通信第三章 常见函数的傅里叶变换

合集下载

第三章 傅里叶变换

第三章 傅里叶变换

2 T
t0 T t0
f
(t) sin(nw1t)dt
令 An
an2 bn2
,n
arctan
bn an
,则:
An :称为n次谐波分量的振幅,是n的偶函数。
n :称为n次谐波分量的相位,是n的奇函数。
一、三角形式
3.1 周期信号的傅里叶级数
f
(t)
a0 2
n1
An
cos(nw1t
n )
A0 2
1.5
1.5
1
1
1
1
1
1
0.4
0.4
0.4
0.2
0.2
0.4
0.2
0.2
- 6- 5 - 4- 3- 2 - o 2 3 4 5 6
- 6- 5 - 4- 3- 2 - o 2 3 4 5 6
(a)
相位谱:
(a) n 45° n
45°
45° 45°
30°
30°
30°
20°
30°
20°
15° 10°
(2)时域非周期信号,造成频域连续的谱。
连续 非周期
3.2 非周期信号的傅里叶变换
二、典型非周期信号的频谱函数
(1) g (t)
Sa( w )
2
解: F(w)
g
(t
)e
jwt
dt
2
1
e
jwt
dt
2
e jwt 2
2
jw
jw
jw
e 2 e 2
jw
2sin( w )
2
w
sin( w )
性质中所对应的原函数都是乘以 (-jt)。

傅里叶变换性质及常见函数傅里叶变换总结,表格打印版

傅里叶变换性质及常见函数傅里叶变换总结,表格打印版
(实偶函数)
(为虚、奇函数)
7
奇偶性
(为实、偶函数)
(为实、偶函数)
(为实、奇函数)
(为虚、奇函数)
8
尺度展缩

9
时域延迟

10
频移
▲初值:
(条件:)
(条件:)
(条件: )
11
时域微分
▲ 函数的性质
·
·


·
·
* ;

·
·


·
12
时域积分
பைடு நூலகம்13
频域微分
14
频域积分
15
时域卷积
16
频域卷积
17
时域抽烟
序号
性质名称
▲信号功率:
(直流分量+各次谐波分量)
▲能量信号:
1.一个信号只能是功率信号或
能量信号二者之一,但也可
以两者都不是。
2.直流信号与周期信号为功率
信号;收敛和有界的非周期
信号为能量信号。
3.功率信号能量为∞,能量信
号功率为0.
1
唯一性
2
齐次性
3
叠加性
4
线性
5
折叠性
6
对称性
(一般函数)
(为实、偶函数)
18
频域抽样
常用时间信号傅里叶变换
常用非周期信号的傅里叶变换
周期信号的傅里叶变换
序号

1
1

2

3
单位直流信号1

4
5
6
一般周期信号

其中
或,
或 ,

常用的傅里叶变换

常用的傅里叶变换

常用的傅里叶变换1. 引言傅里叶变换是一种重要的数学工具,用于将一个函数或信号从时域转换到频域。

它在信号处理、图像处理、通信等领域广泛应用。

本文将介绍傅里叶变换的基本概念、性质和常见应用。

2. 傅里叶级数傅里叶级数是傅里叶变换的基础,它将周期函数表示为一系列正弦和余弦函数的和。

对于周期为T 的函数f(t),其傅里叶级数表示为:f (t )=a 0+∑(a n cos (2πnt T )+b n sin (2πnt T ))∞n=1 其中,a 0、a n 和b n 是系数,可以通过函数f(t)在一个周期内的积分得到。

傅里叶级数展开了周期函数在频域上的频谱分布。

3. 傅里叶变换傅里叶变换是将非周期函数表示为连续频谱的一种方法。

对于函数f(t),其傅里叶变换表示为:F (ω)=∫f ∞−∞(t )e −jωt dt其中,F (ω)是函数f(t)的频谱,ω是频率。

傅里叶变换的逆变换为:f (t )=12π∫F ∞−∞(ω)e jωt dω 傅里叶变换将函数从时域转换到频域,可以将信号分解为不同频率的成分,从而方便分析和处理。

4. 傅里叶变换的性质傅里叶变换具有许多重要的性质,其中一些常用的性质包括:•线性性质:傅里叶变换是线性的,即对于常数a 和b ,有F(af (t )+bf (t ))=aF(f (t ))+bF(g (t ))。

