苏教版七下第七章平面图形的认识(二)提高练习[1]
平面图形的认识(二)提高练习-解答
平面图形的认识(二) 提高练习1。
如图,∠1=∠2=∠3,且∠BAC=70°,∠DFE=50°,求∠ABC的度数.2。
两个多边形的边数比为1:2,内角和的度数比为1:4,求这两个多边形的边数.F,试说明∠2=1 23.如图,在△ABC中,AD平分∠BAC,BE⊥AC于点E,交AD于点(∠ABC+∠C).4.如图,AD是ΔABC的外角∠CAE的平分线,∠B=30°,∠DAE=55°,试求:(1)∠D的度数; (2)∠ACD的度数.5.如图,AE⊥BC,∠DCA=∠CAE,可以推出DC⊥BC。
6.如图,AC∥DE,∠1=∠2,求证:AB∥CD。
7。
已知AB∥CD,BC∥ED,求证:∠B+∠D=180°。
AB C DE8。
如图,∠AHD=∠ACB ,CD ⊥AB ,EF ⊥AB,求证:∠1=∠2。
9.如图,AB ∥CD,∠B=25°∠BEF=45° ∠EFC=30° 求∠C10.如图,∠1=∠C ,∠2和∠D 互余,BE ⊥FD 于G,求证:AB ∥CD 。
ABCEF DABCDEF11.如图,已知AB ∥CD ,且∠B=40°,∠D=70°,求∠DEB 的度数。
12。
如图,已知CB AB ,CE 平分∠BCD,DE 平分∠CDA ,∠EDC+∠ECD =90°,求证:DAABABD第 15 题13.在图(1)、图(2)图(3)、图(4)中,AB ∥CD,说明∠A 、∠E 、∠C 的等量关系.图(1) 图(2) 图(3) 图(4)14。
如图,四边形ABCD 中,//AD BC ,DE 平分ADB ∠,BDC BCD ∠=∠。
求证:1290∠+∠=︒。
CBADECB A D EC BADEEDCBA15。
如图,BD是ABC∠的度∠=︒,求A∠=︒,60BDCDE CB,交AB于点E,150BED∠的平分线,//数.16.如图,在ABC中,AD平分BAC⊥交直线BC于点E.∠,P为线段AD上的一个动点,PE AD(1)若35∠=︒,求EACB∠的度数;∠=︒,85B(2)当P点在线段AD上运动时,猜想E∠、ACB∠与B∠的数量关系写出结论,17(1)如图①的图形我们把它称为“8字形”,请说明A B C D ∠+∠=∠+∠。
苏教版七年级数学下第七章《平面图形的认识(二)》综合提优训练(含答案)
苏教版七年级数学下第七章《平面图形的认识(二)》综合提优训练(含答案)一、选择题1.经过平面内一点P,画∠AOB两边垂线段画法正确的是()A. B.C. D.2.下列说法中,正确的是()A. 三角形的中线是射线B. 三角形的三条高交于一点C. 等腰三角形的三个内角相等D. 三角形的三条角平分线交于一点3.如图,CM、CD、ON、OB被AO所截,那么()A. ∠1和∠4是同旁内角B. ∠2和∠4是内错角C. ∠ACD和∠AOB是同位角D. ∠1和∠3是同位角4.下列说法正确的是()A. 两条直线相交成四个角,如果有三个角相等,那么这两条直线垂直B. 两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直C. 两条直线相交成四个角,如果有一对对顶角互余,那么这两条直线垂直D. 两条直线相交成四个角,如果有两个角互补,那么这两条直线垂直5.如图,AB//CD,∠E=27°,∠B=52°,则∠ECD为()度.A. 63B. 79C. 101D. 256.如图,AB=AC,BE平分∠ABC,DE//BC,图中等腰三角形共有()A. 1个B. 2个C. 3个D. 4个7.如图,已知直线AB//CD,点E,F分别在直线AB和CD上,EH平分∠AEN,EN//MF,HE//FN.若∠N=114°,则∠MFH的度数为()A. 48°B. 58°C. 66°D. 68°二、填空题8.如图,AB//CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E−∠F=33º,则∠E=________。
9.把边长相等的正五边形ABCDE和正三角形ABF按照如图所示的方式叠合在一起,则∠EAF=_________度.10.把一张长方形纸片按图中那样折叠后,若得到,则______.11.三角形ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,三角形ABC的面积从变化到.12.如图所示,在折纸活动中,小明制作了一张▵ABC纸片,点D,E分别在边AB、AC上,将▵ABC沿着DE折叠压平,使点A与点N重合.(1)若∠B=45°,∠C=65°,则∠A的度数为________;(2)若∠A=80°,则∠1+∠2的度数为___________.13.如图,在△ABC中,BD:DC=1:2,E为AB的中点,连接AD、CE交于点O,已知S▵ABC=12cm²,则=___________cm²S阴影三、解答题14.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB//CD.15.已知直线AB、CD、EF相交于点O,∠1:∠3=3:1,∠2=20°,求∠DOE的度数.16.如图,直线AB//CD,并且被直线MN所截,MN分别交AB和CD于点E与F,点Q在PM上,且∠EPM=∠FQM,求证:∠DFQ=∠BEP.17.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.18.如图1,AB//CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.19.如图,方格纸中每个小正方形都是1,点P、A、B、C、D、E、F是方格纸中的格点(即小正方形的顶点).(1)在图①中,过点P画出AB的平行线和垂线;(2)在图②中,以线段AB、CD、EF的长为边长的三角形的面积等于______.20.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度数.21.数学思考:(1)如图①,已知AB//CD,探究下面图形中∠APC和∠PAB,∠PCD的关系,并证明你的结论.推广延伸:(2)①如图②,已知AA 1//BA 3,请你猜想∠A 1,∠B 1,∠B 2,∠A 2、∠A 3的关系,并证明你的猜想;②如图③,已知AA 1//BA n,直接写出∠A 1,∠B 1,∠B 2,∠A 2…,∠B n−,∠A n的1关系.拓展应用:(3)①如图④所示,若AB//EF,用含α,β,γ的式子表示x,应为()A.180°+α+β−γB.180°−α−γ+βC.β+γ−αD.α+β+γ②如图⑤,AB//CD,且∠AFE=40°,∠FGH=90°,∠HMN=30°,∠CNP=50°,请你根据上述结论直接写出∠GHM的度数是___________.答案和解析1.B解:观察各选项,过平面内一点P画∠AOB两边垂线段画法正确的是B选项图形.2.D解:A、三角形的中线是线段,所以A选项错误;B、三条高所在直线相交于一点,所以B选项错误;C、等腰三角形的两个底角相等,所以C选项错误;D、三角形的三条角平分线交于一点,所以D选项正确.3.C解:A、不是同旁内角,故本选项错误;B、是同位角,故本选项错误;C、是同位角,故本选项正确;D、不是同位角,故本选项错误;4.A解:A、两条直线相交成四个角,如果有三个角相等,那么这两条直线垂直,正确,故A正确;B、两条直线相交成四个角,则这四个角中有2对对顶角.如果三个角相等,则这四个角相等,都是直角,所以这两条直线垂直.故B错误;C、两条直线相交成四个角,如果有一对对顶角互余,这两条直线不一定垂直,故答案错误;D、两条直线相交成四个角,如果有两个角互补,那么这两条直线垂直,错误.5.B解:延长EC交AB与F,∵∠E=27°,∠B=52°,∴∠AFE=79°,∵AB//CD,∴∠ECD=∠AFE=79°,6.C解:∵AB=AC,∴△ABC是等腰三角形;∵DE//BC,∴△ADE是等腰三角形;∵BE是∠ABC的平分线,∴∠DBE=∠EBC,∵DE//BC,∴∠EBC=∠BED,∴△BDE是等腰三角形;∴图中等腰三角形的个数有3个;7.A解:∵HE//FN,∴∠MEN=180°−∠N=180°−114°=66°,∵AB//CD,∴∠AEH=∠MHF,∵EN//MF,∴∠MEN=∠HMF=66°,∵EH平分∠AEN,∴∠AEH=∠MEN=66°,∴∠MHF=∠HMF=66°,在△MHF中,∠MFH=180°−66°−66°=48°.8.82°解:如图,过F作FH//AB,∵AB//CD,∴FH//AB//CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=a=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180∘−β,∠BFC=∠BFH−∠CFH=α−β,∴四边形BFCE中,∠E+∠BFC=360∘−α−(180∘−β)=180∘−(α−β)=180∘−∠BFC,即∠E+2∠BFC=180∘,①又∵∠E−∠BFC=33∘,∴∠BFC=∠E−33∘,②∴由①②可得,∠E+2(∠E−33∘)=180∘,解得∠E=82∘,9.48∵△ABF是正三角形,∴∠BAF=60°.∵五边形ABCDE是正五边形,∴正五边形的内角和为(5−2)×180°=540°,∴∠BAE=540°÷5=108°,∴∠EAF=∠BAE−∠BAF=108°−60°=48°.10.110°解:∵AD//BC,∴∠BGD′=∠AEG=40°,(180°−40°)=70°,由折叠的性质得,∠DEF=∠D′EF=12∴∠C′FE=∠EFC=180°−∠E=DEF=110°.11.64cm2;20cm2解:当△ABC的底边BC上的高为8cm,底边BC=16cm时,(16×8)=64cm2;S1=12(5×8)=20cm2.底边BC=5cm时,S2=1212.(1)70°;(2)160°(1)∵∠B =45°,∠C =65°,∴∠A =180°−45°−65°=70°.故答案为70°.(2)∵△NDE 是△ADE 翻折变换而成,∴∠AED =∠NED ,∠ADE =∠NDE ,∴∠AED +∠ADE =∠NED +∠NDE =180°−80°=100°,∴∠1+∠2=360°−2×100°=160°.13.2.8解:连接OB ,设△BOE 的面积为x ,△BOD 的面积为y ,∵BD:DC =1:2∴S △ABD =13S △ABC =4cm 2 ,S △COD =2S △BOD =2y ,∵E 为AB 的中点∴S △BCE =12S △ABC =6cm 2 ,S △AOE =S △BOE =x ,∴{S △ABD =2x +y =4S △BCE =3y +x =6∴{x =1.2y =1.6.14.证明:∵BE ⊥FD ,∴∠EGD =90°,∴∠1+∠D =90°,又∠2和∠D 互余,即∠2+∠D =90°,∴∠1=∠2,又已知∠C =∠1,∴∠C=∠2,∴AB//CD.15.解:∵∠1:∠3=3:1,∴设∠1=3k,∠3=k,则3k+20°+k=180°,解得k=40°,∴∠1=3k=120°,∴∠COF=∠1+∠2=120°+20°=140°,∠DOE=∠COF=140°.16.证明:∵∠EPM=∠FQM,∴FQ//EP,∴∠MFQ=∠MEP,又∵AB//CD,∴∠MFD=∠MEB,∴∠MFQ−∠MFD=∠MEP−∠MEB,∴∠DFQ=∠BEP.17.解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F =∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.18.解:(1)∠BAE+∠CDE=∠AED.理由如下:作EF//AB,如图1,∵AB//CD,∴EF//CD,∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∵∠BAE、∠CDE的两条平分线交于点F,∴∠BAF=12∠BAE,∠CDF=12∠CDE,∴∠AFD=12(∠BAE+∠CDE),∵∠BAE+∠CDE=∠AED,∴∠AFD=12∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,∴∠AGD=∠BAF+4∠CDF=12∠BAE+2∠CDE=12∠BAE+2(∠AED−∠BAE)=2∠AED−32∠BAE,∵90°−∠AGD=180°−2∠AED,∴90°−2∠AED+32∠BAE=180°−2∠AED,∴∠BAE=60°.19.(1)(2)4解:(1)如图①所示:MN//AB,PD⊥AB;(2)如图②所示:以线段AB、CD、EF的长为边长的三角形的面积等于△ABM的面积为:3×4−12×1×2−12×2×3−12×2×4=4.故答案为:4.(1)直接利用网格结合勾股定理得出答案;(2)利用平移的性质得出以线段AB、CD、EF的长为边长的三角形的面积等于△ABM的面积,进而得出答案.20.解:∵在△ABC中,AD是高,∴∠ADC=90°,∵在△ACD中,∠C=50°,∴∠DAC=90°−50°=40°,∵在△ABC中,∠C=50°,∠BAC=60°,∴∠ABC=70°,∵在△ABC中,AE,BF是角平分线,∴∠EAC=12∠BAC=30°,∠FBC=12∠ABC=35°,∴∠BOA=∠BEA+∠FBC=∠C+∠EAC+∠FBC=50°+30°+35°=115°.21.解:(1)证明:如答图1,过点P作OP//AB.∵AB//CD,∴OP//AB//CD.∴∠1=∠PAB,∠2=∠PCD,∴∠APC=∠1+∠2=∠PAB+∠PCD,即∠APC=∠PAB+∠PCD.(2)①如答图2,过点A2作A2O//AA1.由(1)可知∠B1=∠A1+∠1,∠B2=∠2+∠A3,所以,∠B1+∠B2=∠A1+∠A2+∠A3.②由①可知:∠A1+∠A2+⋯+∠A n=∠B1+∠B2+⋯+∠B n−1.(3)①B;②30°.。
