反比例函数图像和性质(2)

合集下载

中考数学总复习 反比例函数的图像与性质(2)——k对图像位置及增减性的影响

中考数学总复习 反比例函数的图像与性质(2)——k对图像位置及增减性的影响
运用思维导图形式总结,从系数判断图像特征的方法。
系数定图像问题:关键要抓住系数与图像特征的对应关系。
y k (k 0, x 0)
k
x
经过象限
k
经过象限
y kx b(k 0)
与y轴交点
系数
b
开口方向 a
y ax2 bx c(a 0) a b
对称轴位置
与y轴交点 c
二次函数 y ax2 bx c 如图1所示,那么一次函数 y bx c 和反 比例函数 y a 在同一平面直角坐标系中的图像大致是?
ห้องสมุดไป่ตู้
x
∴如图两函数交点都在第 四象限,即B在第四象限
变式 已知反比例函数 y 1 ,下列关于该函数的结论中不正确的是(D )
x
1
A.图像经过 1,1
y= =-1 -1
B.图像在第一、第三象限 k=1>0
y
C.当 x>1 时, 0<y<1
D.当 x<0 时,y随x的增大而增减大少
(1,1)
O
x
归纳提升
解得k=2

y
2x
6
,y
4 x
将x=2代入y=2x-6=4-6=-2
交点即公共解, 当x=2时两函 数值相等啦!
∴A(2,-2)
已知一次函数 y 2x 6 的图像与反比例函数
交于A,B两点,点A的横坐标为2. (1)求k的值和点A的坐标; (2)判断点B所在的象限,并说明理由。
y4 x
的图像
方法一:(求坐标)
∴a-4>0
a>4
难点突破
掌握系数k对函数图形的影响,通过数形结合解决问 题。
已知一次函数 y kx 6 的图像与反比例函数 y 2k 的图像

17.1.2_反比例函数的图象和性质(2)

17.1.2_反比例函数的图象和性质(2)
(2)∵m-5>0,在这个函数图象 m-5 的任一支上,y ,y随 的增大而减小, 的任一支上,y随x的增大而减小, ∴当a>a′时b<b′
m−5 y= x
)、(x )、(x 点(x1,y1)、( 2,y2)、( 3,y3), 若x1>x2>0>x3,则下列各式中正确的是 ( A ) A、y3>y1>y2 B、y3>y2>y1 、 、 C、y1>y2>y3 D、y1>y3>y2 、 、
已知反比例函数的图象经过点A(2,6). 例1:已知反比例函数的图象经过点 已知反比例函数的图象经过点 , (1)这个函数的图象分布在哪些象限 随x的增大如何 这个函数的图象分布在哪些象限?y随 的增大如何 这个函数的图象分布在哪些象限 变化? 变化 1 4 (2)点B(3,4)、C( −2 , −4 )和D(2,5)是否在 点 , 、 ( , ) 5 2 这个函数的图象上? 这个函数的图象上?
4.如图, 4.如图,点P是反比例函数图象上的一 如图 点,过点P分别向x轴、y轴作垂线,若阴 过点P分别向x 轴作垂线, 影部分面积为3,则这个反比例函数的 影部分面积为3,则这个反比例函数的 3,
3 y =− 关系式是 x .
p
y
N
o x
M
1 6、如图,A、C是函数y = 的图像 x 上的任意两点,过A作x轴的垂线, 垂足为B,过C作y轴的垂线,垂 足为D,记Rt
AOB
的面积为S1 , Rt
OCD
的面积为S2 , 则(
C