• 平移性质:如果f (t )的傅里叶变换为F (ω),那么f (t −t 0)的傅里叶变换为e −jωt 0F (ω)。

•尺度性质:如果f(t)的傅里叶变换为F(ω),那么f(at)的傅里叶变换为1 |a|F(ωa)。

•对称性质:如果f(t)是实函数,并且其傅里叶变换为F(ω),那么F(−ω)为F(ω)的共轭。

这些性质使得傅里叶变换更加灵活和方便,在实际应用中能够简化计算和分析过程。

5. 傅里叶变换的应用傅里叶变换在信号处理、图像处理、通信等领域有广泛的应用。

以下是一些常见的应用:•频谱分析:傅里叶变换可以将信号从时域转换到频域,可以分析信号的频谱分布,帮助理解信号的频率成分和特征。

通信常见函数的傅里叶变换

通信常见函数的傅里叶变换

式中,n
arctan
bn an
cn
an2bn2
Opposite Hypotenuse
为n次谐波初始相位。 为n次谐波振幅。
! 并非任意周期信号都能进行傅里叶级数展开!
f ( t ) 可展开为傅里叶级数的条件:
(1)f ( t 绝) 对可积,即: t2 f (t) dt t1
(2)f ( t 在) 区间内有有限个间断点;
第3章 傅里叶变换
重点:
1.傅里叶级数定义及适用条件 2.常见周期信号的频谱,非周期性信号的频谱 3.傅里叶变换的定义及适用条件及性质 4.周期信号的傅里叶变换 5.抽样定理 6.功率频谱与能量频谱 7.系统频域分析法 8.希尔伯特变换
3.1 傅里叶变换的产生
傅里叶1768年生于法国,1807年提 出“任何周期信号都可用正弦函数 级数表示”, 1822年在“热的分析 理论”一书中再次提出。1829年 狄里赫利给出傅里叶变换收敛条件。 傅里叶变换得到大规模的应用,则 是到了上世纪60年代之后。
T0 2
T0 2
(t)ejn0tdt1 T0
T0
(t)
1 T0
ejn0t
n
a0
1 T0

anT20 T2 T020(t)cosn0tdtT20
bn 0
T 0 ( t )
的三角傅里叶级数为:T0(t)T10 T20
cosn0t
n1
例 求下图中三角波的三角傅里叶级数。
解 (1)将周期函数 f ( t ) 在 t [0,T0]内的函数记为
第一个过零点为n =4 。 F&n 在2π/有4值1(谱线)
f (t)
1
T
2
o

常用傅里叶变换表

常用傅里叶变换表

常用傅里叶变换表在数学和工程领域中,傅里叶变换是一种极其重要的工具,它能够将复杂的时域信号转换为频域表示,从而帮助我们更好地理解和分析各种信号的特性。

而常用傅里叶变换表则为我们提供了一系列常见函数的傅里叶变换结果,方便我们在实际应用中快速查找和使用。

首先,让我们来了解一下什么是傅里叶变换。

简单来说,傅里叶变换是一种数学变换,它将一个函数从时域(以时间为变量)转换到频域(以频率为变量)。

通过这种转换,我们可以将一个信号分解为不同频率的正弦和余弦波的组合,从而揭示出信号中所包含的频率成分。

在常用傅里叶变换表中,有一些基本的函数及其对应的傅里叶变换值得我们熟悉。

单位冲激函数(也称为狄拉克δ函数)是一个非常特殊的函数。

它在某一时刻有一个无限大的值,而在其他时刻的值都为零。

其傅里叶变换是常数 1。

这意味着单位冲激函数包含了所有频率的成分,且各个频率成分的幅度相同。

单位阶跃函数,它在 t < 0 时取值为 0,在t ≥ 0 时取值为 1。

其傅里叶变换是 1 /(jω) +πδ(ω) ,其中 j 是虚数单位,ω 是角频率,δ(ω) 是狄拉克δ函数。

正弦函数sin(ω₀t) 的傅里叶变换是jπδ(ω ω₀) δ(ω +ω₀) 。

这表明正弦函数只包含两个频率成分,即±ω₀。

余弦函数cos(ω₀t) 的傅里叶变换是πδ(ω ω₀) +δ(ω +ω₀) 。

指数函数 e^(jω₀t) 的傅里叶变换是2πδ(ω ω₀) 。

矩形脉冲函数,即在某个时间段内取值为 1,其他时间段为 0 的函数,其傅里叶变换是一个 sinc 函数。

这些常见函数的傅里叶变换在信号处理、通信、控制工程等领域有着广泛的应用。

例如,在通信系统中,我们需要对信号进行调制和解调。

调制过程可以看作是将原始信号与一个高频载波信号相乘,而解调过程则需要通过傅里叶变换将调制后的信号转换到频域,然后提取出原始信号的信息。

在图像处理中,傅里叶变换可以用于图像的滤波、增强和压缩等操作。

014第三章-5常用信号的傅里叶变换

014第三章-5常用信号的傅里叶变换

jct
jc t
F ( j( c ))
相乘,等效于在
频域中将整个频谱向频率增加方向搬移c
F f (t )e

jct
f (t )e

jct jt
e
dt dt F j jc



f (t )e
j c t
例:已知 f (t ) F ( j ) 求 f (t ) cosc t 的频谱。 解:
四、尺度变换特性(时域频域成反比)
1 若:f (t ) F ( j ) 则 f (at) F ( j ) a a
扩展
压缩
压缩
扩展
2 A Sa( )
ASa (

2
)
A Sa ( ) 2 4
四、尺度变换特性(时域频域成反比)
1 若:f (t ) F ( j ) 则 f (at) F ( j ) a a
t
记 f1 (t ) e (t )
1 F f1 (t ) j
则 f (t ) e
|t|
t f1 (t ) f1 (t )
F ( j) F[ f1 (t )] F[ f1 (t )]
F1 ( j) F ( j)
* 1
F f at


f at e
若不符合绝对可积条件则不能直接计算, 但可通过其它变换对推出,并且一般含有 冲激函数。
常用信号的傅氏变换—8 8、周期性冲激序列δT(t)
间隔为T的均匀冲激序列, 以符号δT(t)表示
δT(t)是一个周期函数,可以展开成傅里叶级数:
1 jnt T (t ) (t nT ) An e 2 n n