苏科版七年级下册数学第七章 平面图形的认识(二)总复习提高练习
平面图形的认识(二)总复习提高练习一、平行的性质及判定1、认识同位角、内错角和同旁内角。
2、平行的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
注意:只有在平行的条件下,才有同位角相等,内错角相等,同旁内角互补。
1.若∠1与∠2是内错角,且∠1=60°,则∠2是( )A.60°B.120°C.120°或60°D.不能确定2. 如图,∠ADE和∠CED是( )A.同位角B.内错角C.同旁内角D.可为补角3.如图,BD平分∠ABC,DE∥BC,∠1=35º,则∠2的度数是.4. 如图,已知∠1+∠2=150°,a∥b,则∠3=度.5. 如图,l∥m,长方形ABCD的顶点B在直线m上,则∠a=度.6.如图,l∥m,1=1150, 2=950,则3= .二、平行的判定:判定方法一:1、同位角相等,两直线平行;2、内错角相等,两直线平行;3、同旁内角互补,两直线平行。
判定方法二:平行于同一条直线的两条直线互相平行。
例1. 如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由例2.如图,AB∥CD,∠B=26°,∠D=39°,求∠BED的度数.例3. 已知:如图,AB∥CD,∠ABE=∠DCF,请说明∠E=∠F的理由.例4. 如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.例5. 如图,∠B=∠ACD,∠B+∠BCD=90°,DE⊥BC,垂足为E.(1)AC与DE平行吗?为什么?(2)∠B与∠CDE相等吗?为什么?例6. 如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD ∥BC.例7. 已知:如图,CD⊥AB于D,点E为BC边上的任意一点,EF⊥AB于F,且∠1=∠2,那么BC与DG平行吗?请说明理由.例8. 如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.例9. 如图,∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的关系,并证明你的猜想.例10. 如图,已知∠A=∠F.∠C=∠D,AF与CE、BD分别交于点M、N,那么∠1与∠2是否相等?为什么?二、图形的平移平移的定义:将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移。
苏科版七年级下册数学第7章 平面图形的认识(二) 含答案(精练)
苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽《勾股圆方图》,它是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,如图,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为,较长直角边为,那么的值为()A.13B.36C.25D.1692、如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB=()A.52°B.90°C.128°D.38°3、如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=95°B.∠β﹣∠α=95°C.∠α+∠β=85° D.∠β﹣∠α=85°4、如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数是()A.80°B.100°C.60°D.45°.5、如图,湖泊对岸的凉亭B和C到大门A的距离分别是3和4,则BC的长不可能是()A.2B.4C.6D.86、如图,已知△ABC的面积为24,将△ABC沿BC方向平移到△A1B1C1,使B1和C重合,连接AC1交A1C于点D,则四边形ABCD的面积为()A.30B.36C.40D.487、如图,已知四边形ABCD中,对角线BD平分∠ABC,∠ACB=72°,∠ABC=50°,并且∠BAD+∠CAD=180°,那么∠ADC的度数为()A.62°B.65°C.68°D.70°8、如图将△ABC水平向右平移到△DEF,若A、D间的距离为1,CE=2,则BF=()A.3B.4C.5D.不能确定9、已知一个等腰三角形底边的长为5cm,一腰上的中线把其周长分成的两部分的差为3cm,则腰长为()A.2cmB.8cmC.2cm或8cmD.10cm10、如图,AD,CE是△ABC的两条高,已知AD=10,CE=9,AB=12,则BC的长是()A.10B.10.8C.12D.1511、在中,,,则()A.60°B.90°C.120°D.135°12、如图,已知AB∥CD,∠1=∠2,那么下列结论中不成立的是()A.∠3=∠2B.∠1=∠5C.∠3=∠5D.∠1+∠2+∠3=180°13、一个正多边形的内角和为540°,则这个正多边形的每一个内角是()A.120°B.108°C.90°D.60°14、下列命题是假命题的是().A.同位角相等B.平行于同一直线的两直线平行C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.两直线平行,内错角相等15、等腰三角形有两条边长为5cm和9cm,则该三角形的周长是()A.19cmB.23cmC.19cm或23cmD.18cm二、填空题(共10题,共计30分)16、如图,小新从A点出发,沿直线前进50米后向左转30°,再沿直线前进50米,又向左转30°,…照这样下去,小新第一次回到出发地A点时,一共走了________米.17、如图,BD、CE是△ABC的角平分线,它们相交于点O,若∠A=64°,则∠BOC=________.18、如图,在△ABC中,D,E分别是AB和AC的中点,F是BC延长线上一点,CF=1,DF交CE于点G,且EG=CG,则BC=________.19、在数轴上,一个点从1开始,往右运动4个单位,再往左运动7个单位,这时表示的数是________.20、如图,在中,,点在边上,且.若,则的长为________.21、一个凸 n 边形,其每个外角都等于30°,则n =________.22、如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿AD 方向平移8个单位长度到△A'B'C'的位置,则图中阴影部分面积为________.23、如图在圆内接四边形中,,分别延长,交于点,则的大小为________.24、将正三角形、正方形、正五边形,按如图所示的位置摆放,且每一个图形的一个顶点都在另一个图形的一条边上,则________度.25、如图所示,∠AOB=30°,P为∠AOB平分线上一点,PC∥OA交OB于点C,PD⊥OA于点D,若PD=3,则OC的长为________三、解答题(共5题,共计25分)26、已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=2∠B,求∠B的度数.27、如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAE=∠B+30°,求∠AEB的度数.28、如图,已知AB∥CD,∠A=∠C,试说明∠E=∠F.29、如图,,,,,若,求的长度.30、已知:如图所示,∠1=∠2,∠3=∠B,AC∥DE,且B,C,D在一条直线上.求证:AE∥BD.参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、A6、B7、B8、B9、B10、B11、C12、D13、B14、15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
苏科版七年级下《第7章平面图形的认识(二)》单元测试题含答案[1]
苏科版七年级下《第7章平面图形的认识(二)》单元测试题含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(苏科版七年级下《第7章平面图形的认识(二)》单元测试题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为苏科版七年级下《第7章平面图形的认识(二)》单元测试题含答案(word版可编辑修改)的全部内容。
第7章平面图形的认识(二)一、选择题(本大题共6小题,每小题4分,共24分;在每个小题列出的四个选项中,只有一项符合题意)1.如图7-Z-1所示的四个图形中,∠1和∠2是同位角...的是()图7-Z-1A.②③ B.①②③C.①②④ D.①④2。
下列图形中,不能通过其中一个四边形平移得到的是(),A),B),C) ,D)图7-Z-23.如图7-Z-3,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()图7-Z-3A.AC是△ABC的高 B.DE是△BCD的高C.DE是△ABE的高 D.AD是△ACD的高4.如图7-Z-4,BE∥AF,D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数为( )图7-Z-4A.105° B.115° C.125° D.135°5. 若一个多边形的每一个外角都是24°,则此多边形的内角和为()A.2160° B.2340°C.2700° D.2880°6.将一张长方形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360° B.540° C.720° D.900°二、填空题(本大题共6小题,每小题5分,共30分)7.如图7-Z-5,直线AB,CD被直线EF所截,若要AB∥CD,需增加条件:________.(填一个即可)图7-Z-58.若一个三角形的三边长分别为2,3,x,则x的值可以为________.(只需填一个整数) 9.如图7-Z-6,点D,E分别在AB,BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=________°。
苏科版七年级数学下册第七章 平面图形的认识(二)专题复习练习
(2)三角形的一个外角大于任何一个与它不相邻的内角。 例、如图,把△ABC 纸片沿 DE 折叠,当 A 落在四边形 BCDE 内时,
E 1
D
2
则 A 与 1 2 之间有始终不变的关系是 ( )
A. A 1 2 C. 3A 1 2
B. 2A 1 2
D. 3∠A=2(∠1+∠2)
第七章 平面图形的认识(二)专题复习练习
知识梳理 1、 在同一平面上,两条直线的位置关系有
练习:平面内三条直线的交点个数可能有
或者
. ()
A. 1 个或 3 个
B.2 个或 3 个
C.1 个或 2 个或 3 个
D.0 个或 1 个或 2 个或 3 个
2、 判定与性质: 什么叫做平行线?在同一平面内,
的两直线叫平行线。
的两直线平行。
判定
性质
(1) (2)
,两直线平行。 (1)两直线平行,
。
,两直线平行。 (2)两直线平行,
。
(3)
,两直线平行。 (3)两直线平行,
互补。
如果两条直线互相平行,那么其中一条直线上任意两点到另一条直线的距离相等,这个距离 称为平行线之间的距离。(等积变形) (1)如图,对面 积为1的△ ABC 逐次进行以下操作:第一次操作,分别延长 AB,BC,CA 至点 A1,B1,C1,使得 A1B=2AB,B1C=2BC,C1A=2CA,顺次连接 A1,B1,C1,得到△ A1B1C1,
置如图所示,在小方格的顶点上确定一点 C,连接 AB,AC,BC,使△ ABC 的面积为 3 个
平方单位.则这样的点 C 共有
个.