y
A.S1>S2 B.S1<S2 C.S1 = S2 D.S1和S2的大小关系不能确定 的大小关系不能确定.
o

反比例函数图像与性质第2课时

反比例函数图像与性质第2课时

反比例函数与幂函数的比较
幂函数
$y = x^n$,图像为单调递增或 递减的曲线,当n>0时,在第一 象限和第三象限;当n<0时,在
第二象限和第四象限。
反比例函数
$y = frac{k}{x}$,图像为双曲线, 与x轴交点为$(pmsqrt{k},0)$,与 y轴交点为$(0,-frac{1}{sqrt{k}})$。
在流体中,压强与高度之间存在 反比关系,即随着高度的增加, 压强减小;随着高度的减小,压 强增大。
反比例函数在经济中的应用
供需关系
在市场经济中,供给与需求之间存在反比关系。当需求增加 时,供给量减少;当需求减少时,供给量增加。
投资回报率
投资回报率与投资规模之间存在反比关系。随着投资规模的 增大,投资回报率可能会降低。
像上。
答案与解析
第一季度
第二季度
第三季度
第四季度
判断题答案与解析
错。反比例函数图像可 能在第一、三象限或第 二、四象限,取决于k 的正负。
选择题答案与解析
答案不唯一,如点(1, 1)或(-1,1)都在反比例 函数图像上。解析:反 比例函数图像上的点满 足xy = k (k ≠ 0),因此 只需验证给定点是否满
反比例函数图像与性 质第2课时
目录
• 反比例函数的图像 • 反比例函数的性质 • 反比例பைடு நூலகம்数的应用 • 反比例函数与其他函数的比较 • 习题与解答
01
反比例函数的图像
反比例函数图像的形状
反比例函数的图像通 常位于第一象限和第 三象限,呈双曲线状。
图像在x轴和y轴上都 没有截距。
当x为正数时,y为负 数;当x为负数时,y 为正数。
例函数图像上。

反比例函数图象与性质(二)

反比例函数图象与性质(二)

99 2.对于函数 y ,x<0时,y >0 x
,且
y的值随x的增大而
增大
.
老师给出一个函数,甲、乙、丙三位同
学分别指出了这个函数的一个性质:
甲:函数的图象经过第二象限;
乙:函数的图象经过第四象限;
丙:在每个象限内,y随x的增大而增大.
请你根据他们的叙述构造满足上述性质的 一个函数: .
已知反比例函数的图象经过点A(2,6) (1)这个函数的图象分布在哪些象限?y随x的增大 而如何变化? 4 1 (2)点B(3,4)、C(-2 ,-4 )和D(2,5) 5 2 是否在这个函数的图象上?
反比例函数的图象和性质: 1.反比例函数的图象是双曲线; 2.图象性质见下表: k y= K>0 K<0
x
图 象
当k>0时,双曲线 的两个分支分别在第 一、三象限,在每个 象限内,y随x的增大 而减小. 当k<0时,双曲线 的两个分支分别在第 二、四象限,在每个 象限内,y随x的增大 而增大.
性 质
m5 如图是反比例函数 y 的图象的一支,根据 x 图象回答下列问题:
(1)图象的另一支在哪个象限?常数m的取值范围 是什么? (2)在这个函数图象的某一支上任取点A(a1,b1)和 点B(a2,b2),如果a1>a2,那么b1和b2有怎样的大小关 系?
(3)如果a3>0>a1>a2, 那么b3,b1,b2的大小 关系如何?
2
x
5.如图,若正比例函数y=2x与y=ax(a>0)的图象
k 与反比例函数y= (k>0)的图象分别交于A、 x
C两点。若Rt△AOB与Rt△COD的面积分别记 为S1、S2,请你分析S1和S2的大小关系.

6.2反比例函数的图象与性质(2)

6.2反比例函数的图象与性质(2)

k y x

Q

S3
S1、S2有什么关系?为什么?
反比例函数图象性质
中考链接
(2014,常德)下列关于反比例函数y= 21 的三个结论:①它的图象经过点(7, x 3);②它的图象在每一个象限内,y随x 的增大而减小;③它的图象在二、四象 限内.其中正确的是 .
交流小结,收获感悟
1. 对自己说,你有什么收获? 2. 对同学说,你有什么温馨提示?
让我们一起回忆一
下吧!
回顾与思考
正比例函数表达式为:y=kx(k为常数,k≠0) 是一条直线,当k>0时,经过一、三象限; 当k<0时,经过二、四象限. 是一条经过原点(0,0)的直线,当k>0 时,y随x的增大而增大;当k<0时,y随x 的增大而减小.
思维探究 2 4 6 观察反比例函数的图象, y , y , y x x x 回答下列问题:
3. 对老师说,你还有什么困惑?
布置作业,强化目标
作业:习题6.3
例题讲解
例1 函数 的图象上有三点
(-3,y1), (-1,y2), (2,y3),则函数值y1、y2、y3的
y3< y1< y2 大小关系是_______________;
例2 已知反比例函数 y a 2 增大而减小,求a的值和表达式.

x
a2 6

,y随x的
反 比 例 函 数
P
S1 S2 R
(1)函数图象分别位于哪几个象限内? (2)在每个象限内,随着x值的增大,y的值怎样变化? 并且不同两个象限内的y值大小关系怎样?
2 4 6 如果k=-2, -4,-6,那么 y ,y ,y x x x
的图象有又什么共同特征?

