泰勒公式开题报告
数学课题开题报告
数学课题开题报告数学课题开题报告(精选7篇)在生活中,大家逐渐认识到报告的重要性,不同种类的报告具有不同的用途。
我们应当如何写报告呢?以下是小编整理的数学课题开题报告(精选7篇),仅供参考,希望能够帮助到大家。
数学课题开题报告篇1一、研究实验的课题总课题:课本导读教学模式的探讨与研究子课题:A、如何阅读概念、定理、公式、例题、应用题。
例子:两次购买同一种物品,可以用两种不同的策略,第一种是不考虑物品价格的升降,每次购买这种物品的数量一定;第二种不考虑物品价格的升降,每次购买这种物品所花的钱数一定,哪种购物方式比较经济?能把所得结论作一些推广吗?设第一次和第二次购物时的价格分别为p1,p2,按第一种策略,每次购nkg,按这种策略购物时,两次平均价格是:B、课本习题的变式的方法与途径的研究。
C、在课本导读教学模式下学生自主学习能力的探讨研究。
二、课题的意义与目的教学艺术永远是一门遗憾的艺术,课题研究是它永恒的主题。
吹尽黄沙始现金,让我们以没有最好,只有更好的理念来不断改进我们的教学方式,实现真正意义的与时俱进,发展学生的数学素质和创新能力也就有了载体。
高中数学新课程标准指出:学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。
这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程。
高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识。
中国有句古话叫“授人以鱼不如授人以渔”,我们想通过课本导读法的教学使学生具备自主学习的能力,有利于学生终身学习有效的数学学习方式。
三、课本研究的理念依据数学教学要以人为本、注重人的可持续发展,变“学会”为“会学”的今天,还学生“读书”的权力,多让学生读书,使学生形成阅读数学教材的习惯,掌握数学阅读的方法,已越来越重要。
课题开题报告15篇
课题开题报告15篇课题开题报告1论文题目:关于泰勒公式的应用课题研究意义在初等函数中,多项式是最简单的函数。
因为多项式函数的运算只有加、减、乘三种运算。
如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。
那么一个函数只有什么条件才能用多项式函数近似代替呢?这个多项式函数的各项系数与这个函数有什么关系呢?用多项式函数近似代替这个函数误差又怎么样呢?通过对数学分析的学习,我感觉到泰勒公式是微积分学中的重要内容,在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明等方面,泰勒公式是有用的工具。
文献综述主要内容Taylor公式的应用Taylor公式在计算极限中的应用对于函数多项式或有理分式的极限问题的计算是十分简单的,因此,对一些较复杂的函数可以根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或有理分式的极限问题。
满足下列情况时可考虑用泰勒公式求极限:(1)用洛比达法则时,次数较多,且求导及化简过程较繁;(2)分子或分母中有无穷小的差,且此差不容易转化为等价无穷小替代形式;(3)所遇到的函数展开为泰勒公式不难。
当确定了要用泰勒公式求极限时,关键是确定展开的阶数。
如果分母(或分子)是,就将分子(或分母)展开为阶麦克劳林公式。
如果分子,分母都需要展开,可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数。
Taylor公式在证明不等式中的应用有关一般不等式的证明针对类型:适用于题设中函数具有二阶和二阶以上的导数,且最高阶导数的大小或上下界可知的命题。
证明思路:(1)写出比最高阶导数低一阶的Taylor公式;(2)根据所给的最高阶导数的大小或上下界对展开式进行缩放。
有关定积分不等式的证明针对类型:已知被积函数二阶和二阶以上可导,且又知最高阶导数的符号。
证题思路:直接写出的Taylor展开式,然后根据题意对展开式进行缩放。
(整理)数学论文泰勒公式
本科生毕业论文题目: 泰勒公式及其应用研究专业代码: 070101作者姓名: 范文朝学号: 2008200665单位: 2008级1班指导教师: 刘保政2012年5 月20 日精品文档原创性声明本人郑重声明: 所提交的学位论文是本人在导师指导下, 独立进行研究取得的成果. 除文中已经注明引用的内容外, 论文中不含其他人已经发表或撰写过的研究成果, 也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明。
本人承担本声明的相应责任。
学位论文作者签名: 日期指导教师签名: 日期目录摘要 (Ⅰ)Abstract (Ⅱ)1.引言 (1)2.泰勒公式的形式........................................... (1)2.1 带有佩亚诺型余项的泰勒公式.............................. .. (1)2.2 具有拉格朗日余项的泰勒公式 (2)2.3 带有积分型余项的泰勒公式 (2)2.4带有柯西型余项的泰勒公式 (2)3.泰勒公式的应用...... ....................... . (2)3.1利用泰勒公式求不定式的极限 (3)3.2利用泰勒公式估算误差 (5)3.3用泰勒公式判断级数的敛散性....................... . (9)3.3.1数项级数的敛散性判断............. .............. ........ ..93.3.2函数项级数的敛散性判断............... .............. .. (10)3.4利用泰勒公式证明中值问题.............. ............. (12)3.5利用泰勒公式证明不等式和等式............. .............. .. (13)3.5.1利用泰勒公式证明积分不等式或积分等式................ .. (13)3.5.2利用泰勒公式证明导数不等式.............. ............. (15)3.5.3利用泰勒公式证明代数不等式............... . (16)结束语 (19)参考文献 (20)致谢 (21)摘要泰勒公式是数学分析中重要的公式,它的基本思想是用多项式来逼近已知函数,而这个多项式的系数由给定函数的各阶导数确定.阐述了泰勒公式的定义及其各种形式,着重对泰勒公式在极限计算、误差估计、敛散性的判断、中值问题以及等式与不等式的证明这五个方面中的应用进行了研究论述.泰勒公式在多方面的应用可以提高我们对泰勒公式的认识,有利于把泰勒公式的研究推向更深处.