3、图形的平移
在平面内,将一个图形沿着________________移动____________,这样的____________叫
苏科版初中数学七年级下册第七章《平面图形的认识(二)》专题训练试题(含答案)
第七章《平面图形的认识(二)》专题训练试题专题一 平行线的性质与判定1.如图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( ) A.AD ∥BC B.∠B =∠C C.∠2+∠B =180° D.AB ∥CD2.如图,直线a 、b 与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°.其中能判断a ∥b 的是( )A.①②③④B.①③④C.①③D.②④3.如图,∠1=82º,∠2=98º,∠3=80º,则∠4=___度.4.如图,已知l ∥m ,则∠x =___,∠y =___.5.已知:如图,CD ⊥AB ,EF ⊥AB ,垂足分别是D 、F ,∠BEF =∠CDG .试说明∠B +∠BDG =180°的理由.专题二 图形的平移1.下列运动属于平移的是( )A.空中放飞的风筝B.飞机在跑道上滑行到停止的运动C.篮球运动员投出并进入篮筐的过程D.乒乓球比赛中的高抛发球后,乒乓球的运动方式2.如图所示,右边的两个图形中,经过平移能得到左边的图形的是( )3.已知梯形ABCD ,AD ∥BC ,BC =6,AD =3,AB =4,CD =2,AB 平移后到DE 处,12DCBA 876c b a 54321D CB A则ΔCDE 的周长是___.4.如果△ABC 经过平移后得到△DEF ,若∠A =41°,∠C =32°,EF =3cm ,则∠E =__,BC =__cm.5.已知:如图,是两个重叠的直角三角形,将其中的一个直角三角形沿着BC 方向平移BE 的长得到此图形,若其中AB =8,BE =5,DH =3.求四边形DHCF 的面积.专题三 与三角形有关的计算1.一个三角形的两个内角分别是55°和65°,这个三角形的外角不可能是( )A.115°B.120°C.125°D.130°2.若三角形三边的长分别为整数,周长为13,且一边长为4,则这个三角形的最大边长为( )A.7B.6C.5D.43.如图所示,在锐角△ABC 中,BE 分别是AB ,AC 边上的高,且CD ,BE 交于一点P ,若∠A =50°,则∠BPC 的度数是___.4.明明家有一块三角形ABC 空地,他要在这块空地上种植草皮来美化环境,已知这种草皮每平方米售价230元,AC =12m ,AC 边上的高BD =15m ,则购买这种草皮至少需要___元.5.(1)如图1,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A =30°,则∠ABC +∠ACB =______,∠XBC +∠XCB =______.(2)如图,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY 、XZ•仍然分别经过B 、C ,那么∠ABX +∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX +∠ACX 的大小.图 2图1专题四 与多边形有关的计算1.如果一个正多边形的内角和是900°,则这个正多边形是正______边形.A.五边形B.六边形C.七边形D.八边形2.如果多边形的内角和是外角和的k 倍,那么这个多边形的边数是( )A.kB.2k +1C.2k +2D.2k -23.现提供下列几个角的度数:①270°;②540°;③630°;④1800°;⑤2430°.其中是某一个多边形内角和的有___.4.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…照这样走下去,他第一次回到出发地A 点时,一共走了___米.5.有两个多边形,如果它们都是各边相等,各内角相等的多边形,且这两个多边形的边数之比为1∶2,内角之比是3∶4,则这两个多边形的边数各是多少?专题五 综合创新应用1.在正方形ABCD 所在的平面内找点P ,使△P AB ,△PBC ,△PCD ,△P AD 均为等腰三角形,这样的点P 有( )A.1个B.4个C.5个D.9个2.如图,△ABC 内有三个点D 、E 、F ,现分别以A 、B 、C 、D 、E 、F 这六个点为顶点构建三角形,使得任意点不落在另一个三角形内部,那么这些三角形的所有内角之和为( )A.360°B.900°C.1260°D.1440°3.如果等腰三角形周长为20,则腰长x 的取值范围是___,底边长y 的取值范围是___.4.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干个图案.则第4个图案中有白色地面砖___块;第n 个图案中有白色地面砖___块.5.小明在进行多边形内角和计算时,求得一多边形的内角和为1125°.重新检查时,发现少加了一个内角.问这个内角是多少度?小明求的是几边形的内角和?6.如图所示是一个广场地面的一部分,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石地砖拼成,从里往外共12层(不包括中央的正六边形地砖),每一层30° 30° 30° A (7)B F AC ED 第1个 第2个 第3个的外界都围成一个多边形.若中央正六边形地砖的边长是0.5米,则第12层的外边界所围成的多边形的周长是多少?专题一:1,B ;2,B.3,80º;4,125°、72°.5,∵CD ⊥AB ,EF ⊥AB ,∴∠BFE =90°,∠BDC =90°,∴CD ∥EF (同位角相等,两直线平行),∴∠BEF =∠BCD (两直线平行,同位角相等),又因为∠BEF =∠CDG ,∴∠BCD =∠CDG ,∴BC ∥DG (内错角相等,两直线平行),∴∠B +∠BDG =180°(两直线平行,同旁内角互补).专题二:1,B ;2,C.3,9;4,117°,3.5,要求四边形DHCF 的面积,依题意,本来两个直角三角形是重合的,即两个直角三角形的面积相等,再由平移的知识可以知道四边形DHCF 的面积等于直角梯形ABEH 的面积,而此时DE =AB ,所以EH =8-3=5,所以直角梯形ABEH 的面积=12(EH +AB )×BE =12(5+8)×5=32.5.所以四边形DHCF 的面积是13.5平方单位.专题三:1,C ;2,C.3,②④;4,120.5,设其中一个多边形的边数为n ,则另一个多边形的边数为2n ,于是,根据题意,得()2180n n -⨯o∶()221802n n -⨯o=3∶4,解得n =5.所以2n =10.即这两个多边形的边数分别是5和10.专题四:1,D ;2,B.3,130°;4,41400.5,(1)150°;90°.(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°,∵∠X=•90°,∴∠XBC+∠XCB =90°,∴∠ABX+∠ACX =(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.点拨:此题注意运用整体法计算.专题五:1,D.提示:形内有5个,形外有4个;2,D. 提示:图形共有8个三角形.3,5<x<10、0<y<10.提示:依题意,得x+x>20-x-x,且x-x<20-x-x,即x >5,且x<10,所以5<x<10.同理0<y<10;4,4n+2.提示:第1个图案需要白色地面砖6=4×1+2,第2个图案需要白色地面砖10=4×2+2,第3个图案需要白色地面砖14=4×3+2,第4个图案需要白色地面砖18=4×4+2,…第n个图案需要白色地面砖10=4×n +2=4n+2.5,设这个内角的度数为x,这个多边形为n边形.则根据题意,得1125°+x=(n-2)·180°.由于1 125°+x是180°的倍数,而1 125°=180°×6+45°,所以x+45°=180°,解得x=135°,进而解得n=9.所以这个内角的度数为135°,这个多边形为九边形.6,36米. 提示:第一层即正六边形有6×1=6个边长,第二层有6×2=12个边长,第三层6×3=18个边长,…第12层有6×12=72个边长,而一个边长是0.5米,所以第12层的外边界所围成的多边形的周长是36米.。
完整版苏科版七年级下册数学第7章 平面图形的认识(二) 含答案
苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放.若∠1=52°,则∠2的度数为()A.92°B.98°C.102°D.108°2、等腰三角形底边长为,一腰上的中线把其分为周长之差为的两部分,则腰长为()A. B. C. 或 D.不确定3、如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°4、已知等腰三角形一个外角等于120°,则它的顶角是()A.60°B.20°C.60°或20°D.不能确定5、如图,已知AB∥CO,那么∠1,∠2,∠3之间的关系是()A.∠1+∠2=∠3B.∠1+∠3=∠2C.∠1+∠2+∠3=180°D.∠1+∠2﹣∠3=180°6、三角形的两边长为2和4,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长是()A.8B.10C.8或10D.不能确定7、九边形的内角和为()A.1260°B.1440°C.1620°D.1800°8、如右图,在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD : ∠DBA =3:1,则∠A为().A.18°B.20°C.22.5°D.30°9、已知三角形的两边长分别为5和7,则第三边长不可能是()A.1B.3C.5D.710、正十二边形的一个内角的度数为()A.30°B.150°C.360°D.1800°11、下列四个图案是小明家在瓷砖厂选购的四种地砖图案,其中既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的是()A. B. C. D.12、701班小明同学想利用木条为七年级数学组制作一个三角形的工具,那么下列哪组数据的三根木条的长度能符合他的要求()A. 4,2,2B.3,6,6C.2,3,6D.7,13,613、已知非等腰三角形的两边长分别是2 cm和9 cm,如果第三边的长为整数,那么第三边的长为()A.8 cm或10 cmB.8 cm或9 cmC.8 cmD.10 cm14、下列各组长度的线段,能构成三角形的一组是( )A.1cm,3cm,2cmB.3.5cm,7.1cm,3.6cmC.6cm,1cm,6cm D.4cm,10cm,4cm15、如图,AB∥DE,∠E=65°,则∠B+∠C=( )A.135°B.115°C.36°D.65°二、填空题(共10题,共计30分)16、如图,AB∥CD ,以点A为圆心,小于AC长为半径作圆弧,分别交AB ,AC于E , F两点,再分别以E , F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD于点M .若∠ACD=114°,则∠MAB的度数为________°.17、如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=30°,∠BCA=100°,则∠DAE的度数为________.18、如图,在△ABC 中,∠A=60°,D 是 AB 上一点,E 是 AC 上一点,BE、CD 相交于 O,且∠BOD=55°,∠ACD=30°,则∠ABE 的度数是________.19、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C 是y轴上的一个动点,当∣BC-AC∣最大时,点C的坐标是________.20、已知如图,BC=3,∠ABC和∠ACB的平分线相交于点O,OE∥AB,OF∥AC,则三角形OEF的周长为________.21、完成以下证明,并在括号内填写理由.