第五章 稳定性理论

合集下载

第五章 系统的稳定性

第五章 系统的稳定性

0
0
S0
2
0
0
例3
S4 1 S3 5 S2 4.8
s + 5s + 8s + 16 s + 20 = 0
4 3 2
8 16
5 × 8 − 1× 16 24 = = 4 .8 5 5
4.8 × 16 − 5 × 20 = − 4.83 4 .8
20 0 0 0 0
20 0 0
S1 –4.83 S0 20
解:系统的开环传递函数为 系统的闭环传递函数为 特征方程为
s3 s2
1
2 ωn ( s + K ) X 0 ( s) Gk = = 2 E (s) s ( s + 2ξωn )
2 X 0 (s) ωn ( s + K ) GB = = 3 2 2 X i ( s ) s + 2ξωn s 2 + ωn s + kωn
s s0
2、 Routh稳定判据 、 稳定判据 Routh表中第一列各元符号改变的次数等于 表中第一列各元符号改变的次数等于 系统特征方程具有正实部特征根的个数。 系统特征方程具有正实部特征根的个数。 因此,系统稳定的充要条件是, 因此,系统稳定的充要条件是,Routh表中 表中 第一列各元符号均为正 且值不为零。 符号均为正, 第一列各元符号均为正,且值不为零。
an − 2 an − 3 A2 B2 ⋮ D2
an − 4 an −5 A3 B3 ⋮
an − 6 ⋯ an − 7 A4 B4 ⋮
s n −1 s n −2 s
n −3
⋮ s
2 1
⋮ ⋮
A1an −3 − an −1 A2 B1 = A1 A1an −5 − an −1 A3 B1 = A1 ⋮

第5章李雅普诺夫稳定性分析

第5章李雅普诺夫稳定性分析
3
第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷

李雅普诺夫稳定性理论

李雅普诺夫稳定性理论

x(t0 , x0 , t0 ) x0 初态

3.平衡状态:
xe f (xe , t) 0 xe 系统的平衡状态 a.线性系统 x Ax x Rn
A非奇异: Axe 0 xe 0
A奇异:
Axe 0 有无穷多个 xe
b.非线性系统
x f (xe ,t) 0 可能有多个 xe

Pij Pji
x x1 x2 xn T
李氏第二法稳定性定理
设 x f (x,t) 1)在 xe 满足 f (0,t) 0
2) xe 0 V (x, t)存在
定理1
若1)
V
(
x,
t
)
正定 xe
2)
V ( x, t )
负定
则 xe渐近稳定
3)若 x V (x)
eg. x1 x1
x2 x1 x2 x23
令 x1 0 x2 0

xe 1

0

0

0 xe3 1
0 xe2 1
5.2李雅普诺夫意义下的稳定
1.李氏意义下的稳定
如果对每个实数 0 都对应存在另一个
实数 ( ,t0 ) 0 满足 x0 xe (,t0)
则平衡状态 xe 是不稳定的
推论1 若 1)V (x,t)正定 2)V(x,t)正半定
3)x 0 V(x,t) 0 则 xe不稳定
推论2 若 1)V (x,t)正定 2)V(x,t)正半定
3)x 0 V(x,t) 0 则 xe 是李雅普
诺夫意义下的稳定
选取李氏函数的方法
1)构造一个二次型函数 V (x,t)