反比例函数的图像和性质2

反比例函数的图像和性质2

例2、根据下图中点的坐标
y (1)求出y与x的函数解析式。 (2)如果点A(-2,b)
0
A(-2,b) .
x B (3,-1)
在双曲线上,求b的值。 (3)比较绿色部分和黄色部 分的面积的大小。
答:一样大。因为双曲线上任何一点 的横坐标与纵坐标的乘积是一个常数。
想一想
y
o B y= x A
5
如图:A、B是双曲线y= x 上的 任意两点 。 过A、B两点分别作
P(a,b)
X>0
填一填
2 1.函数 y 是 反比例 函数,其图象为双曲线 , x
其中k= 2 ,自变量x的取值范围为 x≠ 0
.
6 2.函数 y 的图象位于第一、三 象限, x
在每一象限内,y的值随x的增大而 减小 , 当x>0时,y > 0,这部分图象位于第 一 象限.
6 3.函数 y 的图象位于第二、四象限, x
x
着|k|的增大,反比例函数的图象的位置相对于坐标原点 是越来越远还是越来越近?
结论三:
随着|k|的增大,反比例函数的图象的位置相对于坐标 原点会越来越远。
巩固练习
3、如图是三个反比例函数
k3 k1 k2 y1 , y2 , y3 x x x
在x轴上方的图象,由此观察得到( A k1 > k2 > k3 B k 3 > k2 > k 1 C k 2 > k1 > k3 D k3 > k1 > k2
3 y 关系式是 x .
p
y
N
o x
M
例2、根据下图中点的坐标
y (1)求出y与x的函数解析式。 (2)如果点A(-2,b)

1.2 反比例函数的图像和性质 (2)

1.2 反比例函数的图像和性质  (2)
解:∵k=4>0 ∴图象在第一、三象限内,每一象限内y随x的增大而减小
∵x1<x2<0
,
x3=3>0,
∴点A(-2,y1),点B(-1,y2)在第三象限点C(3,y3)在第一象限。
∴y3>0, y2 <y1<0
即y2 < y1 < 0< y3
7.已知( 1 ,y1 ),( 3,y2),( 2,y3)是反比例函数
(2)在每个象限内,随着x值的增大,y的值怎样变化? 在每一个象限内,y随x的增大而增大
6 ( 1) y x
x
第三象限
-6 -5 -4 -3 -2 -1
-1 -1.2 -1.5 -2 -3 -6
第一象限
1
6


2
3
3
4
5
6
1


y
6 x
2 1.5 1.2
6 ( 2) y x
x
第二象限
-6 -5 -4 -3 -2 -1 1 1.2 1.5 2 3 6 1
萧山
上虞
绍兴
宁波
⑶ 从杭州开出一列火车,在40分内(包括40分)到达余 姚可能吗?在50分内(包括50分)呢?如有可能,那么
此时对列车的行驶速度有什么要求?
解(1)由图得知,从杭州到余姚的里程为120千米, 所以所求的函数解析式为 v 120 t 当v=160时,t=0.75
∵ v随t的增大而减小, ∴由v≤160,得t≥0.75,
(C)
0
x
(C)y=-2x+2; (D)y=4x.
拓展提高
1、已知反比例函数
y a 1 x

第十四讲反比例函数的图像和性质(2)

第十四讲反比例函数的图像和性质(2)

第十四讲 反比例函数的图像和性质(2)【基础知识精讲】反比例函数y=kx (k ≠0)中k 的几何意义:过函数 y=kx(k ≠0)的图像上任一点),(y x p 作P M ⊥x轴,P N ⊥y 轴,所得矩形PMON 的面积S =∣xy ∣=∣k ∣; 所得△POM 的面积S =21∣k ∣。