已知:如图所示,∠1=∠2,∠A=∠3.求证:∠ABC+∠4+∠D=180°.证明:∵∠1=∠2∴________∥________(________)∴∠A=∠4(________)∠ABC+∠BCE=180°(________)即∠ABC+∠ACB+∠4=180°∵∠A=∠3∴∠3=________∴________∥________∴∠ACB=∠D(________)∴∠ABC+∠4+∠D=180°.22、已知:如图,在△ABC 中,AB=AC,DE垂直平分AB ,交边AB于点 D ,交边AC于点 E,BF垂直平分 CE ,交 AC于点F ,则∠A ________度.23、如图所示,如果把图中任一条线段沿方格线平移1格称为“1步”,那么要通过平移使图中的四条线段首尾相接组成一个四边形,最少需要________ 步.24、已知:△ABC中,∠A+∠B= ∠C,则∠C =________.25、如图1,MA1∥NA2,则∠A1+∠A2=________ 度.如图2,MA1∥NA3,则∠A1+∠A2+∠A3=________ 度.如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=________ 度.如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=________ 度.从上述结论中你发现了什么规律?如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=________ 度.三、解答题(共5题,共计25分)26、化简,并求值,其中a与2,3构成△ABC的三边,且a为整数.27、已知命题:“如图,点B、F、C、E在同一条直线上,则AB∥DE.”判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,在不添加其他辅助线的情况下,请添加一个适当的条件使它成为真命题,并加以证明.28、小明在学习三角形内角和定理时,由于病假缺课,只知道三角形内角和为180度,却不知道原理。
苏科版七年级数学下册 第7章《平面图形认识二》单元测试提高性练习
21八年级下册《平面图形认识二》单元测试提高性练习一、选择题1、如图,直线a 、b 与直线c 相交,给出下列条件:①.∠1=∠2.∠3=∠6;③∠4+∠7= 1800;④.∠5+∠3=1800.其中能判断a//b 的是 ( )A .①②③④B .①③④C .①③D .②④ 2、锐角三角形的三个内角是∠A 、∠B 、∠C 。
如果∠α=∠A+∠B ,∠β=∠B+∠C,,则这三个角中( )A.没有锐角B.有1个锐角C.有2个锐角D.有3个锐角3、如图已知∠1=∠2,∠BAD=∠BCD,则下列结论⑴AB∥CD,⑵AD∥BC,⑶∠B=∠D,⑷∠D=∠ACB,正确的有( ) A. 1个 B.2个 C.3个 D.4个4、一定在△ABC 内部的线段是( )A .锐角三角形的三条高、三条角平分线、三条中线B .钝角三角形的三条高、三条中线、一条角平分线C .任意三角形的一条中线、二条角平分线、三条高D .直角三角形的三条高、三条角平分线、三条中线 5、如图△ABC 经过平移到△GHI 的位置,则有 ( ) A 、 点C 和点H 是对应点 B 、 线段AC 和GH 对应 C 、∠A 和 ∠G 对应D 、平移的距离是线段BI 的长度6、如图,直线a 、b 都与直线c 相交,下列条件中,能说明a ∥b 的 是( )①∠1=∠2;②∠2=∠7;③∠2=∠8;④∠1+∠4=180° A 、 ①② B 、①②③ C 、 ①②④ D 、①②③④7、将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2等于 ( )(A ) 56° (B ) 68°HFED C BA(C ) 62° (D ) 66°8、如果一个三角形两边上的高所在的直线交于三角形的外部一点,那么这个三角形是 ( )(A) 锐角三角形 (B) 直角三角形(C) 钝角三角形(D) 任意三角形9、一个多边形的每个内角都相等,每个内角与相邻外角的差为1000,那么这个多边形是 ( )A .七边形B .八边形C .九边形D .十边形 10、一个n 边形削去一个角后变成(n+1)边形,其内角和变为2 5200,则原九边形的边数是 ( )A .7B .10C .14D .15 二、填空题11、如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n = .12、△ABC 中的周长为12,c+a=2b,c-a=2,则a:b:c=_____.13、一个多边形边数增加1,则这个多边形内角增加_____ ,外角增加_____. 14、如图,在△ABC 中,∠ABC 和∠ACB 的外角平分线交于D ,∠A=400,那么∠D=_________.15、若三角形的三边a 、b 、c 分别是3 cm 、(x -1)cm 、6 cm ,则x 应满足的取值范围是_________.16、从一个多边形的一个顶点出发,作了15条对角线,则这个多边形的内角和为_________度.17、若一个三角形的三个内角的度数之比为2:3:4,则相应的外角度数的比是 .18、如图,将边长为3个单位的等边△ABC 沿边BC 向右平移2个单位得到△DEF ,则四边形ABFD 的周长为 . 19、将一副三角板如图所示摆放(其中一块三角板的一条直角边与另一块三角板的斜边摆放在一直线上),那图中∠a= .20、将矩形ABCD沿折线EF折叠后点B恰好落在CD边上的点H处,且∠CHE=40 º,则∠EFB=___________.三、解答题21、已知正规边形每个内角与它的外角的差为900,求这个多边形内角的度数和边数.22、如图,某工人在加工如图所示的零件时,规定∠A=900,∠B=320,∠C=210,在加工过程中,他量得∠BDC=1480,就断定该零件不合格,你能运用三角形的有关知识说明不合格的理由吗?23、有一位同学在数学竞赛辅导书上看到这样一道题:“已知△ABC的三边长分别是a、b、c, 且a、b、c的值满足等式|b+c-2a|f+(b+c-5)2=0,求b的取值在什么范围?”你能解答这道题吗?24、如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,BE与DF有何位置关系?试说明理由。
《第7章平面图形的认识二》复习巩固优生提升训练(附答案)2021年暑假七年级数学苏科版下册
苏科版七年级数学下册《第7章平面图形的认识二》2021年暑假复习巩固优生提升训练(附答案)1.若两条直线被第三条直线所截,有一对同位角相等,则其中一对同旁内角的角平分线()A.互相垂直B.互相平行C.相交或平行D.不相等2.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.都有可能3.如图,把一张长方形纸条ABCD沿着EF进行折叠,点A、B分别落到点A′、B′处,已知∠ADB=20°,且A′B′∥BD,则∠EFC的度数为()A.20°B.55°C.65°D.70°4.如图,要得到DG∥BC,则需要条件()A.CD⊥AB,EF⊥AB B.∠1=∠2C.∠1=∠2,∠4+∠5=180°D.CD⊥AB,EF⊥AB,∠1=∠25.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于点G,若∠BDC =140°,∠BGC=110°,则∠A的度数为()A.50°B.55°C.70°D.80°6.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10B.11C.12D.以上都有可能7.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°8.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()A.30°B.45°C.55°D.60°9.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的值为()A.∠1+∠2﹣∠3B.∠1+∠3﹣∠2C.180°+∠3﹣∠1﹣∠2D.∠2+∠3﹣∠1﹣180°10.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()度.A.450B.540C.630D.72011.如图,∠ACD的平分线与∠ABD的平分线交于点E.∠A,∠CEB和∠D之间的数量关系是.12.如图,已知AB∥CD,则∠A、∠C、∠P的关系为.13.如图,△ABC的外角平分线CP和内角平分线BP相交于点P,若∠BPC=80°,则∠CAP=.14.在△ABC中,∠B=20°,AD为BC边上的高,∠DAC=30°,AE平分∠BAC交BC 于点E,则∠DAE等于度.15.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A'B'C',连接A'C,则线段A'C的长为.16.如图,Rt△ABC中,AB=2cm,BC=4cm,将三角形ABC沿BC方向平移2cm得到三角形A'B'C',A'B'与AC交于点D,A'D=1cm,则图中四边形DCC′A′的面积为.17.如图,如果AB∥CD,则角α=130°,γ=20°,则β=.18.已知∠A与∠B两边分别平行,且∠A比∠B的3倍少20°,则∠A的大小是.19.如图,已知AM∥CN,点B为平面内一点,AB⊥BC于B,过点B作BD⊥AM于点D,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC的度数为.20.AD是△ABC的高,∠ABC=40°,∠ACD=60°,BE,CF分别平分∠ABC和∠ACB,则∠BEC=度.21.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE、CF的交点,则∠ABE=,∠BHC=.22.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?23.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.24.如图1,在三角形ABC中,点E、点F分别为线段AB、AC上任意两点,EG交BC于G,交AC的延长线于H,∠1+∠AFE=180°.(1)求证:BC∥EF;(2)如图2,若∠2=∠3,∠BEG=∠EDF,求证:DF平分∠AFE.25.已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.26.(1)根据下列叙述填依据:已知:如图①,AB∥CD,∠B+∠BFE=180°,求∠B+∠BFD+∠D的度数.解:因为∠B+∠BFE=180°,所以AB∥EF().又因为AB∥CD,所以CD∥EF().所以∠CDF+∠DFE=180°().所以∠B+∠BFD+∠D=∠B+∠BFE+∠DFE+∠D=360°.(2)根据以上解答进行探索:如图②,AB∥EF,那么∠BDF与∠B,∠F有何数量关系?并说明理由.(3)如图③④,AB∥EF,你能探索出图③、图④两个图形中,∠BDF与∠B,∠F的数量关系吗?请直接写出结果.27.如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∥BC;(2)若FP⊥AC,∠2+∠C=90°,求证:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.28.已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度数.参考答案1.解:如图,∵∠APE=∠CQE,∴AB∥CD,∴∠BPQ+∠DQP=180°,∵PM平分∠BPQ,QN平分∠DQP,∴∠BPQ=2∠MPQ,∠DQP=2∠NQP,∴∠MPQ+∠NQP=90°,∴∠POQ=90°,即PM⊥QN,故选:A.2.解:∵∠A=∠B=∠C,∴可以假设∠A=x°,则∠B=(2x)°,∠C=(3x)°,由题意:6x=180,解得x=30,∴∠A=30°,∠B=60°,∠C=90°,∴△ABC是直角三角形,故选:B.3.