关键词:泰勒公式; 不定式的极限;误差估计; 级数的敛散性;不等式证明AbstractTaylor formula is a important formula in the mathematical analysis. Its basic idea is that the known function with a polynomial approximation determines the coefficients of the polynomial by the first derivative of the given function. The definition and its various forms of the Taylor formula are elaborated. The applications of Taylor formula in five aspects are studied and discussed, such as the limit calculation, error estimation, the judgment of convergence and divergence, median problems, as well as equality and inequality proof. Taylor formula in many applications can improve our understanding of the Taylor formula , and it benefit to push the research of Taylor formula to deeper.Key words:Taylor formula; the infinitive limits; error estimates; convergence and divergence of the series; Proof of Inequality泰勒公式及其应用研究1. 引言泰勒公式是数学分析中一个非常重要的内容,几个微分中值定理中一般的情形是泰勒公式, 它建立了函数的增量,自变量增量与一阶及高阶导数的关系,将一些复杂的函数近似地表示为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有力杠杆。
泰勒公式的研究
1.2 泰勒公式的研究意义
泰勒公式是微积分中的一个基本理念,不但在理论上占重要地位,同时泰勒公式在极限计算、近似计算、级数及积分敛散性的判断、证明等式不等式等方面也有重要应用,并且还是研究分析数学的不可或缺的工具。我们必须掌握它,以便更方便更好的解决数学实际问题、研究一些复杂的函数。
泰勒公式是一个应用价值非常大的数学公式。将此公式作进一步剖析,归纳总结它的各类余项,将会有更多收获。这个公式结构对称和谐,无论是在代数,还是几何中都可以应用,它在解决一些实际问题或推导一些数学结论上非常有用,在初等数学和高等数学中应用都比较广泛。因此,对泰勒公式的探究是有益的。近年来,以泰勒公式为背景的试题已悄然在考研试卷和国内外的数学竞赛题中出现。在解题过程中,灵活巧妙地应用泰勒公式,从不同角度考虑问题,有助于拓宽解题思路,提升解题技巧,并可以使一些比的各种变形使得较困难的问题得以比较简捷地解决,说明泰勒公式与它的推广的使用方法和技巧,从而揭示了泰勒公式在数学领域中的广泛应用。
泰勒公式开题报告
泰勒公式开题报告泰勒公式开题报告一、引言泰勒公式是数学中的一项重要工具,它用于近似计算函数在某点的值。
该公式的提出者是英国数学家布鲁克·泰勒,他在1715年的《方法论》一书中首次描述了这一公式。
泰勒公式的应用范围广泛,涉及到物理学、工程学、计算机科学等众多领域,因此对其进行深入研究具有重要意义。
二、泰勒公式的基本原理泰勒公式是利用函数在某点的导数来逼近函数在该点附近的值。
设函数f(x)在点a处具有n阶导数,则泰勒公式可以表示为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^n(a)(x-a)^n/n! + Rn(x)其中,f'(a)表示函数f(x)在点a处的一阶导数,f''(a)表示二阶导数,以此类推。
Rn(x)表示剩余项,用于表示泰勒公式的近似程度。
三、泰勒公式的应用1. 近似计算泰勒公式可以用于近似计算函数在某点的值。
通过取不同阶数的导数,可以得到不同精度的近似结果。
在实际应用中,我们可以根据需要选择适当的阶数,以获得满足要求的近似值。
2. 函数图像的绘制利用泰勒公式,我们可以在不知道函数解析表达式的情况下,通过计算函数在某点的导数,来绘制函数的图像。
这在计算机图形学中具有重要意义,可以用于生成曲线、曲面等复杂图形。
3. 数值计算泰勒公式的应用不仅限于函数的近似计算,还可以用于数值计算中。
例如,在数值微分和数值积分中,我们可以利用泰勒公式来构造数值算法,以提高计算的精度和稳定性。
四、泰勒公式的改进尽管泰勒公式在近似计算中具有广泛应用,但它也存在一些限制。
首先,泰勒公式要求函数在某点的导数存在,这在某些情况下可能不成立。
其次,随着阶数的增加,剩余项Rn(x)的影响逐渐增大,导致近似结果的误差也随之增大。
为了克服这些限制,人们提出了一系列改进的泰勒公式,如拉格朗日余项、佩亚诺余项等。
泰勒公式的应用开题报告
泰勒公式的应用开题报告一、选题意义在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。
如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆。
泰勒公式是高等数学中最重要的内容,在各个领域有着广泛的应用,例如在函数值估测及近似运算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明,求函数在某点的高阶导数值等方面。
除此之外,泰勒公式及泰勒级数的应用,往往能峰回路转,使问题便的简单易解。
二、论文综述国内同类课题研究现状及发展趋势:泰勒公式的证明与应用方面的研究对于科研者来说一直具有强大的吸引力,研究的方向大部分的是通过典型例题说明泰勒公式在求解极限、判定级数及广义积分敛散性方面、计算行列式、对某些定积分进行近似计算,求某些微分方程的通解等。
例如:湖南科技学院数学系的唐仁献在文章《泰勒公式的新证明及其推广》中在推广了罗尔定理的基础上重新证明了泰勒公式,哈尔滨职业技术学院郭鑫、林卓在《浅议泰勒公式应用》中着重论述了泰勒公式在近似计算、极限运算、级数与广义积分的敛散性判断等方面的具体应用方法。
