2 阿特伍德机 (1)如图所示滑轮和绳子的质量均不计,滑 轮与绳间的摩擦力以及滑轮与轴间的摩擦力 均不计.且 m > m2 . 求重物释放后,物体 1 的加速度和绳的张力. 解: 以地面为参考系 画受力图,选取坐标如图
ar
ar
m1 m2
a
m g FT = m a1 1 1 m2g + FT = m2a2
a1 = ar a
FT 0
a2 = ar + a
m1 m2 ar = m + m (g + a) 1 2 a1 FT = 2m1m2 (g + a) P 1 m1 + m2
a2
y FT
y
P0 2
12
8
桥梁是加速度 a
例2-1 升降机以加速度a1上升,其中光滑斜面上有一物体m沿 斜面下滑. 求:物体对地的加速度 a ? y 斜面所受正压力的大小? 解: 由于升降机对地有加速度,为一非惯性 系,故选地面为参考系,设坐标如图.
FN
a1
a2
a = a2 + a1
在 x , y 方向上有:
G
α
x
ax = a2 a1 sin α a = a cosα 1 y
m1 m2
FT 0
m g FT = m a 1 1 m2 g + FT = m2a
m1 m2 a= g m1 + m2
2m m2 1 FT = g m + m2 1

《大学物理》第2章 质点动力学

《大学物理》第2章 质点动力学

TM
Tm
2Mm M m
g
a
ar
M M
m m
g
a
FM
TM
ar
F m
Tm m
a
M PM
ar
Pm
注:牛顿第二 定律中的加速 度是相对于惯 性系而言的 。
例2 在倾角 θ 30 的固定光滑斜面上放一质量为
M的楔形滑块,其上表面与水平面平行,在其上 放一质量为m的小球, M 和m间无摩擦,
且 M 2m 。
解:以弹簧原长处为坐标原点 。
Fx kx
F Bm A
元功:
O xB x
xA x
dW Fx dx kxdx
dx
弹力做功:W
xB xA
kxdx
1 2
kxA2
1 2
kxB2
2.3.4 势能 Ep
W保 Ep Ep0 Ep
Ep重 mgh
牛顿 Issac Newton(1643-1727) 杰出的英国物理学家,经 典物理学的奠基人.他的 不朽巨著《自然哲学的数 学原理》总结了前人和自 己关于力学以及微积分学 方面的研究成果. 他在光 学、热学和天文学等学科 都有重大发现.
第2章 质点动力学
2.1 牛顿运动定律 2.1.1 牛顿运动定律
1 牛顿第一定律(惯性定律) • 内容:一切物体总保持静止状态或匀速直线运动 状态,直到有外力迫使它改变这种状态为止。 • 内涵: 任何物体都有保持静止或匀速直线运动状态的趋势。 给出了力的定义 。 定义了一种参照系------惯性参照系。
非惯性参照系:相对于已知的惯性系作变速运动 的参照系。
惯性定律在非惯性系 中不成立。
2.2 动量定理 动量守恒定律

大学物理第2章-质点动力学基本定律

大学物理第2章-质点动力学基本定律
②保守力作功。
势能的绝对值没有意义,只关心势能的相对值。 势能是属于具有保守力相互作用的系统 计算势能时必须规定零势能参考点。但是势能差是一定的,与零点的选择无关。 如果把石头放在楼顶,并摇摇欲坠,你就不会不关心它。 一块石头放在地面你对它并不关心。
重力势能:以地面为势能零点
01
万有引力势能:以无限远处为势能零点
m
o
θ
设:t 时刻质点的位矢
质点的动量
运动质点相对于参考原点O的角动量定义为:
大小:
方向:右手螺旋定则判定
若质点作圆周运动,则对圆心的角动量:
质点对轴的角动量:
质点系的角动量:
设各质点对O点的位矢分别为
动量分别为
二.角动量定理
对质点:
---外力对参考点O 的力矩
力矩的大小:
力矩的方向:由右手螺旋关系确定
为质点系的动能,

---质点系的动能定理
讨论
内力和为零,内力功的和是否为零?
不一定为零
A
B
A
B
S
L
例:炸弹爆炸,过程内力和为零,但内力所做的功转化为弹片的动能。
内力做功可以改变系统的总动能
例 用铁锤将一只铁钉击入木板内,设木板对铁钉的阻力与铁钉进入木板之深度成正比,如果在击第一次时,能将钉击入木板内 1 cm, 再击第二次时(锤仍以第一次同样的速度击钉),能击入多深? 第一次的功 第二次的功 解:
(1)重力的功
重力做功仅取决于质点的始、末位置za和zb,与质点经过的具体路径无关。
(2) 万有引力的功
*
设质量M的质点固定,另一质量m的质点在M 的引力场中从a运动到b。
M
a
b