【例题巧解点拨】例1.正比例函数y=x 与反比例函数y=1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD•⊥x 轴于D ,如图1所示,则四边形ABCD 的为_______.(1) (2) (3)练习:如图2,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_____________________.例2.(2005 中考题)如图3两个反比例函数y=3x ,y=6x在第一象限内的图象如图所示,点P 1,P 2,P 3……P 2005,在反比例函数y=6x的图象上,它们的横坐标分别是x 1,x 2,x 3,…x 2005,纵坐标分别是1,3,•5•……,•共2005年连续奇数,过点P 1,P 2,P 3,…,P 2005分别作y 轴的平行线与y=3x的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2005,y 2005),则y 2005=________.练习:1、如图:函数y=-kx (k ≠0)与y=-4x的图象交于A 、B 两点,过点A 作AC ⊥y 轴,•垂足为点C ,则△BOC 的面积为________.Y XOP (x, y)MN 第1题第2题TROxyP CBA2、.如图,正比例函数y=3x 的图象与反比例函数y=kx(k>0)的图象交于点A ,若 取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为S 1,S 2,…,S 20,则S 1+S 2+…+S 20=_________.例3.如图所示,直线122y x =+分别交x 轴、y 轴于A ,C 两点,P 是该直线上在第一象 限内的一 点,PB ⊥x 轴于B ,9ABPS=.(1)求P 点坐标; (2)双曲线ky x=经过点P ,能否在双曲线上PB 的右侧求作一点R,作RT ⊥x 轴于T,使△BRT 与△AOC 相似?如能,求出点R 坐标;若不能,说明理由.【同步达纲练习】A 组1.如图1所示,在反比例函数y=kx(k>0)的图像上有三点A 、B 、C ,过这三点分别向x 轴、y 轴作垂线,过每一点所作的两条垂线与x 轴、y•轴圈成的矩形的面积分别为S 1,S 2,S 3,则( ) A .S 1>S 2>S 3 B .S 1<S 2<S 3 C .S 1<S 2<S 3 D .S 1=S 2=S 3(1) (2) (3)2.如图2,设P (a ,b ),M (c ,d )是反比例函数y=1x在第一象限内的图像上关于直线y=x•对称的两点,过P 、M 作坐标轴的垂线,如图5所示,垂足为Q 、N , •若∠MON=•30•°,•则b da c+=________.3.如图3所示,△P1OA1、△P2A1A2是等腰直角三角形,点P1、P2在函数y=4x(x>0)的图像上,斜边OA1、A1A2都在x轴上,则点A2的坐标是___________.4. 如图所示,已知反比例函数y=12x的图像与一次函数y=kx+4的图像相交于P、•Q两点,并且P点的纵坐标是6.(1)求这个一次函数的解析式;(2)求△POQ的面积.5.通过市场调查,一段时间内某地区特种农产品的需求量y(千克)•与市场价格x(元/千克)存在下列函数关系式:y=100000x+6000(0<x<100);又已知该地区农民的这种农产品的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<100),现不计其他因素影响,如果需求数量y等于生产数量z时,即供需平衡,•此时市场处于平衡状态.(1)根据以上市场调查,请你分析当市场处于平衡状态时,•该地区这种农产品的市场价格与这段时间内农民的总销售收入各是多少?(2)受国家“三农”政策支持,该地区农民运用高科技改造传统生产方式,减少产量,以大力提高产品质量.此时生产数量z与市场价格x的函数关系发生改变,•而需求函数关系未发生变化,当市场再次处于平衡状态时,市场价格已上涨了a(0<a<25)•元,问在此后的相同时间段内该地区农民的总销售收入是增加了还是减少了?变化多少?6.已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1,这条曲线是函数y=12x的图象在第一象限内的一个分支,点P•是这条曲线上任意一点,它的坐标是(a,b),由点P向x轴、y轴所作的垂线PM、PN(点M、N•为垂足)分别与直线AB相交于点E 和点F.(1)设交点E和F都在线段AB上(如图所示),分别求点E、点F的坐标(用a的代数式表示点E 的坐标,用b的代数式表示点F的坐标,只须写出答案,不要求写出计算过程).(2)求△OEF的面积(结果用a、b的代数式表示).(3)△AOF与△BOE是否一定相似,如果一定相似,请予以证明;如果不一定相似或者一定不相似,请简要说明理由.(4)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,•大小始终保持不变的那个角和它的大小,并证明你的结论.B组如图,直线经过A (1,0),B (0,1)两点,点P 是双曲线y=12x(x>0)上任意一点,PM•⊥x 轴,PN ⊥y 轴,垂足分别为M ,N .PM 与直线AB 交于点E ,PN 的延长线与直线AB 交于点F . (1)求证:AF ●BE=1;(2)若平行于AB 的直线与双曲线只有一个公共点,求公共点的坐标.家庭作业校区: 姓名:_________ 科目: 数学 第 14 次课 作业等级:______第一部分:1.(2009河池)如图5,A 、B 是函数2y x=的图象上关于原点对称的任意两点, BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( ) A . 2S = B . 4S = C .24S << D .4S >2.(2012福州,10,4分,)如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数ky x=(x >0)的图像与△ABC 有公共点,则k 的取值范围是( ) A .2≤k ≤9 B . 2≤k ≤8 C . 2≤k ≤5 D . 5≤k ≤83.如图3,正比例函数y 1=kx 和反比例函数y 2=2k x的图像交于A (-1,2)、(1,-2)两点,若y 1 <y 2,则x 的取值范围是( )A .x <-1或x >1B . x <-1或0<x <1C . -1<x <0或 0<x <1D . -1<x <0或x >14.(2009年娄底)市一小数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y (cm )与宽x (cm )之间的函数关系的图象大致是 ( )第二部分: 1.(2012浙江省衢州,12,4分)试写出图象位于第二、四象限的一个反比例函数的解析式 . 2.(2012贵州铜仁,5,4分)如图,正方形ABOC 的边长为2,反比例函数ky x的图象经过点A ,则k 的值是( )A .2B .-2C .4D .-43.(2009年包头)如图,已知一次函数1y x =+的图象与反比例函数ky x=的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B , AOB △的面积为1,则AC 的长为 (保留根号).第三部分:① 两函数图象的交点坐标为A (2,2); ② 当x >2时,y 2>y 1;③ 直线x =1分别与两函数图象交于B 、C 两点,则 线段BC 的长为3;④ 当x 逐渐增大时,y 1的值随着x 的增大而增大,y 2的 值随着x 的增大而减小. 则其中正确的是()A .只有①②B .只有①③C .只有②④D .只有①③④2.(2012湖北襄阳,22,7分)如图9,直线y =k 1x +b 与双曲线y =2k x相交于A (1,2),B (m ,-1)两点.(1)求直线和双曲线的解析式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式; (3)观察图象,请直接写出不等式k 1x +b >2k x的解集.图9。

