经济数学基础9-1~2
经济数学基础-知识点归纳
第一章函数与极限1.理解函数概念。
(1)掌握求函数定义域的方法,会求初等函数的定义域和函数值。
函数的定义域就是使函数有意义的自变量的变化范围。
学生要掌握常见函数的自变量的变化范围,如分式的分母不为0,对数的真数大于0,偶次根式下表达式大于0,等等。
(2)理解函数的对应关系f 的含义:f 表示当自变量取值为x 时,因变量y 的取值为f (x )。
(3)会判断两函数是否相同。
(4)了解分段函数概念,掌握求分段函数定义域和函数值的方法。
2.掌握函数奇偶性的判别,知道它的几何特点。
判断函数是奇函数或是偶函数,可以用定义去判断,即(1)若)()(x f x f =-,则)(x f 为偶函数;(2)若)()(x f x f -=-,则)(x f 为奇函数。
也可以根据一些已知的函数的奇偶性,再利用“奇函数±奇函数、奇函数×偶函数仍为奇函数;偶函数±偶函数、偶函数×偶函数、奇函数×奇函数仍为偶函数”的性质来判断。
3.了解复合函数概念,会对复合函数进行分解。
4.知道初等函数的概念,牢记常数函数、幂函数、指数函数、对数函数和三角函数(正弦、余弦、正切和余切)的解析表达式、定义域、主要性质。
基本初等函数的解析表达式、定义域、主要性质在微积分中常要用到,一定要熟练掌握。
5.了解需求、供给、成本、平均成本、收入和利润函数的概念。
6.知道一些与极限有关的概念(1)知道函数在某点极限存在的充分必要条件是该点左右极限都存在且相等;(2)了解无穷小量的概念,知道无穷小量的性质;(3)了解函数在某点连续的概念,了解“初等函数在定义区间内连续”的结论;会判断函数在某点的连续性,会求函数的间断点。
第二章导数及其应用1.知道一些与导数有关的概念(1)会求曲线的切线方程(2)知道可导与连续的关系(可导的函数一定连续,连续的函数不一定可导)2.熟练掌握求导数或微分的方法。
(1)利用导数(或微分)的基本公式(2)利用导数(或微分)的四则运算(3)利用复合函数微分法3.会求函数的二阶导数。
经济数学基础精品课件
(1)解析法(又称公式法)① 需要在定义域的不同部分用不 同的式子来表示,这样的函数称为分段函数。 ②如果因变量y可 以表示成一个只包含自变量x的式子,那么我们将这样的函数称 为显函数。③由方程F(x, y) = 0确定的函数y=f (x)称为隐函数。
经济数学基础
郑必平
2003.02 浙江广播电视大学淳安分校欢迎您
第一编 一元函数微积分学
主要内容 1 .函数
函数概念,几内基本初等函数,函数的运算,
经济分析中常见的函数 2.极限与连续
极限概念,极限的运算,函数的连续性 3.导数与微分
导数与微分的概念,导数的计算 4.导数的应用
函数的单调性,函数极值, 导数在经济分析中的应用
(n为自然数)称为多项式函数.
1.2.3 指数函数 函数 y=ax(a>0, a≠1)称为指数函数
函数 y=ex 的底数, (其中 e=2.718 28 )
浙江广播电视大学淳安分校欢迎您
1.2.4 对数函数
函数 y loga x (a>0,a≠1) 称为对数函数
其中以e为底的对数函数 y loge x称为自然对数,
通过u有唯一的y与之对应,即y是x的函数, 记为 y=f [(x)] 这种函数称为复合函数,其中u称为中间变量。 1.3.2初等函数
函数之间除复合运算之外,还有加、减、乘、除等几 种运算,由基本初等函数经过有限次加、减、乘、除或 复合而得到的函数,称为初等函数。
浙江广播电视大学淳安分校欢迎您
微积分所研究的函数主要是初等函数 例6.将下列初等函数分解为基本初等函数的运算:
经济数学基础课后答案(概率统计第三分册)
习 题 一1.写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次;(3) 掷一枚硬币,直到首次出现正面为止;(4) 一个库房在某一个时刻的库存量(假定最大容量为M ).解 (1) Ω={正面,反面} △ {正,反}(2) Ω={(正、正),(正、反),(反、正),(反、反)} (3) Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0 ≤x ≤ m } 2.掷一颗骰子的试验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数小于5”,D =“小于5的偶数点”,讨论上述各事件间的关系.解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A ΩA 与B 为对立事件,即B =A ;B 与D 互不相容;A ⊃D ,C ⊃D.3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来.解 B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++=B -C 表示三个车间都完成生产任务321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++=321A A A C B =-4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来.解 B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=-5.两个事件互不相容与两个事件对立的区别何在,举例说明.解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件. 6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明.解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系.解 由于AB ⊂A ⊂A+B ,A -B ⊂A ⊂A+B ,AB 与A -B 互不相容,且A =AB +(A -B). 因此有A =C +F ,C 与F 互不相容, D ⊃A ⊃F ,A ⊃C.8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率. 解 记事件A 表示“取到的两个球颜色不同”. 则有利于事件A 的样本点数目#A =1315C C .而组成试验的样本点总数为#Ω=235+C ,由古典概率公式有P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表示有利于A 的样本点数目与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有黑球的概率.解 设事件B 表示“取到的两个球中有黑球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P -10. 抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率.解 设事件A 表示“三次中既有正面又有反面出现”, 则A 表示三次均为正面或三次均为反面出现. 而抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此图1-1图1-2143821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.解 设事件A 表示“门锁能被打开”. 则事件A 发生就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=CC A A P A P -## 从9题-11题解中可以看到,有些时候计算所求事件的对立事件概率比较方便. 12. 一副扑克牌有52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异; (2)四张中只有两种花色.解 设事件A 表示“四张花色各异”;B 表示“四张中只有两种花色”.,113113113113452##C C C C A , C Ω== ) +#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P ===30006048+74366##)(452 )(.C ΩB B P ===13. 口袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率.解 设事件A 表示“取出的5枚硬币总值超过壹角”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##=14. 袋中有红、黄、黑色球各一个,每次任取一球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全白”,C =“全黑”,D =“无红”,E =“无白”,F =“无黑”,G =“三次颜色全相同”,H =“颜色全不相同”,I =“颜色不全相同”.解 #Ω=33=27,#A =#B =#C =1, #D =#E =#F =23=8, #G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =24271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. 一间宿舍内住有6位同学,求他们中有4个人的生日在同一个月份的概率. 解 设事件A 表示“有4个人的生日在同一个月份”.#Ω=126,#A =21124611C C0073.01221780##)(6==ΩA A P =16. 事件A 与B 互不相容,计算P )(B A +. 解 由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P AB P B A P17. 设事件B ⊃A ,求证P (B )≥P (A ). 证 ∵B ⊃A∴P (B -A )=P (B ) - P (A ) ∵P (B -A )≥0 ∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ).解 由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +b2P (B -A )=P (B )-P (AB )=b -0.3aP(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中一次抽取三个,计算取到废品的概率. 解 设事件A 表示“取到废品”,则A 表示没有取到废品,有利于事件A 的样本点数目为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA-=## =0.225520. 已知事件B ⊃A ,P (A )=ln b ≠ 0,P (B )=ln a ,求a 的取值范围.解 因B ⊃A ,故P (B )≥P (A ),即ln a ≥ln b ,⇒a ≥b ,又因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都大于0,比较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的大小(用不等号把它们连接起来).解 由于对任何事件A ,B ,均有AB ⊂A ⊂A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. 一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算).解 设事件A 表示“100名学生的生日都不在元旦”,则有利于A 的样本点数目为#A =,而样本空间中样本点总数为#Ω=,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P= 0.239923. 从5副不同手套中任取4只手套,求其中至少有两只手套配成一副的概率.解 设事件A 表示“取出的四只手套至少有两只配成一副”,则A 表示“四只手套中任何两只均不能配成一副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职工订阅报纸,93%的人订阅杂志,在不订阅报纸的人中仍有85%的职工订阅杂志,从单位中任找一名职工求下列事件的概率: (1)该职工至少订阅一种报纸或期刊; (2)该职工不订阅杂志,但是订阅报纸.解 设事件A 表示“任找的一名职工订阅报纸”,B 表示“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A 表示数学成绩优秀,B表示外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解 P (A |B )=7.04.028.0)()(==B P AB PP (B |A)=7.0)()(=A P AB PP (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ).证 ∵P ( A |B )+P (A |B )=1且P ( A |B )+P (A |B )=1∴P ( A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --==P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独立,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ). 解 P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B )⇒ 0.7=0.4+0.6P ( B )⇒ P ( B )=0.528. 设事件A 与B 的概率都大于0,如果A 与B 独立,问它们是否互不相容,为什么?3解 因P ( A ),P ( B )均大于0,又因A 与B 独立,因此P ( AB )=P ( A ) P ( B )>0,故A 与B 不可能互不相容.29. 某种电子元件的寿命在1000小时以上的概率为0.8,求3个这种元件使用1000小时后,最多只坏了一个的概率. 解 设事件Ai表示“使用1000小时后第i 个元件没有坏”,i =1,2,3,显然A 1,A 2,A 3相互独立,事件A 表示“三个元件中最多只坏了一个”,则A=A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上面等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P +=0.83+3×0.82×0.2 =0.89630. 加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为0.3,0.2,0.2,并且任何一道工序是否出现废品与其他各道工序无关,求零件的合格率. 解 设事件A 表示“任取一个零件为合格品”,依题意A 表示三道工序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数).解 设事件A i 表示“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42 P (A 2)=0.58 × 0.42=0.2436 P (A m )=0.58m -1 × 0.4232. 