在很多文章中,提到泰勒公式时,马上就是介绍泰勒公式的定义以及定性表示形式和各种形式的余项,如在我们学习的课本《数学分析》(上)中就是这样介绍的,这部分内容对于一个数学专业的学习者来说是比较基础的一部分内容,这对于以后的发展学习是很重要的.而我认为要深入研究这部分内容的话,还必须了解为此做出贡献的数学家—泰勒,因为了解一个数学家,就可以了解他创作时的数学思想,以及他的思维方式,在《世界著名科学家传记》中就对这位伟大的英年早逝的科学家进行了详细介绍.在许多书籍和论文里也都会提到泰勒公式及其应用,可见这一部分知识的重要性,尤其对于高校学生和一些应用型研究学者来说,这部分知识的学习总结是不容忽视的.由于很多课本对这些内容只是简单描述,没有系统、详细的进行总结,为了更好的了解和认识泰勒公式及其它的应用,笔者通过翻阅大量的文献和参考资料,并对泰勒公式应用的方方面面进行了认真的思考,同时总结了其他学者在这方面研究所做的贡献.三、主要内容我的论文将先对泰勒公式进行简单的介绍,对余项进行讨论,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用,并配有相应的例题。
泰勒公式的作用范文
泰勒公式的作用范文泰勒公式是一种用于求解函数在一些点的近似值的方法。
它的作用范围非常广泛,可以应用在数学、物理、工程等许多领域中。
下面将详细介绍泰勒公式的作用范围。
首先,泰勒公式在数学中起到了非常重要的作用。
数学中的许多函数无法精确地表示成有限次幂级数表达式,而泰勒公式可以将这些函数近似为无穷级数。
通过泰勒公式,我们可以用有限次幂级数来近似表示复杂函数,这对于研究函数的性质和求解方程都非常有帮助。
例如,在微积分中,我们可以利用泰勒公式来求解复杂函数的导数,从而简化计算过程。
其次,泰勒公式在物理中也有广泛的应用。
物理学中的很多现象可以通过数学函数进行描述,而泰勒公式可以帮助我们近似求解这些函数。
例如,在运动学中,我们可以利用泰勒公式来确定时刻速度和位移的近似值。
在力学中,我们可以应用泰勒公式来计算物体在受力下的运动轨迹。
这些应用使得泰勒公式成为解决物理问题的有力工具。
此外,泰勒公式在工程领域也得到了广泛应用。
在工程设计中,我们常常需要对复杂的函数进行近似计算。
泰勒公式可以帮助工程师们通过有限次幂级数来逼近原函数,从而简化计算过程。
例如,在电路设计中,我们可以通过泰勒公式来近似求解电流和电压的关系。
在机械工程中,我们可以利用泰勒公式来计算物体在力的作用下的变形。
这些应用使得泰勒公式成为工程实践中的重要工具。
此外,在金融领域,泰勒公式也有着广泛的应用。
金融学中的许多模型可以通过数学函数进行描述,而泰勒公式可以帮助金融学家们近似求解这些函数。
例如,在期权定价模型中,我们可以利用泰勒公式来近似计算期权价格。
在风险管理中,我们可以应用泰勒公式来估计资产的价值变动。
这些应用使得泰勒公式成为金融学研究和实践中的重要工具。
总之,泰勒公式在数学、物理、工程和金融等领域都有着广泛的应用。
它可以帮助我们近似求解复杂函数,从而简化计算过程和问题求解。
无论是在理论研究还是在实践应用中,泰勒公式都起到了重要的作用。
对于研究者和工程师们来说,了解和掌握泰勒公式的方法和技巧是非常重要的。
泰勒中值定理与泰勒公式计算思路与典型题分析
泰勒中值定理与泰勒公式计算思路与典型题分析泰勒(Brook Taylor)英国数学家,主要以泰勒公式和泰勒级数出名。
一、泰勒多项式与麦克劳林多项式设函数f(x)在x0某邻域内有定义,并且在x0处有n阶导数,则称为函数f(x)在x0处的n阶(次)泰勒多项式. 其中系数称为f(x)在x0处的泰勒系数.特别,如果x0=0时,称为函数f(x)的n阶麦克劳林多项式.二、泰勒中值定理与泰勒公式定理(泰勒中值定理)如果函数f(x)在x0的某个邻域内具有直到n+1阶导数,则对邻域内任一点x,至少存在介于x0与x之间的一点ξ,使得该公式也称为带拉格朗日余项的泰勒公式,其中ξ也可以表示成三、带皮亚诺余项的泰勒公式如果函数f(x)在x0处具有直到n阶导数,则存在x0的一个邻域,对于该邻域内任一x,有此公式称为带皮亚诺余项的n阶泰勒公式.【注】以上两个公式当x0=0时,分别称为n阶带拉格朗日余项的麦克劳林公式和带皮亚诺余项的麦克劳林公式,即有四、泰勒公式的意义及使用原则泰勒公式解决了用微分近似计算函数值或函数值增量精度不高问题;提供了误差的估计公式,并可实现对误差的有效控制.【注1】函数f(x)在x=x0的n阶导数存在,则可以写出该函数在x=x0处的n次泰勒多项式,但是泰勒多项式不一定会随着n的增加逐渐逼近函数在x处的函数值.【注2】只要存在常数C>0使当x∈(a,b)时,恒有|f(n+1)(x)|≤C(n=0,1,2,…)则用n次泰勒多项式P n(x)来近似代替f(x)时,余项的绝对误差|R n(x)|(x∈(a,b))随n的增大可变得任意小. 对于初等函数而言,在任意定义区间上一般都满足这个条件,所以对应的泰勒多项式可以满足这个要求.【注3】记住几个基本初等函数的带拉格朗日余项的泰勒公式和麦克劳林公式,其他的常见初等函数的在任意点的泰勒公式,一般都可以基于等式恒等,公式唯一的间接法来获得相应的泰勒公式.五、常用的几个麦克劳林公式带拉格朗日余项的麦克劳林公式带皮亚诺余项的麦克劳林公式【注1】一般在应用中都使用麦克劳林公式,因为一般位置的泰勒公式通过平移变换可以转换为麦克劳林公式描述.【注2】借助泰勒公式,可以计算函数在指定点的任意阶导数,即有六、计算函数泰勒公式的方法与典型题1. 直接法(1)计算n阶带拉格朗日余项的泰勒公式,直接求函数在x0的1~n+1阶导数,然后由公式代入各阶导数值,直接写出泰勒公式.(2)计算n阶带皮亚诺余项的泰勒公式,直接求函数在x0的1~n阶导数,然后由公式代入各阶导数值,直接写出泰勒公式.【注】计算麦克劳林公式即为x0=0处的泰勒公式. 该方法适合于所求阶数较低,函数不方便描述为具有以上几个已知泰勒公式的初等函数结构,或者函数求导结果具有一定规律的问题,比如上面几个基本初等函数的麦克劳林公式的计算.例1 求f(x)=secx的三阶带皮亚诺余项的麦克劳林公式.【分析】该函数不好直接描述为以上五个函数,即sinx, cosx, e x, ln(1+x), (1+x)a的结构,所以使用直接法计算系数来获取相应的麦克劳林公式,由于要计算三阶带皮亚诺余项的麦克劳林公式,所以要求x0=0处的函数值及三阶导数值,于是有所以有【注1】由于secx是偶函数,所以在计算导数的过程中也只需要计算偶数阶导数,奇数阶导数肯定为0.【注2】对于抽象函数一般使用直接法.例2(1996年数学一(199607)) 设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a, |f’’(x)|≤b.其中a,b都是非负常数,c是(0,1)内任意一点.(1)写出f(x)在点x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明|f’(x)|≤2a+b/2.