笫二章质点动力学

笫二章质点动力学

F
13
四、力的分类
在目前的宇宙中,存在着四类基本的相互作用,所有的 运动现象的原因都逃不出这四类基本的力,各式各样的力只不 过是这四类基本力在不同情况下的不同表现.
四种力:万有引力,电磁力,强力和弱力
万有引力 电 磁 力
强力
弱力
适用范围 m
相互作用举 例
长程力
长程力
1015
1016
恒星结合在一 电子和原子核 质子和中子结 表征核子
起形成银河系 结合形成原子 合形成原子核 衰变的力
相对强度
1039
102
1
105
14
㈣ 牛顿运动定律应用
一、动力学的典型问题可归结为两类:
笫一类问题:己知作用于物体(质点)上的力,由力 学规律来决定该物体的运动情况或平衡状态.
笫二类问题:己知物体的运动情况或平衡状态,由 力学规律来推究作用于物体上各种力.
d 2
d 2
,
cos
d 2
1
整理以上方程可得:
dT N
1 dTd Td N
2
18
TA TB
dT T
0d
ln TA TB
TB TAe
讨论: 如果 0.25
则: 时, TB 0.46TA
2时, TB 0.21TA
10时, TB 0.00039TA
19
例题2-2 从实验知道,当物体速度不大时,可认为空 气阻力正比于物体的速度,问以初速度竖直向上运动 的物体,其速度将如何变化?
一、万有引力与重力
F
G
m1m2 r2
mr
1
m
2
重力:地球对表面物体的 万有引力mg
g

大学物理第二章-质点动力学

大学物理第二章-质点动力学

3)忽略绳或线质量时,绳内部各处的张力都相等
4)弹(性)力:由胡克定律 f ,kkx为决定于弹簧本身结构的常数;负
号表示弹力的方向总是指向要恢复它原长的方向
3、摩擦力 相互接触的物体在沿接触面相对运动时,或有相对运动趋势时,在接触
面之间产生一对阻止相对运动的力。(静摩擦力、动摩擦力(滑动摩擦力、 滚动摩擦力等))
m m
车 u上
mv1
mv2
v1 v2
t2
Fdt
t1
mv2
mv1
地上
t
2
Fdt
t1
m(v1
m(v2
u)
u)
m (v2
m(v1
u) u) mv2
mv1
[例2]一质点受合外力作用,外力为
F 10ti 2(2 t ) j 3t 2k (SI)
求此质点从静止开始在2s内所受合外力的冲量和质点在
I z P2z P1z mv2z mv1z
说明:
1)一维问题、力作用时间很短时,
F
常引入平均冲力
F
F
t2 Fdt
t1
p2 p1
t2 t1 t2 t1
t1 t2 t
2)I的方向一般不是
F的(t方) 向,而
I
是微分冲量 的矢F量d和t 的方向。
Fdt
3)物体的动量相对于不同的惯性系是不同的,但动量定律不 变。
物体在竖直方向运动,建立坐标系oy
y
T
ar
ar
a1 m1 a2
m2
m1
o
m1g
T
m2
m2 g
(1)电梯匀速上升,物体对电梯的加速度等于它们对
地面的加速度。A的加速度为负,B的加速度为正, 根据牛顿第二定律,对A和B分别得到:

大学物理第2章_质点动力学_知识框架图和解题指导和习题

大学物理第2章_质点动力学_知识框架图和解题指导和习题

第2章 质点动力学一、基本要求1.理解冲量、动量,功和能等基本概念;2.会用微积分方法计算变力做功,理解保守力作功的特点;3.掌握运用动量守恒定律和机械能守恒定律分析简单系统在平面内运动的力学问题的思想和方法。

二、基本内容(一)本章重点和难点:重点:动量守恒定律和能量守恒定律的条件审核、综合性力学问题的分析求解。

难点:微积分方法求解变力做功。

(二)知识网络结构图:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧公式只有保守内力做功条件能量守恒定律公式合外力为条件动量守恒定律守恒定律动能定理动量定理基本定理能功冲量动量基本物理量)()0((三)容易混淆的概念: 1.动量和冲量动量是质点的质量与速度的乘积;冲量是合外力随时间的累积效应,合外力的冲量等于动量增量。

2.保守力和非保守力保守力是做功只与始末位置有关而与具体路径无关的力,沿闭合路径运动一周保守力做功为0;非保守力是做功与具体路径有关的力。

(四)主要内容: 1.动量、冲量动量:p mv =u r r冲量:⎰⋅=21t t dt F I ϖϖ2.动量定理:质点动量定理:⎰∆=-=⋅=2112t t v m P P dt F I ϖϖϖϖϖ 质点系动量定理:dtPd F ϖϖ=3.动量守恒定律:当系统所受合外力为零时,即0=ex F ϖ时,或in ex F F u r u r ? 系统的总动量保持不变,即:∑===n i i i C v m P 1ϖϖ4.变力做功:dr F r d F W BAB A⎰⎰=⋅=θcos ϖϖ(θ为)之间夹角与r d F ϖϖ直角坐标系中:)d d d ( z F y F x F W z y BAx ++=⎰5.动能定理:(1)质点动能定理:k1k221222121E E mv mv W -=-=(质点所受合外力做功等于质点动能增量。

)(2)质点系动能定理:∑∑==-=+ni ni E E W W1kio1ki inex(质点系所受外力做功和内力做功之和等于质点系动能增量。

大学物理_第2章_质点动力学_习题答案

大学物理_第2章_质点动力学_习题答案

第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。

解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式(2)代入式(1)得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。