一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼镜,求每个人都没有拿到自己眼镜的概率.解 设A i 表示“第i 人拿到自己眼镜”,i =1,2,3,4. P ( A i )=41,设事件B 表示“每个人都没有拿到自己的眼镜”. 显然B 则表示“至少有一人拿到自己的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4)=∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i )=)41(1213141≤≤=⨯j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j )=41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4) =P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3)=2411213141=⨯⨯⨯ 85241241121414)(3424=-⨯+⨯-⨯=C C B P83)(1)(=-=B P B P33. 在1,2,…,3000这3000个数中任取一个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A 2A 3),P (A 2+A 3),P (A 2-A 3). 解 依题意P (A 2)=21,P (A 3)=31P (A 2A 3)=P (A 6)=61P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3)=32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=-34. 甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率: (1)只有一人投中; (2)最多有一人投中; (3)最少有一人投中.解 设事件A 、B 、C 分别表示“甲投中”、“乙投中”、“丙投中”,显然A 、B 、C 相互独立.设A i 表示“三人中有i 人投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P ===0.2×0.3×0.4×=0.024P ( A 3 )=P ( ABC )=P ( A ) P ( B ) P ( C )4=0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452 (1) P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2) P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212 (3) P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、乙二人轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较大,为什么?解 设事件A 2n -1B 2n 分别表示“甲在第2n -1次投中”与“乙在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独立.设事件A 表示“甲先投中”.⋯+++=)()()()(543213211A B A B A P A B A P A P A P⋯⨯⨯⨯⨯=+++0.40.5)(0.60.40.50.60.42 743.014.0=-=计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较大.36. 某高校新生中,北京考生占30%,京外其他各地考生占70%,已知在北京学生中,以英语为第一外语的占80%,而京外学生以英语为第一外语的占95%,今从全校新生中任选一名学生,求该生以英语为第一外语的概率.解 设事件A 表示“任选一名学生为北京考生”,B 表示“任选一名学生,以英语为第一外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为9 : 7 : 4,据统计资料,甲种疾病在该地三个小区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解 设事件A 1,A 2,A 3分别表示从A 地任选一名居民其为南、北、中行政小区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表示“任选一名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P= 0.45 × 0.004 + 0.35 × 0.002 + 0.2 × 0.005=0.003538. 一个机床有三分之一的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率为0.3,加工零件B 时停机的概率为0.4,求这个机床停机的概率.解 设事件A 表示“机床加工零件A ”,则A 表示“机床加工零件B ”,设事件B 表示“机床停工”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=⨯+⨯= 39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个口袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取一个球,放入与球上号数相同的口袋中,第二次从该口袋中任取一个球,计算第二次取到几号球的概率最大,为什么?解 设事件A i 表示“第一次取到i 号球”,B i 表示第二次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成一个完全事件组.41)()(,21)(321===A P A P A P41)|()|(,21)|(131211===A B P A B P A B P41)|()|(,21)|(232221===A B P A B P A B P61)|(,31)|(,21)|(333231===A B P A B P A B P应用全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第二次取到1号球的概率最大. 40. 接37题,用一种检验方法,其效果是:对甲种疾病的漏查率为5%(即一个甲种疾病患者,经此检验法未查出的概率为5%);对无甲种疾病的人用此检验法误诊为甲种疾病患者的概率为1%,在一次健康普查中,某人经此检验法查为患有甲种疾病,计算该人确实患有此病的概率.解 设事件A 表示“受检人患有甲种疾病”,B 表示“受检人被查有甲种疾病”,由37题计算可5知P (A )=0.0035,应用贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=01.09965.095.00035.095.00035.0⨯⨯⨯=+25.0= 41. 甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比为5 : 3 : 2,各机床所加工的零件合格率,依次为94%,90%,95%,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.解 设事件A 1,A 2,A 3分别表示“受检零件为甲机床加工”,“乙机床加工”,“丙机床加工”,B 表示“废品”,应用贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P7305020+1030+06.05.006.05.0=⨯⨯⨯⨯=....74)|(1)|(11=-=B A P B A P42. 某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为5%,15%,30%,50%,乘坐这几种交通工具能如期到达的概率依次为100%,70%,60%与90%,已知该旅行者误期到达,求他是乘坐火车的概率.解 设事件A 1,A 2,A 3,A 4分别表示外出人“乘坐飞机”,“乘坐火车”,“乘坐轮船”,“乘坐汽车”,B 表示“外出人如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P1.05.04.03.03.015.0005.03.015.0⨯+⨯+⨯+⨯⨯==0.20943. 接39题,若第二次取到的是1号球,计算它恰好取自Ⅰ号袋的概率.解 39题计算知P (B 1)=21,应用贝叶斯公式21212121)()|()()|(111111=⨯==B P A B P A P B A P44. 一箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率.解 设事件A i 表示一箱中有i 件次品,i =0, 1, 2. B 表示“抽取的10件中无次品”,先计算P ( B )∑++⨯===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P37.0)(31)|(0==B P B A P45. 设一条昆虫生产n 个卵的概率为λλ-=e !n p nn n =0, 1, 2, …其中λ>0,又设一个虫卵能孵化为昆虫的概率等于p (0<p <1). 如果卵的孵化是相互独立的,问此虫的下一代有k 条虫的概率是多少?解 设事件A n =“一个虫产下几个卵”,n =0,1,2….B R =“该虫下一代有k 条虫”,k =0,1,….依题意λλ-==e !)(n p A P nn n⎩⎨⎧≤≤=-nk qp C n k A B P kn k k n n k 00)|(>其中q =1-p . 应用全概率公式有∑∑∞=∞===kn n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=l n k n k n q p k n k n n !)(!!e !∑∞=-λ--λλk n k n kk n q k p !)()(e !)(6由于q k n kn k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有 ,2,1,0e)(e e !)()(===--k kp k p B P pp q k k λλλλλ7习 题 二1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解 X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8. 2. 一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.解 X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P mm 依次计算得X 的概率分布如下表所示:3. 上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解 X 的取值仍是0, 1, 2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有{}1694302=⎪⎭⎫⎝⎛==X P{}1664341112=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C X P {}1614122=⎪⎭⎫⎝⎛==X P4. 第2题中若改为重复抽取,每次一件,直到取得优质品为止,求抽取次数X 的概率分布. 解 X 可以取1, 2, …可列个值. 且事件{X = n }表示抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431⋅⎪⎭⎫⎝⎛-n . 因此X 的概率分布为 {}⋯=⎪⎭⎫⎝⎛==-,2,143411n n X P n5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布. (1)抽取次数X ; (2)取到的旧球个数Y .解 (1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=⨯====X P X P {}22091091121233=⨯⨯==X P {}2201991011121234=⨯⨯⨯==X P (2) Y 可以取0, 1, 2, 3各值 .{}{}4310====X P Y P {}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若一次取出3个,求取到的新球数目X 的概率分布. 解 X 可以取0, 1, 2, 3各值.{}2201031233===C C X P{}2202713122319===C C C X P{}22010823121329===C C C X P{}22084331239===C C X P7. 已知P {X =n }=p n,n =1, 2, 3, …, 求p 的值.8解 根据{}∑=∞=11n n X P =, 有 ∑∞=-==111n n pp P 解上面关于p 的方程,得p =0.5.8. 已知P {X =n }=p n, n =2, 4, 6, …,求p 的值.解 1122642=-=⋯+++p p p p p解方程,得p =2±/29. 已知P {X =n }=cn , n =1, 2, …, 100, 求c 的值. 解 ∑=+⋯++==10015050)10021(1n c c cn =解得 c =1/5050 .10. 如果p n =cn _2,n =1, 2, …, 问它是否能成为一个离散型概率分布,为什么?解 ,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=, 则有∑∞=1n n p =1,且p n >0. 所以它可以是一个离散型概率分布.11. 随机变X 只取1, 2, 3共三个值,其取各个值的概率均大于零且不相等并又组成等差数列,求X 的概率分布.解 设P {X =2}=a ,P {X =1}=a -d , P {X =3}=a +d . 由概率函数的和为1,可知a =31, 但是a -d 与a +d 均需大于零,因此|d |<31, X 的概率分布为其中d 应满足条件:0<|d |<312. 已知{}λ-==e !m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c . 解{}∑∑∞=-∞====11e!1m m m m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm mm m λλλ, 所以有∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ 解得 λ--=e 11c13. 甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求: (1)二人投篮总次数Z 的概率分布; (2)甲投篮次数X 的概率分布; (3)乙投篮次数Y 的概率分布.