【分析】首先,这是一个抽象函数的泰勒公式计算问题,并且在x=c处各阶导数都无法直接计算出,所以只能用抽象函数的导数描述形式描述,于是直接由泰勒公式定义形式,有其中ξ=c+θ(x-c),0<θ<1. 这就是该考题第(1)的结果.对于第二问,考虑的是f’(x),由于c为任意点,所以就相当于考察泰勒公式中的f’(c),所以希望将它用有相关已知条件的函数与二阶导数来描述,如果直接用一阶泰勒公式表示,则分母中出现x-c,无法获取最小下界. 因此,按照常规的泰勒公式的应用于证明题的思路,写出在某点的泰勒公式后,分别求其它已知点,或者中点、端点的函数值,然后借助两个泰勒公式消去一些不好讨论的项,得出能够讨论出结果的表达式.比如这里,除了c,就只有两个相关端点了,于是对一阶泰勒公式求x=0,x=1的值,有两式相减,则可以将f’(c)的变量系数消去,从而有而有绝对值不等式,有由于g(c)=(1-c)2+c2的导数为g’(c)=4c-2,所以驻点只有一个,即c=1/2,比较函数g(c)在0,1/2,1的值,即1,1/2,1,所以有1/2<g(c)<1,从而有结论成立.2. 间接法该方法基于函数表达式恒等变换与泰勒公式的唯一性.(1)将函数的变量描述为x-x0的函数形式,x变量不再以其它形式存在于函数表达式中;(2)将函数描述为已知麦克劳林公式的基本初等函数的结构,即sinx,cosx, e x, ln(1+x), (1+x)a,其中x可以是任意的表达式,如果将其替换为x-x0,则得函数在x=x0处的泰勒公式.【注】变换思路可以考虑两个方向,求麦克劳林公式则从考虑变换函数结构出发,求非零点的泰勒公式,则先考虑变量结构,在考虑函数结构.(3)写出构成函数的各基本初等函数的泰勒公式,合并化简系数,写出最终泰勒公式例2 分别求x2/(4+x)的n阶带皮亚诺余项的麦克劳林公式和x=2处的n阶带皮亚诺余项的泰勒公式.【分析】(1)求带皮亚诺余项的麦克劳林公式,它从变换函数结构出发:具有x2/(4+x)结构的,已知泰勒公式的初等函数为于是有或者(2)求带皮亚诺余项的x=2泰勒公式,首先从变量出发,把变量都变为x-2,则有例3 求f(x)=e sinx的三阶带皮亚诺余项的麦克劳林公式.【分析】:直接法:该函数不具有直接的以上五个函数结构,所以考虑直接法,于是有所以有间接法:于是有例4(2000数学二):求函数f(x)=x2ln(1+x)在x=0处的n阶导数f(n)(0)(3≤n).【解题分析】由于是求x=0处的n阶导数,所以由麦克劳林公式,有于是由ln(1+x)的麦克劳林公式:可得【另解】由于这是一个幂函数与对数函数的乘积,所以它的导数也可以由莱布尼兹计算公式来求,其中公式为:如果令则由于有所以有因此当x=0时,代入上式,则有相关推荐•柯西中值定理证明中值命题的基本思路与典型例题分析•拉格朗日中值定理证明中值命题的基本概念、基本步骤与典型题思路分析•罗尔定理证明中值命题的基本概念、步骤与典型题思路分析关于泰勒公式、泰勒中值定理的应用实例思路探索与分析可以参见全国大学生数学竞赛初赛非数学解析视频课堂,主要视频有:•第二届第2题:基于对数函数法和麦克劳林公式计算函数极限(1个视频片段)•第三届第1题:函数极限计算的三类重要方法及应用实例分析(3个视频片段)•第三届第三题:借助带拉格朗日余项的泰勒公式证明中值等式(1个视频片段)•第四届第三题:借助麦克劳林公式探索方程近似解(1个视频片段)•第六届第三题:用泰勒公式解题的一般思路与步骤及实例分析(2个视频片段)•第八届第1题:函数极限计算的一般思路与方法(3个视频片段)。
函数泰勒展开式的应用【文献综述】
毕业论文文献综述数学与应用数学函数泰勒展开式的应用1、本课题研究的意义多项式是最简单的函数。
因为多项式函数的运算只有加、减、乘三种运算。
如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。
通过对数学分析的学习,我感觉到泰勒公式是高等数学中的重要内容,在各个领域有着广泛的应用,例如在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明,求函数在某点的高阶导数值等方面。
除此以外,泰勒公式及泰勒级数的应用,往往能峰回路转,使问题变得简单易解。
2、目前国内的研究现状本人以 1999—2010 十一年为时间范围,以“泰勒公式”“泰勒公式的应用”、为关键词,在中国知网以及万方数据等数据库中共搜索到 30 余篇文章,发现国内外对泰勒公式及其研究进展主要分配在:1、带不同型余项泰勒公式的证明;2、泰勒公式的应用举例。
3、本课题的研究方向和重点泰勒公式是高等数学中的一个重要的内容, 但一般高数教材中仅介绍了如何用泰勒公式展开函数, 而对泰勒公式的应用方法并未进行深入讨论在高等数学教材中, 一般只讲泰勒公式, 对其在解题中的应用介绍很少。
但泰勒公式在解决一些问题中确实有十分重要的作用。
一、带不同型余项泰勒公式的证明,即:1.带皮亚诺余项的泰勒公式;2.带拉格朗日余项的泰勒公式;3.带积分型余项的泰勒公式的证明。
二、泰勒公式的应用举例。
本次论文将涉及到泰勒公式在以下七个方面的应用: 1、泰勒公式在极限计算中的应用;在函数极限运算中, 不定式极限的计算始终为我们所注意, 因为这是比较困难的一类问题。
计算不定式极限我们常常使用洛必达法则或者洛必达法则与等价无穷小结合使用。
但对于有些未定式极限问题若采用泰勒公式求解, 会更简单明了。
我将在论文中就例题进行探讨。
2、泰勒公式在判定级数及广义积分敛散性中的应用;泰勒公式是微分学中值定理推广。
泰勒公式及其应用论文
学士学位论文泰勒公式及其应用2012年5月18日毕业论文成绩评定表院(系):数学与信息学院学号:独创声明本人在此声明:本篇论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议.尽我所知,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果.对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明.此声明的法律后果由本人承担.作者签名:二〇一二年五月十八日毕业论文使用授权声明本人完全了解鲁东大学关于收集、保存、使用毕业论文的规定.本人愿意按照学校要求提交论文的印刷本和电子版,同意学校保存论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存论文;同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布论文的部分或全部内容,允许他人依法合理使用.(保密论文在解密后遵守此规定)论文作者(签名):二〇一二年五月十八日目录1.引言 (1)2. 