2612反比例函数的图象和性质

2612反比例函数的图象和性质

2612反比例函数的图象和性质反比例函数是指形如y=k/x的函数,其中k为常数且k≠0。

1.反比例函数的图象特点:反比例函数的图象呈现出以下特点:(1)函数图象总是通过原点(0,0)。

(2)函数的图象总是位于第一象限和第三象限。

(3)函数图象的形状是一个开口朝右下(或右上)的拋物线。

(4)函数的图象是关于y轴和x轴的坐标轴对称的。

2.反比例函数的性质:(1)定义域和值域:反比例函数的定义域为除去0的实数集R*,即x≠0。

值域也是实数集R*。

(2)单调性:反比例函数在其定义域上是严格递增或是严格递减的。

当k>0时,函数严格递减;当k<0时,函数严格递增。

(3)零点:反比例函数的零点只有一个,即x=k。

当x=k时,y=0。

(4)渐近线:反比例函数的图象有两条渐近线:x=0和y=0。

当x无限逼近0时,y 无限逼近正无穷大或者负无穷大;而当y无限逼近0时,x无限逼近正无穷大或负无穷大。

(5)最值和极值:反比例函数没有最值和极值,因为当x无限逼近正无穷大或负无穷大时,函数值也会无限逼近于0。

(6)图象平移:反比例函数的图象可以通过平移来得到其他的反比例函数的图象。

平移时,仅需改变k的值即可。

3.反比例函数的应用举例:反比例函数在实际生活中有很多应用,例如:(1)电阻和电流的关系:欧姆定律指出电阻的大小与电流的关系为:U=RI,其中U为电压,R为电阻,I为电流。

当电压U保持不变时,电流I与电阻R成反比例关系。

(2)非线性经济学模型:在非线性经济学中,反比例函数经常被用来描述经济现象,如收入与需求关系、劳动力与产出关系等。

(3)物理学中的万有引力定律:万有引力定律描述了两个物体之间的引力与它们之间距离的平方成反比关系,即引力与距离的平方成反比。

(4)反比例函数在航空、导航等领域中的运用:航空、导航等领域中的一些问题可以通过反比例函数来解决,例如航空器的燃油消耗与飞行距离的关系等。

总结起来,反比例函数的图象特点是关于y轴和x轴对称的、形状为开口朝右下(或右上)的拋物线,函数的定义域为除去0的实数集,函数的值域为实数集,函数的性质包括单调性、零点、渐近线、最值和极值等。

11.2 反比例函数的图像与性质(2)