详解傅里叶变换公式

详解傅里叶变换公式

详解傅里叶变换公式傅里叶变换(Fourier Transform)是一种将时域信号转换到频域信号的数学方法。

它可以将一个信号分解为不同频率的正弦波之和,从而揭示信号的频率结构。

傅里叶变换在信号处理、图像处理、通信、物理学等领域具有广泛的应用。

首先,我们要理解时域(Time Domain)和频域(Frequency Domain)的概念。

1. 时域:在时域中,信号表示为时间轴上的函数,例如:```f(t) = A * cos(2 * π* t) + B * sin(2 * π* t)```在这个例子中,f(t) 是一个正弦波函数,t 是时间。

2. 频域:在频域中,信号表示为频率轴上的函数,例如:```F(ω) = A * cos(2 * π* ω) + B * sin(2 * π* ω)```在这个例子中,F(ω) 是一个正弦波函数,ω是频率。

傅里叶变换可以将时域信号转换为频域信号,公式如下:```F(ω) = ∫_{-∞}^{∞} f(t) e^(-jωt) dt```其中,F(ω) 是频域信号,ω是频率,t 是时间,j 是虚数单位,e 是自然对数的底数。

傅里叶变换的逆变换公式如下:```f(t) = ∫_{-∞}^{∞} F(ω) e^(jωt) dω```现在,我们来通过一个简单的例子来说明傅里叶变换。

假设我们有一个正弦波信号,如下所示:f(t) = A * sin(2 * π* t) + B * sin(2 * π* t + π/4)```我们可以使用傅里叶变换将其转换为频域信号,如下所示:```F(ω) = A * cos(2 * π* ω) + B * cos(2 * π* ω+ π/2)```通过傅里叶变换,我们可以看到信号中包含的主要频率成分。

例如,在这个例子中,我们可以看到信号主要包含两个频率成分:一个是A = 1,ω= π/2 的正弦波,另一个是B = 1,ω= π/4 的正弦波。

傅里叶变换知识点总结

傅里叶变换知识点总结

傅里叶变换知识点总结本文将从傅里叶级数、傅里叶变换和离散傅里叶变换三个方面来介绍傅里叶变换的知识点,并且着重介绍它们的原理、性质和应用。

一、傅里叶级数1. 傅里叶级数的定义傅里叶级数是一种将周期函数表示为正弦和余弦函数的线性组合的方法。

它可以将任意周期为T的函数f(x)分解为如下形式的级数:f(x)=a0/2+Σ(an*cos(2πnfx / T) + bn*sin(2πnfx / T))其中an和bn是傅里叶系数,f为频率。

2. 傅里叶级数的性质(1)奇偶性:偶函数的傅里叶级数只包含余弦项,奇函数的傅里叶级数只包含正弦项。

(2)傅里叶系数:通过欧拉公式和傅里叶系数的计算公式可以得到an和bn。

(3)傅里叶级数的收敛性: 傅里叶级数在满足柯西收敛条件的情况下可以收敛到原函数。

二、傅里叶变换1. 傅里叶变换的定义傅里叶变换是将信号从时间域转换到频率域的一种数学工具。

对于非周期函数f(t),它的傅里叶变换F(ω)定义如下:F(ω)=∫f(t)e^(-jwt)dt其中ω为频率,j为虚数单位。

2. 傅里叶变换的性质(1)线性性质:傅里叶变换具有线性性质,即对于任意常数a和b,有F(at+bs)=aF(t)+bF(s)。

(2)时移性质和频移性质:时域的时移对应频域的频移,频域的频移对应时域的时移。

(3)卷积定理:傅里叶变换后的两个函数的乘积等于它们的傅里叶变换之卷积。

3. 傅里叶逆变换傅里叶逆变换是将频域的信号反变换回时域的一种操作,其定义如下:f(t)=∫F(ω)e^(jwt)dω / 2π其中F(ω)为频域信号,f(t)为时域信号。

三、离散傅里叶变换1. 离散傅里叶变换的定义对于离散序列x[n],其离散傅里叶变换X[k]的定义如下:X[k]=Σx[n]e^(-j2πnk / N)其中N为序列长度。

2. 快速傅里叶变换(FFT)FFT是一种高效计算离散傅里叶变换的算法,它能够在O(NlogN)的时间复杂度内完成计算,广泛应用于数字信号处理和通信系统中。

傅里叶变换原理

傅里叶变换原理

傅里叶变换原理傅里叶变换是一种将信号从时域转换到频域的数学工具。

它的原理是将一个信号分解成不同频率的正弦和余弦波的叠加,从而得到信号在频域上的表示。

这种变换在信号处理、图像处理、通信系统等领域中得到广泛应用。

在傅里叶变换中,信号可以表示为一个连续的函数,通常用f(t)表示。

这个函数可以是任何类型的信号,例如音频信号、图像信号、电信号等。

傅里叶变换将这个函数分解成不同频率的正弦和余弦波的叠加,这些波的频率从0开始,一直到无穷大。

傅里叶变换的公式如下:F(ω) = ∫f(t)e^(-iωt)dt其中,F(ω)表示信号在频域上的表示,ω表示频率,e^(-iωt)表示一个复数,它的实部是cos(ωt),虚部是sin(ωt)。

