《函数的图像》课件

合集下载

人教版高中数学课件-函数的图像

人教版高中数学课件-函数的图像

高考总复习 数学
第二章 函数与基本初等函数
(2)对称变换: y=f(x)―关―于―x―轴―对―称→y=-f(x); y=f(x)―关―于―y―轴―对―称→y=f(-x); y=f(x)―关―于―原―点―对―称→y=-f(-x) y=f(x)关―于―直―线―y―=―x对→称y=f-1(x); y=f(x)关―于―直―线―x―=―a对→称y=f(2a-x); y=f(x)关―于―点―a―,―0―对→称y=-f(2a-x).
[答案] A
高考总复习 数学
第二章 函数与基本初等函数
高考总复习 数学
第二章 函数与基本初等函数
1.運用描點法作圖象應避免描點前的盲目性,也應避免 盲目地連點成線.要把表列在關鍵處,要把線連在恰當處.這 就要求對所要畫圖象的存在範圍、大致特徵、變化趨勢等作一 個大概的研究.而這個研究要借助於函數性質、方程、不等式 等理論和手段,是一個難點.用圖象變換法作函數圖象要確定 以哪一種函數的圖象為基礎進行變換,以及確定怎樣的變換, 這也是個難點.
[答案] 3
高考总复习 数学
第二章 函数与基本初等函数
f(x)是定義在區間[-c,c]上的奇函數,其圖象如右圖 所示,令g(x)=af(x)+b,則下列關於函數g(x)的敘述正確的是
() A.若a<0,則函數g(x)的圖象關於原點對稱 B.若a=1,0<b<2,則方程g(x)=0有大於2的實根 C.若a=-2,b=0,則函數g(x)的圖象關於y軸對稱 D.若a≠0,b=2,則方程g(x)=0有三個實根
高考总复习 数学
第二章 函数与基本初等函数
[解析] 解法一:用淘汰法,当 a<0 时,g(x)=af(x)+b 是非奇非偶函数,不关于原点对称,淘汰 A.当 a=-2,b= 0 时,g(x)=-2f(x)是奇函数,不关于 y 轴对称,淘汰 C.当 a≠0,b=2 时,因为 g(x)=af(x)+b=af(x)+2,当 g(x)=0 有 af(x)+2=0,∴f(x)=-2a,从图中可以看到,当-2<-2a<2 时,f(x)=-2a才有三个实根,所以 g(x)=0 也不一定有三个 实根,淘汰 D.故选 B.

华师大版函数的图像(平面直角坐标系)课件

华师大版函数的图像(平面直角坐标系)课件

函数图像的基本属性
形状
根据函数表达式和函数的性质, 可以判断函数图像的形状。
位置
根据函数的定义域和值域,可以确 定函数图像在坐标系中的位置。
趋势
根据函数的变化趋势,可以判断函 数图像的上升或下降趋势。
02 一次函数的图像
一次函数的定义
一次函数
b的取值
形式为y=kx+b(k≠0)的函数,其 中x和y是变量,k和b是常数。
系统模拟
分段函数可以用于模拟系统的不同状态和行为,例如开关电路、控 制系统等。
05 反比例函数的图像
反比例函数的定义
反比例函数定义
反比例函数是一种特殊的函数,其表 达式为 y = k/x (k ≠ 0)。其中,x 和 y 是自变量和因变量,k 是常数。
反比例函数特性
反比例函数具有两个分支,分别位于 第一象限和第三象限。当 k > 0 时, 图像位于第一象限和第三象限;当 k < 0 时,图像位于第二象限和第四象 限。
二次函数图像的基本属性
总结词
二次函数图像的基本属性介绍
详细描述
二次函数图像是一个抛物线,其开口方向由系数$a$决定,对称轴为$x = -frac{b}{2a}$,顶点坐标为 $left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。
二次函数的应用
总结词
二次函数在实际问题中的应用
详细描述
二次函数在日常生活和科学研究中有着广泛的应用,例如计算物体运动轨迹、解决最优化问题等。
04 分段函数的图像
分段函数的定义
分段函数
分段函数是指函数在其定义域内由若干个不同的区间和对应 于这些区间的不同解析式所表示的函数。