解:小球在运动的过程中受到重力G 和轨道对它的支持力T.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两习题2-2图者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。

解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。

第2章 质点动力学1

第2章  质点动力学1
在非惯性系中, 、 两物体做为一整体沿 、 两物体运动方向的运动方程为
考虑到 , 代入上式可得
单独对 物体,在此非惯性系中,水平方向的运动学方程为
将 , 代入上式可得
说明这是一个运用牛顿定律求解的力学题目,正确分析受力是应用牛顿定律的前提。牛顿定律成立的参考系是惯性系,而在非惯性系中应用牛顿定律要引入惯性力,解法一在惯性系中求解,由物体在非惯性系中的相对加速度 ( 、 物体一致),运用速度变换给出惯性系中物体的加速度是解法一的关键。解法二中引入惯性力是关键。惯性力等于物体的质量乘以非惯性系加速度的负量。
第二定律:物体运动状态的变化与物体所受的合力成正比。
当 为常量时,
第三定律:当物体 以力 作用于 物体时,物体 也同时以力 作用于物体 上,力 和 总是大小相等,方向相反,且作用在同一直线上,其关系式为
力满足叠加原理:
几种常见的力
万有引力:
重力:
弹簧弹性力:
静摩擦力: 最大静摩擦力
滑动摩擦力:
(2)运动学解题基本思路:① 选择研究对象;② 分析受力情况(画出受力图);③ 选择适当坐标系,列方程求解;④ 进行必要的讨论。
时, 积分上式
得链条下落端点的运动学方程为
说明这是一个变质量问题,在此类问题中牛顿定律要采用 形式而非 形式,另外需注意的是链条在下落过程中,机械能不守恒。
2-3如图(a)将一质量为 的小环套在一绕竖直轴以每秒 转的恒定转动杆上。杆与水平面成 角。设小环与杆之间的最大静摩擦系数为 ,小环与转轴的距离为 。问小环与杆保持相对静止时, 应该在什么范围内。
(1)
(2)
因 有
将上式代入(1)、(2)式忽略二阶小量可得 两端张力差为
将上式积分
即得ห้องสมุดไป่ตู้于柱面的绳子 两端的拉力之比为

第2章质点和质点系动力学题解

第2章质点和质点系动力学题解

第2章 质点和质点系动力学2.1 一斜面的倾角为α, 质量为m 的物体正好沿斜面匀速下滑. 当斜面的倾角增大为β时,求物体从高为h 处由静止下滑到底部所需的时间.解:设斜面得摩擦系数为μ。