第五章胶体的稳定性

第五章胶体的稳定性
R 其中:
64 n KT 2 0 2 k) d 0exp( k
式5-10
exp( Ze KT ) 1 0/2 0 exp( Ze KT ) 1 0/2
R 表示两平板质点的双电层在单位面积上的相互排斥能(斥力位能)。
当 0 很高时,Ze 0 >>1,则 0 →1, R 与 0 无关
§5-1 电解质的聚沉作用
一、聚沉与老化
聚沉:胶粒聚集变大而沉淀的过程,与沉淀反应不同, 因聚沉电解质的量远少于沉淀量,其间不存在当量关系。
老化:由于小颗粒具有大的溶解度,静止时,溶液中的 小颗粒溶解,大颗粒长大,直到形成分散度较单一的大颗粒 ,这一过程称为老化。
二、聚沉值及其测定方法
聚沉值:在指定条件下,使溶胶聚沉所需电解质的最 低浓度,以mol/L表示。
一、胶粒间的范德华吸引能
a、永久偶极之间 1、分子间的范德华吸引能
对于同种分子
b、色散吸引能 c、诱导偶极与永久偶极之间
6 x 分
式5-1 (六次律)
式中: 分 :分子间总的范德华引力
2 2 3 2 2 hv 3 KT 4
式5-2
x:分子间距离 α :分子的极化度
对斥能峰的高低有较大影响。 ② s 的影响 , A与 0无关,而 0 随 A 上升而增加,所以 R 2 0 与A相同时,势垒能 s 增加而上升。 泥浆不抗盐是因为电解质对双电层的压缩,使 s下降 ,势垒下降。
R 2 ,所以A与 不变时, ③ 的影响 A与 无关, 0 越小,双电层越厚,势垒越高。
1 1 1 ∶ ∶ 1 2 3
6
6
6
聚沉值与离子价数的6次方成反比,即schulze-hardy 规则。除了反离子外,同号离子的性质、大小均对聚沉值 有影响。

第五章李雅普诺夫稳定性分析

第五章李雅普诺夫稳定性分析
即 x e = f (xe , t) = 0 。
从定义可知,平衡状态的各分量相对于时间不再发生变化。
线性定常系统:x = Ax
A非奇异:Axe = 0 xe = 0 是唯一零解 A奇异:Axe = 0 xe 有无穷多个解
非线性系统:x = f (x,t)
x = f (xe , t) = 0 xe 可能有一个也可能有多个平衡状态
5-2 李雅普诺夫稳定性的基本概念
一、 平衡状态
系统x = f (x,t) ,X为n 维状态向量,且显含时间变量t,x = f (x,t)为线性或
非线性、定常或时变的n
维向量函数,假定方程的解为
x(t;
x
0
,
t 0
)
,式中
x
0
和 t0 分别为初始状态和初始时刻。
定义:系统 x = f (x,t) 的平衡状态是使x = 0的那一类状态,并用 xe 表示,
1 2
Mx22

若用标量函数 V (x) 表示系统的能量。则
V
(x)
=
1 2
Kx12
+
1 2
Mx22
V (x) = Kx1x1 + Mx2x2
=
Kx1x2
+ Mx2 (−
K M
x1

f M
x2 )
= − fx22 0
结论:坐标原点处的平衡状态是渐近稳定的。
一、标量函数及其定号性
1.标量函数 V (x) 的符号和性质
+ ... +
a1
+
a0
=
0
如何判断系统的渐近稳定性?
5-4 李雅普诺夫第二方法
李雅普诺夫第二方法,建立在用能量观点分析稳定性的基础上: 若系统的某个平衡状态是渐近稳定的,则系统储存的能量将随时

线性系统理论第五章 系统运动的稳定性new

线性系统理论第五章 系统运动的稳定性new

|
d
矛盾。因此,反设不成立。
5.1 外部稳定性和内部稳定性
结论2
对零初始条件p维输入和q维输出连续时间线性时不变系 统,令t0=0,则系统BIBO稳定的充分必要条件为:存在一个 有限正常数β,使脉冲响应矩阵H(t)所有元均满足关系式
hij (t) dt i 1,2, q j 1,2, p 0
等价定义为:
(1)由任意初始状态X0∈S(δ)出发的受扰运动φ(t;X0,t0) ,相对 于平衡 状态Xe=0对所有t∈[t0, ∞)均为有界
(2)受扰运动相对于平衡状态Xe=0满足渐近性,即
lim
t
(t;
x0
,
t0
)
0
x0 S( )
称自治系统的孤立平衡状态Xe=0在时刻t0为渐近稳定
5.2 李亚普诺夫意义下运动稳定性的基本概念
不稳定
称自治系统 x& f (x, t) x(t0 ) x0 t [t0 , ) 的孤立平衡状态
Xe=0在时刻t0为不稳定,如果不管取实数ε>0为多么大,都不存在对应
一个实数δ(ε,t0)>0,使得满足不等式‖X0-Xe‖≤δ(ε,t0)的任一初始状态x0出
发的受扰运动Φ(t;x0,t0)满足不等式‖Φ(t;x0,t)-Xe‖≤ε,
‖ Φ(t;x0,t0)-Xe‖≤ε
⑴ 稳定的几何解释 ⑵ 李亚普诺夫意义下一致稳定 ⑶ 时不变系统的稳定属性 ⑷ 李亚普诺夫意义下稳定的实质
t t0
5.2 李亚普诺夫意义下运动稳定性的基本概念
⑴ 稳定的几何解释
几何意义:对任给正实数ε,在状态空间中以原点(即xe)为球心 构造半径为ε的一个超球体,其球域即为S(ε)。则若存在对应地一