解:如图,∵A′B′∥BD,∴∠A'=∠BGE=90°,∴∠DGE=90°,又∵∠ADB=20°,∴∠DEG=70°,由折叠可得,∠AEF=∠GEF,∴∠AEF=(180°﹣70°)=55°,∵AE∥CF,∴∠EFC=∠AEF=55°,故选:B.4.解:A、∵CD⊥AB,EF⊥AB,∴∠BEF=∠BDC=90°,∴EF∥DC,故条件不充分,错误;B、∠1与∠2不是DG与BC形成的内错角,故推不出DG∥BC,故错误;C、∠1与∠2不是DG与BC形成的内错角,∠4与∠5不是DG与BC形成的同旁内角,故推不出DG∥BC,故错误;D、当DG∥BC时,则∠1=∠3,当EF∥DC时,∠2=∠3,要使EF∥DC,则需CD⊥AB,EF⊥AB,所以要使DG∥BC,则需要CD⊥AB,EF⊥AB,同时∠1=∠2.故选:D.5.解:连接BC.∵∠BDC=140°,∴∠DBC+∠DCB=180°﹣140°=40°,∵∠BGC=110°,∴∠GBC+∠GCB=180°﹣110°=70°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠GBD+∠GCD=∠ABD+∠ACD=30°,∴∠ABC+∠ACB=100°,∴∠A=180°﹣100°=80°.故选:D.6.解:∵内角和是1620°的多边形是边形,又∵多边形截去一个角有三种情况.一种是从两个角的顶点截取,这样就少了一条边,即原多边形为12边形;另一种是从两个边的任意位置截,那样就多了一条边,即原多边形为10边形;还有一种就是从一个边的任意位置和一个角顶点截,那样原多边形边数不变,还是11边形.综上原来多边形的边数可能为10、11、12边形,故选:D.7.解:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD﹣∠ABD=60°.设AC与BP相交于O,则∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°﹣(∠ACD﹣∠ABD)=20°.故选:B.8.解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,∵BE平分∠NBA,AC平分∠BAO,∴∠ABE=∠ABN,∠BAC=∠BAO,∴∠C=∠ABE﹣∠BAC=(∠AOB+∠BAO)﹣∠BAO=∠AOB,∵∠MON=90°,∴∠AOB=90°,∴∠C=×90°=45°.故选:B.9.解:过点E作EG∥AB,过点F作FH∥CD,∵AB∥CD,∴AB∥CD∥EG∥FH,∴∠1=∠AEG,∴∠GEF=∠2﹣∠1,∵EG∥FH,∴∠EFH=180°﹣∠GEF=180°﹣(∠2﹣∠1)=180°﹣∠2+∠1,∴∠CFH=∠3﹣∠EFH=∠3﹣(180°﹣∠2+∠1)=∠3+∠2﹣∠1﹣180°,∵FH∥CD,∴∠4=∠3+∠2﹣∠1﹣180°,故选:D.10.解:如图∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7,=∠1+∠2+∠8+∠9+∠5+∠6+∠7,=五边形的内角和=540°,故选:B.11.解:如图,延长AC交BD于M.设∠ABE=∠EBD=x,∠ACE=∠ECD=y.∵∠AMD=∠A+∠ABD=∠A+2x,∠ECD=∠CEB+∠EBD+∠D=∠CEB+x+∠D,∴∠ACD=2∠ECD=2∠CEB+2x+2∠D,∵∠ACD=∠AMD+∠D,∴∠AMD=2∠CEB+2x+2∠D﹣∠D=2∠CEB+2x+∠D∴∠A+2x=2∠CEB+2x+∠D,∴∠A=2∠CEB+∠D,故答案为:∠A=2∠CEB+∠D.12.解:如右图所示,作PE∥CD,∵PE∥CD,∴∠C+∠CPE=180°,又∵AB∥CD,∴PE∥AB,∴∠A=∠APE,∴∠A+∠C﹣∠P=180°,故答案为:∠A+∠C﹣∠P=180°.13.解:延长BA,作PN⊥BD于点N,PF⊥BA于点F,PM⊥AC于点M,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=80°,∴∠ABP=∠PBC=(x﹣80)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣80°)﹣(x°﹣80°)=160°,∴∠CAF=20°,在Rt△PF A和Rt△PMA中,,∴Rt△PF A≌Rt△PMA(HL),∴∠F AP=∠P AC=10°.故答案为10°.14.解:有两种情况:①当∠BAC是钝角时,如图:∵AD为BC边上的高,∴∠ADC=90°,∵∠DAC=30°,∴∠ACB=60°,∵∠ABC=20°,∴∠BAC=180°﹣∠ABC﹣∠ACB=100°,∵AE平分∠BAC,∴∠CAE=BAC=50°,∴∠DAE=∠CAE﹣∠CAD=50°﹣30°=20°;②当∠BAC是锐角时,如图:∵AD为BC边上的高,∴∠ADC=90°,∵∠DAC=30°,∴∠ACD=60°,∴∠ACB=180°﹣60°=120°,∵∠ABC=20°,∴∠BAC=180°﹣∠ABC﹣∠ACB=40°,∵AE平分∠BAC,∴∠CAE=BAC=20°,∴∠DAE=∠CAE+∠CAD=20°+30°=50°;故答案为:20或50.15.解:由题意,得BB′=2,∴B′C=BC﹣BB′=4.由平移性质,可知A′B′=AB=4,∠A′B′C=∠ABC=60°,∴A′B′=B′C,且∠A′B′C=60°,∴△A′B′C为等边三角形,∴A'C=A'B'=4,故答案为:4.16.解:根据平移的性质知,AB=A′B′,△ABC≌△A′B′C′,则S△ABC=S△A′B′C′.∵将三角形ABC沿BC方向平移2cm得到三角形A'B'C',∴BB′=2cm.∵AB=2cm,BC=4cm,A'D=1cm,∴B′C=2cm,DB′=1cm.∴S四边形DCC′A′=S△ABC﹣S△B′CD=﹣=3(cm2).故答案是:3cm2.17.解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠AEF=180°,∠D=∠FED,∴∠AEF=180°﹣130°=50°,∠FED=20°,∴∠AED=∠AEF+∠FED=50°+20°=70°.即β=70°.故答案为:70°.18.解:因为∠A与的∠B两边分别平行,所以∠A与∠B相等或互补,因为∠A比∠B的3倍少20°,所以∠A=3∠B﹣20°,①当∠A=∠B时,∠A=3∠A﹣20°,解得∠A=10°;②当∠A+∠B=180°时,∠A=3(180°﹣∠A)﹣20°,解得∠A=130°.所以∠A的大小是10°或130°.故答案为:10°或130°.19.解:过点B作BG∥DM,如图:∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.20.解:如图,当高在△ABC内部时,∵∠ABC=40°,∠ACD=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣40°﹣60°=80°,∵BE平分∠ABC,∴∠ABE=∠ABC=20°,∴∠BEC=∠ABE+∠BAE=100°,如图,当高AD在△ABC外部时,∵∠ACD=∠ABC+∠BAC,∴∠ABC=20°,∴∠BEC=∠ABE+∠BAC=20°+20°=40°,综上所述,∠BEC的值为100°或40°.故答案为100或40.21.解:∵∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,∴∠A=180°﹣66°﹣54°=60°,∴∠ABE=90°﹣60°=30°,∴∠FHE=360°﹣60°﹣90°﹣90°=120°,∴∠BHC=120°,故答案为:30°;120°22.解:(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由是:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.23.解:(1)EF和AB的关系为平行关系.理由如下:∵CD∥AB,∠DCB=70°,∴∠DCB=∠ABC=70°,∵∠CBF=20°,∴∠ABF=∠ABC﹣∠CBF=50°,∵∠EFB=130°,∴∠ABF+∠EFB=50°+130°=180°,∴EF∥AB;(2)∵EF∥AB,CD∥AB,∴EF∥CD,∵∠CEF=70°,∴∠ECD=110°,∵∠DCB=70°,∴∠ACB=∠ECD﹣∠DCB,∴∠ACB=40°.24.证明:(1)∵∠1+∠AFE=180°,∠1+∠CFE=180°,∴∠AFE=∠CFE,∴BC∥EF;(2)∵∠BEG=∠EDF,∴DF∥EH,∴∠DFE=∠FEH,又∵BC∥EF,∴∠FEH=∠2,又∵∠2=∠3,∴∠DFE=∠3,∴DF平分∠AFE.25.解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=∠EBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=55°.26.解:(1)因为∠B+∠BFE=180°,所以AB∥EF(同旁内角互补,两直线平行),因为AB∥CD(已知),所以CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也平行),所以∠CDF+∠DFE=180°(两直线平行,同旁内角互补),所以∠B+∠BFD+∠D=∠B+∠BFE+∠EFD+∠D=360°;(2)过点D作AB的平行线DC,因为AB∥EF,所以∠B=∠BDC,因为AB∥EF,所以CD∥EF,所以∠F=∠FDC,所以∠BDF=∠B+∠F(3)过点D作AB的平行线DC,根据平行线的性质可以证明图③∠BDF+∠B=∠F;图④∠BDF+∠B=∠F.27.(1)证明:∵∠E=∠EMA,∠BQM=∠BMQ,∠EMA=∠BMQ,∴∠E=∠BQM,∴EF∥BC;(2)证明:∵FP⊥AC,∴∠PGC=90°,∵EF∥BC,∴∠EAC+∠C=180°,∵∠2+∠C=90°,∴∠BAC=∠PGC=90°,∴AB∥FP,∴∠1=∠B;(3)解:∵∠3+∠4=180°,∠4=∠MNF,∴∠3+∠MNF=180°,∴AB∥FP,∴∠F+∠BAF=180°,∵∠BAF=3∠F﹣20°,∴∠F+3∠F﹣20°=180°,解得∠F=50°,∵AB∥FP,EF∥BC,∴∠B=∠1,∠1=∠F,∴∠B=∠F=50°.28.(1)证明:如图1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)证明:如图2,过点M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,∵射线GH是∠BGM的平分线,∴,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵,∴,∴∠FGN=2β,过点H作HT∥GN,则∠MHT=∠N=2α,∠GHT=∠FGN=2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.。
七年级数学苏科版下册第7章《平面图形的认识(二)》培优提升训练(一)【含答案】