解 设事件A i 表示在第i 次投篮中甲投中,j 表示在第j 次投篮中乙投中,i =1, 3, 5, …, j =2, 4, 6,…,且A 1, B 2, A 3, B 4,…相互独立.(1){}{}1222321112---=-=k k k A B A B A p k Z P = (0.6×0.5)1-k ·0.4= 0.4(0.3)1-k k=1, 2, …{})(2212223211k k k k B A B A B A p k Z P ---===0.5×0.6×(0.6×0.5)1-k =0.3kk=1, 2, …(2) {}{}12223211---==n n n A B A B A p n X P{}n n n n B A B AB A p 212223211---+)5.06.04.0()5.06.0(1⨯+⨯=-n,2,13.07.01=⨯=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P)4.05.05.0(6.0)5.06.0(1⨯+⨯⨯⨯=-n,2,13.042.01=⨯=-n n 14. 一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,9求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X 的概率分布(不计其他因素停车).解 X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4 P { X =1 }=0.6×0.4=0.24 P { X =2 } =0.62×0.4=0.144 P { X =3 } =0.63×0.4=0.0864 P { X =4 } =0.64=0.129615. ⎩⎨⎧∈=.,0],[,sin )(其他,b a x x x f问f (x )是否为一个概率密度函数,为什么?如果(1).π23,)3( ;π,0)2( ;2π,0======b a b a b a π解 在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π0≠⎰x x,1d sin 2π0=⎰x x 而在⎥⎦⎤⎢⎣⎡π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是一个概率密度函数.16. ⎪⎩⎪⎨⎧≤=-.0,00e)(,22x x cx x f cx ,>其中c >0,问f (x )是否为密度函数,为什么?解 易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,又1d e 202=⎰-∞+x cx cxf (x )是一个密度函数 .17.⎩⎨⎧+=.0.2<<,2)(其他,a x a x x f问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由. 解 如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==⎰⨯++a x x a a a a 由于x x f d )(⎰+∞∞-不是1,因此f ( x )不是密度函数. 18. 设随机变量X ~f ( x )⎪⎩⎪⎨⎧∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解)arctan 2π(2arctan π2d )1(π22a x x x a a-π==+⎰⎰+∞+∞ 解方程 π2⎪⎭⎫ ⎝⎛a arctan - 2π=1 得 a = 0{}b x x x f b x P b barctan π2|arctan π2d )(000==⎰=<< 解关于b 的方程:π2arctan b =0.5 得 b =1.19. 某种电子元件的寿命X 是随机变量,概率密度为⎪⎩⎪⎨⎧≥=.100,0,100100)(2<x x x x f3个这种元件串联在一个线路中,计算这3个元件使用了150小时后仍能使线路正常工作的概率.解 串联线路正常工作的充分必要条件是3个元件都能正常工作. 而三个元件的寿命是三个相互独立同分布的随机变量,因此若用事件A 表示“线路正常工作”,则3])150([)(>X P A P ={}32d 1001502150=⎰∞+x x X P => 278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e-|x|,确定系数A ;计算P { |X | ≤1 }. 解 A x A x A x x 2d e 2d e10||=⎰=⎰=∞+-∞+∞--解得 A =21 {}⎰⎰---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的二次方程4x 2+4xY +Y +2=0有实数根的概率.解 4x 2+4xY +Y +2=0. 有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0 设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P=0.622. 设随机变量X ~ f ( x ),⎪⎩⎪⎨⎧-=.,01||,1)(2其他,<x xcx f确定常数c ,计算.21||⎭⎬⎫⎩⎨⎧≤X P 解 π|arcsin d 1111211c x c x x c ==-⎰=--c =π131arcsin 2d 1121||0212121 2=π=-π=⎭⎬⎫⎩⎨⎧≤⎰-xx x X P 23. 设随机变量X 的分布函数F ( x )为⎪⎩⎪⎨⎧≥=.1,1,10,0,0)(x x x A x x F <<,< 确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ). 解连续型随机变量X 的分布函数是连续函数,F (1)=F (1-0),有A =1.⎪⎩⎪⎨⎧=.,0,10,21)(其他<<x xx f {}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) . 解 {}t x X P x F t xd e 21)(||-∞-⎰=≤= 当t ≤ 0时,x t xt x F e 21d e 21)(=⎰=∞- 当t >0时,t t t x F t x t t x d e 21d e 21d e 21)(-00||⎰+⎰=⎰=-∞--∞-x x ---=-+=e 211)e 1(212125. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么? 解 不能是分布函数,因F (-∞)= 1 ≠ 0. 26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P . 解 a x a x x a ==⎰+=∞+∞-∞+∞-arctan πd )1(π12因此a =1x xt t t x F ∞-∞-=⎰+=arctan π1d )1(π1)(2x arctan π121+= {}⎰+=⎰+=-12112d )1(π12d )1(π11||x x x x X P <21arctan π210==x27. 随机变量X 的分布函数F ( x ) 为:⎪⎩⎪⎨⎧≤-=.2,02,1)(2x x xA x F ,>确定常数A 的值,计算{}40≤≤X P . 解 由F ( 2+0 )=F ( 2 ),可得4,041==-A A{}{})0()4(4X 040F F P X P -=≤=≤≤<=0.7528. 随机变量X ~f ( x ),f ( x )=,ee xx A-+确定A 的值;求分布函数F ( x ) .解 ⎰+=⎰+=∞∞-∞∞--x A x A xx x x d e 1e d e e 12A A x 2πe arctan ==∞∞-因此 A =π2,x txt t t x F ∞-∞--=+=⎰e arctan π2d )e e (π2)(x e arctan π2=29. 随机变量X ~f ( x ),⎪⎩⎪⎨⎧=.,00,π2)(2其他<<a x xx f确定a 的值并求分布函数F ( x ) .解 220222ππd π21a x x x a a ==⎰= 因此,a = π 当0<x <π时,⎰=x x t t x F 0222πd π2)(⎪⎪⎩⎪⎪⎨⎧≥≤=π1,π0,π0,0)(22x x xx x F << 30. 随机变量X 的分布函数为)0(0,e 22210,0)(22>>a x ax x a x x F ax⎪⎩⎪⎨⎧++-≤=-求X 的概率密度并计算⎭⎬⎫⎩⎨⎧a X P 10<<. 解 当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )⎪⎩⎪⎨⎧≤=-.0,e 2,0,0)(23> x x a x x f ax)0()1(1010F a F a x P a x P -=⎭⎬⎫⎩⎨⎧≤=⎭⎬⎫⎩⎨⎧<<<08.0e 2511≈-=- 31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解 X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X=1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0}其他=P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n} =P { X =10-n}=,,2,1,31=n n Y =l gX ,求Y 的概率分布.解 Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31 n =1 ,2 , …33. X 服从[a , b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布.证 设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a > 0时,Y 的取值为[a 2+b , ab +b ],ax y h b y a y h x y1)(,)(1)(='='-== ],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]⎪⎩⎪⎨⎧+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,无论a >0还是a <0,ax +b 均服从均匀分布.34. 随机变量X 服从[0 , 2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ).解 y =cos x 在[0, 2π]上单调,在(0 , 1)上,h ( y ) = x =arccos yh′ ( y ) = 211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π. 因此⎪⎩⎪⎨⎧-=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x, Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解 y = e x在(0 , 1)内单调 , x =ln y 可导,且x′y = y1, f X ( x ) =1 0 < x < 1 , 因此有⎪⎩⎪⎨⎧.,0,e 1,1)(其他 <<y yy f Y在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有⎩⎨⎧∞+=-.,0,0e )(其他<<,z z f z z36. 随机变量X ~f ( x ) ,⎩⎨⎧≤=-0,00,e )(x x xf x > Y =X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) .解 当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y⎪⎩⎪⎨⎧≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z21⎪⎩⎪⎨⎧≤=-.0,00e 21)(z ,z zz f zz >37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X ,Z =X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解 由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在⎪⎭⎫ ⎝⎛-2π,0内恒不为零,因此,当0 < y <π2时,π2)tan 1(π2sec )(22=+=y y y f Y 即Y 服从区间(0 , 2π)上的均匀分布.z = x 1在x >0时也是x 的单调函数,其反函数x =z 1, x′ z =21z-.因此当z >0时,)1(π2])1(1[π21)(222z zz z fz +=+-=⎪⎩⎪⎨⎧≤+=0,00,)1(π2)(2z z z z f z > 即Z =X1与X 同分布. 38. 一个质点在半径为R ,圆心在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) .解 如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是一个连续型随机变量,L 服从[0,πR ]上的均匀分布.⎪⎩⎪⎨⎧≤≤=.,0π0,π1)(其他,R l Rl f LM 点的横坐标X 也是一个随机变量,它是弧长L 的函数,且X = R cos θ = R cosRL函数x = R cos l / R 是l 的单调函数 ( 0< l < πR ) ,其反函数为l = R arccosRx 22xR R l x--='当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(x R R x R R x f X -=⋅--=当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望. 解 根据第2题中所求出的X 概率分布,有2138223815138210=⨯+⨯+⨯=EX 亦可从X 服从超几何分布,直接计算2120521=⨯==N N nEX 在第3题中21161216611690=⨯+⨯+⨯=EX亦可从X 服从二项分布(2,41),直接用期望公式计算:21412=⨯==np EX在第5题中(1) 3.122014220934492431=⨯+⨯+⨯+⨯=EX (2) 3.022013220924491430=⨯+⨯+⨯+⨯=EY在第6题中,25.2220843220108222027122010=⨯+⨯+⨯+⨯=EX在第11题中,⎪⎭⎫⎝⎛+⨯+⨯+⎪⎭⎫ ⎝⎛-⨯=d 313312d 311EX图2-131|<d <|0 d 22+=40. P { X = n } =nc, n =1, 2, 3, 4, 5, 确定C 的值并计算EX .