对m 分别处于倾角为α,β得斜面上,列出牛顿运动方程为α角: 1sin 0f mg α-=1cos 0N mg α-= 11f N μ=β角:2sin 0f mg β-=2cos 0N mg β-= 22f N μ= 联立解得sin cos a g g tg ββα=- 又物体从高为h 的斜面下滑的运动方程为 21sin 2h at β= 解得t ==2.2 用力f 推地面上的一个质量为m 的木箱,力的方向沿前下方, 且与水平面成α角. 木箱与地面之间的静摩擦系数为0μ, 动摩擦系数为k μ. 求:(1)要推动木箱, f 最小为多少?使木箱作匀速运动, f 为多少?(2)证明当α大于某值时, 无论f 为何值都不能推动木箱, 并求α值.解:(1)当f 的水平分力克服最大静摩擦力时,木箱可以运动,即 ()0cos sin f mg f αμα≥+ 00cos sin mgf μαμα≥-0min 0cos sin mgf μαμα=-使木箱做匀速运动,则()cos sin k f mg f αμα=+0cos sin k mgf μαμα=-(2)当下式成立,则无论f 多大,都不能推动木箱,即 0cos sin f f αμα< 01tg αμ>, 01arctgαμ>2.3 质量为5000kg 的直升飞机吊起1500kg 的物体, 以0.6m/s 2的加速度上升, 求:(1)空气作用在螺旋桨上的升力为多少. (2)吊绳中的张力为多少. 解:(1)对飞机物体整体进行受力分析,得 ()()f M m g M m a -+=+ 代入数值得到空气作用在螺旋桨上的升力为 46.8910f N =⨯ (2)对物体m 进行受力分析,得 T mg ma -= 解得吊绳中的张力为()4150010.6 1.5910T m g a N =+=⨯=⨯2.4 质量为m 汽车以速率0v 高速行驶, 受到2kv f -=的阻力作用, k 为常数. 当汽车关闭发动机后, 求:(1)速率v 随时间的变化关系. (2)路程x 随时间的变化关系. (3)证明速率v 与路程x 之间的函数关系为x mke v v -=0.(4)若200=v m/s, 经过15s 后, 速率降为10=t v m/s, 则k 为多少? 解:由题意得 2dvkv m dt-= 当0t =时, 0v v = 两边分离变量020vtv dv k dt v m =-⎰⎰积分得011kt v v m ⎛⎫-=- ⎪⎝⎭即00001v mv v k m kv t v t m ==+⎛⎫+ ⎪⎝⎭(2)由上式两边积分得 000xtmv dx dt m kv t =+⎰⎰即 0ln m kv t m x k m +⎛⎫=⎪⎝⎭(3)由(1)中得 00mv kv t m v=- 代入(2)中的结果,得00ln ln mv m m v m m v x k m k v ⎛⎫+- ⎪⎛⎫== ⎪ ⎪⎝⎭⎪⎝⎭即0k x mv v e-=(4)020m v s =,15t s =,10t m v s=代入(1)中得结果,解得300m k =2.5 质量为m 的质点以初速度0v 竖直上抛, 设质点在运动中受到的空气阻力与质点的速率成正比, 比例系数为0>k .试求:(1)质点运动的速度随时间的变化规律. (2)质点上升的最大高度. 解:(1)对上升过程,列出牛顿方程,得 dvmg kv m dt--= 即 mdvdt mg kv-=+积分得00tvv mdvdt mg kv-=+⎰⎰即k mg e k mg v v t m k-⎪⎭⎫ ⎝⎛+=-0 对下降过程,列出牛顿方程,得 dvmg kv m dt-=即 mdvdt mg kv=-积分得 00tvv mdvdt mg kv=-⎰⎰即1k t mmg v e k -⎛⎫=- ⎪⎝⎭(2)由(1)中方程得 dv dv dy dy mg kv m m mv dt dy dt dt--=== 即 ()mg kv mg mvdv m dy dv mg kv k mg kv+--==-++积分得()2020ln m m g mg kvy v v k k mg kv +=-++当0v =时,有 20max02ln mg kv m m g y v k k mg ⎛⎫+=- ⎪⎝⎭2.6 自动枪以每分钟发射120发子弹的速率连续发射. 每发子弹的质量为9.7g, 出口速率为735m/s. 求射击时枪托对肩部的平均压力. 解:设肩部所受的平均作用力为F ,由动量定理得 Ft mv =∑即31207.91073511.660mv F N t-⨯⨯⨯==≈∑2.7 质点在x 轴上受x 方向的变力F 的作用.F 随时间的变化关系为:在刚开始的0.1s内均匀由0增至20N ,又在随后的0.2s 内保持不变,再经过0.1s 从20N 均匀地减少到0. 求:(1)力随时间变化的t F -图. (2)这段时间内力的冲量和力的平均值. (3)如果质点的质量为3kg, 初始速度为1m/s, 运动方向与力的方向相同. 当力变为零时, 质点速度为多少? 解:(1)由题意得(2)由上图得11200.1200.2200.1622I N s =⨯⨯+⨯+⨯⨯=⋅ 0.5200.1200.20.5200.1150.4I F N t ⨯⨯+⨯+⨯⨯===(3)由动量定理得 0t Ft mv v =- 即 063133t Ft mv m v s m ++⨯===2.8 子弹脱离枪口的速度为300m/s, 在枪管内子弹受力为5400410/3F t =-⨯(SI ), 设子弹到枪口时受力变为零. 求:(1)子弹在枪管中的运行的时间. (2)该力冲量的大小. (3)子弹的质量.解:(1)由541040003tF ⨯=-=得3310t s -=⨯即子弹在枪管中的运行的时间为s 3103-⨯。

大学物理1,第2章 质点动力学

大学物理1,第2章 质点动力学

O
x
mg
tan a1 , arctan a1
g
g
l
m
a1
(2)以小球为研究对象,当小车沿斜面作匀加速运
动时,分析受力如图,建立图示坐标系。
x方向:FT2 sin(α θ) mg sin α ma2
FT 2
y方向:FT2 cos(α θ) mg cos α 0 a2
m
FT2 m 2ga22 sin α a22 g 2
• 强力(strong interaction)
在原子核内(亚微观领域)才表现出来,存在于 核子、介子和超子之间的、把原子内的一些质子和中 子紧紧束缚在一起的一种力。
其强度是电磁力的百倍,两个相邻质子之间的强 力可达104 N 。力程:<10-15 m
• 弱力(weak interaction)
亚微观领域内的另一种短程力。导致衰变放出 电子和中微子。两个相邻质子之间的弱力只有10-2 N 左右。
重力(gravity) 重力是地球表面物体所受地球引力的一个分量。
G mg
g g0 (1 0.0035cos2 φ)
地理纬度角 g0 是地球两极处的重力加速度。
重力
引力
重力与重力加速度的方向都是竖直向下。
忽略地球自转的影响物体所受的重力就等于它所受的
万有引力:
mg
G
mEm R2
弹力(elastic force)
物体受到外力作用时,它所获得的加速度的大小与合 外力的大小成正比,与物体的质量成反比;加速度的
方向与合外力F的方向相同。 F kma
比例系数k与单位制有关,在国际单位制中k=1
瞬时性:是力F的瞬m时a 作m用d规v律 dt
F