苏科版七年级数学下册第7章《平面图形的认识(二)》培优提升训练(一)1.如图,线段AB∥CD,点P沿射线AC运动(不与A、C两点重合),连接PB、PC,作PF 平分∠BPD,作PE∥AB,设∠ABP=α,∠PDC=β.(1)如图1,当α<β,探究∠EPF与α、β的数量关系;(2)当点P位置发生变化时,请你利用提供的图2、3、4继续操作,探究(1)中的问题.2.完成下面推理过程.在括号内的横线上填空或填上推理依据.如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD证明:∵AB∥EF∴∠APE=()∵EP⊥EQ∴∠PEQ=()即∠QEF+∠PEF=90°∴∠APE+∠QEF=90°∵∠EQC+∠APE=90°∴∠EQC=∴EF∥()∴AB∥CD()3.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.4.如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H,∠3+∠4=180°,试说明∠1=∠2.(请通过填空完善下列推理过程)解:∵∠3+∠4=180°(已知),∠FHD=∠4().∴∠3+=180°(等量代换).∴FG∥BD().∴∠1=().∵BD平分∠ABC,∴∠ABD=().∴∠1=∠2().5.如图,在△ABC中,∠A=30°,∠ACB=80°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.6.如图,在△ABC中,∠B=31°,∠C=55°,AD⊥BC于D,AE平分∠BAC交BC于E,DF ⊥AE于F,求∠ADF的度数.7.在一个三角形中,如果一个内角是另一个内角的3倍,这样的三角形我们称之为“三倍角三角形”.例如,三个内角分别为120°,40°,20°的三角形是“三倍角三角形”.(1)△ABC中,∠A=35°,∠B=40°,△ABC是“三倍角三角形”吗?为什么?(2)若△ABC是“三倍角三角形”,且∠B=60°,求△ABC中最小内角的度数.8.如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.(1)求证:∠A=2∠E;(2)若∠A=∠ABC,求证:AB∥CE.9.已知,如图1,射线PE分别与直线AB、CD相交于E、F两点,∠PFD的平分线与直线AB 相交于点M,射线PM交CD于点N,设∠PFM=α,∠EMF=β,且+|β﹣30|=0.(1)α=°,β=°;直线AB与CD的位置关系是;(2)如图2,若点G是射线MA上任意一点,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由.10.如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.11.如图,已知点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D、F,点M、G在AB上,GF 交BD于点H,∠BMD+∠ABC=180°,∠1=∠2,则有MD∥GF.下面是小颖同学的思考过程,请你在括号内填上依据.思考过程:因为BD⊥AC,EF⊥AC,垂足分别为D、F(已知),所以∠BDC=90°,∠EFC=90°()所以∠BDC=∠EFC(等量代换).所以(同位角相等,两直线平行).所以∠2=∠CBD()因为∠1=∠2(已知),所以∠1=∠CBD().所以(内错角相等,两直线平行),因为∠BMD+∠ABC=180°(),所以MD∥BC()所以MD∥GF()12.如图,∠A+∠ABC=180°,BD⊥CD于点D,EF⊥CD于点F.(1)请说明AD∥BC的理由;(2)若∠ADB=45°,求∠FEC的度数.13.如图,已知两条射线BP∥CQ,动线段AD的两个端点A、D分别在射线BP、CQ上,且∠B=∠ADC=110°,F在线段AB上,AC平分∠DCF,CE平分∠BCF.(1)请判断AD与BC的位置关系,并说明理由;(2)求∠ACE的度数;(3)若平行移动AD,使∠BEC=∠CAD,求∠CAD的度数.14.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由.(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠FAD=50°,∠ABC=40°,求∠BED的度数.(3)将图2中的线段BC沿DC所在的直线平移,使得点B在点A的右侧,若∠FAD=m°,∠ABC=n°,其他条件不变,得到图3,请你求出∠BED的度数(用含m,n的式子表示).15.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系:;(2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系.参考答案1.解:(1)如图1,∵AB∥CD,PE∥AB,∴AB∥CD∥PE,∴∠BPE=∠ABP=α,∠DPE=∠PDC=β,∵PF平分∠BPD,∴∠BPF=∠DPF,∵∠BPF=∠BPE+∠EPF=α+∠EPF,∠DPF=∠DPE﹣∠EPF=β﹣∠EPF,∴α+∠EPF=β﹣∠EPF,∴.(2)①当α=β时,如图2,此时∠EPF=0°.②当点P在线段AC上,且α>β时,如图3,∵AB∥CD,PE∥AB,∴AB∥CD∥PE,∴∠BPE=∠ABP=α,∠DPE=∠PDC=β,∵PF平分∠BPD,∴∠BPF=∠DPF,∵∠BPF=∠BPE﹣∠EPF=α﹣∠EPF,∠DPF=∠DPE+∠EPF=β+∠EPF,∴α﹣∠EPF=β+∠EPF,∴.③当点P在点C的下方时,如图4,∵AB∥CD,PE∥AB,∴AB∥CD∥PE,∴∠BPE=∠ABP=α,∠DPE=∠PDC=β,∵PF平分∠BPD,∴∠BPF=∠DPF,∵∠BPF=∠BPE﹣∠EPF=α﹣∠EPF,∠DPF=∠EPF﹣∠DPE=∠EPF﹣β,∴α﹣∠EPF=∠EPF﹣β,∴.综上,当点P位置发生变化时,∠EPF与α、β的数量关系或.2.证明:∵AB∥EF∴∠APE=∠PEF(两直线平行,内错角相等)∵EP⊥EQ∴∠PEQ=90°(垂直的定义)即∠QEF+∠PEF=90°∴∠APE+∠QEF=90°∵∠EQC+∠APE=90°∴∠EQC=∠QEF∴EF∥CD(内错角相等,两直线平行)∴AB∥CD(平行于同一直线的两直线互相平行),故答案为:∠PEF,两直线平行,内错角相等,90°,∠QEF,内错角相等,两直线平行,CD,平行于同一直线的两直线互相平行.3.解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.4.解:∵∠3+∠4=180°(已知),∠FHD=∠4(对顶角相等),∴∠3+∠FHD=180°(等量代换),∴FG∥BD(同旁内角互补,两直线平行),∴∠1=∠ABD(两直线平行,同位角相等),∵BD平分∠ABC,∴∠ABD=∠2(角平分线的定义),∴∠1=∠2(等量代换),故答案为:对顶角相等,∠FHD,同旁内角互补,两直线平行,∠ABD,两直线平行,同位角相等,∠2,角平分线的定义,等量代换.5.解:(1)∵在△ABC中,∠A=30°,∠ACB=80°,∴∠CBD=∠A+∠ACB=110°,∵BE是∠CBD的平分线,∴∠CBE=∠CBD=55°;(2)∵∠ACB=80°,∠CBE=55°,∴∠CEB=∠ACB﹣∠CBE=80°﹣55°=25°,∵DF∥BE,∴∠F=∠CEB=25°.6.解:∵∠B=31°,∠C=55°,∴∠BAC=94°,∵AE平分∠BAC,∴∠BAE=∠BAC=47°,∴∠AED=∠B+∠BAE=31°+47°=78°,∵AD⊥BC,DF⊥AE,∴∠EFD=∠ADE=90°,∴∠AED+∠EDF=∠EDF+∠ADF,∴∠ADF=∠AED=78°.7.解:(1)△ABC是“三倍角三角形”,理由如下:∵∠A=35°,∠B=40°,∴∠C=180°﹣35°﹣40°=105°=35°×3,∴△ABC是“三倍角三角形”;(2)∵∠B=60°,∴∠A+∠C=120°,设最小的角为x,①当60°=3x时,x=20°,②当x+3x=120°时,x=30°,答:△ABC中最小内角为20°或30°.8.证明:(1)∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知),∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(三角形外角的性质),∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性质),∵CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知),∴∠ACD=2∠2,∠ABC=2∠1(角平分线的性质),∴∠A=2∠2﹣2∠1(等量代换),=2(∠2﹣∠1)(提取公因数),=2∠E(等量代换);(2)由(1)可知:∠A=2∠E∵∠A=∠ABC,∠ABC=2∠ABE,∴2∠E=2∠ABE,即∠E=∠ABE,∴AB∥CE.9.(1)证明:∵+|β﹣30|=0,∴α=β=30,∴∠PFM=∠MFN=30°,∠EMF=30°,∴∠EMF=∠MFN,∴AB∥CD;故答案为:30;30;AB∥CD;(2)解:∠FMN+∠GHF=180°.理由:∵AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°.(3)解:的值不变,=2.理由:如图3中,作∠PEM1的平分线交M1Q的延长线于R.∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,设∠PER=∠REB=x,∠PM1R=∠RM1B=y,则有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1∴=2.10.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.11.解:因为BD⊥AC,EF⊥AC,垂足分别为D、F(已知),所以∠BDC=90°,∠EFC=90°(垂直的定义),所以∠BDC=∠EFC(等量代换),所以BD∥EF(同位角相等,两直线平行),所以∠2=∠CBD(两直线平行,同位角相等),因为∠1=∠2(已知),所以∠1=∠CBD(等量代换),所以BC∥GF(内错角相等,两直线平行),因为∠BMD+∠ABC=180°(已知),所以MD∥GF(同旁内角互补,两直线平行),所以DM∥BC(平行于同一条直线的两条直线平行);故答案为:垂直的定义;BD∥EF;两直线平行,同位角相等;等量代换;BC∥GF;已知;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.12.解:如图所示:(1)AD∥BC的理由如下:∵∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行);(2)∵BD⊥CD,∴∠BDC=90°,∵AD∥BC,∴∠ADB=∠DBC,又∵∠ADB=45°,∴∠DBC=45°,又∵BD⊥CD.EF⊥CD,∴BD∥EF,∴∠DBC=∠FEC,∴∠FEC=45°.13.解:(1)结论:AD∥BC.理由:∵BP∥CQ,∴∠DCB=180°﹣∠B=180°﹣110°=70°,∵∠ADC+∠DCB=110°+70°=180°,∴AD∥BC.(2)∵AC平分∠DCF,CE平分∠BCF,∴∠ACF=∠DCF,∠FCE=∠FCB,∴∠ACE=∠ACF+∠FCE=∠DCF+∠FCB=∠DCB=×70°=35°.(3)设∠ACD=x,∵AB∥CD,∴∠BEC=∠DCE=35°+x,∵AD∥BC,∴∠DAC=∠ACB=70°﹣x,则有35°+x=(70°﹣x),解得x=28°,∴∠CAD=70°﹣28°=42°.14.解:(1)如图1中,作EF∥AB,则有EF∥CD,∴∠1=∠BAE,∠2=∠DCE,∴∠AEC=∠1+∠2=∠BAE+∠DCE.(2)如图2,过点E作EH∥AB,∵AB∥CD,∠FAD=50°,∴∠FAD=∠ADC=50°,∵DE平分∠ADC,∠ADC=50°,∴∠EDC=∠ADC=25°,∵BE平分∠ABC,∠ABC=40°,∴∠ABE=∠ABC=20°,∵AB∥CD,∴AB∥CD∥EH,∴∠ABE=∠BEH=20°,∠CDE=∠DEH=25°,∴∠BED=∠BEH+∠DEH=45°.(3)∠BED的度数改变.过点E作EG∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=∠FAD=m°∴∠ABE=∠ABC=n°,∠CDE=∠ADC=m°∵AB∥CD,∴AB∥CD∥EG,∴∠BEG=180°﹣∠ABE=180°﹣n°,∠CDE=∠DEG=m°,∴∠BED=∠BEG+∠DEG=180°﹣n°+m°.15.解:(1)如图①,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP;(2)如图②,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如备用图,∵MN∥GH,∴∠PFN=∠HBP,∵∠PFN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.如备用图,∵MN∥GH,∴∠PFB=∠NAP,∵∠HBP=∠PFB+∠APB,∴∠HBP=∠NAP+∠APB.故答案为:∠APB=∠NAP+∠HBP;∠HBP=∠NAP+∠APB.。