解 160137543251==++++=∑=c c c c c c n c n13760=C 137300551==∑⋅==C n c n EX n 41. 随机变量X 只取-1, 0, 1三个值,且相应概率的比为1 : 2 : 3,计算EX .解 设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 } =3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=⨯+⨯+⨯-=EX 42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2? 解 EX =P { X =1 } =0.8,( EX )2=0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n,n 为正整数. 解 当n 为奇数时,)(x f x n是奇函数,且积分x x xn d e 0-∞⎰收敛,因此0d e5.0||=⎰=-∞+∞-x x EX x n n当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-⎰=⎰=!)1(d e 0n n x x x n =+Γ=⎰=-∞+44. 随机变量X ~f ( x ) ,⎪⎩⎪⎨⎧-≤≤=.,0,21,2,10,)(其他<<x x x x x f 计算EX n(n 为正整数) . 解 x x x x x x x f x EXn n n nd )2(d d )(21101⎰-+⎰=⎰=+∞+∞-1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n45. 随机变量X ~f ( x ) ,⎩⎨⎧≤≤=.,0,10,)(x cx x f bb ,c 均大于0,问EX 可否等于1,为什么?解 11d d )(10=+=⎰=⎰∞+∞-b cx cx x x f b 而2d 101+=⎰=+b cx cx EX b 由于方程组⎪⎪⎩⎪⎪⎨⎧=+=+1211b c b c无解,因此EX 不能等于1. 46. 计算第6,40各题中X 的方差DX . 解 在第6题中,从第39题计算知EX =49, 22012152208492201084220272=⨯+⨯+=EX DX =EX 2-( EX )2≈0.46在第40题中,已计算出EX =137300, c cn n c n EX n n 15515122=∑=⨯∑=== =137900DX =EX 2-(EX )2≈1.7747. 计算第23,29各题中随机变量的期望和方差.其他其他解 在第23题中,由于f ( x ) =x21(0<x <1),因此31d 21=⎰=x xxEX51d 22102=⎰=x xx EXDX = EX 2- ( EX )2 =454 在第29题中,由于f ( x ) =2π2x( 0<x <π ) , 因此π32d π2π022=⎰=x xEX2πd π22π0232=⎰=x x EX DX =EX 2- ( EX )2=18π248. 计算第34题中随机变量Y 的期望和方差. 解 EY =π2d 1π2d )(12=⎰-=⎰∞+∞-y y y y y yf Y EY 2=21d 1π21022=⎰-y y y DY =222π28ππ421-=-49. 已知随机变量X 的分布函数F ( x ) 为:F ( x ) =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≤-++-.1,11022101,2211,022x x ,x x x x x x ,<-,<,<计算EX 与DX .解 依题意,X 的密度函数f ( x ) 为:⎪⎩⎪⎨⎧≤-≤-+=.010,101,1)(其他,<,<,x x x x x f解 EX =0d )1(d )1(0101=-⎰++⎰--x x x x x xEX 2=61d )1(d )1(102012=-⎰++⎰-x x x x x x DX =61 50. 已知随机变量X 的期望E X =μ,方差DX =σ2,随机变量Y = σμ-X , 求EY 和DY .解 EY =σ1( EX -μ ) =0 DY =2σDX=151. 随机变量Y n ~B ( n , 41) ,分别就n =1, 2, 4, 8, 列出Y n 的概率分布表,并画出概率函数图 .其中a = 1/65536 . 图略 .52. 设每次试验的成功率为0.8,重复试验4次,失败次数记为X ,求X的概率分布 . 解 X 可以取值0, 1, 2, 3, 4 .相应概率为P ( X =m ) =m m mC 2.08.0444⨯⨯-- ( m=0, 1, 2, 3, 4 ) 计算结果列于下表53. 设每次投篮的命中率为0.7,求投篮10次恰有3次命中的概率 ;至少命中3次的概率 .解 记X 为10次投篮中命中的次数,则 X ~B ( 10 , 0.7 ) .{}009.03.07.0373310≈==C X P{}{}{}{}21013=-=-=-=≥X P X P X P X P=1-0.310-10×0.7×0.39-45×0.72×0.38≈0.998454.掷四颗骰子,求“6点”出现的平均次数及“6点”出现的最可能(即概率最大)次数及相应概率.解 掷四颗骰子,记“6点”出现次数为X ,则X ~B (4,61).EX = np =32由于np + p = 65,其X 的最可能值为[ np + p ]=0{}1296625)65(04===X P 若计算{}12965001==X P ,显然{}{},3,2==x P x P{}4=x P 概率更小.55.已知随机变量X ~B (n , p ),并且EX =3,DX =2,写出X 的全部可能取值,并计算{}8≤X P .解 根据二项分布的期望与方差公式,有⎩⎨⎧==23npq np 解方程,得q =32,p =31,n =9 .X 的全部可能取值为0, 1, 2, 3, …, 9 .{}{}918=-=≤X P X P= 1-9)31(≈ 0.999956.随机变量X ~B (n ,p ),EX =0.8,EX 2=1.28,问X 取什么值的概率最大,其概率值为何? 解 由于DX = EX 2-(EX)2=0.64, EX =0.8, 即⎩⎨⎧==8.064.0np npq 解得 q = 0.8,p = 0.2,n = 4 .由于np +p =1,因此X 取0与取1的概率最大,其概率值为{}{}4096.08.0104=====X P X P57.随机变量X ~B (n , p ),Y =e aX,计算随机变量Y 的期望EY 和方差DY .解 随机变量Y 是X 的函数,由于X 是离散型随机变量,因此Y 也是离散型随机变量,根据随机变量函数的期望公式,有 }{ }{∑+==∑==∑+==∑∑====-==-==-ni n a i n i a in ni ai ni na i n i a i n ni ni in i i n ai ai q p q p C i X P EY q p q p C qp C i X P EY 022022000)e ()e ()e ()e ()e (e en ap n ap q q DY 22)e ()e (+-+=58. 从一副扑克牌(52张)中每次抽取一张,连续抽取四次,随机变量X ,Y 分别表示采用不放回抽样及有放回抽样取到的黑花色张数,分别求X ,Y 的概率分布以及期望和方差. 解 X 服从超几何分布,Y 服从二项分布B (4,21).)4,3,2,1,0(45242626===-m C C C m X P m m }{)4,3,2,1,0()21()21(44===-m C m Y P mm m }{具体计算结果列于下面两个表中.X 0 1 2 3 4 P46/833 208/833 325/833208/833 46/833Y 0 1 2 3 4 P1/164/166/164/161/161 2214171651485226522641252264211===⨯===⨯⨯⨯=--⋅⋅==⨯==npq DY np EY N n N N N N N n DX N N n EX 59. 随机变量X 服从参数为2的泊松分布,查表写出概率4,3,2,1,0,==m m X P }{并与上题中的概率分布进行比较.X0 1 2 3 4 P0.13530.27070.27070.18040.090260.从废品率是0.001的件产品中,一次随机抽取500件,求废品率不超过0.01的概率. 解 设500件中废品件数为X ,它是一个随机变量且X 服从N=,1N =100,n =500的超几何分布.由于n 相对于N 较小,因此它可以用二项分布B (500,0.001)近似.又因在二项分布B (500,0.001)中,n =500比较大,而p =0.001非常小,因此该二项分布又可用泊松分布近似,其分布参数λ=np =0.5.}∑=≈≤=≤⎩⎨⎧=-505.0999986.0e !5.05X 001.0500m m m P XP }{ 61.某种产品每件表面上的疵点数服从泊松分布,平均每件上有0.8个疵点,若规定疵点数不超过1个为一等品,价值10元;疵点数大于1不多于4为二等品,价值8元;4个以上者为废品,求: (1)产品的废品率; (2)产品价值的平均值解 设X 为一件产品表面上的疵点数目,(1)}{}>{314≤-=X P X P ∑==-==30014.01m m X P }{(2)设一件产品的产值为Y 元,它可以取值为0,8,10.)(61.98088.0101898.08 110418 10108800元}{}<{}{}{}{≈⨯+⨯=≤+≤==⨯+=⨯+=⨯=X P X P Y P Y P Y P EY62.设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有一个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解 设一页书上印刷错误为X ,4页中没有印刷错误的页数为Y ,依题意,}{}{21===X P X P 即 λλλλ--=e !2e2解得λ=2,即X 服从λ=2的泊松分布.2e 0-===}{X P p显然Y ~B )e ,4(2-84e 4-===p Y P }{63.每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有一只老鼠的概率为有两只老鼠概率的两倍,求粮仓内无鼠的概率. 解 设X 为粮仓内老鼠数目,依题意λλλλ--⨯====e !22e2212}{}{X P X P解得λ=1.1e 0-==}{X P。
经济数学基础习题答案集
《经济数学基础》习题答案集配高等教育出版社 黎诣远主编书经济数学基础习题答案集,赶在同学们参加全国电大统一考试前编出,其目的是方便同学们自学和总复习。
还有一部分习题未给出答案,实在是时间太紧。
本习题解答集中尚有不妥之处,恳请同学们在使用过程中批评指正。
祝同学们考试获得成功。
编者2001.11.1245页练习1.1答案2.)(0f =2 321)1(2==+f 62222=+))=(-(-f 3211122+++++x x x x f =))=(( 312122++++x x x f ==)(22221211x x x x f ++=))=((3.)(x f 的定义域(-2<x ≤1)∪(1<x <2) ∴D (-2,2)2112+--))=((f =32112+))=((f =32723523=)=(-f4.(1))(x f 的D :R)(x g 的D :R但)(x f 的值域R ,)(x g 的值域[0,+∞]∴)(x f 与)(x g 不同(2))(x f 的值域是R ,)(x g 的值域是[0,+∞]∴)(x f 与)(x g 不同.(3))(x f 的D 是R ,)(x g 的D 是x ≠1∴)(x f 与)(x g 不同.5.(1)由图象可知,y =5x 在(0,+∞)单调增加(2)∵y =(x -3)2-4,∴函数y =x 2-6x +5的对称轴是x =3,且开口向上,因此x ∈(-∞,3)单调减少(3)∵y =(x -1)2,∴对称轴是x =1,开口向上,∴x ∈(-∞,1)单调减少,(1,+∞)单调增加,而在x ∈(0,+∞)上无单调性.6.(1)∵)(-)(+))=(-(-x x x x f --2335=)(]23[35x f x x x --+-=且D 是R ,∴)(x f 是奇函数.(2)∵)(=)=()=-(-x f x x x x x f sin sin -且D 是R ,∴)(x f 是偶函数.(3)∵)(=)=(-x f a a x f xx 2+- 且D 是R ,∴)(x f 是偶函数. (4)∵15--x x f )=(-非奇非偶 7.设t 表示通话时间,F 表示通话费 则⎩⎨⎧-+)3(15.03.03.0t t f )=( t t <≤<33057练习1.4答案1.(1)根据S n =P (1+nr ),∴%)+(=951200⨯⨯n S =290(元)(2)根据复利公式S n =P (1+r )n ∴500=200(1+r )10, ∴2.5101=1+r ,∴r =2.5101-1=0.0959=9.6%(3)根据复利公式S n =P (1+r )n ∴250=P (1+10%)5,∴P =23.1556105.1250)1.1(2505==元 2.根据公式P =o R =221)1(1r R r R ++++…… ∴P =2%)71(700%71300+++=4026.170007.1300+=280.37+499.07=779.44元. 67页练习1.5答案1.市场均衡则s d q q = ∴25-P =340320-P ⇒0P =5,∴0q =20 即均衡价格P =5,均衡数量是20.2.根据题意⎪⎩⎪⎨⎧⋅⋅-+⋅10980)800(8008080q qq R )=()<()<(10008008000≤≤q q ∴⎩⎨⎧+64007280q qq R )=( 10008008000<<<q q ≤ 3.(1)设C =0C +q C 1∵q =0,C =100⇒0C =100;q =100,C =400⇒1C =3∴成本函数为)(q C =100+3q ,固定成本为0C =100. (2))(200C =100+3×200=700 而3100+)=(qq C,∴5.3200)=(C4.∵P =200-q 51,∴251200q q q R -)=(222008.020051200200200⨯⨯⨯=-)=(R =32000 5.(1))()-()=(q C q R q L =782--q q(2)L (4)=9,∵q q q L 78--)=(,∴494)=(L (3)∵L (10)=8×10-102-7=-27,∴销量为10时亏损27. 6.盈亏平衡时L (q )=0∴令8q -q 2-7=0⇒q 2-8q +7=0,∴q =1,q =7 即销量1<q <7时盈利销量小于1或大于7时亏损,销量为1或7时盈亏平衡。
经济数学基础第1章
记为 lim f ( x) A , 或者 x x0
f ( x) A( x x0 ) .