泰勒公式及其应用 (1)2.1预备知识 (1)3 泰勒公式的应用 (3)3.1利用泰勒公式求极限 (3)3.2利用泰勒公式求不等式 (3)3.3利用泰勒级数判断级数的敛散性 (4)3.4利用泰勒公式证明根的唯一性 (5)3.5利用泰勒公式判断函数的极值 (5)3.6利用泰勒公式求初等函数的幂级展开式 (6)3.7利用泰勒公式进行近似计算 (6)3.8利用泰勒公式判断函数的凸凹性和拐点 (7)3.9利用泰勒公式求高阶导数在某点的数 (8)参考文献 (8)致谢 (8)泰勒公式及其应用(数学与信息学院 数学与应用数学 2008级数本2班20082112010)摘要:在数学分析中泰勒公式是一个重要的内容.本文论述了泰勒公式的定义,内容 ,并介绍了泰勒公式的9个应用及举例说明.利用泰勒公式求不等式,求极限,证明敛散性,根的唯一性等一系列泰勒函数的应用,使我们更加清楚地认识泰勒公式的重要性.关键词:泰勒公式 皮亚诺余项 拉格朗日余项 应用Taylor formula and it ’s application(20082112010 Class 2 Grade 2008 Mathematics & Applied Mathematics School of Mathematics & Information)Abstract:In the mathematical analysis Taylor formula is a important content. This paperdiscusses the definition of Taylor formula, content, and introduces the Taylor formula nine application and give an example. Use Taylor formula for inequality, please limit, folding proof scattered sex, theuniqueness of root, a series of Taylor function of application, make us more clearly know the importance of Taylor formula.Keywords: Taylor ’s formula The emaining of the Piano The remaining of the LagrangianApplication1.引言泰勒公式将一些复杂函数近似的表示为简单的多项式函数,是高等数学中重要部分.作者通过查阅一些参考文献,从中搜集了大量的习题,通过认真计算,其中部分难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳总结.由于本文的主要内容是介绍泰勒公式的应用,所以,本文以例题为主进行讲解说明.2. 泰勒公式及其应用2.1 预备知识定义[]12.1 若函数f 在0t 存在n 阶导数,则有()()()()()()()()()()20000001!2!!n n nn n f t f t f t f t f t t t t t t t o t t n '''=+-+-++-+-(1)这里()()0no t t -为皮亚诺余项,称(1)f 在点0t 的泰勒公式.当0t =0时,(1)式变成()()()()()()200001!2!!n nn f f f f t f t t t o t n '''=+++++称此式称为(带皮亚诺余项的)麦克劳林公式.定义2.2 若函数f 在0t 某邻域内为存在直至n+1阶的连续导数,则()()()()()()()()200000()1!2!!n nn n n f t f t f t f t f t t t t t t t R t n '''=+-+-++-+(2)这里R (n )为拉格朗日余项()()()110()()1!n n f R n t t n α++=++,其中α在t 与0t 之间,称(2)为f 在0t 的泰勒公示.当0t =0时,(2)式变成()()()()()20000()1!2!!n nn f f f f t f t t t R t n '''=+++++称此式为(带有拉格朗日余项的)麦克劳林公式.其中,常见函数的展开式:()()()()21135212224222311212!!(1)!sin (1)()3!5!21!cos (1)()2!4!2!ln 1(1)()231111n n a n n nn nnn n n n n n a a e e a a n n t t t t t o t n t t t t t o t n t t t x t o t n t t t t t++++++=++++++=-+++-++=-+-+-++=-+-+-++=+++++-定理[]12.1 (介值定理)设函数g 在闭区间],[21x x 上连续。
泰勒公式及其在解题中的应用
毕业设计(论文)题目:泰勒公式及其在解题中的应用Title: Taylor formula and its application in solving problems学院:理学院专业:信息与计算科学姓名:罗书云学号:08102209指导教师:蔡奇嵘二零一二年六月摘要泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具,它集中体现了微积分“逼近法”的精髓,在近似计算方面有着得天独厚的优势,利用它可以将复杂问题简单化,可以将非线性问题化为线性问题,并且能满足相当高的精确度要求。
它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具。
泰勒公式在微积分的各个领域都有着重要的应用,而且泰勒公式“化繁为简”的功能在数学领域的研究方面也起到了很大的作用。
文章除了介绍了带佩亚诺型余项和拉格朗日型余项的泰勒公式在常用的近似计算、求极限、不等式的证明、判断函数极值上作求解证明外,特别地,对泰勒公式在函数凹凸性及拐点判断、级数和广义积分敛散性判断、行列式计算等问题的应用上做了详细系统的介绍,并且本文讨论了一种新的证明泰勒公式的方法,进一步将泰勒公式推广到更一般的形式。