苏科版七年级下册数学第7章 平面图形的认识(二) 含答案
苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、如图,,,若,则的度数是()A. B. C. D.2、如图所示的方格中,每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是()A.2B.3C.D.3、如图,∠B=∠C=36°,∠ADE=∠AED=72°,则图中的等腰三角形有( )A.3个B.4个C.5个D.6个4、正十二边形的外角和的度数为()A.1800°B.720°C.360°D.180°5、已知等腰三角形的两边长分别为4,9,则它的周长为( )A.13B.17C.22D.17或226、如图,七边形ABCDEFG中,AB、ED的延长线交于点O,若∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°7、小明有两根4cm、8cm的木棒,他想以这两根木棒为边做一个三角形,还需再选用一根()cm长的木棒。
A.1B.4C.7D.138、用下列边长相同的正多边形组合,能够铺满地面不留缝隙的是()A.正八边形和正三角形B.正五边形和正八边形C.正六边形和正三角形D.正六边形和正五边形9、下列说法正确的有()①三角形的三条高交于一点.②三角形的外角大于任何一个内角.③各边都相等的多边形是正多边形.④多边形的内角中最多有3个锐角.A.1个B.2个C.3个D.4个10、如图a∥b,∠3=108°,则∠1的度数是()A.72°B.80°C.82°D.108°11、如图,在平面直角坐标系中,将四边形向下平移,再向右平移得到四边形,已知,则点坐标为()A. B. C. D.12、如图,在△ABC中,点D是BC边上任一点,点F,G,E分别是AD,BF,CF 的中点,连结GE,若△FGE的面积为8,则△ABC的面积为( )A.32B.48C.64D.7213、如图,直尺经过一块三角板DCB的顶点B,,,则的度数为()A.150°B.140°C.130°D.100°14、将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是()A.30°B.45°C.60°D.65°15、如图,在中,分别在上,且∥,要使∥,只需再有下列条件中的()即可.A. B. C. D.二、填空题(共10题,共计30分)16、两个角的两边分别平行,其中一个角是60°,则另一个角是________.17、如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=________度.18、如图,在中,,若剪去得到四边形,则________.19、如图,在中,,点在边上,将沿折叠,点落在点处,恰好于点且,则的度数为________度.20、在长度分别为3、4、7、9的四条线段中,任意选取三条,端点顺次连接,能组成三角形的概率为________.21、已知点在数轴上,若一个点从点处向右移动个单位长度,再向左移动个单位长度,此时该点所对应的数是那么点表示的数是________.22、如图,若,点E在直线的上方,连接,延长交于点F,已知,,则________°.23、已知n为整数,若一个三角形的三边长分别是,,6n,则所有满足条件的n值的和为________.24、如图,已知等边三角形ABC的高为7cm,P为△ABC内一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F.则PD+PE+PF=________.25、一个多边形的内角和等于 1800°,它是________边形.三、解答题(共5题,共计25分)26、如图,E为△ABC的边BC上一点,D在BA的延长线上,DE交AC于点F,∠B=45°,∠C=30°,∠EFC=70°,求∠D的度数.27、如图,已知CE⊥AB,MN⊥AB,∠1=∠2,求证:∠EDC+∠ACB=180°.28、已知:如图,AC平分∠DAB,∠1=∠2 ,求证:AB∥CD.29、在△ABC中,∠BAC=50°,∠B=45°,AD是△ABC的一条角平分线,求∠ADB的度数30、推理填空如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,求证:CE∥DF.请完成下面的解题过程.解:∵BD平分∠ABC,CE平分∠ACB (已知)∴∠DBC=∠_▲_,∠ECB=∠_▲_(角平分线的定义)又∵∠ABC=∠ACB (已知)∴∠_▲_=∠_▲_.又∵∠_▲_=∠_▲_ (已知)∴∠F=∠_▲_∴CE∥DF_▲__.参考答案一、单选题(共15题,共计45分)1、D3、D4、C5、C6、B7、C8、C9、A10、A11、B12、C13、C14、C15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
苏科版七年级下册数学第7章 平面图形的认识(二) 含答案
苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、如图,将三角板的直角顶点放在直线a上,a∥b,∠1=55°,∠2=60°,则∠3的大小是()A.55°B.60°C.65°D.75°2、下列定理有逆定理的是()A.直角都相等B.同旁内角互补,两直线平行C.对顶角相等D.全等三角形的对应角相等3、如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°4、如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是()A.1B.2C.3D.45、下面四个图形中,线段AD是△ABC的高的是()A.(1)B.(2)C.(3)D.(4)6、若n边形的内角和是720°,则n的值是()A.5B.6C.7D.87、下列图形中,能镶嵌成平面图案的是( )A.正六边形B.正七边形C.正八边形D.正九边形8、如图,已知DE由线段AB平移得到的,且AB=DC=4cm,EC=3cm,则△DCE的周长是()A.9cmB.10cmC.11cmD.12cm9、如图,l1∥l2∥l3∥l4∥l5∥l6,每相邻两条直线之间的距离为1,点A,B,C分别在直线“l1,l3,l6上,AB交l2于点D,BC交l4于点E,CA交l2于点F.若△DEF的面积为2,则△ABC的面积为( )A.8B.9C.10D.1210、如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是()A.48°B.78°C.92°D.102°11、一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形12、如图,正方形中,在的延长线上取点,,使,,连接分别交,于,,下列结论:①;②;③图中有8个等腰三角形;④.其中正确的结论个数是()A.1个B.2个C.3个D.4个13、如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于()A.70°B.45°C.110°D.135°14、如图,在矩形中,,动点满足,则点到两点距离之和的最小值为()A. B. C. D.15、如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=()A.40°B.110°C.70°D.140°二、填空题(共10题,共计30分)16、如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D、C两点分别落在D′、C′的位置,并利用量角器量得∠EFB=65°,则∠AED′等于________ 度.17、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠2=70°,∠1=________.18、如图,△ABC中,∠ABC与∠ACB的角平分线交于点O,若∠BAC=82°,则∠BOC=________.19、如图,AB∥CD,AD与BC交于点O,OP平分∠BOD,交CO的延长线于P,若∠A=100º,∠B=30º,则∠P的度数是________20、如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于 ________°.21、已知:如图,∠1是△ABC的一个外角,且∠1=110°,∠A=75°,则∠B=________.22、如图,在菱形中,E是上一点,的延长线交于点F,若,则的度数为________.23、如图,若AB∥CD,∠1=65°,则∠2的度数为________°.24、等腰三角形的两条边长为2和5,则该等腰三角形的周长为________.25、如图:直线l1∥l2, l3∥l4,∠1比∠2的3倍少20°,则∠1=________,∠2=________.三、解答题(共5题,共计25分)26、化简•﹣,并求值,其中a与2、3构成△ABC的三边,且a 为整数.27、如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.28、如图,已知AB∥CD,∠1=50°,∠2=110°,求∠3的度数.29、如图,在△ABC中,三个顶点的坐标分别为A(﹣5,0),B(4,0),C (2,5),将△ABC沿x轴正方向平移2个单位长度,再沿y轴沿负方向平移1个单位长度得到△EFG.(1)求△EFG的三个顶点坐标.(2)求△EFG的面积.30、已知:如图,点E,C在线段BF上,AB=DE,AC=DF,BE=CF.求证:AB∥DE.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、D5、D6、B7、A8、C9、C10、D11、C12、B13、C14、A15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
苏教版初一数学第七章平面图形的认识(二)练习卷有答案解析
数学学科初一(下)平行线的判断与性质试卷一、选择题(每题 5 分,共 100 分)1.如图,与∠a是同位角的有 ·····························()A .3 个B .4 个aC .5 个D .6 个答案: A .分析: 两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角。
同位角的特征 :在截线的同侧,在被截直线的同方向.本题为简单题.观察三线八角, 同位角的看法.2.如图, CM,ON 被AO 所截,那么·()A .C .1和 3是同位角ACD 和∠ AOB 是内错角B .D .2 和1 和4 是同位角4 是同旁内角答案: B .分析:两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角. 鉴识同位角、内错角或同旁内角的重点是找到构成这两个角的“三线”, 有时需要将有关的部分“抽出”或把没关的线略去不看,有时又需要把图形补全 .本题为简单题.观察三线八角, 同位角、内错角、同旁内角的看法.3.如图,若 AB // CD , CD // EF ,则 AB 与 EF 的地点关系是()ACA .平行B .延伸后才平行EC .垂直D .难以确立B答案: A . D F分析:.假如两条直线都与第三条直线平行,那么这两条直线也相互平行。