y
当x在x0的去心邻
域时,函数y f ( x) 图形完全落在以直
A
A
A
线y A为中心线,
宽为2的带形区域内. o
y f (x)
x0 x0 x0
x
显然,找到一个后,越小越好.
y
单侧极限:
y1 x
x0 x
2
lim(1 1 )x e
x
x
1
或lim(1) e. 0
1.6 函数的连续性
1.6.1 函数连续的概念 1.6.2 初等函数的连续性 1.6.3 闭区间上连续函数的性质
1.6.1 函数连续的概念
定义 设函数 f ( x) 在U( x0, ) 内有定义,如果
函数 f ( x) 当 x x0 时的极限存在,且等于它在
lim
n
xn
a,
或 xn a (n ).
1.2.2 函数的极限
问题:函数 y f ( x) 在 x x0 的过程中, 对应函数
值 f (x) 无限趋近于确定值A .
x x0 时 f (x) 的极限 定义 若对任意给定的正数 > 0, 总存 在正数 >0,只要 f 的定义域中的点 x 满 足0<|x x0|< 时,恒有 |f(x)A|< 成 立,则称常数A 是函数 f(x) 当 x x0时 的极限,简称 A 是 f (x)在 x0 处的极限.
点 x0处的函数值
那末就称函数 f (
f( x)
x ) ,即 lim f
0
在点
x0
连x续x0 .
(
x
经济应用数学基础微积分第九章课件
形如 dy f (x)g( y) 的方程,称为变量分离方程. dx
例如 dy xe y e ydy xdx,
dx
解法 设函数g( y)和 f ( x)是连续的,
1 g( y)
dy
f
(
x)dx
分离变量法
设G( y)和F (x)分别为 1 和f (x)的原函数,则 g( y)
G( y) F( x) C 为微分方程的解.
第九章 微分方程与差分方程简介
一、微分方程的一般概念 二、一阶微分方程 三、几种二阶微分方程 四、二阶常系数线性微分方程 五、差分方程简介
9.1 微分方程的一般概念
1、问题的提出
引例 1 一曲线通过点(1,2),且在该曲线上任一点
M ( x, y)处的切线的斜率为2 x,求这曲线的方程.
解 设所求曲线为 y y(x),则
三、不显含自变量的二阶微分方程y'' f ( y, y ')
一、最简单的二阶微分方程
形 如 y f (x) 的微分方程是最简单的二阶微
分方程。
特点:右端是 x 的一元函数。
解法:连续求 两 次积分。
例 解微分方程
y xex
二、不显含函数的微分方程y'' f ( x, y ')
常微,偏微,阶,通解,特解。 二、变量分离微分方程的解法
三、齐次微分方程的解法: y ux
三、一阶线性微分方程
一阶线性微分方程的标准形式:
dy P( x) y Q( x) dx
当Q( x) 0, 上方程称为齐次的.
当Q( x) 0, 上方程称为非齐次的.
例如 dy y x2 , dx x sin t t 2 , 线性的;
经济数学基础 (2)
经济数学基础1. 引言经济学作为一门社会科学,研究经济系统的运行和决策。
而经济数学作为经济学的一个分支,通过运用数学工具来解决经济学中的问题,为经济决策提供科学的依据。
本文将介绍经济数学的基础概念和常用模型,帮助读者理解经济数学的应用和意义。
2. 供求关系供求关系是经济学中最基本的概念之一。
供给是指市场中各个卖方愿意以一定价格出售商品或服务的数量,而需求是指市场中各个买方愿意以一定价格购买商品或服务的数量。
供需关系的均衡决定了市场价格和交易量。
在经济数学中,供给和需求的关系可以通过需求曲线和供给曲线来表示。
需求曲线表示不同价格下消费者愿意购买的商品或服务的数量,而供给曲线表示不同价格下生产者愿意提供的商品或服务的数量。
当两条曲线交叉时,市场达到均衡,此时的价格和交易量即为市场的均衡价格和均衡交易量。
3. 边际分析边际分析是经济学中的重要工具之一。
它是指对某一变量的微小变化所引起的效果的分析。
边际效应是指当某一变量发生微小变化时,对一个决策结果的影响。
在经济数学中,边际效应可以通过边际成本和边际收益来分析。
边际成本指的是增加或减少一个单位产品或服务所需要的额外成本,而边际收益指的是增加或减少一个单位产品或服务所带来的额外收益。
边际收益减去边际成本得到的结果即为边际效应。
通过边际分析,可以帮助决策者做出最优的决策。
4. 弹性弹性是经济学中用来衡量供需关系和价格变化之间的关系的指标。
市场上的商品和服务对价格变化的反应程度不同,可以通过弹性来描述。
在经济数学中,常用的弹性指标有价格弹性和收入弹性。
价格弹性是指需求或供给对价格变化的敏感程度,收入弹性是指需求对收入变化的敏感程度。
弹性的数值越大,表示对价格变化的反应越敏感。
5. 静态和动态分析经济数学可以用于对经济系统进行静态分析和动态分析。
静态分析是指对经济系统在某一时刻的状态和均衡进行分析。
动态分析是指对经济系统在一段时间内的变化和发展进行分析。
在静态分析中,可以通过供求关系和边际分析来确定市场均衡价格和交易量。
经济数学基础试题及答案
经济数学基础试题及答案一、单项选择题(每题2分,共10分)1. 下列函数中,哪一个是偶函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^2 + x \)D. \( f(x) = \sin(x) \)答案:A2. 微积分中,求定积分 \(\int_{0}^{1} x^2 dx\) 的值是多少?A. 0B. 1C. \(\frac{1}{3}\)D. 2答案:C3. 线性代数中,矩阵 \( A \) 与矩阵 \( B \) 相乘,结果矩阵的行列数是什么?A. \( A \) 的行数与 \( B \) 的列数B. \( A \) 的行数与 \( B \) 的行数C. \( A \) 的列数与 \( B \) 的列数D. \( A \) 的列数与 \( B \) 的行数答案:D4. 概率论中,如果事件 \( A \) 和事件 \( B \) 是互斥的,那么\( P(A \cup B) \) 等于什么?A. \( P(A) + P(B) \)B. \( P(A) - P(B) \)C. \( P(A) \times P(B) \)D. \( P(A) / P(B) \)答案:A5. 经济学中,边际效用递减原理指的是什么?A. 随着消费量的增加,每增加一单位商品带来的额外满足感逐渐减少B. 随着消费量的增加,每增加一单位商品带来的额外满足感逐渐增加C. 随着消费量的增加,每增加一单位商品带来的额外满足感保持不变D. 随着消费量的减少,每增加一单位商品带来的额外满足感逐渐增加答案:A二、填空题(每题3分,共15分)1. 函数 \( f(x) = 2x + 3 \) 的反函数是 ________。
答案:\( f^{-1}(x) = \frac{x - 3}{2} \)2. 函数 \( y = x^2 \) 在 \( x = 1 \) 处的导数是 ________。
《经济数学基础》课件
欢迎来到《经济数学基础》PPT课件!这个课程将帮助您回顾数学基础,深入 了解微积分、线性代数和概率论的基本概念以及它们在经济学中的应用。准 备好迎接数学的魅力了吗?让我们开始吧!