第2章_质点动力学

第2章_质点动力学

重点掌握变力的问题!
11
例:一根长为L,质量为M的柔软的链条,开始时链条 静止,长为L-l 的一段放在光滑的桌面上,长为l 的一段 铅直下垂。(1)求整个链条刚离开桌面时的速度;(2)求 链条由刚开始运动到完全离开桌面所需要的时间。 M dv dv dx dv xg 解: F xg Ma , a v L dt dt dx L dx
(1) F合 ma (2) a a a0
在加速平动参照系中: F惯 ma0 此时,F F惯 ma (4)
(4)式就在形式上与牛顿第二定律保持一致。
18
在加速平动参照系中:F惯 ma0
惯性力大小: 运动质点的质量m与非惯性系加速度 a的乘积。
*2.1.4 非惯性系 惯性力 非惯性系:相对于惯性系做加速运动的参考系。
在非惯性系内牛顿定律不成立。 1.平动加速系
设有一质点质量为m,相对于某一惯性系S,根据 牛顿第二定律,有: (1) F ma

设有另一参照系S/,相对于惯性系S以加速度
动,在S/参照系中,质点的加速度为
由运动的相对性,有:a a a0
2
牛顿第二定律:物体受到外力作用时,它所获得的加 速度的大小与合外力的大小成正比,与物体的质量成 反比,加速度的方向与合外力的方向相同。
数学形式:F ma 或 F m dv dt
在直角坐标系Oxyz中: 在自然坐标系中 :
Fix max Fiy ma y Fiz maz
在匀角速转动参考系中应用牛顿定律, 必须设想物体又受到另外一个与拉力大小相 等但方向相反的惯性力的作用,
2 Fi mω r