这个公式可以理解为将信号f(t)与一个复数e^(-iωt)相乘,然后对整个信号进行积分。

这个积分的结果就是信号在频域上的表示。

傅里叶变换的一个重要应用是信号滤波。

在信号处理中,我们经常需要去除一些噪声或者干扰信号。

这时候可以使用傅里叶变换将信号转换到频域上,然后通过滤波器去除不需要的频率成分,最后再将信号转换回时域。

这个过程被称为频域滤波。

傅里叶变换还可以用于信号压缩。

在图像处理中,我们经常需要将一张高分辨率的图像压缩成低分辨率的图像,以便在网络传输或者存储时节省带宽和存储空间。

这时候可以使用傅里叶变换将图像转换到频域上,然后去除高频成分,最后再将图像转换回时域。

这个过程被称为频域压缩。

傅里叶变换是一种非常重要的数学工具,它可以将信号从时域转换到频域,从而方便我们进行信号处理、图像处理、通信系统等领域的研究和应用。

第三章 傅里叶变换

第三章  傅里叶变换

P=a
2 0
1 2
n 1
an2 bn2
c02
1 2
cn2
n 1
n
Fn
2

3、一个特别的性质: e jn e jn
3.1.3 函数的对称性与傅里叶系数的关系
1、波形对称分类:(1)、整周期对称,例如偶函数和奇函数,其可决定级数中只可能含有余弦项或正弦项;(2)半 周期对称,例如奇谐函数,其可决定级数中只可能含有偶次项或奇次项。 2、对称条件: (1)、偶函数:若信号波形相对于纵轴是对称的,即满足 f(t)=f(-t),此时 f(t)是偶函数,偶函数的 Fn 为实数。在偶函 数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。 (2)奇函数:若波形相对于纵坐标是反对称的,即满足 f(t)=-f(-t),此时 f(t)是奇函数,奇函数的 Fn 为虚数。在奇函数 的傅里叶级数中不会含有余弦项,只可能含有正弦项。虽然在奇函数上加以直流成分,它不再是奇函数,但在它的 级数中仍然不会含有余弦项。 (3)寄谐函数:若波形沿时间轴平移半个周期并相对于该轴上下翻转,此时波形并不发生变化,即满足:
n2 1 2
) cos n1t
基波和偶次谐波频率分量。谐波幅度以 1 规律收敛。 n2
其中1
=
2 T1
;其频谱只包含直流、
3.2.5 周期全波余弦信号
1、周期全波余弦信号的傅里叶级数为:
f
(t)
2E
4E 3
cos(1t)
4E 15
cos(21t)
4E 35
cos(31t)
2E
4E
1n 1
第三章 傅里叶变换
傅里叶变换是在傅里叶级数正交函数展开的基础上发展而产生的;

信号与系统3.3典型信号的傅里叶级数

信号与系统3.3典型信号的傅里叶级数

1 2
sin2ω1t
1 3
sin3ω1t
1 4
sin4ω1t
E
(1) n1
n 1
1 n
sin(n1t)
周期锯齿脉冲信号的频谱只包含正弦分量,谐波的幅
度以 1 的规律收敛。 n
第3章 傅里叶变换
四、周期三角脉冲信号
周期三角脉冲信号如图3-10所示。
f (t)
E
tT1ຫໍສະໝຸດ T1 20T1 2
第3章 傅里叶变换
三、周期锯齿脉冲信号
周期锯齿脉冲信号如图3-9所示。
f (t)
E
2
T1
2
t
T1
0
2
E
2
图3-9 周期锯齿脉冲信号
显然它是奇函数,因而an=0,由式(3-4)可以求出傅里
叶级数的系数bn。这样,便可得到周期锯齿脉冲信号的傅 里叶级数为
第3章 傅里叶变换
f(t)
E π
sinω1t
1 5
cos51t
2E
cos1t
1 3
cos31t
1 5
cos51t
其频谱函数如图3-8所示 由于对称方波的偶次谐波恰恰落在频谱包络线的零值 点,所以它的频谱只包含基波和奇次谐波。 该信号既是偶函数,又是奇谐函数,因此在它的频谱 中只包含基波和奇次谐波的余弦分量。
第3章 傅里叶变换 图3-8 对称方波频谱
T1
E
为ω1。脉冲间隔
T1
越大,谱线越密。
信号的周期T1增大 时,谱线的间隔变
小。反之变大
2
n
谱线包络 按抽样函 数衰减
4
2
4
第3章 傅里叶变换