课程介绍
在本节中,我们将介绍《经济数学基础》课程的目标和大纲,并讨论学习数 学在经济学中的重要性。
数学基础回顾
1
代数与方程
通过回顾代数和方程的基本概念,我们将建立数学思维的基础。
2
几何与图形
了解几何和图形的基本原理,为后续的微积分和线性代数打下坚实的基础。
3
函数与图像
研究函数的性质和图像,掌握函数在经济学建模中的应用。
微积分基础
1 极限与连续
学习极限和连续的概念, 理解微积分的基本原理。
2 导数与微分
概率论基础
随机变量与概率分布
学习随机变量和概率分布的基本概念,掌握它 们在经济学中的应用。
假设检验与置信区间
应用假设检验和置信区间解释经济学中的统计 结果。
期望值与方差
了解期望值和方差的含义,并学习如何计算和 解释它们。
应用案例分析
通过实际经济应用案例,将概率论与经济学联 系起来。
经济应用举例
经济数据分析
通过图表和数据分析,探索经济 学中的数学方法。
金融市场建模
应用数学建模技巧解决金融市场 中的实际问题。
优化问题求解
利用数学优化方法解决经济学中 的优化问题。
课程总结
我们回顾了数学基础,学习了微积分、线性代数和概率论的基本概念,并将 它们应用于经济学中。希望这门课程对您的学习和职业发展有所帮助!
掌握导数和微分的定义, 并学习如何应用它们解决 经济学问题。
3 积分与面积
经济数学基础重难点解析
例3
(1)若某种商品的需求量q是价格p的函数,q=100·2-p,则它的需求弹 性Ep=
(2)某商品的需求弹性为Ep=-bp(b>0)。那么,当价格p提高1%时, 需求量将会( )
A.增加bp B.减少bp
C.减少bp% D.增加bp%
解 (1)
E p q (p p )q '(p )p ( 1 1 0 0 2 2 p 0 0 p ln 2 ) p ln 2
保会通财务软件 bhtsoft/
经济数学基础重难点解析
保会通财务软件
保会通财务软件 bhtsoft/
第一章 函数
一、函数的概念
1、函数的定义域 函数的定义域是使函数有意义的自变量取值的全体。它的基本要求是: (1)分式的分母不能为零。 (2)偶次方根下的表达式非负。 (3)对数函数中的真数表达式大于零。 如果函数是由多个表达式的代数和构成,则定义域为使各表达式有意义
当|Ep|=1时,商品需求量相对变化的百分比等于相对价格 的百分比,此时无论是降价还是涨价,对收入基本没有影 响。
当|Ep|<1时,商品的需求量相对变化的百分比,此时,降 价将使收入减少,反之适当涨价,需求量虽然降低,但降 低的幅度小于涨价的幅度,因此,收入将会增加。
保会通财务软件 bhtsoft/
保会通财务软件 bhtsoft/
三、需求弹性 由需求弹性公式
E pq (p p )q '(p )lim q ( p p )//q p (p ) 可知,之需pp比求的弹极性限是(△需p求→q0()p。)的因相此对,改需变求量弹性可q与q((以pp价)) 理格解p为的需相求对量改变变化量的
导数运算的重点是复合函数求导数,难点是复合函数求导数和隐函 数求导数。
经济数学基础(线性代数)讲义.doc
经济数学线性代数学习讲义合川电大兰冬生1,矩阵:A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,称为矩阵。
认识矩阵第一步:行与列,横为行,竖为列, 第一行依次0,1,2, 第二行1,1,4 第一列0,1,2这是一个三行三列矩阵, 再给出一个三行四列矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=12614231213252A 教材概念的m 行n 列矩阵。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211,这个矩阵记作n m A ⨯,表明这个矩阵有m 行,n 列,注意行m 写在前面,列n 写在后面,括号里面的称为元素,记为ij a ,i 是行,j 是列, 例如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----12614231213252是三行四列矩阵,也说成43⨯矩阵,注意行3在前面,列4在后面,这里211=a (就是指的第一行第一列那个数) 123-=a (就是指的第二行第三列那个数) 2,矩阵加法矩阵加法,满足行列相同的矩阵才能相加,对应位置的数相加。
例如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--011101010+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-021512220 减法是对应位置的数相减。
,3,矩阵的乘法矩阵乘法参看以下法则:注意字母对应⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a ⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211b b b b b bb b b ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯=333323321331323322321231313321321131332323221321322322221221312321221121331323121311321322121211311321121111b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a 说明:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a ⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211b b b b b bb b b =⎦⎢⎢⎢⎣⎡33323122211211c c c c c c c 乘积的结果矩阵11c 等于第一个矩阵的第一行元素11a 12a 13a 乘以第二个矩阵的第一列元素11b 21b 31b ,注意是对应元素相乘,再求和。
《经济数学基础》答案
第17题: 下面哪一个可以用泊松分布来衡量( B)。
A一个班学生们的身高B一段道路上碰到坑的次数C投掷硬币时遇到正面朝上的概率D某稀有金属的半衰期长短第18题: 线性回归方法是做出这样一条直线,使得它与坐标系中具有一定线性关系的各点的( C)为最小。
A水平距离的平方和B垂直距离的和C垂直距离的平方和D垂直距离的平方第19题: 当两变量的相关系数接近相关系数的最小取值-1时,表示这两个随机变量之间( B)。
A几乎没有什么相关性B近乎完全负相关C近乎完全正相关D可以直接用一个变量代替另一个第20题: 关于概率,下列说法正确的是( ABC)。
A是度量某一事件发生的可能性的方法B概率分布是不确定事件发生的可能性的一种数学模型C值介于0和1之间D所有未发生的事件的概率值一定比1小第21题: 下列哪些方面需要用到概率知识分析其不确定性( ABC )。
A外汇走势B不良贷款率预测C证卷走势D税收确认第22题: 什么样的情况下,可以应用古典概率或先验概率方法( BD )。
A不确定有什么样的结果空间B不确定结果的范围是已知的C不确定结果发生的概率不一样D不确定结果具有等可能性第23题: 关于协方差,下列说法正确的有( ABD )。
A协方差体现的两个随机变量随机变动时的相关程度B如果P=1,则I 和n有完全的正线性相关关系C方差越大,协方差越大D Cov(x,η)=E(X-EX)( η-Eη)第24题: 关于中位数,下列理解错误的有( BC )。
A当所获得的数据资料呈偏态分布时,中位数的代表性优于算术平均数B当观测值个数为偶数时,(n+1)/2位置的观测值,即X(n+1)/2为中位数C当观测值个数为偶数时,(n+1)/2位置的观测值,X(n+1)/2为中位数D将资料内所有观测值从小到大一次排列,位于中间的那个观测值,称为中位数第25题: 线性回归时,在各点的坐标为已知的前提下,要获得回归直线的方程就是要确定该直线的( BD )。
最新电大经济数学基础模拟试题及参考-答案
经济数学基础09秋模拟试题2及参考答案一、单项选择题(每小题3分,共15分)1.下列各函数对中,( )中的两个函数相等.A .2)()(x x f =,x x g =)( B .11)(2--=x x x f ,x x g =)(+ 1 C .2ln )(x x f =,x x g ln 2)(= D .x x x f 22cos sin )(+=,1)(=x g2.当+∞→x 时,下列变量为无穷小量的是( ).A .x x sinB . 12+x xC .21e x - D .)1ln(x + 3.若c x x f x x +-=⎰11ede )(,则f (x ) =( ). A .x 1 B .-x 1 C .21x D .-21x4.设A 是可逆矩阵,且A AB I +=,则A -=1( ).A .B B .1+BC .I B +D .()I AB --15.设线性方程组b X A n m =⨯有无穷多解的充分必要条件是( ).A .m A r A r <=)()(B .n A r A r <=)()(C .n m <D .n A r <)(二、填空题(每小题3分,共15分)6.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = .7.曲线y 在点)1,1(处的切线斜率是 . 8.=+⎰x x xd )1ln(d de 12 . 9.设A 为n 阶可逆矩阵,则r (A )= .10.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→010*********t A ,则__________t 时,方程组有唯一解.三、微积分计算题(每小题10分,共20分)11.设x y x 5sin cos e+=,求y d .12.计算积分 ⎰e1d ln x x x .四、代数计算题(每小题15分,共50分)13.设矩阵 A =⎥⎦⎤⎢⎣⎡--021201,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136,计算(AB )-1. 