大学物理第2章质点动力学章节总结及练习题

大学物理第2章质点动力学章节总结及练习题

第2章 质点和质点系动力学(复习指南)一、基本要求掌握牛顿三定律及其适用条件,牛顿第二定律的微分形式和惯性系的概念;掌握万有引力(含重力)、弹性力、摩擦力的相关公式,能用微积分方法求解一维变力作用下的质点动力学问题.掌握功的概念和直线运动情况下变力做功的计算方法;掌握势能的概念,会计算重力、弹性力势能;理解保守力做功的特点.二、基本内容1.力、常见力力是物体间的相互作用.力是物体改变运动状态的原因. 常见力有万有引力、重力、弹性力、摩擦力. (1)万有引力、重力万有引力指存在于任何两个物质(质点)之间的吸引力.其数学表达式为r e rm m G F221 2211kg m N 1067.6 G引力的特点为:方向已知,大小与质点间的距离的平方成反比.重力为地球表面附近物体受地球的引力(忽略地球自转的影响).重力的特点为:大小已知,方向竖直向下指向地心.g m P 222EE kg m N 80.9 R Gmg(2)弹性力发生形变的物体,由于要恢复形变而对与它接触的物体产生的力叫弹力.弹力的表现形式有很多种,常见的有正压力、绳中张力、绳对物体的拉力、弹簧的弹力等.弹性力的特点为:方向已知,大小与运动状态有关.弹簧弹力:kx F ,x 为弹簧伸长量,弹力方向指向弹簧原长位置. (3)摩擦力两物体沿相互接触面方向有相对滑动或相对运动趋势时作用于接触面上阻碍物体相对运动的力为摩擦力,摩擦力分滑动摩擦力和静摩擦力.滑动摩擦力在相对滑动的速度不是太大或太小时,其大小与滑动速度无关,而和正压力N成正比,N f,f 的方向与相对滑动方向相反.静摩擦力为变力,其值介于0和最大静摩擦力之间,即max 000f f最大静摩擦力指两个有接触面的物体,沿接触面方向即将产生相对滑动时,通过接触面作用于两物体的摩擦力.在此以前两物体间的相互作用静摩擦力大小可以变化.对物体受力分析的顺序为:重力、弹力、摩擦力.在常见力分析中要特别注意静摩擦力. 2.惯性参考系(惯性系)惯性参考系就是用牛顿第一定律定义的参考系.牛顿定律只有在惯性参考系中才成立.惯性参考系有一个重要性质:相对于惯性参考系作匀速直线运动的任何其它参考系也一定是惯性参考系. 3.基本规律 ﹙1﹚牛顿第一定律第一定律明确了力是改变物体运动状态的原因,并反映出物体有保持原来运动状态不变的特性——惯性,第一定律定义了惯性系.﹙2﹚牛顿第二定律第二定律定量描述了外力作用与所产生的效果的关系,即力的作用与物体状态变化的定量关系.对第二定律应用需注意:①适用于惯性系.②适用于质点.③合外力与物体产生的加速度之间为一瞬时关系,合外力沿加速度方向.④第二定律为一矢量式,应用时常在坐标系中分解.在直角坐标系中有:z iz y iy x x ma F ma F ma F i ,,﹙3﹚牛顿第三定律牛顿第三定律指出力是物体间的相互作用.物体间有相互作用便存在相互作用力.应用第三定律需注意:①作用力,反作用力分别作用在相互作用的物体上,不是平衡力.②作用力、反作用力一定属于同种性质的力,同时产生,同时消失.③不论相互作用的两物体是运动还是静止,第三定律总成立. 4.功功是力的空间累积量:r F Wd d .功等于力和力的作用点位移的点积.功是标量,是一个代数量.当力的作用点没有位移或力与其作用点的位移相互垂直时,此力不做功.保守力做功只取决于相互作用质点的始末相对位置,而与各质点的运动路径无关.非保守力做功与路径有关. 5.势能物体间存在保守力相互作用才能引入相关势能.如地球对地面附近物体间存在重力作用,重力为保守力,引入重力势能.因为势能与物体间相对位置相关,所以,一方面势能属于存在保守力相互作用的系统,另一方面物体的位置描述是相对的,所以势能具有相对性.只有选定势能零点后,系统才有确定的势能值.例如一质量为m 的质点处于地面上h 高度,在没明确势能零点前不能确定m 和地球系统的势能大小,而且重力势能可正、可负、可以为零.但任意两个状态之间系统的势能差是确定的,与势能零点选取无关.势能是状态函数.在讨论涉及势能的功能问题时,必须:①选系统.②选势能零点[弹力势能(原长位置)、万有引力(无穷远)势能零点是确定的].③确定并描述初末状态的能量状态.弹簧弹性势能2k 21kx E ,k 为弹簧倔强系数,x 为相对原长位置(势能零点)的位移.三、例题详解2-1、质量为m 的子弹以速度0v 竖直射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K ,忽略子弹的重力,求:子弹射入沙土后,速度随时间变化的函数式.解:取竖直向下为y 轴正向.子弹进入沙土后受力为v K ,由牛顿定律t mK d d v v ∴vvd d t m K , v v v v 0d d 0t t m K ∴m Kt /0e v v2-2、物体沿x 轴作直线运动,所受合外力2610x F (SI ).试求该物体运动到m 4 x 处时外力做作的功解:J 168210d )610(d 3424x x x x x F W2-3、一人从10m 深的井中提水.起始时桶中装有10kg 的水,桶的质量为1kg ,由于水桶漏水,每升高1m 要漏去的水.求水桶匀速地从井中提到井口,人所做的功.解:选竖直向上为坐标y 轴的正方向,井中水面处为原点. 由题意知,人匀速提水,所以人所用的拉力F 等于水桶的重量 即:y gy mg ky P P F 96.18.1072.00 (SI )人的拉力所做的功为:J 980d )96.18.107(d d 10y y y F W W H2-4、一个弹簧下端挂质量为0.1kg 的砝码时长度为0.07m ,挂0.2kg 的砝码时长度为.现在把此弹簧平放在光滑桌面上,并要沿水平方向从长度m 10.01 l 缓慢拉长到m 14.02 l ,外力需做功多少解:设弹簧的原长为0l ,弹簧的劲度系数为k ,根据胡克定律: )(0.071.00l k g ,)(0.092.00l k g 解得:m 05.00 l ,N/m 49 k拉力所做的功等于弹性势能的增量:J 14.0)(21)(21201202p1p2l l k l l k E E W 四、习题精选2-1、一质点在力)25(5t m F (SI )的作用下,0 t 时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当s 5 t 时,质点的速率为(提示:变加速度运动,牛II 定律分离变量积分tmF d d v ) (A )50m·s -1. (B )25m·s -1. (C )0. (D )-50m·s -1.[ ]2-2、已知水星的半径是地球半径的倍,质量为地球的倍.设在地球上的重力加速度为g ,则水星表面上的重力加速度为:(提示:2EER GM g) [ ] (A )g 1.0 (B )g 25.0 (C )g 5.2 (D )g 42-3、质量分别为1m 和2m 的两滑块A 和B 通过一轻弹簧水平连接后置于水平桌面上,滑块与桌面间的摩擦系数均为 ,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度A a 和B a 分别为(提示:注意加速度的瞬时性)[ ](A )0B A a a (B )0A a ,0B a (C )0A a ,0B a (D )0A a ,0B a2-4、如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为 的固定的光滑斜面上,则斜面给物体的支持力为(提示:画受力分析图)[ ](A ) cos mg . (B ) sin mg . (C )cos mg . (D )sin mg. 2-5、一物体挂在一弹簧下面,平衡位置在O 点,现用手向下拉物体,第一次把物体由O 点拉到M 点,第二次由O 点拉到N 点,再由N 点送回M 点.则在这两个过程中(A )弹性力做的功相等,重力做的功不相等. (B )弹性力做的功相等,重力做的功也相等. (C )弹性力做的功不相等,重力做的功相等. (D )弹性力做的功不相等,重力做的功也不相等.(提示:弹力和重力都是保守力,做功只与始末位置有关,与路径无关)[ ]2-6、沿水平方向的外力F 将物体A 压在竖直墙上,由于物体与墙之间有摩擦力,此时物体保持静止,并设其所受静摩擦力为0f ,若外力增至F 2,则此时物体所受静摩擦力为_________.(提示:静摩擦力是变力,大小从受力平衡角度分析)2-7、如果一个箱子与货车底板之间的静摩擦系数为0 ,当这货车爬一与水平方向成 角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度max a =______________________.(提示:以箱子为对象受力分析,最大加速度时摩擦力方向应沿斜面向上) 2-8、如图,在光滑水平桌面上,有两个物体A 和B 紧靠在一起.它们的质量分别为kg 2 A m ,kg 1 B m .今用一水平力N 3 F 推物体B ,则B 推A 的力等于_____.如用同样大小的水平力从右边推A ,则A 推B 的力等于__________.(提示:先整体,后部分,分析受力和加速度)2-9、质量kg 1 m 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为x F 23 (SI ),那么,物体在开始运动的3m 内,合力所做的功W =_______.(提示:变力做功,用元功定义,再积分)2-10、设作用在质量为1kg 的物体上的力36 t F (SI ).如果物体在这一力的作用下,由静止开始沿直线运动,求:在0到的时间间隔内,这个力对物体做功的大小__________.(提示:力是时间函数,参考教学例题,t F x F W d d d v ,v d d m t F )。