线性系统理论(第五章)系统运动的稳定性

线性系统理论(第五章)系统运动的稳定性
2、平衡状态:状态空间中满足 xe f (xe,t) 0
的一个状态 。
t [t0,)
如果 xe 不在坐标原点,可以通过非奇异线性变换,使 xe 0,
因此,平衡状态的稳定性问题都可以归结为原点的稳定性问题。
对线性定常系统:x Ax 其平衡状态 Axe 0
A 非奇异,只存在一个位于状态空间原点的平衡状态。
主要内容为: •外部稳定性和内部稳定性 李亚普诺夫意义下稳定性的一些基本概念 •李亚普诺夫第一法 •李亚普诺夫第二法 •性连续系统的稳定性 •线性定常离散系统的稳定性
§5.1 外部稳定性和内部稳定性
一、外部稳定性
外部稳定性:称一个因果系统为外部稳定(BIBO)是指对任何
一个有界输入u(t), ‖u(t)‖≤β1<∞ t [t0, ) 的任意输入u(t),对应的输出y(t)均为有界,即
§5.2 李亚普诺夫意义下运动稳定性的一些基本概念
一、李亚普诺夫第一方法和第二方法 李亚普诺夫第一方法也称李亚普诺夫间接法,属于小范围 稳定性分析方法。是求出线性化以后的常微分方程的解, 从而分析原系统的稳定性。
李亚普诺夫第二方法也称李亚普诺夫直接法,不需要求解 微分方程的解,就能够提供系统稳定性的信息。
x2 x2
fx22
可见,只有在 x2 0 时,d E / dt 0 。在其他各处均有d E / dt 0 ,
这表明系统总能量是衰减的,因此系统是稳定的。
Lyapunov第二法是研究系统平衡状态稳定性的。
二、自治系统、平衡状态和受扰运动
1、自治系统:没有输入作用的一类动态系统
x f (x,t) x(t0) x0 t [t0,)
A 奇异,存在无穷多个平衡状态。
3、受扰运动:动态系统的受扰运动定义为其自治系统由初始 状态扰动 x0 引起的一类动态运动,即系统的状态零输入响 应。

自动控制--第五章_控制系统的李雅普诺夫稳定性分析

自动控制--第五章_控制系统的李雅普诺夫稳定性分析

5.1 李雅普诺夫意义下的稳定性
2、李雅普诺夫(李氏)意义下的稳定性
设系统 x f (x,t) xe f (xe ,t) 0
如果对每个实数 0都对应存在另一个
实数 ( ,t0 ) ,0 使得满足
x0 xe (,t0)
-向量范数(表示
空间距离)
的任意初始态 x0出发的运动轨迹
x(t; x0,t0 ) ,在 t 都满足:
x(t; x0,t0) xe , t t0
5.1 李雅普诺夫意义下的稳定性
则称平衡状态 xe是李雅普诺夫意义下稳定,
常简称为稳定。
注意:通常实数 δ 与ε有关,一般情况下也与t0 有关
为系统的平衡状态或平衡点。
注意:
系统能维持在某 状态不再变化
1)如果系统是线性定常的,即: x Ax ,则当
A为非奇异矩阵时,系统存在一个唯一的平衡状态即
原点;
Axe 0 xe 0
5.1 李雅普诺夫意义下的稳定性
当A为奇异矩阵时,系统将存在无穷多个平衡状态。
Axe 0 无穷多个 xe
2)对于非线性系统,可有一个或多个平衡状态,这
5.1 李雅普诺夫意义下的稳定性
一、几个基本概念
1、自治系统:不受外部影响即没有输入作用的 一类动态系统。
其状态方程描述为: x f (x,t) x(t0 ) x0
其解表示为: x(t; x0 , t0 )
只需考虑自治系统(因为 稳定性是系统在自由运动
下的特性):
表示始于初态x0的一个运 动或一条状态轨迹
些状态对应于系统的常值解(对所有t,总存在
x xe )
如: x1 x1
x2 x1 x2 x23
x1 0
x2 0