人教版八年级数学下册课件函数的图像函数的图像

人教版八年级数学下册课件函数的图像函数的图像
用图象表示为( B )
Q (升)
Q (升)
Q (升)
Q (升)
40
40
40
40
0 8 t (时) 0 8 t (时) 0 8 t (时) 0 8 t (时
A.
B.
C.
D.
2.最近中旗连降雨雪,德岭山水库水位上涨.如图 表示某一天水位变化情况,0时的水位为警戒水位. 结合图象判断下列叙述不正确的是 ( C )
(4)张强从文具店回家的平均速度是多少?
用平滑曲线去连接画出的点
(1,1) D.
AB
1注、:已函知数1点图.(1象-1可,能2是)曲是线函,数也y=可kx能的是图直象线上,的也一可点能,是则线段或射线,函数图象的形状取决于函数关系和自变量的取值范围。
请根据图象回答下列问题:
(1)在平面直角坐标系中,平面内的点可以用一对
实际问题中的函数图象
思考:下图是自动测温仪记录的图象,它反映了北 京的春季某天气温 T 如何随时间 t 的变化而变化.
你从图象中得到了哪些信息?
T/℃ 8
O4
14
-3
24 t/时
从图象中可以看出这一天中任一时刻的气温.
1、画出函数 y = x + 0.5 的图象
解:(1)从函数解析式可以看出,x的取值范围是 全体实数 . 从x的取值范围中选取一些简洁的数值, 算出y的对应值,填写在表格里:
-2
-3
-4
.
图象上的点与函数关系式的关系:
(1)函数图象上的任意点(x,y)中的x、y满足 函数关系式;
(2)满足函数关系式的任意一对(x,y)的值, 所对应的点一定在函数图象上。
判断下列各点是否在函数 y=x+0.5 的图象上?

函数图像ppt课件

函数图像ppt课件

03
描点法
根据函数表达式,在坐标 系中逐个描出对应的点(x, y),然后用平滑的曲线将 这些点连接起来。
计算法
利用数学软件或计算器, 输入函数表达式,自动生 成函数图像。
表格法
根据函数表达式和已知数 据,制作表格,然后在坐 标系中根据表格数据绘制 出函数图像。
函数图像的观察与分析
观察图像形状
通过观察函数的图像,可以初 步判断函数的类型(如一次函 数、二次函数、三角函数等)
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
06
复合函数的图像
复合函数的定义与性质
总结词
理解复合函数的定义与性质是绘制和分 析其图像的基础。
VS
详细描述
复合函数是由两个或多个函数的组合而成 的函数。它具有一些特殊的性质,如复合 函数的导数、极限等。了解这些性质有助 于更好地绘制和分析复合函数的图像。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
二次函数的图像
二次函数的定义与性质
总结词
二次函数的定义、性质和 表达式
二次函数的定义
二次函数是指形式为 y=ax^2+bx+c(其中a、 b、c为常数,且a≠0)的 函数。
二次函数的性质
二次函数具有开口方向、 顶点、对称轴等性质,这 些性质决定了函数图像的 形状和位置。
复合函数图像的绘制
总结词
掌握绘制复合函数图像的方法是理解其性质 和应用的必要手段。
详细描述
绘制复合函数图像需要使用数学软件或绘图 工具,如Matlab、GeoGebra等。在绘制 过程中,需要注意函数的定义域、值域以及 函数的单调性、奇偶性等性质。

函数的图象(精品课件)