11.2 反比例函数的图像与性质(2)
苏科版数学八年级下册
八年级 下 册 课程标准苏科版实验教科书
11.2 反比例函数的图象与性质(2)
射阳县实验初中初二数学备课组
苏科版数学八年级下册
5.在反比例函数 的图像上有两点(x1,y1) 和(x2,y2),若x1<0<x2时,y1>y2,则k的 取值范围是______ k 1 6.正比例函数y=2kx与反比例函数y= x 在同 一坐标系的图像不可能是( )
k 4、已知反比例函数 y x 的图象如右图,则函数 y kx 2 的图象是下图中 的( )
y y 2 O -2 A x O B x C y 2 x
自 学 检 查
苏科版数学八年级下册
y x
O
y
-2 D
x
合 作 交 流
y
A(1,6) B(2,3)
苏科版数学八年级下册
A(-1,6)
y
B(-2,3) o
1、反比例函数的图象经过点(-1,2),那么 这个反比例函数的解析式为____,图象在第 ___象限; 1 2、双曲线经过点B( , 16),点C(-2,m)在 2 这个函数的图象上,则此双曲线的关系式是__ __;分布在第____象限,m=____ ; 1 m2 2 3、若关于y=(m- )x 是反比例函数,且它 2 的图像分布在第二、四象限,则m的值为____;
k>0,在每个象限y随x的增大而减小 k<0,在每个象限y随x的增大而增大
苏科版数学八年级下册
k 例1 已知反比例函数 y 的图象经过点 x A(2,-4) (1)求其函数关系式 (2)这个函数的图象分布在哪些象限?y 随x的增大而如何变化? (3)画出它的图象;
1 (4)点B( ,-16)、C(-3,5)是 2

1.2反比例函数的图象与性质(2)

1.2反比例函数的图象与性质(2)

关与_______轴对称, 轴对称, 关与 x 轴对称
2 2 y= 的图象关于_______轴对称, 轴对称, ⑤ y = − 的图象与 的图象关于 x 轴对称 x x 2 2 图象? ⑥你怎样把 y = 的图象变成 y = − 图象? x x
2 的图象经过沿着x轴翻 把 y = 的图象经过沿着 轴翻 x 折并将图象“复制”下来, 折并将图象“复制”下来,就得到
2 x
4
2 2 -4 -2 -2 4
-4
当k <0时,反比例函数 时 于是今后画反比例函数
k y= x
y=
具有与
一样的性质 ,
k 的图象时,不用先画 < 0) ( k 的图象时, x k y=− 的图象,然后沿x轴翻折,而只是“列表、描点、连线”三 的图象,然后沿 轴翻折,而只是“列表、描点、连线” 轴翻折
2 的图象? 如何画反比例函数 y = 的图象? x
2 y =− 的图象与 x
y=
1
2 的图象有什么关系? 的图象有什么关系? x
2 − y = − 的函数值为 2 的函数值为_______ ①当x=4 时, x
y= 2 x
1 的函数值为_____ 的函数值为 2
2 -2 B 2 A -2
1 1 A(4, − ), B (4, ), ②描出点 2 2
6 4 -6 -4 -2
-4 -2 -2
4
2
2 2 4
2 的图象, 如图. 的图象,y =− 如图. x
2 -2 -4
4
6
-4
y=−
2 x
-6
图象的性质吗? ⑦你能说出 y =− 图象的性质吗? 在二、 在二、四象限的两条曲线 组合,它们与x轴 轴都不 组合,它们与 轴、y轴都不 相交, 相交, 函数值随自变量取值的增大 而增大

《反比例函数的图像和性质》PPT教学课件(第2课时)

《反比例函数的图像和性质》PPT教学课件(第2课时)
∵-3<-1,∴y1>y2.
反比例函数中比例系数的几何意义
如图所示,点A在反比例函数 y
3
x
(x >0)的图像上,AB⊥x轴于
B,AC⊥y轴于C,你能求出矩形OBAC的面积吗?
回答问题:
(1)矩形的两条邻边长与点A的坐标之间有什么关系?
(2)点A在反比例函数图像上,它的横、纵坐标与比例系数之间
反比例函数的图像和性质
第2课时
学习目标
1 通过对反比例函数图像进行比较和归纳,得到反比
例函数的性质,并能灵活运用函数的图象和性质解
决问题. (重点)
2 理解反比例函数的比例系数的几何意义,并会
应用其解决问题. (难点)
知识讲解
6
6
y