信号与系统第3章 傅里叶变换

信号与系统第3章  傅里叶变换

P
f
2 (t) 1 T1
t0 T1 t0
f
2 (t)d t
a0 2
1 2
n1
(an
2
bn 2 )
2
Fn _____ 帕塞瓦尔定理
n
结论:周期信号的平均功率等于傅里叶级数展开 式中基波分量及各谐波分量有效值的平方 和,即时域和频域的能量守恒。
五. 周期信f号(t)的频c0 谱 (c三n c角os函(n数1t形 式n )) n1
(1) 偶函数 f (t) f (t)
4
an T1
T1
2 0
f (t) cos(n1t)dt
Fn
Fn
an 2
bn 0
傅里叶级数中不会含有正弦项, 只可能含有直流项和余弦项。
(2) 奇函数 f (t) f (t)
a0 0 , an 0
bn
4 T1
T1
2 0
f (t) sin(n1t)d t
e j n1t
T1 n 2
画频谱图:
c0
a0
E
T1
an
2E
T1
Sa
n1
2
, n
1,2,
cn an
1)令 m
2

2
m
即在
2
m,m为整数处有零点。
2)
2
2
T1
T1
零点间谱线个数
3) c n值为正,相位为0,值为负,相位为π
4)谱线间隔为 1 带宽
2
T1
,第一个过零点带宽定义为信号的
1 3
s in31t
1 4
sin41t
E
1 n1

常用的傅里叶变换+定理+各种变换的规律(推荐)

常用的傅里叶变换+定理+各种变换的规律(推荐)

a + jω (a + jω ) 2 + ω 02
e − at sin ω 0tu (t ), Re{a} > 0
te − at u (t ), Re{a} > 0 t k −1e − at u (t ), Re{a} > 0 (k − 1)!
ω0 (a + jω ) 2 + ω 02
1 ( a + jω ) 2 1 ( a + jω ) k 1 ,τ > 0 (τ − jt ) 2 2πωe −τω u (ω )
重 要
名称
连续傅里叶变换对 傅里叶变换 F (ω ) 连续时间函数 f (t )
W

⎧ ⎪ 1, t < τ f (t ) = ⎨ ⎪ ⎩0, t > τ ⎧ ⎪1 − t τ , t < τ f (t ) = ⎨ 0, t > τ ⎪ ⎩
τSa (
ωτ
2
)
π
Sa (Wt )
⎧ ⎪ 1, ω < W F (ω ) = ⎨ ⎪ ⎩0, ω > W ⎧ ⎪1 − ω W , ω < W F (ω ) = ⎨ 0, ω > W ⎪ ⎩
㵍㬒⫇䊻㰖⳦巛㠞䄧㬒⭥䊬㰄Ⳟⳉ
㠞䄧巛㰖⳦㉚㬨ⰵ䓵⢅㑠 [ 巛 P 㡑䔘䇤᱄ 㪉
[ f ( x)] F (P ) 䋓
x0 ½ ­ a ® f [ ( x r )]¾ a ¿ ¯ b
ax r x0 [f( )] b
x0 b b exp(r j 2S P ) F ( P ) a a a
= sinc( u)
−1 / 2
∫ exp(− j 2πux )dx
a x ≤ 2 其它

第三章傅里叶变换(1)

第三章傅里叶变换(1)

第一节 引言
傅里叶分析发展史
• 从本章开始由时域分析转入频域分析。 • 傅里叶变换是在傅里叶级数正交函数展开的基础上发展而产 • •
• •
生的。 傅里叶分析的研究与应用经历了一百余年。 1822 年法国数学家傅里叶( J.Fourier,1768-1830 )在研究 热传导理论时发表了“热的分析理论”著作,提出并证明了 将周期函数展开为正弦级数的原理,奠定了傅里叶级数的理 论基础。 泊松(Poisson)、高斯(Gauss)等人把这一成果应用到电 学中去。 伴随电机制造、交流电的产生与传输等实际问题的需要,三 角函数、指数函数以及傅里叶分析等数学工具已得到广泛的 应用。
可见,直流分量的大小以及基波与各次谐波的 幅度、相位取决于周期信号的波形。
5、幅度谱、相位谱
频谱图:
cn c0
c1
cn ~ n1 信号的幅度谱
n ~ n1 信号的相位谱
c2
c3
其中各频率分量幅度称为“谱线”; 连各谱线顶点的曲线称为
nw1
0
w1
n
3w1
w
? 包络线”。
周期信号的主要特点: 具有离散性、谐波性、收敛性

T1 2
0
T1 2
t
其傅里叶级数表达式为:
是一偶函数
E 4E 1 1 f (t ) 2 cos(w1t ) cos(3w1t ) cos(5w1t ) 2 9 25
(2)奇函数信号
2)奇函数信号: a0 0,an 0
f (t ) -f (t )
当n 0时,Fn Fn 1 1 j n a jb F F e (an jbn ) e 2 n n n n 2 1 2 1 2 其中 Fn a n bn cn 2 2 n n (三角函数形式)