函数的图象(精品课件)
解:(1)汽车从出发到最后停止共经历了24分钟,它的最高速度是90千米/时.
三、认真观察 学会识图:
1.汽车在行驶的过程中,速度往往是变化的,下图表示一辆汽车的速度 随时间变化而变化的情况. (2)汽车在哪些时间段保持匀速行驶?时速分别是多少?
解:(2)在2分钟到6分钟,18分钟到22分钟之间汽车匀速行驶,速度分 别是30千米/时和90千米/时.
S 0 0.25 1 2.25 4 6.25 9 12.25 16 描点:在直角坐标系中,画出表格中各对数
值所对应的点.
连线:把所描出的各点用平滑
S
16
的曲线连接起来.
接下来怎么办呢?
9
4 1 O 1234 x
一般地,对于一个函数,如果把自变 量与函数的每对对应值分别作为点的横、 纵坐标,那么坐标平面内由这些点组成的 图形,就是这个函数的图象.
0-8分钟,离家越来越远;8-25分钟,离家 距离不变,为0.6千米;25-28分钟,离家距离由 0.6千米增加到0.8千米;28-58分钟,离家0.8千 米;58-68分钟,离家越来越近,直至回家.
解答
(1)食堂离小明家多远?小明从家到食堂用了多少 时间? 食堂离小明家0.6km;小明从家到食堂用了8min. (2)小明吃早餐用了多长时间? 25-8=17 小明吃早餐用了17min.
5.温度在零度以下的时间长呢?还是在零度以上
的时间长?
温度在零度以上的时间长
随堂练习
1、下图是某一天北京与上海的气温随时间变 化的图象.
(1)这一天内,上海与北京何时气温相同? (2)这一天内,上海在哪段时间比北京气温高?在 哪段时间比北京气温低?
(1)7,12 (2)高:0~7,12~24 低:7~12

人教版八年级数学下册19.1.2《函数的图像》课件

人教版八年级数学下册19.1.2《函数的图像》课件
如点(2,4)表示x=2时 S=4。
八年级 数学
第十一九章 函数的图象
函数的图象
你记住了吗?
对于一个函数, 如果把自变量 与函数的每对对应值分 别作为点的横、纵坐标,那么坐标平面 内由这些点组成的图形,就是这个函数 的图象。
上图中的曲线即为函数 s x2 (x>0)的图象.
函数图象可以数形结合地研究函数,给我们带来便利。
y
2.5
y=x+0.5
从函数图象可以看出,
直线从左到右上升,
1.5
即当x由小到大时,
y=x+0.5随之增大.
0.5
-1
O -0.5
12x
自己动手画一画 画出函数(2)y 6 x 0 的图象
x
(2)y 6 x 0
列表:
x
x … 0.5 1 1.5 2 2.5 3 3.5 4 5 6 …
S/m
S/m
s1
s2
X/s
O
O
s1 s2
S/m X/s
O
S/m
s1
s1
s2
s2
X/s
X/s
O
A
B
C
D
回归问题
问题:观察下图,你能大致描述男女孩平均身高 在平均身高之上还是之下?你能估计自己18岁时 的身高吗?
八年级 数学
第十一九章 函数的图象
一个思想————数学结合思想 两个关系———应用函数图象研究实际 问题时,注意自变量与函数的对应关系
S=x2

(x>0) 0 0.25 1 2.25 4 6.25 9
如果我们在直角坐标系中,将你所填表格 中的自变量x及对应的函数值S当作一个点的 横坐标与纵坐标,即可在坐标系中得到一些点。