y

观察上节课我们画出的反比例函数


x
x
图像及表达式,探究下列问题:
4.双曲线的两支关于坐标原点成中心对称.
例1
反比例函数 y
k
x
的图像如图所示.
(1)判断k为正数还是负数.
(2)如果A(-3,y1)和B(-1, y2)为这个函
数图像上的两点,那么y1与y2的大小
关系是怎样的?
解:(1)∵反比例函数
限,∴k>0.
y
k
的图像在第一、三象
x
(2)由k>0可知,在每个象限内, y的值随x的值增大而减小.
是否有等量关系?
(3)你能求出矩形OBAC的面积吗?
(4)求出的矩形面积与比例系数之间有什么关系?
解:设点A的坐标为(x,y),则x y=3.
∴S矩形OBAC= x y=3.
拓展思考:

反比例函数的图象和性质(第2课时)

反比例函数的图象和性质(第2课时)

综上,反比例函数在其定义域内的两个区间 上均为单调递减。
利用性质求最值问题
对于形如 $y = ax + frac{b}{x}$ (a > 0, b > 0) 的函数,可以利用反比例函数的 性质求最值。由于 a、b 同号,函数在 x > 0 时有最小值,在 x < 0 时有最大值 。
通过将原函数转化为 $y = a(x + frac{b}{ax})$,进而利用反比例函数的性质,可 以求得函数的最小值为 $2sqrt{ab}$,当且仅当 $x = sqrt{frac{b}{a}}$ 时取到。
06
课后作业及拓展延伸
完成课后作业题目
题目1
已知反比例函数 $y = frac{k}{x}$($k neq 0$),当 $x = 2$ 时,$y = 3$,求该反
比例函数的解析式。
题目2
已知点 $A(x_1, y_1)$ 和 $B(x_2, y_2)$ 在反比例函数 $y = frac{k}{x}$($k > 0$)的图 象上,且 $x_1 < x_2$,比较
图象在各象限的分布情况
当$k > 0$时,反比例函数的图象分布在第一象限和第三象限。在每个象限内,随着$x$的增大,$y$的值逐渐 减小,但永远不会等于0。
当$k < 0$时,反比例函数的图象分布在第二象限和第四象限。在每个象限内,随着$x$的增大,$y$的值逐渐 增大,但同样永远不会等于0。
03
利用性质解决实际应用问题
在经济学中,反比例函数常被用来描述成本、收益等经济量 之间的关系。例如,当某一商品的需求量 x 增加时,其价格 y 会相应下降,这时可以用反比例函数来描述这种关系。
在工程学中,反比例函数也可以用来描述某些物理量之间的 关系。例如,电路中的电阻 R 与电流 I 成反比关系,即 $R = frac{U}{I}$,其中 U 为电压。这时可以利用反比例函数的 性质来分析电路的特性。

八年级数学反比例函数的图象和性质2

八年级数学反比例函数的图象和性质2
第五章
2.反比例函数的图象与性质
复习回顾
1.反比例函数y=k/x(k≠0)的图象是一 个怎样的图象?
反比例函数的图象是双曲线 2.反比例函数的图象的位置与k有 怎样关系?
当k>0时,两支曲线分别位于第一、 三象限内;
当k<0时,两支曲线分别位于第二、 四象限内.
3 反比例函数的图象可能与x轴相交吗? 可能与y轴相交吗?为什么?
x2
y1 A(x1,y1)
B(x2,y2)
y2
观察反比例函数 y 2 , y 4 , y 6
xxx
的图象,回答下列问题:
(3)在每个象限内,随着x值的增大,y的 值怎样变化?
在每一象限内,y的值随x值的增大而减小。
如果k=-2, -4,-6,那么函数 的图象有又什么共同特征?
y
k x
不能与x轴、y轴相交。
因为x≠0,所以不与y轴相交; 因为y ≠0,所以不与x轴相交。
结论:图像的两个分支无限接近x轴和 y轴,但永远不会与X轴、y轴相交。
4、 将反比例函数的图象绕原点旋转 180°后,
5、 将反比例函数的图象沿着直线y=x或 直线y=-x折叠后,两部分图象能重合吗?
(1)函数图象分别位于哪个象限内?
x>0时,图象在第四象限; x<0 时,图象在第二象限。
如果k=-2, -4,-6,那么函数 的图象有又什么共同特征?
原力,使我们变成行义的人,以真诚涵摄了现实的人,则不足为奇的恋爱,因容纳而与恒河等长,生命因
观察反比例函数 y 2 , y 4 , y 6
xxx
的图象,回答下列问题:
(1)函数图象分别位于哪几个象限内? 第一、三象限内。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五环节:活学活用巩固提高
1.如图, 是反比例函数 的图象在第一象限分支上的一个动点, 随着自变量 的增大,矩形 的面积()
A.不变B.增大C.减小D.无法确定
2.如图, 是反比例函数 的图象在第一象限分支上的一个动点,过点P作 连接PO,则△PAO的面积为.
3.已知点 、点 都在反比例函数 的图象上.过点P分别作两坐标轴的垂线,垂线与两坐标轴围成的面积是 ;过点Q分别作两坐标轴的垂线,垂线与两坐标轴围成的面积是 .求 的值.
提高学生观察、分析能力和对图象的感知水平,领会研究函数的一般要求.
过程与方法:
让学生经历知识的探究过程,通过全面的观察和比较,积累数学方法和活动经验.
逐步提高观察和归纳分析能力,体验数形结合和分类讨论的数学思想.
情感、态度、价值观:
经历小组合作与交流活动,在质疑、追问、讨论中达成共识,发展合作能力和语言表达能力.
第六环节:归纳总结
本节课你学到了反比例函数的哪些新知识?
你有哪些感悟和收获?
第七环节:布置作业。
习题6.3第1-----5题。
补充修订
补充修订