傅里叶变换详细解释

傅里叶变换详细解释

傅里叶变换详细解释傅里叶变换是一种数学工具,可以将一个函数分解成一系列正弦和余弦函数的和。

它在信号处理、图像处理、通信和物理学等领域中广泛应用。

傅里叶变换的详细解释包括其定义、数学表达式、性质和应用等方面。

首先,傅里叶变换可以将一个连续函数f(t) 分解成一系列正弦和余弦函数的和。

这些正弦和余弦函数的频率是连续的,可以覆盖整个频谱。

傅里叶变换的定义如下:F(ω) = ∫f(t) e^(-jωt) dt其中,F(ω) 是傅里叶变换后的函数,f(t) 是原始函数,ω 是频率,e 是自然常数。

傅里叶变换的数学表达式可以用复数的形式来表示。

当函数 f(t) 是实函数时,傅里叶变换F(ω) 是一个复函数,具有实部和虚部。

实部表示函数在频域中的振幅,虚部表示函数在频域中的相位。

傅里叶变换有一些重要的性质。

首先,傅里叶变换具有线性性质,即对于常数a 和 b,有 F(a*f(t) + b*g(t)) = a*F(f(t)) + b*F(g(t))。

这使得傅里叶变换在信号处理中非常有用,可以将多个信号叠加在一起进行分析。

其次,傅里叶变换具有平移性质。

如果将函数 f(t) 在时间域上平移 t0,那么它的傅里叶变换F(ω) 在频域上也会相应地平移 e^(-jωt0)。

这个性质使得我们可以通过平移信号来改变其频谱。

另外,傅里叶变换还具有对称性质。

当函数 f(t) 是实函数时,其傅里叶变换F(ω) 的实部是偶函数,虚部是奇函数。

这个对称性质使得我们可以通过傅里叶变换将实函数分解成实部和虚部的和。

傅里叶变换在许多领域中有广泛的应用。

在信号处理中,傅里叶变换可以将时域上的信号转换成频域上的信号,从而可以分析信号的频谱特性。

例如,通过傅里叶变换,我们可以将音频信号转换成频谱图,可以分析音频信号中不同频率的成分。

在图像处理中,傅里叶变换可以将图像转换成频域上的图像,从而可以对图像进行频域滤波和增强处理。

例如,通过傅里叶变换,我们可以将模糊的图像恢复成清晰的图像,或者将图像中的噪声去除。

第三章 傅里叶变换

第三章 傅里叶变换

τ τ
2 2
其傅里叶变换为 :
F (Ω ) =


2E Ωτ = ∫ τ Ee dt = sin( ) −2 Ω 2 Ωτ sin( ) 2 = E τ Sa Ω τ = Eτ Ωτ 2 2
τ
2
−∞
f ( t ) e − j Ω t dt
− jΩ t
可以看出傅里叶变换与傅里叶系数有如下关系: 可以看出傅里叶变换与傅里叶系数有如下关系:
傅里叶的两个最主要的贡献—— 傅里叶的两个最主要的贡献 “周期信号都可以表示为成谐波关 系的正弦信号的加权和” 系的正弦信号的加权和”——傅里 傅里 叶的第一个主要论点 “非周期信号都可以用正弦信号的 加权积分来表示” 加权积分来表示”——傅里叶的第 傅里叶的第 二个主要论点
§3 傅里叶变换
3.2信号的傅里叶变换 信号的傅里叶变换
E f (t) = 0 | t |<
f(t) E
τ
2 T 2
-T -τ
2
τ
< | t |<
0
τ
2
T
t
τ:脉冲宽度, E:幅度, T:重复周期。 :脉冲宽度, :幅度, : 这个周期性脉冲函数可以展开成傅里叶级数: 这个周期性脉冲函数可以展开成傅里叶级数:
f (t ) =
n = −∞
π ϕ (Ω ) = 2 π − 2 Ω < 0 Ω > 0
-

0
α
Ω
ϕ(Ω) π
2
π
2
Ω
4 单位冲激函数
其傅里叶变换为: 其傅里叶变换为: ∞ F (Ω ) = ∫ δ (t )e − ∞ 根据冲激函数的定义, 根据冲激函数的定义,有

第三章 傅里叶变换 知识要点

第三章 傅里叶变换 知识要点
频谱的每条谱线,都只能出现在基波频率ω1 的整数倍的频率上,频谱中不
可能存在任何具有频率为基波频率非整数倍的分量。 (3)收敛性 各条谱线的高度,也即各次谐波的振幅,总的趋势是随着谐波次数的增高而
逐渐减小的;当谐波次数无限增高时,谐波分量的振幅亦就无限趋小。

但是,冲激函数序列δT (t) = ∑δ (t − nT1 ) 的频谱不满足收敛性。 n = −∞
(ω )⎤⎦
=
1 2π
∞ F (ω )e jωt dω
−∞
可简记为: f (t ) ←⎯FT→ F (ω )
(二)典型信号的傅里叶变换
1、δ (t ) ←⎯→1
2、δ ' (t ) ←⎯→ jω δ (n) (t ) ←⎯→ ( jω )n
3、1←⎯→ 2πδ (ω)
4、 u (t ) ←⎯→πδ (ω ) + 1
3、周期三角脉冲信号
∑ f
(t)
=
E 2
+
4E π2
∞ n=1
1 n2
sin 2
⎛ ⎜⎝
nπ 2
⎞ ⎟⎠
cos
(
nω1t
)
周期三角脉冲的频谱只包含直流、基波及奇次谐波频率分量,谐波的幅度以
1 的规律收敛。 n2
4、周期半波余弦信号
6
( ) ∑ f
(t
)
=
E π