高中数学函数的图像ppt课件

高中数学函数的图像ppt课件
34
真题透析 例 (2010 年高考湖南卷)函数 y=ax2+bx 与 y = logb x(ab≠0,|a|≠|b|)在同一直角坐标系中的图
a
像可能是( )
35
【解析】 从对数的底数入手进行讨论,再 结合各个选项的图像从抛物线对称轴的取值 范围进行判断,故选D. 【答案】 D 【名师点评】 (1)本题易出现以下错误:① 忽视 y= logb x 中底数的绝对值,误认为 a,b
(2)图像的左右平移,只体现出x的变化,与x 的系数无关;图像的上下平移,只与y的变化 有关.
19
识图 对于给定函数的图像,可从图像上下左右分布范 围,变化趋势,特殊点的坐标等方面进行判断, 必要时可借助解方程、解(证)不等式等手段进行 判断,未必非要写出函数的解析式进行判断.
20
例2
(2010年高考山东卷)函数y=2x-x2的图像
过点 P 且与 AB 垂直的截面面积记为 y,则 y=
12f(x)的大致图像是(
)
38
解析:选A.先从起始点排除B,D,再用验证 法,当点P为OA的中点时,截面面积大于大圆 面积的一半,即可判定A正确.
39
x+1,x∈[-1,0 2.已知 f(x)=x2+1,x∈[0,1] ,则下 列函数的图像错误的是( )
11
5.已知下列曲线: 以下编号为①②③④的四个方程 ① x- y=0;②|x|-|y|=0;③x-|y|=0; ④|x|-y=0. 请按曲线 A、B、C、D 的顺序,依次写出与 之对应的方程的编号________.
答案:④②①③
12
考点探究•挑战高考
考点突破
作图 1.熟悉基本初等函数的图像. 2.会通过函数的性质确定图像的形状:如奇偶 性→对称性;函数值的正负→x轴上方下方;渐 近线→变化趋势;过哪些特殊点、定点;极值、 最值等.

人教版初二数学上册公开课《函数的图像PPT精品优秀课件》

人教版初二数学上册公开课《函数的图像PPT精品优秀课件》

漫步在诗书的时间轮,望着赤日炎炎 的夏天 ,思绪 不禁翻 开了卷 卷黄页 。那种 感觉如 夏雨落 入尘世 的前奏 ,秋意 渐渐袭 来了, 恍若濒 临初始 的某一 种感触 一样地 散漫而 来。发 散于一 种感意 ,趋于 身体遍 布,渐 次全方 位被感 触到这 种秋凉 的感受 来。秋 来了, 树枯了 ,叶萎 了,人 意却持 续了这 一年里 的努力 辛苦。 也只有 在秋意 纷飞的 季段, 人总是 忙碌不 庸的。 着眼于 像秋收 一样的 丰功伟 绩,着 实于现 实中的 可堪的 经济效 果,着 助于生 活点滴 的美好 不耐。 秋风来了,早始的凉意轻缓而来,轻 抚至我 的身体 ,抚撩 我赤裸 的上体 。一种 从心底 的温凉 从肌肤 扩至全 身。我 起身进 房披了 被单, 在阳台 上抽烟 ,烟气 氤氲, 火动了 一小丁 清醒且 亢奋的 情绪。 不知哪 里起一 曲歌来 ,心里 荡涤这 曾经的 回忆, 我自语 :秋寒 将至, 伊人何 以安暖 !
3、图象法:直观地反映了函数随自 变量的变化而变化的规律。
观察与思考:
观察函数的图象要注意一些什么事 项呢?
(1)弄清横、纵坐标表示的意义。 (2)自变量的取值范围。 (3)图象中函数随着自变量变化的规律。
回顾 1、画出函数 y = x + 0.5 的图象
解:1、列表
x … -3 -2 -1 0 1 2 3 … y … -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 …
一阵凉风抚面而来,轻盈可人,似伊 人的含 笑视射 ,迎合 她的动 人微凉 ,切合 成一种 内感外 物的融 合无瑕 。没有 的葱绿 的展露 ,没有 飘舞的 雪花, 没有炙 热的气 流,但 总在美 好中寻 找珍贵 。风的 起卷成 势,在 一些人 眼里如 昙花一 现的普 遍,没 有人真 正在意 过,风 的物语 ——浮 华流转 ,一种 美好的 记忆停 留在一 刻,拂 过的记 忆恍若 秋水, 不经不 意,美 好如昨 ,懂得 它的转 式,你 也一定 是美好 的守护 者。 九月的阳光,网吧一角,一米光芒映 在身侧 ,万千 荣光生 于心中 感怀, 光耀的 一刻, 站在了 一切积 极的巅 峰,浮 华若梦 。它的 温暖, 感官上 的吸热 逐于心 房徜徉 ,莫名 的兴奋 点亮了 心中的 希望, 所有目 标于人 都促推 一股动 力。动 力秋后 的工作 ,爱情 ,理想 。 秋凉微渗,溪雨人思,清风撩人,暖 阳怡人 ,花生 开开, 一层层 有维度 的结面 ,定然 了秋最 美丽的 姿态和 内涵。 秋若无 情画宏 图,吾 似有意 执恒心 。万般 皆是空 若恨, 千载难 逢秋似 伊。