14.求线性方程组⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 的一般解.五、应用题(本题20分)15.设生产某种产品q 个单位时的成本函数为:q q q C 625.0100)(2++=(万元), 求:(1)当10=q 时的总成本、平均成本和边际成本;(2)当产量q 为多少时,平均成本最小?经济数学基础09秋模拟试题2参考解答一、 单项选择题(每小题3分,共15分)1.D 2. A 3. C 4. C 5. B二、填空题(每小题3分,共15分)6. 45q – 0.25q 27.21 8. 0 9. n 10.1-≠ 三、微积分计算题(每小题10分,共20分)11.解:因为 )(cos cos 5)(sin e 4sin '+'='x x x y xx x x xsin cos 5cos e 4sin -= 所以 x x x x y x d )sin cos 5cos e (d 4sin -=12.解:⎰⎰-=e 12e12e1)d(ln 21ln 2d ln x x x x x x x414e d 212e 2e 12+=-=⎰x x 四、线性代数计算题(每小题15分,共30分)13.解:因为AB =⎥⎦⎤⎢⎣⎡--021201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136=⎥⎦⎤⎢⎣⎡--1412 (AB I ) =⎥⎦⎤⎢⎣⎡-→⎥⎦⎤⎢⎣⎡--1210011210140112 ⎥⎥⎦⎤⎢⎢⎣⎡→⎥⎦⎤⎢⎣⎡---→121021210112101102 所以 (AB )-1= ⎥⎥⎦⎤⎢⎢⎣⎡12212114.解:因为系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111011101201351223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101201 所以一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中3x ,4x 是自由未知量) 五、应用题(本题20分)15.解:(1)因为总成本、平均成本和边际成本分别为:q q q C 625.0100)(2++=,625.0100)(++=q qq C , 65.0)(+='q q C .所以,1851061025.0100)10(2=⨯+⨯+=C ,5.1861025.010100)10(=+⨯+=C , 116105.0)10(=+⨯='C .(2)令 025.0100)(2=+-='qq C ,得20=q (20-=q 舍去). 因为20=q 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.。
经济数学基础讲义 第9章 矩阵
第2章 矩阵2.1 矩阵的概念整存整取定期储蓄北京市居民抄表记录卡学生成绩表上面这些长方形表,抽象出来就是我们要讲的矩阵.4323105174-- ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--004323105174⎪⎪⎪⎭⎫ ⎝⎛--004323105174 矩阵一般用大写英文字母C B A ,,表示:如C B A ,,等⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=004323105174A横向称行,竖向称列.A ——43⨯矩阵,每一个位置上的数都是A 的元素, 如1是A 的第2行第2列的元素,记为:122=a .5是A 的第1行第4列的元素,记为:514=a 矩阵定义请看教材第2章定义2.1.补充内容:特别地,当1=m 时,矩阵只有一行,即[]n a a a 11211称为行矩阵;当1=n 时,矩阵只有一列,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡12111m a a a称为列矩阵;当n m =时,矩阵的行列数相同,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211称为n 阶矩阵(或n 阶方阵)在n 阶矩阵中,从左上角到右下角的对角线称为主对角线,从右上角到左下角的对角线称为次对角线.行列数相同的矩阵称为同型矩阵.在矩阵[]nm ija A ⨯=中各个元素的前面都添加一个负号得到的矩阵称为A 的负矩阵,记作A -,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------=-mn m m n n a a a a a aa a a A 212222111211例如⎥⎦⎤⎢⎣⎡--=241502A ,⎥⎦⎤⎢⎣⎡---=-241502A ,这里A -是A 的负矩阵.例1 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=127002154B 这是4行2列矩阵.2.2 矩阵的运算 1.矩阵相等例如,一日产量的统计表⎥⎦⎤⎢⎣⎡232221131211a a aa a a 丙乙甲 第一天的产量为32][⨯=ij a A , 第二天的产量为32][⨯=ijb B , 3,2,1;2,1===j i b a ijij由此可以得到矩阵相等的定义.若B A ,满足: (1) B A ,同形(2) 对应元素分别相等,即ij ij b a =, 则称B A =. 矩阵加法][ij ij b a B A +=+,用C 记为B A ,的和,即][ij ij b a B A C +=+=规定如下(1)B A ,同形,于是C 同形.(2) 对应元素分别相加. 矩阵加法满足两条运算规律:性质1(交换律) A B B A +=+ 性质2(结合律) )()(C B A C B A ++=++O 矩阵,记为[]n m O ⨯=0,且A A O O A =+=+2.矩阵的数量乘法 A 是n m ⨯矩阵,λ是实数,C A A ==λλ,则一班二班(1) C 和A 同形(2) ij ij a c λ=,即A 中每个素都乘以λ特别地:O A =0, A A =1注意:O A =0中定义为,等式左边是数0与矩阵A 的乘积,而右边是零矩阵.矩阵减法定义为:)(B A B A -+=-,即矩阵A 减矩阵B 等于A 加B 的负矩阵)(B -.其中98748510311=⨯+⨯+⨯=c ,2314253312=⨯+⨯+⨯=c92748310421=⨯+⨯+⨯=c ,2214233422=⨯+⨯+⨯=c⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=1728310434453AB =⎥⎦⎤⎢⎣⎡22922398 {n m ij a A ⨯=][,11][n m ij b B ⨯=} 1.仅当1m n =时,才能做乘法AB . 2.若C AB =,则C ——1n m ⨯3.若][ij c C =,则nj in j i ij b a b a c ++= 11 (行乘列法则) (矩阵乘法定义请阅读教材第2章定义2.5)矩阵乘法的运算性质B A B A λλλ+=+)( (数对矩阵的分配律)AC AB C B A +=+)( (矩阵的左分配律) CA BA A C B +=+)( (矩阵的右分配律)4.矩阵的转置设⎥⎦⎤⎢⎣⎡=f e d c b a A ,将A 第一行元素写在T A 第一列处,A 第二行元素写在T A 第二列处,这样就可得到A 的转置矩阵.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=f ce bd a A T 转置矩阵的性质A A =T T )( T )(B A B A T T +=+ T )(kA =T kA T T T )(A B AB =补充内容数乘矩阵所满足的算律 设A ,B 为任意n m ⨯ k , h 为任意实数,可以验证数与矩阵的乘法满足:(1)k (A+B )=k A+ k B (2)(k+ h )= k A+ h A (3)(k h )A=k (h A ) (4)A A =1,A A -=-)1( 例1 设⎥⎦⎤⎢⎣⎡=2131A ,⎥⎦⎤⎢⎣⎡=2100B因为ij ij b a ≠)2,1,(=j i ,所以B A ≠ 例2 设⎥⎦⎤⎢⎣⎡=010321A ,⎥⎦⎤⎢⎣⎡-=100211B ,求B A +. 解:⎥⎦⎤⎢⎣⎡-=+110532B A例3 设[]010=A ,⎥⎦⎤⎢⎣⎡=4321B ,求B A +. 解:因为B A ,不同形,所以B A +不能进行.例4 设[]101=A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=210B ,⎥⎦⎤⎢⎣⎡=4321C ,求AB ,BA 和AC . 解:AB =[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡210101=[2] BA =[]101210⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡202101000AC 不能相乘.例6 设⎥⎦⎤⎢⎣⎡-=3764A ,⎥⎦⎤⎢⎣⎡---=3564B ,⎥⎦⎤⎢⎣⎡--=371821C 计算BC AC 33+. 解: BC AC 33+=C B A )(3+=+B A ⎥⎦⎤⎢⎣⎡-3764+⎥⎦⎤⎢⎣⎡---3564=⎥⎦⎤⎢⎣⎡--+--33576644=⎥⎦⎤⎢⎣⎡0200C B A )(+=⎥⎦⎤⎢⎣⎡0200⎥⎦⎤⎢⎣⎡--371821=⎥⎦⎤⎢⎣⎡1642000C B A )(3+=⎥⎦⎤⎢⎣⎡16420003 =⎥⎦⎤⎢⎣⎡48126000例7 B A ,均为43⨯矩阵,问下列乘法能否进行,若能,其乘积矩阵为几行几列?T T ,,,AB B A BA AB解:B A BA AB T ,,——4阶,T AB ——3阶 2.3 几类特殊矩阵O 矩阵 所有元素都为零的矩阵。
(整理)《经济数学基础》主要公式.