2E π
∞ n=1
1 n2 −1
cos⎜⎛ ⎝
=
2π T1
这是因为它在区间 (t0 ,t0 + T1 )内满足:
⎧0
∫t0 +T1
t0
cos(mω1t
)cos(nω1t )dt

第三章傅里叶变换的性质.ppt

第三章傅里叶变换的性质.ppt


0
f (t)奇函数:X ()

f (t)sin tdt 2

f (t)sin tdt

0
X () 0
R() 0
可见,R()=R(- )为偶函数; X()= -X(- )为奇函数; 若 f (t)是实偶函数,F(j )=R() 必为实偶函数。 若 f (t)是实奇函数,F(j )=jX() 必为虚奇函数。

1 T

(t

T
)
F( j)
T
根据时域微分特性:
( j)2 F ( j) 1 e jT 2 1 e jT ,
0 2
T
TT
T

F(
j )

2
2T
(1
cosT )

4
2T
sin
2 (T
2
)

TSa2 (T
2
)
第三章第1讲

12
频域微分和积分特性
公式:
( jt)n f (t) F (n) ( j) f (0) (t) 1 f (t) F (1) ( j)
表明信号过延程时都了是t0在秒频并谱不搬会移改的变基其础频上谱完的成幅的度。,但是 使其相位变化了 - t0
频移特性: f (t)e j0 t F[ j( 0 )]
表明信号 f (t)乘以 e j0 t,等效于其频谱 F(j)沿频率右移 0
因为: cos 0 t

1 2
(e
j0 t

e
j0 t
)
sin
0t

1 2j
(e
j0 t

常见的傅里叶变换对

常见的傅里叶变换对

常见的傅里叶变换对
1.正弦函数:正弦函数是一种周期性的函数,其傅里叶变换是两个单独的脉冲,分别位于正负频率轴上。

2. 方形波:方形波是一种周期函数,其傅里叶变换包含了无限个频率成分,每个成分都是一个单独的脉冲,频率随着成分的增加而增加。

3. 三角波:三角波是一种周期函数,其傅里叶变换包含了无限个频率成分,每个成分都是一个单独的脉冲,频率随着成分的增加而增加,但比方形波少一半。

4. 高斯波包:高斯波包是一种非周期函数,其傅里叶变换也是一个高斯波包,但是频率上限是无限的。

5. 指数衰减波:指数衰减波是一种非周期函数,其傅里叶变换是一个复数,其幅度随着频率的增加而减小。

6. delta函数:delta函数是一种非常特殊的函数,其傅里叶变换是常数1,因此它是傅里叶变换中最简单的一种。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(t)

-T0 O T0 2T0 t
求T0 (t) 的指数傅里叶级数和三角傅里叶级数。

Fn
1 T0
T0 2
T0 2
(t)e jn0tdt
1 T0
T0 (t)
1 T0
e jn0t
n
a0
1 T0

an
2 T0
T0 2
T0 2
(t) cos
n0tdt
2 T0
bn 0
T0 (t)
的三角傅里叶级数为:T0
第3章 傅里叶变换
重点:
1.傅里叶级数定义及适用条件 2.常见周期信号的频谱,非周期性信号的频谱 3.傅里叶变换的定义及适用条件及性质 4.周期信号的傅里叶变换 5.抽样定理 6.功率频谱与能量频谱 7.系统频域分析法 8.希尔伯特变换
3.1 傅里叶变换的产生
傅里叶1768年生于法国,1807年提 出“任何周期信号都可用正弦函数 级数表示”, 1822年在“热的分析 理论”一书中再次提出。1829年 狄里赫利给出傅里叶变换收敛条件。 傅里叶变换得到大规模的应用,则 是到了上世纪60年代之后。
nT0 )
n
[ A
A T0
(t
nT0 )][u(t
nT0 )
u(t
(n
1)T0 )]
将 f (t) 去除直流分量,则仅剩交流分量 fAC (t)
fAC (t)
f
(t)
A [u(t
T n 0
nT0 ) u(t
(n 1)T0 )]
n
[
A
A T0
(t
nT0
)]{
(t
nT0
)
(2)利用直接法求解
10 A
A
a0 T0
tdt
T T0
0
2
an 0
bn
2 T0
0 T0
A T0
t
sin
n0tdt
A nπ