反比例函数的图象与性质(二)
一、性质
当k>0时,一、三象限,在每一象限内, 随 的增大而增大
当k<0时,二、四象限,在每一象限内, 随 的增大而增大
S矩形= |k|S三角形= |k|
第二环节:设问质疑探究尝试
1:试一试
观察反比例函数 , , 的图象,你能发现它们的共同特征吗?
(1)函数图象分别位于哪几个象限内?
(2)在每一个象限内,随着x值的增大,y的值是怎样变化的?能说明这是为什么吗?
(3)反比例函数的图象可能与x轴相交吗?可能与y轴相交吗?为什么?
2:议一议
考察当 =-2,-4,-6时,反比例函数 的图象,它们有哪些共同特征?
则 的取值范围是.
3.点 , 都在反比例函数 的图象上,若 ,则 的大小关系是.
变式:
点 , 都在反比例函数 的图象上,若 ,则 的大小关系是.
第四环节:激趣质疑再探新知
1:想一想
在一个反比例函数图象任取两点P、Q,过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为 ;过点Q分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为 , 与 有什


集体反思:
个人反思:
审定人:
介休三中九年级数学集体备课教学设计
课题
反比例函数的图像和性质(二)
课型
新授课
授课时间
主备人
焦永瑞
授课.
班级
课时
1
参与备课教师
薛永珍郑玲香赵光强赵丽萍
刘晓霞张奇丽张婷
教师寄语
业精于勤荒于嬉,行成于思毁于随。
三维
目标
知识与技能:
能画出反比例函数的图象,根据图象和解析表达式探索并理解反比例函数的主要性质.
(1)让我们从具体的反比例函数 开始考虑:
此时, 与 有什么关系?为什么?
(2)对于一般的反比例函数 呢?
2:变一变
在一个反比例函数图象任取两点P、Q,过点P作x轴的垂线,连接PO(O为原点),与坐标轴围成的三角形面积为 ;过点Q作x轴的垂线,连接QO,与坐标轴围成的三角形面积为 , 与 有什么关系?为什么?
教学重点
及难点
重点:探索反比例函数的主要性质.
难点:理解反比例函数性质的探索过程,从“数”和“形”两方面综合考虑问题.
教学用具
PPT
教学流程:(体现“十六字”、“八字”四环节模式,“让一让”理念)
第一环节:要点回顾铺平道路
1.下列函数中,哪些是反比例函数?
(1) (2) (3)
(4) (5)
2.你能想到 的图象吗?它是什么形状?有什么特点? 呢?
3:说一说
你能尝试着说说反比例函数 的图象有哪些共同特征吗?
师生共同归纳:反比例函数图象的性质。教师板书。
第三环节:实际运用巩固新知
1.下列函数:① ;② ;③ ;④ 中
(1)图象位于二、四象限的有;
(2)在每一象限内, 随 的增大而增大的有;
(3)在每一象限内, 随 的增大而减小的有.
2.若函数 的图象在其象限内, 随 的增大而增大,
相关文档
最新文档