《经济数学基础》主要公式一、两个重要极限○10sin lim 1x x x →=,或0lim 1sin x xx→=;它的推广形式:sin ()lim1()u x u x =,(其中()0u x →)○21lim(1)xx x e →+=,或1lim(1)xx e x→∞+=; 它的推广形式:若()0u x →且lim ()()u x v x A =,则()lim[1()]v x A u x e +=。
③常用的等价无穷小量()0u x →时,()sin ()~()u x u x 、()tan ()~()u x u x 、()1~()u x e u x -、()ln 1()~()u x u x +()~(0)2u x a a a>二、导数及微分1.导数的定义xx f x x f x f x ∆-∆+='→∆)()(lim)(0000,000)()(lim )(0x x x f x f x f x x --='→记作:()f x ',y ',dydx ,()d f x dx在函数)(x f 任意一点x 导数的定义:x x f x x f x f x ∆-∆+='→∆)()(lim)(00()()()limh f x h f x f x h →+-'= 2.微分的定义()dy y dx f x dx ''==3.导数及微分主要公式:1︒.()0C '=; 0dC = (C 为任意常数) 2︒.1()x xααα-'=; 1()d x xdx ααα-= (α为任意实数)3︒.()ln xxa a a '= ln x xda a adx = (0,1a a >≠) 特别地()x x e e '= x xde e dx =4︒.1(log )ln a x x a '=1(log )ln a d x dx x a =(0,1a a >≠) 特别地1(ln )x x '= 1(ln )d x dx x=5︒.(sin )cos x x '= (sin )cos d x xdx = 6︒.(cos )sin x x '=- (cos )sin d x xdx =-7︒.221(tan )sec cos x x x '==221(tan )sec cos d x xdx dx x== 8︒.221(cot )csc sin x x x '=-=- 221(cot )csc sin d x xdx dx x=-=- 4.复合函数求导法则:若函数()u u x =在点x 可导,函数()y f u =在点u 处可导,则复合函数(())y f u x =在点x 可导,且:0()u u x dy dy dudx du dx==⋅ 或记作[])())(())((x u x u f x u f '⋅'='α5.常用的复合函数求导公式: 1︒.)())((]))([(1x u x u x u '⋅='-ααα (α为常数)2︒.)(ln )()()(x u a a ax u x u '⋅=' 特别地:)()()()(x u e e x u x u '⋅='3︒.)(ln )(1))((log x u a x u x u a '⋅=' 特别地:)()(1))((ln x u x u x u '⋅='4︒.)())(cos(]))([sin(x u x u x u '⋅=';)())(sin(]))([cos(x u x u x u '⋅-=' 6.求导与微分的基本法则设()u u x =,()v v x =,()w w x =均可微;,a b 是任意常数,则 1︒.()au bv au bv '''±=±; ()d au bv adu bdv ±=± 2︒.()u v u v uv '''⋅=+; ()d u v vdu udv ⋅=+3︒.2()u u v uv vv ''-'=; 2()u vdu udv d v v -= 特别地:21()v v v ''=-; 21()dvd v v=-4︒.()uvw u vw uv w uvw ''''=++ ()d uvw vwdu uwdv uvdw =++ 7.隐函数的导数设方程(,)0F x y =确定隐函数()y y x =,求y '(或00x x y y y ==')的步骤:1︒、方程(,)0F x y =两边同时对x 求导数,求导过程中视y 为中间变量,得到含有y '的一个方程;2︒、从上述方程中解出y '(或将00,x x y y ==代入上述含有y '的方程,化简并解出0x x y y y ==')8.曲线()y f x =在点00(,)x y 处的切线方程000()()y y f x x x '-=-9.导数的应用 (1)单调性1︒.设函数()y f x =在区间I 上(内)连续,在I 内()0f x '>,则函数()f x 在区间I 上(内)单调增加;2︒.设函数()y f x =在区间I 上(内)连续,在I 内()0f x '<,则函数()f x 在区间I 上(内)单调减少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当矩阵的列数n 1时, 称为列矩阵(或列向量)
a1 a2 B an
二
一些特殊的矩阵
零矩阵:元素全为零的矩阵称为零矩阵
m n的零矩阵记为Omn或O
4 2,
C AB cij
4 1 5 2 B 1 0 1 1
3 2
4 1 3 1 2 1 20 4 5 2 11 3 AB 4 1 1 1 1 0 3 2 1 0 3 1 1 1
两个同型矩阵相减,只要对应元素相减即可。 矩阵加法满足的运算规律:
1 交换律:A B B A. 2 结合律: A B C A B C . 3 A O A, 其中A与O是同型矩阵. 4 A A O .
3
数与矩阵相乘 数乘: 数与矩阵A的乘积记作A或A , 规定为
§ 1、矩阵的定义
一 矩阵概念的引入 许多实际问题中,经常会遇到由若干个数排成行与列的 长方形阵列,在研究问题时常常把这样的一个阵列当作一个 整体来考虑,这样的阵列就叫做矩阵。 例如, 某种品牌的电脑四种型号( A1 , A2 , A3 , A4 )在五个商
场(B1 , B2 , B3 , B4 , B5 )的销售价格(单位:百元)列成下表:
练习题
2 0 1 0 1、 A 4 5 6 1 2 1 7 0 3 1 0 1 B 2 8 11 1 2 1 9 2
求 A B, A, 2B A
3 1 0 2、 A 1 2 1 3 4 2 1 0 2 B 1 1 1 2 1 1
销售问题中的矩阵可称为销售价格矩阵。 通路问题中的通路数表可称为通路矩阵。
矩阵一般以大写的字母 a11 a21 A 即 am 1
A 、B 、C 、等表示 a12 a1 n a22 a2 n (aij ) am 2 amn
注意: 不同阶数的零矩阵是不相同的.
0 0 例如: 0 0
0 0 0 0 0 0 O44 0 0 0 0 0 0
0
0 0 0 O14
它们是不相同的零矩阵!
对角阵: n 阶方阵,主对角元素不全为零,非主对角元素都为零。
a1 diag (a1 , a2 ,an )
k k
即乘积矩阵AB的第i 行第j列交叉点处的元素cij为A的第i 行 元素与B的第j列元素对应乘积后再求和.
例1、求矩阵的乘积AB,其中
3 1 2 1 A 4 1 1 1 1 0 3 2
A aij 34 , 解:
B bij
显然这张表完全反映了销售价格情况,这一表达式在运 用计算机处理时尤为必要。
再如:(通路问题)
a省两个城市a1 , a2和b省三个城市b1 , b2 , b3的交通联接 情况如图
每条线上的数字表示联结该两城市的不同通路总数。
由该图提供的通路信息,可用一张矩形表来表示,称之为通路表。
a1
4 1 3
i 1, 2, m; j 1, 2,, n
并把此乘积记作
C AB.
Amk
Bkn Cmn
为看得更清楚,我们进一步写出矩阵乘积的表达式:
a11 a21 am 1
a12 a22 am 2
a1k a2 k amk
a
ቤተ መጻሕፍቲ ባይዱa a
l 1 l 1 1 1 ll k k
k k
1l 1 l ll 2 2
b b b
2l l 2 2 l l2
a
l 1
k
ml l 2
b
a1 1ll bln ln 1 ll 1 kk a2 lb bln a 2 l ln l 1 l 1 k aml bln l 1
a11 0 0 a12 a1 n a22 a2 n 0 ann a11 a21 a n1 0 a22 an 2 0 0 ann
上三角矩阵
下三角矩阵
三 1 矩阵的相等
3 4 (1) (5) 2 1 1 1 20 3 (1) (1) 2 2 0 1 1 4 4 4 1 (5) 1 1 (1) 1 11 4 (1) 1 2 1 0 (1) 1 3 (1) 4 0 (5) 3 1 2 1 1 (1) (1) 0 2 3 0 2 1 3
注意:只有当第一个矩阵的列数等于第二个矩阵的行数时, 两个矩阵才能相乘.
例如:
1 2 3 1 6 8 3 2 1 5 8 9 6 0 1
不存在.
2 例2、设A 3 2 解: AB 3
1 0 2 ,B ,求AB和BA 1 0 0 1 0 2 1 0 0
B1 A1
B2
B3
B4
B5
83
78 66 59
82
78 70 58
83
75 68 60
80
79 67 60
84
73 68 58
A2 A3
A4
将其简化成如下一个数表
83 78 66 59 82 83 80 84 78 75 79 73 70 68 67 68 58 60 60 58
例如:
x 1 8 3 1 z 4 0 2 4 0 y
则 x 3, y 2, z 8
2 矩阵的加减法 加法: 设两个m n的矩阵A aij , B bij , 那么矩阵A与B的和
记为A B, 且规定为
a11 b11 a21 b21 A B a b m1 m1
a11 a21 A A a m1
a12 a1 n a22 a2 n
a m 1
. amn
A 1 A
1 3 2 2 6 4 2 0 5 2 0 10 4
2 0 1 0 2 2 1 0 0 4 3 0 1 0 3 2 1 0 0 6
0 2 2 1 BA 0 0 3 1
0 2 2 3 0 1 2 1 6 2 0 2 0 3 0 1 0 1 0 0
数量矩阵:
a2
an
n 阶方阵,主对角元素全为非零常数d,其余元素全为零。 d d d n n
单位矩阵: n 阶方阵,主对角元素全为1,其余元素都为零。 1 1 En 记作: En 或 E 1 n n 三角矩阵:
求矩阵X 使得 3 A 2 X B
4
矩阵与矩阵相乘
定义:设A aij 是一个m k 矩阵, B bij 是一个k n矩阵, 那么规定矩阵A与B的乘积是一个m n矩阵C cij
k l 1
cij ai 1b1 j ai 2b2 j aik bkj ail blj
a12 b12 a22 b22 am 2 bm 2
a1 n b1 n a2 n b2 n amn bmn
注意:只有当两个矩阵是同型矩阵时,才能进行加法运算. 两个同型矩阵相加,只要对应元素相加即可。
例如:
12 3 5 1 8 9 1 9 0 6 5 4 3 3 2 1 6 8
b11 b21 bk 1
b1n b22 b2 n bk 2 bkn b12
k k a11llb b ll 11 a 1 1 ll k k a 2l b a l 1 2 l bll11 l 1 k a b ml l 1 l 1
若要强调矩阵的行数与列数,也可表示成:
A Amn (aij )mn
1 0 3 5 例如: A 9 6 4 3 也可表为 : A A24
是一个2 4矩阵
当矩阵的行数 m与列数 n相等时,称为n 阶矩阵或方阵。
a11 a12 a1n a21 a22 a2 n A an1 an 2 ann 方阵A中的元素a11 , a22 ,, ann称为A的主对角元.
矩阵的代数运算与转置
定义 : 对矩阵A (aij )mn , B (bst )k l , 当满足下列条件:
(1)m k且n l ;
(2)aij bij
( i 1, 2, , m; j 1, 2,, n)
则称A与B相等, 记作 : A B
称行数和列数分别相等的两个矩阵为同型矩阵。上述定 义表明同型矩阵对应元素相等时,两个矩阵才相等。
数乘矩阵满足的运算规律:
设A、B为m n矩阵, , 为数
1 A A; 2 A A A; 3 A B A B .
4
1 A A , 0 A O
矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.
12 1 3 8 5 9 13 11 4 1 6 9 5 0 4 7 4 4 . 6 3 3 6 2 8 9 81