f (t) A A sin n0t
2 π n1 n
3.2.3 傅里叶级数的MATLAB仿真实现
常称为f(t)的截断傅里叶级数表示式。
N
N
N
f (t)
1 2
[cne j(n1t n ) ]
n
1 2
[ Ane j(n1t ) ]
n
式中
An cne jn an2 bn2 (cosn jsinn ) 复指数
幅度 cn an2 bn2
n
arctan( bn an
)
相位
An 的具体求法如下:
2
An an jbn T
t2 t1
设周期矩形脉冲:脉宽为,脉冲幅度为E,周期为T1
f (t)
E
T1
/ 2 o / 2
T1 t
f (t) E[u(t ) u(t )], T1 t T1
2
2
2
2
f (t)是偶函数
a0
E
T1
,
bn 0,
an
E1 Sa( n1 )
π
2
cn
a0
E
, T1
cn
E1 Sa( n1 )
E 2
T1 t 2
f (t) E
2
f (t) E 2
T1
o
2
E
sin 21t 2
T1 t 2
T1
o
T1
t
2
E2
cos 21t
2
3.4 常见周期信号的频谱
3.4.1 频谱的概念
振幅频谱
频 (幅频特性图) 谱 图
相位频谱
(相频特性图)
表示信号含有的各个频率分量 的幅度值。其横坐标为频率 (单位为赫兹),纵坐标对应各 频率分量的幅度值 。Fn
其中
1
2π T
2π t2 t1
三角函数集也可表示为:
周期的终点
周期的起点 周期 基频
{cos(n1t),sin(n1t) n 0,1, 2, }
满足: (1)正交性:函数集中的任意函数两两相正交,有
t2 t1
cos(n1t) sin(m1t)dt
0
t2
t1
t2
t1
cos(n1t) cos(m1t)dt 0 sin(n1t) sin(m1t)dt 0
偶谐函数
满足 f (t T / 2) f (t) 的周期为T 的 函数;即平移半个周期后信号与原信 号重合。
2.横轴对称性 (1)奇谐函数的傅里叶级数中只有奇次谐波分量。 (2)偶谐函数的傅里叶级数中只有偶次谐波分量。
如果原信号既不是奇谐函数也不是偶谐函数,那 么其傅里叶级数展开式中就会既包含有奇次谐波分 量也包含有偶次谐波分量。
(t
(n
1)T0
)}
A T0
A
n
(t
nT0
)
A T0
A( 1 T0
2 T0
cos n0t)
n1
2A T0
cos n0t
n1
fAC (t)
2A T0
n1
t
cos n0 d
A π
n1
sin n0t
n
fD A / 2

f (t) A A sin n0t
2 π n1 n

第一个过零点再增加一倍
结论
• 由大变小,Fn 第一过零点频率增大,即
所以
称为信号的带宽, 确定了带宽。
• 由大变小,频谱的幅度变小。
• 由于 T 不变,谱线间隔不变,即 2π /T 不变。
2)脉冲宽度不变, 周期T变化
情况 1:
时,谱线间隔
第一个过零点
谱线间隔 2π π
T 2
f (t) 1
f (t)
Fn e j(n1t )
n
式中
Fn
t2 f (t)(e jn1t )* dt
t1
t2 (e jn1t )(e jn1t )* dt
1 T
t1
t2 f (t)e jn1tdt
t1
Fn
Fn
e jn
An 2
例 已知冲激序列

T0 (t) (t kT0 )
k
T0 (t) (t T0 )
f (t )cos(n1t )dt
j2 T
t2 t1
f (t )sin(n1t )dt
2 T
t2 t1
f (t)[cos(n1t ) jsin(n1t)]dt
2 T
t2 f (t )e jn1tdt
t1
2. 直接从复变正交函数集推导 将原函数 f (t)在复变正交函数空间
{ej(n1t) n 1, 2, }中展开,有
表示信号含有的各个频率分量 的相位。其横坐标为频率;纵坐 标对应各频率分量的相位 (n 单 位常用度或弧度)。

f
(t
)
1,
kT t kT
2
2
,求频谱
0,
其它
f (t) 1
T
2
o 2
T
t
解 (1)单边频谱:
An
4
n1T
sin( n1
2
),
2 ,
T
n 0
n0
2
T
Sa( n1
2
)
(2)双边频谱:
1
Fn T
/2
e jn1 tdt
1
e jn1 t
/2
2
sin
n1 2
b
b2 4ac
/ 2
T jn1 / 2 T n1
2a
T
sin
n1 2
n1
2
T
Sa( n1
2
),
n 0, 1, 2,
包络线
频谱图随参数的变化规律: 1)周期T不变,脉冲宽度变化
情况1:
T 4
3.4.2 常见周期信号的频谱
典型周期信号的频谱分析,可利用傅里叶级数或傅 里叶变换。典型周期信号如下:
1. 周期矩形脉冲信号 2. 周期对称方波信号 3. 周期锯齿脉冲信号 4. 周期三角脉冲信号 5. 周期半波余弦信号 6. 周期全波余弦信号
1. 周期矩形脉冲信号 (1) 周期矩形脉冲信号的傅里叶级数求解
备正交函数的三个条件:
1. 归一化:
t2 t1
fi (t) fi*(t)dt
1
2. 归一正交化:
t2 t1
fi
(t)
f
* j
(t
)dt
0,
i
j
3. 归一化完备性:可以用其线性组合表示任意信号
3.2.1 傅里叶级数的三角形式
设三角函数的完备函数集为:
{1, cos1t,sin 1t, cos 21t,sin 21t, , cos k1t,sin k1t, }
,
Fn
T
Sa( n
T
)
1 4
Sa( n
4
)
第一个过零点为n =4 。 Fn 在 2π/ 有 4值1(谱线)
T
f (t)
1
2
o
2
谱线间隔 2π T
1 Fn
4
2
O
T
t
第一个过零点:
Sa(
2
)
0
π 2

情况2:
T 8
,
Fn
T
Sa( n
T
)
1 8
Sa( n
8
)
第一个过零点n=8
脉冲宽度缩小一倍
3.3 周期信号的对称性
相关文档
最新文档