关键词:泰勒公式;佩亚诺型余项;拉格朗日型余项;应用ABSTRACTTaylor's formula is an important part of mathematical analysis, the theory has become an indispensable tool of the research function limits and estimation error, which embodies the essence of calculus "approximation method", It have an unique advantage in the approximate calculation, it also can make complex issues into simplistic, non-linear problem into a linear problem, and can meet the very high accuracy requirements. It is the promotion of the mean value theorem in calculus, is also an important tool for the application of higher order derivatives of the functional state. Taylor formula in the calculus of the various fields have important applications, and the Taylor formula for complex simple "function in the mathematical field of research has played a significant role. This article in addition introdution Peano remainder and Lagrange remainder term of Taylor formula commonly used in approximate calculation, the limit inequality proof to determine the function extremum for solving prove, in particular, A detailed introduction of the Taylor formula in the application of the function bump and the inflection point judgment, the judgment of convergence and divergence of series and generalized integral, determinant calculation, and the article discusses a new method to prove that the Taylor formula, further Taylor formula to the more general form.Keywords: Taylor formula; Peano more than; Lagrange remainder; application东华理工大学毕业设计(论文)目录目录1. 绪论 (1)1.1综述 (1)1.2泰勒公式的研究背景 (2)1.3泰勒公式的研究意义 (2)1.4泰勒公式的研究目的 (2)1.5本论文所做的工作 (3)1.6本论文的基本思路与采用的方法 (3)2. 泰勒公式 (4)2.1泰勒公式的建立 (4)2.2泰勒公式的定义 (6)2.2.1 带有佩亚诺(Peano)型余项的泰勒公式 (6)2.2.2 带有拉格朗日(Lagrange)型余项的泰勒公式 (7)3. 泰勒公式的新证明及其推广 (8)3.1罗尔中值定理的两种推广形式 (8)3.2泰勒公式的新证明 (10)3.3泰勒公式的推广 (11)4. 泰勒公式在解题中的应用 (15)4.1利用泰勒公式求近似值 (15)4.2利用泰勒公式求极限 (16)4.3泰勒公式在判断级数和广义积分的敛散性中的应用 (17)4.3.1 判断级数的敛散性 (17)4.3.2 判断广义积分的敛散性 (18)4.4泰勒公式在判别函数的极值中的应用 (19)4.5泰勒公式在不等式证明中的应用 (20)4.6泰勒公式在判断函数凹凸性及拐点中的应用 (22)4.6.1 判断函数凹凸性 (23)4.6.2 判别函数拐点 (24)4.7泰勒公式在行列式计算方面的应用 (25)结论及展望 (27)致谢 (28)参考文献 (29)东华理工大学毕业设计(论文) 绪论11. 绪 论1.1 综述十七世纪中叶,随着近代微积分的蓬勃发展,极限作为数学中的一个概念也就被明确地提了出来。
研究性学习在泰勒公式教学中的运用探究
研究性学习在泰勒公式教学中的运用探究1、引言近年来,随着素质教育的进一步推进,课程改革探讨的逐步深入,越来越多的教育者提出:实施以创新精神和实践能力为重点的素质教育,重要着眼点在于改变学生的学习方式。
而研究性学习,作为以学生主动探究为主的学习活动,日渐成为教学改革的切入点,成为改变学生学习方法的主要途径。
所谓的研究性学习,是指在教师指导下,以问题为主要环节,激励学生主动探索、获取知识,应用新知识解疑释惑解决问题的一种学习活动。
它是培养学生创新精神和实践能力、推行素质教育的一种新的尝试和实践。
Taylor 公式历来是高等数学中的教学难点,也是数学专业和非专业理工类学生研究生入学考试的考查点。
它的教学程序、方法往往是高等数学中的教学难点。
同学们普遍反应,Taylor 公式的形式复杂,形成和证明过程难以理解和把握。
针对这种现象,在Taylor 公式教学中,笔者应用了研究性学习方法:通过问题设计,创设情景,确立目标,提问质疑,层级推进,互助调空,反馈交流,启发导学,解疑释难,合作发展等手段积极引导学生探究Taylor 公式的发现、形成过程,让学生成为教学的主体,积极主动的参与教学。
实践证明:这种教学方式不仅可以帮助学生理解、应用公式,提高课堂教学效果,同时对学生创新能力的培养也有一定的积极意义。
2、研究性学习的课堂教学实验2.1实验对象抽取河南科技学院食品081—2为实验班,化工学院081—2 为对照班。
在实验班引导学生进行泰勒公式的研究性学习,对照班仍采用传统的教学形态进行教学,两班的教学时数及其它条件一致。
2.2实验方法2.2.1集团组合由学生自由组合为6 人小组,选任其中1 人为组长,要求课前进行。
2.2.2问题设计,确立目标,分组讨论,引导学生进行Taylor 公式形成的探究式研究性学习探究式研究性学习是指学生在独立思考的基础上,探究问题,提出见解,获得结论的一种方式,它经常是以问题形式为开端,以问题解决为目标。
泰勒公式及其应用(1)【范本模板】
毕业论文题目:泰勒公式及其应用系别:数理系专业:金融数学姓名:覃茜学号:171406106指导教师:李华河南城建学院2010年 5 月20 日目录摘要 (1)英文摘要 (2)第一章绪论 (3)第二章泰勒公式 (5)1。
1泰勒公式的意义 (5)1.2泰勒公式余项的类型 (5)1.3泰勒公式 (6)第三章泰勒公式的实际应用 (7)2.1利用泰勒公式求极限 (7)2。
2利用泰勒公式进行近似计算 (8)2.3在不等式证明中的应用 (9)2.4泰勒公式在外推上的应用 (10)2.5求曲线的渐近线方程 (11)2。
6泰勒公式在函数凹凸性及拐点判断中的应用 (13)2。