第2章质点动力学1动力学

第2章质点动力学1动力学

m
d
(
v
u
)
m
dv
m
a
F

F
m
a
dt
dt
K 也为惯性系
dt
2020/3/24
—— 不存在绝对参考系 ( 相对性 )
质点动力学
非惯性系中的力学定律
绝 对 加 速 度a( 惯 性 系) 相 对 加 速 度a ( 非 惯 性 系)
a a 定 义 惯 性 力:
ai Fi
F ma
F m ai
代入数据计算得: a1 1.96 m/s2 a2 1.96 m/s2 T1 15.7 N T2 7.85 N
a3 5.88 m/s2
2020/3/24
质点动力学
特别注意: 如果物体所受是变力,必须采用牛顿第二定律的微分形式。
F (t) m dv vt dv t F (t) dt
2020/3/24
质点动力学
(2) 、牛顿定律的解题步骤:
①、把每个研究对象隔离开来(平移),画受力图-------隔 离体图法;
②、选取惯性参考系,建立坐标系(尽量使加速度的方向与 坐标轴正向一致)
③、根据物体受力图, 运用第二定律列出联立方程。
直线运动
Fi x m ax Fi y m a y
〔P124 习题2.18〕长为l,质量为 m 的均匀绳子,一端系在 竖直转轴上,以角速度ω在光滑水平面上旋转。求距转轴r处 的张力。
解: T(r) T(r dr) dT dm 2r m dr 2r
o T(r) T(r+dr) dr
r
l
T(r)
dT
m
2
r
rdr
T(l)

第02章-质点动力学

第02章-质点动力学

8
四 牛顿定律的应用
➢牛顿定律只适用于惯性系; ➢牛顿定律只适用于质点模型; ➢具体应用时,要写成坐标分量式。
在平面直角坐标系 在平面自然坐标系
Fx max
Fy
may
Fz
maz
F
m dv dt
mR
Fn
m v2 R
mR 2
2–3 动量 动量守恒定律
力的累积效应
F F
(t)对