本题为简单题.观察平行公义的推论(平行线的传达性).4.如图, 12 ,则以下结论必定成立的是()A 1 D4 A . AB // CDB . AD // BC2 3BC . B DD . 34C 答案: B .分析: ∠ 1、∠ 2 是 AD 、 BC 被 AC 所截得一对内错角 . 两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行 ,简称:内错角相等,两直线平行 .本题为简单题.观察平行线的判断条件.5.如图,以下条件中,不可以判断直线l1 // l 2的是()A .C.1435B.D.2234 180°答案: B.分析:选项 A 是内错角相等,两直线平行;选项 C 是同位角相等,两直线平行;选项 D 是同旁内角互补,两直线平行.本题为中档题.观察平行线的判断条件.6.下边各语句中,正确的选项是·()A .两条直线被第三条直线所截,同位角相等C.若a // b,c // d,则a // dB .垂直于同一条直线的两条直线平行 D .同旁内角互补,两直线平行答案: D.分析:选项A 错在缺条件“平行” ;选项 B 错在缺条件“在平面内” ;选项 C 错在b、c没有关系从而不可以推出 a 、d的关系。
(典型题)苏科版七年级下册数学第7章 平面图形的认识(二)含答案
苏科版七年级下册数学第7章平面图形的认识(二)含答案一、单选题(共15题,共计45分)1、已知三角形的三边长分别是3,8,x;若x的值为偶数,则x的值有()A.6个B.5个C.4个D.3个2、如图,将直尺与含30°角的三角尺摆放在一起,若∠1=25°,则∠2的度数是( )A.35°B.45°C.55°D.65°3、已知三角形的三边长分别为4,a, 8,那么下列在数轴上表示该三角形的第三边a的取值范围正确的是()A. B. C.D.4、下列长度的各组线段,可以组成一个三角形三边的是()A.1,2,3B.3,3,6C.1,5,5D.4,5,105、如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°6、不能作为正多边形的内角的度数的是( )A.120°B.108°C.144°D.145°7、△ABC的角平分线AD是()A.射线ADB.射线DAC.直线ADD.线段AD8、如图,将边长为5个单位的等边△ABC沿边BC向右平移4个单位得到△A′B′C′,则四边形AA′C′B的周长为()A.22B.23C.24D.259、若四边形ABCD中,∠A:∠B:∠C=1:2:4,且∠D=108°,则∠A+∠C的度数等于()A.108°B.180°C.144°D.216°10、如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为( )A.72B.36°C.60°D.82°11、如图,在△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于( )A.63°B.62°C.55°D.118°12、如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠B的度数是( )A.40°B.35°C.30°D.15°13、如图,若∠1=∠2,DE∥BC,则下列结论中正确的有( )①∠AED =∠ACB;②FG∥DC;③CD平分∠ACB;④∠1+∠B =90°;⑤∠BFG =∠BDC.A.1个B.2个C.3个D.4个14、如图,一次函数与轴,轴交于两点,与反比例函数相交于两点,分别过两点作轴,轴的垂线,垂足为,连接,有下列四个结论:① 与的面积相等;② ∽ ;③ ;④ ,其中正确的结论个数是()A.1B.2C.3D.415、如图,AB是⊙O的直径,弦CD⊥AB,DE∥CB交⊙O于点E,若∠CBA=20°,则∠AOE的度数为()A.120°B.80°C.110°D.100°二、填空题(共10题,共计30分)16、在△ABC中,∠B=45°,cosA=,则∠C的度数是________.17、一个等腰三角形的两边长分别为5cm和6cm,则该等腰三角形的周长为________cm.18、若a,b,c是一个三角形的三条边,且a,b满足+|7﹣b|=0,则第三边c的取值范围为________19、若一个多边形的每个外角都是40°,则从这个多边形的一个顶点出发可以画________条对角线.20、如图,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度数.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠E=50°,∠BAC=50°,(已知)∴∠E=________(等量代换)∴________∥________.(________)∴∠ABD+∠D=180°.(________)∴∠D=110°,(已知)∴∠ABD=70°.(等式的性质)21、如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=________.22、如图,在矩形纸片ABCD中,AB=8,BC=6,点E是AD的中点,点F是AB 上一动点,将△AEF沿直线EF折叠,点A落在点A′处,连接CA′,则CA′的最小值为________.23、已知一个正多边形的内角是140°,则这个正多边形的边数是________.24、如图,AB∥ED, ∠CAB=135°,∠ACD= 75°,则∠CDE=________度25、若一个等腰三角形的周长为26,一边长为10,则它的腰长为________.三、解答题(共5题,共计25分)26、如图,在△ABC中,D是BC上的一点,∠1=∠2,∠3=∠4,∠B=40°,求∠BAC的度数.27、一个边数为的多边形中所有对角线的条数是边数为的多边形中所有对角线条数的6倍,求这两个多边形的边数.28、若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有k条对角线,正h边形的内角和与外角和相等.求代数式h•(m﹣k)n的值.29、如图,△ABC与△DBE中,AC∥DE,点B、C、E在同一直线上,AC,BD相交于点F,若∠BDE=85°,∠BAC=55°,∠ABD:∠DBE=3:4,求∠DBE的度数.30、如图,已知∠1=∠2,∠GFA=40°,∠HAQ=15°,∠ACB=70°,AQ平分∠FAC,求证:BD∥GE∥AH.参考答案一、单选题(共15题,共计45分)1、D2、C3、A4、C5、B6、D7、D8、B9、B10、A11、B12、B13、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A )D C B A
(B )D C B A (C )D C B A (D )
D C B A
第七章 平面图形的认识(二) 魔鬼训练
班级:________姓名:___________得分:__________
一、选择题:
1、下列图形中,不能通过其中一个四边形平移得到的是: ( )
2ABC
3、如图,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为: ( )
A 、600m 2
B 、551m 2
C 、550m 2
D 、500m 2
4、将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2等于: ( )
A 、56°
B 、68°
C 、62°
D 、66°
5、a 、b 、c 、d 四根竹签的长分别为2cm 、3cm 、4cm 、6cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有: ( )
A 、1个
B 、2个
C 、3个
D 、4个 6、若一个多边形每一个外角都与它的相邻的内角相等,则这个多边形的边数是: ( )
A 、6
B 、5
C 、4
D 、3 7、下列叙述中,正确的有:( )
①三角形的一个外角等于两个内角的和; ②一个五边形最多有3个内角是直角; ③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部; ④ΔABC 中,若∠A=2∠B=3∠C ,则这个三角形ABC 为直角三角形.
A 、0个
B 、1个
C 、2个
D 、3个 8、如图,OP∥QR∥ST,则下列各式中正确的是: ( )
(D )D
第3题图
21第4题图
A 、∠1+∠2+∠3=180°
B 、∠1+∠2-∠3=90°
C 、∠1-∠2+∠3=90°
D 、∠2+∠3-∠1=180°
9、如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示,则该主板的周长是:( )
A 、88mm
B 、96mm
C 、80mm
D 、84mm
10、一幅三角板如图所示叠放在一起,则图中∠α的度数为:( )
A 、75°
B 、60°
C 、65°
D 、55° 二、填空题
1、如图,面积为6cm 2
的直角三角形ABC 沿BC 方向平移至三角形DEF 的位置,平移距离是
BC 的2倍,则图中四边形ACED 的面积为_______ cm 2
.
2、如图,l 1∥l 2,AB ⊥l 2,垂足为O ,BC 交l 2于点E ,若∠ABC=140°,则∠
1=_____°. 3、光线a 照射到平面镜CD 上,然后在平面镜AB 和CD 之间来回反射,这时光线的入射角等于反射角。
若已知∠1=55
°,∠3=55°,则∠1=______°.
4、人们都知道五星红旗中的五角星的五个角都相等,那么每一个角是______°.
5、如图AB ∥CD ,直线EF 分别交AB 、CD 于点
E 、
F ,E
G 平分∠BEF ,若∠1=72
°,则∠AEG=____°
第2题图 l 1 l 2 A B
O E C 1 第1题图
第3题图 第6题图
A B C
D E F 1 第5题图 第7题图 第8题图
第10题第9题图
6、如图,把ΔABC 沿线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠B=50°,则∠BDF=______°
7、如图,AB ∥CD ,AD ∥BC ,∠B=110°,延长AD 到F ,延长CD 到E ,连接EF ,则∠E+∠F=______°
8、三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为________cm .
9、如果一个等腰三角形的两边长分别为4cm 和9cm ,则此等腰三角形的周长为________cm . 三、操作题1、请你把所给的三角形沿箭头的方向平移3cm(不写画法,保留作图痕迹)
2、如图是3×4的正方形网格(每个小正方形的边长为1),点A 、B 、C 、D 、E 、F 、G 七点在格点上。
请解答下列各题
(1)在图①中画一个面积为1的直角三角形(三角形的顶点从以上七点中选择);
(2)在图②中画一个面积为
1
2
的钝角三角形(三角形的顶点从以上七点中选择); (3)在以上七点中选择三点作为三角形的顶点,其中面积为2的三角形有________个. 四、几何说理题
1、(6分)如图,AD 是ΔABC 的外角∠CAE 的平分线,∠B=30°,∠DAE=55°, 试求:(1)∠D 的度数; (2)∠ACD 的度数.
图①
F D
图②
A F D
A
B C D E
3、如图,在ΔABC 中,CD 是高,点E 、F 、G 分别在BC 、AB 、AC 上且EF ⊥AB ,∠1=∠2,试判断DG 与BC 的位置关系,并说明理由。
4、如图,ΔABC 中,CD 是∠ACB 的角平分线,CE 是AB 边上的高,若∠A=30°,∠B=70°,求∠DCE 的度数。
五、探索研究
我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若ΔABC 的三条内角平分线相交于点I ,过I 作DE ⊥AI 分别交AB 、AC 于点D 、E 。
(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确) (2)从上表中你发现了∠BIC 与∠BDI 之间有何数量关系,请写出来,并说明其中的道理。
1
2
B A
C E F
D G
A C
B D E。