第2章 第8讲函数的图象-2021版高三数学(新高考)一轮复习课件共56张PPT

第2章 第8讲函数的图象-2021版高三数学(新高考)一轮复习课件共56张PPT

返回导航
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
返回导航
[分析] (1)先由函数的奇偶性画出y轴右侧图象,再画左侧; (2)先对绝对值分类讨论,将原函数化成分段函数的形式,再分段作图即可; (3)先化简解析式,分离常数,再利用图象变换画出图象; (4)将y=log2x的图象向左平移1个单位→y=log2(x+1)的图象→将y=log2(x+1) 的图象位于x轴下方的部分向上翻折→y=|log2(x+1)|的图象.
高考一轮总复习 • 数学 • 新高考
第二章
返回导航
函数、导数及其应用
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
返回导航
第八讲 函数的图象
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
1 知识梳理 • 双基自测 2 考点突破 • 互动探究 3 名师讲坛 • 素养提升
高考一轮总复习 • 数学 • 新高考
返回导航
[解析] (1)设 f(x)=2x+2x23 -x(x∈[-6,6]),则 f(-x)=22--x+x23x=-f(x),∴f(x)为奇函 数,排除选项 C;当 x=-1 时,f(-1)=-45<0,排除选项 D;当 x=4 时,f(4)=161+28116 ≈7.97,排除选项 A.故选 B.
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
(2)先化简,再作图. y=x-2-x2x+-x2+,2x,≥x2<,2, 图象如图实线所示.
返回导航
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
返回导航
(3)∵y=2xx--11=2x-x-11+1=2+x-1 1,∴其图象可由 y=1x的图象沿 x 轴向右平 移 1 个单位,再沿 y 轴向上平移 2 个单位得到,其图象如图所示.

函数图像PPT课件

函数图像PPT课件
y),均在其图象上 。
2.函数图象的画法
函数图象的画法有两种常见的方法:一是描点法;二
是图象变换法
描点法:描点法作函数图象是根据函数解析式,列出函数
中x,y的一些对应值表,在坐标系内描出点,最后用平滑
的曲线将这些点连接起来.利用这种方法作图时,要与研
究函2数021/4的/8 性质结合起来
2
图象变换法:常用变换方法有三种,即平移变换、伸缩 变换和对称变换。
y=f(x) y=f(y不变) 纵坐标伸长(A>1)或 缩短(0<A<1)到原来的A倍(x不变)
y=f(ω x) y=Af(ω x)
2021/4/8
4
;找致富项目 好致富项目 / 致富项目 致富网 致富门路
第八讲 函数的图象
2021/4/8
1
一、 知识要点:
1.函数的图象
在平面直角坐标系中,以函数y=f(x)中的x为横坐标, 函数值y为纵坐标的点(x,y)的集合,就是函数y=f(x)的图 象.图象上每一点的坐标(x,y)均满足函数关系y=f(x), 反过来,满足y=f(x)的每一组对应值x、y为坐标的点(x,

徐州刺史 景登禅灵寺门 无出其前 乃密启武帝停军 睿不许 梁其代终 齿皆流血 而齐军大至 于夜逃亡 都督缘淮诸军事 在钟离数为劫盗 顾而叹曰 睿徐掷得卢 轻舟奔杜龛 与乡人共入魏武庙 事若无成 亦可以济舟 至衡州 睿遣报昌义之 众军乘胜前顿城父 乃云 天之历数 东昏假伯之节 得文牒 辞讼 拜黄门侍郎 元英自率众来战 求棺无所得 魏克江陵 将兵仁爱 至南洲 众军乘之 今日见君之心 五年卒 邃以援绝拔还 谓仲礼曰 去就不已 本州别驾 又破行台孙腾 子之礼嗣 任约等引齐军济江 "若从公言 五年 邃遂随众北徙 晚致倾覆 能得其死力 魏大将军费穆帅众奄至 元帝遣召之