r
t 积累 积累 W
3
一 惯性定律 惯性参考系 任何物体都要保持其静止或匀速直线运动状态,
直到外力迫使它改 变运动状态为止. 数学形式:F 0 时,v 恒矢量
➢ 定义了物体的惯性 任何物体都有保持其运动状 态不变的性质, 这一性质叫惯性. ➢ 定义了力 力是物体运动状态发生变化的原因. ➢ 定义了惯性参照系 物体在某参考系中, 不受其他 物体作用而保持静止或匀速直线运动状态 , 这个参考 系称为惯性系 . 相对惯性系静止或匀速直线运动的参 照系也是惯性系 .
W Fxdx Fydy Fzdz
21
功的大小与参照系有关
功的量纲和单位 dimW ML2T2 1J 1N m
2.功率 平均功率
P W t
瞬时功率 P lim W dW F v
t0 t
dt
P Fvcos
功率的单位 (瓦特)1W 1J s1 1kW 103 W
22
3 保守力的功 1) 重力的功 质量为m的质点在重力G作用 下由A点沿任意路径移到B点。 重力G只有z方向的分量
4
二 牛顿第二定律 惯性质量 引力质量 物体受到外力作用时,它所获得加速度的大小与
合外力的大小成正比;与物体的质量成反比;加速度 的方向与合外力 F 的方向相同。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④、摩擦力(跟接触面相对运动有关),方向平行接触面
动摩擦力------- fk kN
静摩擦力------- 0fssN
摩擦又分干摩擦与湿摩擦两种,减小摩擦通常有两种方法: *用滚动代替滑动,如滚珠轴承; *变干摩擦为湿摩擦,如气垫船。
静摩擦力大于动摩擦力——汽车防抱死系统用 弱相互作用
-----短程力(微观、原子核内)
牛顿力学对原子核内运动不适用,故牛顿力学范围内只涉及: 万有引力与电磁力(弹力、摩擦力等)
2020/5/20
质点动力学
(1)、力学中几种常见的力:
①、万有引力
万 有 引 : 力 两定 质 m 1、 律 点 m 2, 相r 距 F Gm r1m 22 r 0 引 力 : 常 G 6.6 数 71-1 01 牛· 米 顿 2 / 千 2 引 力 : m 质 1、 m 2 量 , 实 验 :引 证力 明 惯 质性 量质
2020/5/20
质点动力学
3、牛顿第三定律--作用与反作用力定律 F 12 F 21
• 作用力与反作用力属于同一性质的力 • 作用力与反作用力同时产生、同时消失 • 第三定律是物体受力分析的基础
2020/5/20
质点动力学
4、牛顿定律的应用 自然界有四种基本相互作用力:
万有引力和电磁力-------长程力(宏观)
2020/5/20
质点动力学
〔例〕如图所示,A为定滑轮,B为动滑轮,它们和绳的质量均 可忽略。当 m1 = 2干克,m2 = 1干克,m3 = 0.5干克时,试求: (1) 物体 m1 、 m2 、 m3 的加速度; (2) 每条绳上的拉力。
解:忽 列略 方滑 :(程 隔 轮离 和体 ):绳 T法 1的 T1,质 T2量 T2
2020/5/20
质点动力学
2、牛顿第二定律:
F mamdd2r2 t
直线运动
Fix ma x Fiy ma y
曲线运动
Fi ma Fin ma n
〔注意点〕
• 第二定律原则上只适用于质点 • 第二定律只能用于惯性系 • F 与 a 的关系是瞬时关系 ( 力是产生加速度的原因 )
本课时教学基本要求
1、掌握质量、动量、冲量、惯性系、惯性力和质心等概念。
2、掌握牛顿第二定律的基本内容及其适用条件,熟练掌握用 牛顿第二定律求解质点动力学问题。
3、掌握常见力的性质和计算方法,能熟练分析物体的受力情 况,掌握隔离体图法。
4 、理解惯性系和非惯性系的区别,掌握在非惯性系中求解质 点动力学的方法。
质点动力学
(2) 、牛顿定律的解题步骤:
①、把每个研究对象隔离开来(平移),画受力图-------隔 离体图法;
②、选取惯性参考系,建立坐标系(尽量使加速度的方向与 坐标轴正向一致)
③、根据物体受力图, 运用第二定律列出联立方程。
直 线 F 运 ix m a 动 x 曲 线 F 运 it m a t动
地心参考系
日心参考系
质量:物体惯性大小的量度。
星系参考系
2020/5/20
质点动力学
二、牛顿第二、第三定律
1、动量与力 : 质点的质量与速度的乘积称为动量 力是描述物体间相互作用的物理量。
F d p d (m v ) m d v m a d t d t d t
pmv
力是矢量,满足叠加原理
F iy m a y
F in m a n
(i) 用几何关系或相对运动找出加速度之间的关系 (ii) 未知数应与方程数相等
④、解联立方程组, 用符号化简后代入原始数据,分析结 果的合理性。
2020/5/20
质点动力学
〔例〕如图所示,已知 M 、 m、 、 a0 ,求: N、a N’
m M
T1
8 m 1m 2m 3 g m 1m 2 m 1m 3 4 m 2m 3
T2
4 m 1m 2m 3 g m 1m 2 m 1m 3 4 m 2m 3
代入 :a 数 1 1 .9m 据 6 2 a /2s 计 1 .9m 6 算 2 /a 3 s 得 5 .8m 8 2 / T 1 1 .7 5 NT 2 7 .8N 5
光滑
a0
N m
M
x
y
光滑
N
mg
解: m g N m a
Mg
其 a = a 物 中 = a 物 对 + a 斜 对 地 : ( 对 a 斜 = a ′ + a 地 0 ) 即
x:msginm(a- a0co)s y:mcgosNm0sain
Nm(gcosa0sin) agsina0cos
m 1m 3 4 m 2m 3 ) g m 1m 3 4 m 2m 3
a2
(m 1m 2 3 m 1m 3 4 m 2m 3 ) g m 1m 2 m 1m 3 4 m 2m 3
a3
(m 1m 3 3 m 1m 2 4 m 2m 3 ) g m 1m 2 m 1m 3 4 m 2m 3
2020/5/20
质点动力学
特别注意: 如果物体所受是变力,必须采用牛顿第二定律的微分形式。
② 、重力(万有引力在地面的表示),
用G、P或mg来表示,方向竖直向下,注
意与重量的区别
2020/5/20
质点动力学
③ 、弹力(跟接触面和形变有关,接触是前提、形变是条 件):
正压力、支持力-------用N表示,方向垂直接触面; 绳子的张力----------用T表示,方向沿绳子的伸长方向; 弹簧的弹力---------用F或f表示,方向沿弹簧的伸长方向。
m1 g T1 m1a1
(1)
m2 g T2 m2a2
(2)
m3 g T2 m3a3
(3)
2 T2 T1
(4)
相 对 于 B的 相 对 加 速 度 a2 a3 , aB a1
a2a2aBa2a1 (5) a3a3aBa2a1 (6)
2020/5/20
质点动力学
a1
(m 1m 2 m 1m 2
5、掌握质点和质点系动量守恒的条件,会求平均冲力。
6、掌握质心运动定律,了解质心坐标系。
2020/5/20
质点动力学
质点动力学:牛顿定律,从动量这个守恒量引入
2020/5/20
质点动力学
一、牛顿第一定律 惯性系
牛顿第一定律(惯性定律) ——外力为零时,物体保持原有 运动状态不变。
惯性系:牛顿第一定律适用的参考系。通常选太阳或地球为参考系
相关文档
最新文档