7在广义积分敛散性中的应用 (14)2.8泰勒公式在关于界的估计 (15)2。
9泰勒公式展开的唯一性问题 (15)结束语 (16)致谢 (17)参考文献 (18)泰勒公式及其应用(河南城建学院数理系河南平顶山 467044)摘要泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具,集中体现了微积分“逼近法"的精髓,它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具, 它的用途很广泛。
本文详细介绍泰勒公式及其应用在数学领域上的几个应用作论述。
文章除了对泰勒公式在常用的近似计算、求极限、不等式的证明、外推和求曲线的渐近线方程上作解求证明外,特别地,泰勒公式还对函数凹凸性及拐点判断、广义积分敛散性中的应用、界的估计和展开的唯一性问题这4个领域的应用做详细的介绍。
关键词泰勒公式佩亚诺余项拉格朗日余项AbstractTaylor’s formula is the mathematical analysis of the important part, it has become a research function theory method and estimat —ed error limit of the indispensable tools such as a concentrated e xp—ression of the calculus, “approximation” of the essence,which is the value of the Calculus theorem is also of high order derivat ive function of an important tool for state, its use is very wide. T his paper introduces the Taylor formula and its applications in math ema-tics for discussion on several applications。
开题报告浅谈泰勒公式及其应用
1.1带
1.2
1.3带积分型余项的泰勒定理
1.4带柯西型余项的泰勒定理
2.泰勒公式的应用
2.1利用泰勒公式证明不等式
2.2利用泰勒公式理解无穷小替换的实质
2.3泰勒公式在计算中的体现
2.3.1利用泰勒公式求极限
2.3.2利用泰勒公式进行近似计算
2.3.3利用泰勒公式计算定积分
2.3.4利用泰勒公式计算行列式
[10]李永乐,范培华.数学复习全书[M],北京;国家行政学院出版社,2008.
[11]刘景忠,王国政.公式在证明不等式方面的几个应用,高等数学研究函数,2006.9(2).
[12]刘玉莲,杨奎元,刘伟,吕凤.数学分析讲义学习辅导书下册[M],北京;高等教育出版社,2003.
二、采用的研究方法及手段(1、内容包括:选题的研究方法、手段及实验方案的可行性分析和已具备的实
其中的余项也满足不等式:对所有 满足
泰勒公式也是大学数学中的一个重要知识,由此本文将总结几种泰勒公式的证明及其应用。其泰勒公式在近似计算,求极限,判断函数凸凹性等方面的应用,除此之外,它还可应用于行列式,证明不等式,判断无穷级数、无穷积分的收敛性,求函数导数的中值估计、求曲面的渐进线方程,高阶求导等等。
泰勒公式的应用开题报告
泰勒公式的应用开题报告1. 引言泰勒公式是数学中的一个重要公式,它描述了一个函数在某一点附近的局部近似。
通过使用泰勒公式,我们可以在数学和科学领域中进行各种精确计算和逼近。
本文将探讨泰勒公式在实际应用中的一些常见和重要的例子。
2. 泰勒公式的基本原理泰勒公式的基本原理是使用函数在某一点的导数来近似该函数在该点附近的取值。
泰勒公式的一般形式如下:f(x)=f(a)+f′(a)(x−a)+f″(a)2!(x−a)2+f‴(a)3!(x−a)3+⋯+f(n)(a)n!(x−a)n+R n(x)其中,f(x)是待求函数,f′(x)是函数的一阶导数,f″(x)是函数的二阶导数,以此类推。
a是泰勒公式展开的中心点,n是展开的阶数,R n(x)是余项,用来表示近似的误差。
3. 物理学中的应用3.1 运动学中的位移计算在物理学中,泰勒公式常被用于近似计算物体的位移。
以一维运动为例,如果我们已知物体的初始位置、速度和加速度,并希望计算物体在某一时刻的位置,我们可以使用泰勒公式进行近似计算。
假设物体在时刻t的位置为x(t),其速度为v(t),加速度为a(t)。
根据泰勒公式展开,我们可以得到以下近似公式:x(t)=x(t0)+v(t0)(t−t0)+12a(t0)(t−t0)2+⋯这样,我们就能够通过已知的初始条件,近似计算物体在任意时刻的位置。
3.2 电路中的电压计算在电路分析中,泰勒公式也有广泛的应用。
例如,当我们分析一个电阻、电容或电感等元件的电压响应时,可以使用泰勒公式对电压进行近似计算。
假设电压响应为V(t),电流为I(t),我们可以利用泰勒公式得到以下近似公式:V(t)=V(t0)+dVdt(t−t0)+d2Vdt2(t−t0)2+⋯通过这样的近似计算,我们能够更好地了解电路中的电压变化情况,并作出相应的分析和设计。
4. 经济学中的应用4.1 边际分析在经济学中,泰勒公式的应用十分广泛,尤其是在边际分析中。
泰勒公式及其应用开题报告
二、国内外研究 现状分析: 国内外同类课题研究现状及发展趋势: 泰勒公式的证明与应用方面
的研究对于科研者来说一直具有强大的吸引力, 许多研究者已在此领域 获得许多研究成果,例如:湖南科技学院数学系的唐仁献 在文章《泰勒 公式的新证明及其推广》中在推广了罗尔定理的基础上重新证明了 泰勒 公式; 洛阳工业高等专科校计算机系王素芳、 陶容、 张永胜在所著的 文章《泰 勒公式在计算及证明中的应用》中研究了泰勒公式在极限运算、 等式及不等式证 明中的应用,解决了用其它方法较难解决的问题,于此 类似的研究成果还有湖北 师范学院数学系的蔡泽林、陈琴的《定积分不 等式的几种典型证法》和潍坊高等 专科学校的陈晓萌所著的《泰勒公式 在不等式中的应用》等等。
实现途径:
一、对泰勒公式的证明方法进行归纳; 二、灵活运用公式来解决极限、级数敛散性等问题;
三、研究实际数学问题中有关泰勒公式应用题目,寻求解决问题 题的途径 。
3. 完成本课题所需工作条件(如工具书、计算机、实验、调研等)及解 决办法 :
为了写好论文我到中国 期刊网、中国知识网和中国数字化期刊群查 找相关论文的发表日期、刊名、作者,接下来要到图书馆四楼过刊室查 找相关文献,到电子阅览室查找相关期刊文献. 从图书馆借阅相关书 籍,仔细阅读,细心分析,通过自己的耐心总结、研究,老师的指导、 改正,争取做好毕业论文工作 . 具体采用了数学归纳法、分析法、反证 法、演绎法等方法.