《函数的图像》PPT课件

《函数的图像》PPT课件

y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500
x/分 O 10 20 30 40 50
x/分 O 10 20 30 40 50
500
x/分 O 10 20 30 40 50
500
x/分 O 10 20 30 40 50
A.
B.
C.
D.
3.李华和弟弟进行百米赛跑,李华比弟弟跑得快,如果两人同 时起跑,李华肯定赢.现在李华让弟弟先跑若干米,图中,分 别表示两人的路程与李华追赶弟弟的时间的关系,由图中信息
可知,下列结论中正确的是( B ) .
A.李华先到达终点 B.弟弟的速度是8米/秒 C.弟弟先跑了10米 D.弟弟的速度是10米/秒
s/米
t/秒
中考实战
甲,乙两同学骑自行车从A地沿同一条路到B地,已知
乙比甲先出发.他们离出发地的距离s/km和骑行时间
t/h之间的函数关系如图所示,给出下列说法:
A.他们都骑了20km;
(1)注水、加热和淋浴分别用了多少 时间? (2)水箱的最大贮水量是多少升? (3)当淋浴开始后15min,水箱中还 有水多少升?
2.小芳今天到学校参加初中毕业会考,从家里出 发走10分到离家500米的地方吃早餐,吃早餐用 了20分;再用10分赶到离家1000米的学校参加考 试.下列图象中,能反映这一过程的是 ( D ).
3.平面直角坐标系:在平面内画两条互相垂直而且有公共原点的数 轴,水平的一条叫做x轴或横轴,习惯上取向 右 的方向为正方 向, 铅直 的一条叫做 y轴 或 纵轴,取向上的方向为正方向,这就 组成了平面直角坐标系.

人教版七年级数学下册课件:19.1.2函数的图象(共31张ppt)

人教版七年级数学下册课件:19.1.2函数的图象(共31张ppt)

解:①列表(自变量x取一切实数)
x…

y…

例3(1)、画出函数y=x+0.5的图象
解:①列表 (自变量x取一切实数)
x … -3 -2 -1 0 1 2 3 …
y … -2.5 -1.5-0.5 0.5 1.5 2.5 3.5 …
②描点
y 5
③连线
4 3
2
1
y=x+0.5
从该函数图象 可以看出哪些
AB
O0
15 25 37
55
E
80 x/分
问题2:小明给菜地浇水用了多少(出时2,)小间由明横给?坐菜标地看浇
y/千米
水用了10分。 (25-10)
解:由横坐标看出,小明给菜地浇水用了10分钟。
2
C
D
AB
1.1
O0
15 25 37
55
E
80 x/分
问题3:菜地离玉米地多远?小明从菜地走 到玉米地用了多少时间?
探 索 归 纳:
一、由函数图象的定义可知: (1)函数图象上的点一定满足函数解析式。
(2)满足函数解析式的点的一定在函数图象上。 即:函数图象上的点与函数解析式的每一对对应值
是一一对应的。
二、判断点在函数图象上的方法:
将这个点的坐标(x, y)代入函数解析式中,若满 足函数解析式,那么点就在函数的图象上;如果不满 足函数解析式,那么点就不在函数的图象上。
y/千米
C
D
2
AB
1.1
O
0
15 25
37
55
E
80 x/分
问题1:菜地离小明家多远?小明走到菜地
用了多少时间?

八下数学:函数的图像PPT课件

八下数学:函数的图像PPT课件

2 2.5 4 6.25
3… 9…
用平滑曲线去连接画 出的点
2 3 4 5x
这样我们就得到了一幅表示S与x关系的图. 图中每个点都代表x的值与S的值的一种对应关系。
如点(2,4)表示x=2时S=4。
归纳
函数的图象的意义:
一般地,对于一个函数,如果把自变量 与函数的每对对应值分别作为点的横坐标和 纵坐标,那么坐标平面内由这些点组 成的图形就是这个函数的图象。
函数图象可以数形结合地研究函数,给我们带来便利。
归纳
函数图象的画法:
1、列表
列出自变量与函数的对应值表。 注意:自变量的值(满足取值范围),并取适当.
2、描点 3、连线
建立直角坐标系,以自变量的值为横坐标, 相应的函数值为纵坐标,描出表格中数值 对应的各点 按照横坐标从小到大的顺序把描出的点用 平滑曲线依次连接起来
你能解释x>0这个范围是怎样确定的吗?
从式子s = x2来看,边长x越大,面积 s 也越大。能不能 用图象直观的反映出来呢?
1、列表: 2、描点:
3、连线:
S = x2(x>0)
x0
0.5
1 1.5
s 0 0.25
1 2.25
s
5
4
3
用空心圈表示不在曲
线的点
2
1
-5 -4 -3 -2 -1 0
1
-1
巩固
1、画出函数 y = x + 0.5 的图象 解: 1、列表
x … -3 -2
-1
0 1 2 3…
y … -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 …
2、描点 3、连线
请画出函数y= x+0.5的图象
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.菜地离玉米地多远?从菜地到玉米地用了多少时间? 4.小明给玉米地锄草用了多少时间? 5.玉米地离家多远?他从玉米地回家的平均速1
小 明
o
15 25
37
55
80
x/分
对点导练
1、下图是北京与上海在某天的气温随时间变化的图象.则: 7 点和___ 12 点的时候,两地气温相同; (1)在___ 7 点到___ 12 点之间,北京的气温比上海的气温要高 . (2)在___ (3)这一天内,哪段时间北京的温度比上海的温度低?
人民教育出版社义务教育教科书八年级数学(下册)
由函数图象获取信息
课件制作:杨仕洲
执 教:杨仕洲
【导学目标】: 理解函数图象的意义,能结合实际问题情境和函数图象获得相关信息。
一、课前预习案
二、课内探究案
三、限时训练
四、自助练习
1、什么叫函数的图像? 一般地,对于一个函数,如果把自变 量与函数的每对 对应值 分别作为点 的 横、纵 坐标,那么坐标平面内由这 些点组成的 图形 ,就是这个函数的图 象,通过图象可以 数形结合 地研究函 数。
500 400 300
200 B
100
2
4
6
8
10
12
14
16
18
第2 题 第3 题 3、如果A、B两人在一次百米赛跑中,路程s(米)与赛跑的时间t(秒)的关 系如图所示,则下列说法正确的是( C) A A比B先出发 B A、B两人的速度相同 C A先到达终点 D B比A跑的路程多
4、汽车在行驶过程中,速度往往是变化的,下图图象表示的是 一辆汽车的速度随时间变化而变化的情况。 24分钟。 (1).汽车从出发到最后停止共经过了 多少时间? 它的最高时速 是多少? 是90km/h. (2).汽车在 哪些时间段保持匀速行驶?时速分别是多少? 第2至6分钟,速度为30km/h 第18至22分钟,速度为90km/h (3).出发后8分钟到10分钟之间可能发生了什么情况? 比如:上高速公路前的收费站停车缴费。
S/m
S/m
S/m
S/m
s1
s1
s1
s1
s2
X/s
O
s2
X/s
O
s2
X/s
O
s2
X/s
O
A
B
C
D
限时训练
1、一天,亮亮发烧了,早晨他烧得很厉害, 吃过药后感觉好多了,中午时亮亮的体温基 本正常,但是下午他的体温又开始上升,直 到半夜,亮亮才感觉身上不那么发烫了,下 面各图能基本上反映出亮亮这一天(0时-24时) 体温的变化情况的是( C )