毕 业设 计(论文) 开题报 告
实验三 泰勒公式与函数逼近
实验三 泰勒公式与函数逼近一个函数)(x f 若在点0x 的邻域内足够光滑,则在该邻域内有泰勒公式)(n k nk k x x o x x k x f x f x f ||)(!)()()(0010)(0-+-+=∑=, 当||0x x -很小时,有 k nk k x x k x f x f x f )(!)()()(010)(0-+≈∑=, 其中,k nk k x x k x f x f x T )(!)()()(010)(0-+=∑=称为)(x f 在点0x 处的n 阶泰勒多项式;)(n x x o ||0-为余项。
下面我们利用Mathematica 计算函数)(x f 的各阶泰勒多项式,并通过绘制曲线图形,来进一步掌握泰勒展开与函数逼近的思想。
例1 (泰勒公式的误差)利用泰勒多项式近似计算xe 。
若1||<x ,要求误差005.0||<n R 。
解:我们根据拉格朗日余项)!1(3||)!1(|)!1(|||11+<+<+=++n x n e x n e R n n x n 可得,欲使005.0||<n R ,只要取5=n 即可。
下面的Mathematica 语句利用函数xe 的5阶泰勒多项式来近似计算0d e的值,并判断误差:d0 1;While d 0 1,a N Normal S eries Exp x , x ,0,5 .x Print d 0,"",a,"",N Exp d 0 ,"",N Exp d 0a ;d0 0.4输出结果为:10.3666670.3678790.0012 0.60.5487520.5488120.0000590.20.8187310.8187318.64113 0.2 1.2214 1.22149.14935 0.6 1.82205 1.822120.000070 1.2.716672.718280.0016输出结果每一行的最后一项表示误差,从结果中可以看出,当1||<x ,其误差005.0||<n R 。
数学公式研究开题报告
数学公式研究开题报告
本文旨在研究数学公式的应用与发展。
数学公式是数学语言的核心部分,它们用于表达和揭示数学问题的解决方法和规律。
数学公式的研究和应用对于推动数学学科的发展具有重要的意义。
在对数学公式的研究中,我们将重点探讨以下几个方面:
1. 数学公式的历史与发展:从古代到现代,数学公式随着数学知识的积累和发展而不断演化。
我们将回顾数学公式的发展历程,看其在数学学科中的重要性和作用。
2. 数学公式的应用领域:数学公式广泛应用于各个领域,如物理学、工程学、经济学等。
我们将详细探讨数学公式在这些领域中的具体应用案例,分析其对于解决实际问题的贡献。
3. 数学公式的符号表示与解读:数学公式的符号表示是理解和运用公式的关键所在。
我们将对常见的数学公式进行解读和说明,帮助读者理解公式的含义和应用方法。
4. 数学公式的推导与证明:数学公式的推导和证明是数学学科的重要组成部分。
我们将介绍一些常见的数学公式的推导过程,以及相关的证明方法和技巧。
5. 数学公式的应用案例分析:我们将选取一些经典的数学公式,通过具体的应用案例进行分析和讨论。
这些案例将涉及不同的数学领域和实际问题,旨在展示数学公式的实际应用和解决问
题的能力。
通过对数学公式的研究,我们希望进一步理解数学的本质和内涵,探索数学在解决实际问题中的作用。
同时,我们也希望能够为数学公式的应用和发展提供一些新的思路和方法。
该研究对于推动数学学科的发展和应用具有积极的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究内容:
泰勒公式是大学数学的一个热点,而泰勒公式及其应用将会为一些学习泰勒公式的人提供一个快捷的方式去学习、理解、掌握泰勒公式及其应用,本文就其进行一下几点的研究:
1.介绍泰勒公式和证明泰勒公式;
2.利用泰勒公式求函数极限、求函数的导数、证明函数的敛散性以及求函数的近似值和初等函数的展开式等;
(5)—反复修改论文,最终定稿。
指导教师意见
指导教师(签名):年月日
全日制本科生毕业论文开题报告
姓名
xxx
学号
xxxxxx
ห้องสมุดไป่ตู้专业
数学与应用数学
题目
泰勒公式及其应用
研究背景与目的
研究背景:
泰勒公式在大学内容中有着不可替代的作用,是数学学习的基础,而越来越多的学生对由于刚刚开始接触到泰勒公式,对泰勒公式的应用不甚了解。掌握题型和解题方法,识别模式,熟练运用,是理解解决泰勒公式及解决有关泰勒公式问题的有效途径。
研究目的:
泰勒公式在数学研究中具有重大的意义,在微积分的各个领域中都有广泛的应用,它是解决一系列微积分问题的依据。
在大学的《数学分析》中,泰勒公式作为其主要内容之一,对研究函数的求极限、求函数的导数、判断函数的敛散性和求函数的近似值等方面有着无可替代的作用,是非常重要的数学工具。通过对题型归类,构造解题模型,使学生能够有效理解泰勒公式,在解题的准确性和答题的速度方面都会大大提高。
3.总结对泰勒公式及其应用中问题解决方法和模式。
研究方法:
本文主要采用文献综合法、数学归纳法、个案研究法、分析法、逻辑推理法等研究方法。
研究进度计划
(1)—查阅资料,拟定论文题目;
(2)—整理资料,准备开题报告;
(3) —整理资料,完成论文初稿交给指导老师审阅、修改;
(4)—修改论文,完成二稿交给指导老师审阅、修改;