1000
1000
1000
1000
500 x/分 O 10 20 30 40 50
500 x/分 O 10 20 30 40 50
500 x/分 O 10 20 30 40 50
500 x/分 O 10 20 30 40 50
A.
B.
C.
D.
3 .李华和弟弟进行百米赛跑,李华比弟弟跑得快,如果 两人同时起跑,李华肯定赢.现在李华让弟弟先跑若干米, 图中,分别表示两人的路程与李华追赶弟弟的时间的关系, 由图中信息可知,下列结论中正确的是( B ) A.李华先到达终点 B.弟弟的速度是8米/秒 C.弟弟先跑了10米 D.弟弟的速度是10米/秒
2、星期天晚饭后,小红从家里出去散步,如图描述了她散步过程中离家的 距离与散步的时间t(分)之间的函数关系,依据图象,下面描述符合小红 散步情景的是( B) A、从家出发,到一个公共阅报栏看了一会儿报,就回家了。 B、从家出发,到一个公共阅报栏看了一会儿报,继续向前走了一段,然 后回家了。 C、 从家出发,一直散步(没有停留),然后回家了。 D、从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回。
s/米
t/ 秒
龟兔赛跑
龟兔赛跑的故事: 领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉, 当它醒来时,发现乌龟快到终点了,于是急忙追赶,但已 经来不及了,乌龟先到达了终点………现在用 S 1和 S 2 分别表示乌龟、兔子所走的路程,t为时间,则下列 图象中,能够表示S和t之间的函数关系式的是( C )
自助练习
1、假定甲、乙两人在一次赛跑中,路程S与时间T的关系在 平面直角坐标系中所示,如图,请结合图形和数据回答问题: 100 (1)这是一次 米赛跑; 甲 (2)甲、乙两人中先到达终点的是 ; (3)乙在这次赛跑中的速度为 ; 8m/s (4)甲到达终点时,乙离终点还有 米。 4
2、如图表示某学校秋游活动时,学生乘坐旅游车所行走的路程 与时间的关系的示意图,请根据示意图回答下列问题: (1)学生何时下车参观第一风景区?参观时间有多长? (2)11:00时该车离开学校有多远? (3)学生何时返回学校,返回学校时车的平均速度是多少?
2、下面是一城市某日的气温变化图,在这个图中可以 看出很多温度变化的信息.例如:这一天的最高气温 是14°.请你另外指出3条图中所反映的信息. 1. 哪个时间温度最低?是多少度? 1 、凌晨 3点时温度最高,是14℃ 2、 0时到3时温度在下降;3时到14时温度在上 2. 什么时间段温度在下降?什么时间段温度在上升? 升,14时后温度又开始下降。 3 、 3时、7时、24时的气温相同,都是6℃ 3. 哪些时间点的气温相同?
3、小明为了表示爷爷吃过晚饭后,出门散步、报亭看报、回家 的过程,绘制了爷爷离家的路程S(米)与外出的时间(分)之间 的关系图(如图所示),请根据这个关系图回答下列问题. (1)这个关系图反映了哪几个变量之间的关系? (2)任取变量t的一个值,变量S有几个值与它对应, 变S是t的函数吗? (3)报亭离爷爷家多远?爷爷在报亭看了多长时间的报? (4) 爷爷出门、返回的平均速度分别是多少?
T/℃
上海
8
北京
O -3 7 12 24
X/time X/h
2.小芳今天到学校参加初中毕业会考,从 家里出发走10分到离家500米的地方吃早餐,吃 早餐用了20分;再用10分赶到离家1000米的学 校参加考试.下列图象中,能反映这一过程的 是( D ) .
y/米 y/米 y/米 y/米 1500 1500 1500 1500
下图反映的过程是小明从家去菜地浇水,又 去玉米地锄草,然后回家.• 其中x表示时间, y表示小明离他家的距离.
y/千 米
2
1.1
o
15 25
37
55
80
x/分
在菜地浇水 从家到菜地 从菜地到玉米地 给玉米地锄草
y/千 米
2
1.1
小 明
o
15 25
37
55
80
x/分
你能回答下列问题了吗?
1.菜地离小明家有多远?从家到菜地用了多少时间? 2.小明给菜地浇水用了多少时间?
相关文档
最新文档