第5章现代控制理论之系统运动的稳定性分析

第5章现代控制理论之系统运动的稳定性分析
当然,对于线性系统, 从不稳定平衡状态出发的轨 迹,理论上趋于无穷远。
由稳定性定义知,球域S(δ) 限制着初始状态x0的取值,球域
S(ε)规定了系统自由运动响应 xt xt; x0的, t0边 界。
简单地说:1.如果 x t; x0, t0 有界,则称 xe 稳定;
2.如果 x t; x0, t0 不仅有界,而且当t→∞时收敛于原点,则
5.1.1 平衡状态
李雅普诺夫关于稳定性的研究均针对平衡状态而言。
1. 平衡状态的定义
设系统状态方程为: x f x,t , x Rn
若对所有t ,状态 x 满足 x 0 ,则称该状态x为平衡状
态,记为xe。故有下式成立:f xe ,t 0
由平衡状态在状态空间中所确定的点,称为平衡点。
2.平衡状态的求法
由定义,平衡状态将包含在 f x,t 这样0 一个代数方程组
中。
对于线性定常系统 x A,x其平衡状态为 xe 应满足代数
方程 。Ax 0
只有坐标原点处是线性系统的平衡状态点。
对于非线性系统,方程 方程而定。
如:
x1 x2
x1 x1
x2
x
3 2
f x的,t 解 可0 能有多个,视系统
稳定性是系统的重要特性,是系统正常工作的必要条件。
稳定性是指系统在平衡状态下受到扰动后,系统自由运动 的性质。因此,系统的稳定性是相对于系统的平衡状态而 言的。它描述初始条件下系统方程是否具有收敛性,而不 考虑输入作用。
1. 线性系统的稳定性只取决于系统的结构和参数,与系统 初始条件及外作用无关; 2. 非线性系统的稳定性既取决于系统的结构和参数,也与 系统初始条件及外作用有关;
当稳定性与 t0 的选择无关时,称一致全局渐近稳定。

2013-第五章--配合物的稳定性

2013-第五章--配合物的稳定性

原反应的平 衡常数为:
查表求
K=—[[AA—gg((N—CHN—3))2—2-+][]—[NCH—N3-]—]22 = —KK—ffAA—gg((N—CHN—3))22-+
Kf Ag(NH3)2+ = 1.7×107 Kf Ag(CN)2- = 1.0×1021
K = 5.8×1013平衡常数很大,说明上述反应很完全。
冠醚
穴醚
大环效应导致的高稳定性极大地扩展了碱金属配 位化学和配位化合物的研究范围。
§5-3 中心与配体的关系(软硬酸碱原理 )
(Hard and Soft Acids and Bases,HSAB)
1. 酸碱的软硬分类 在路易斯酸碱的基础上,进行酸碱的软硬分类 。
(1) 5元饱和环更为稳定 如:乙二胺与1,3—丙二胺相比,形成的配合物更 为稳定。
NH2 CH2 M
NH2 CH2
NH2 CH2
M
CH2
NH2 CH2
(2)含有共轭体系的六原子环螯合物也很稳定。
如:乙酰丙酮的负离子配合物,M(acac)n。
Me
O
M
CH
O
Me
(3)螯合环的数目 实验证明:对结构上相似的一些多齿配体而言,
5-1. 配合物的稳定常数 1.配合物的稳定常数和不稳定常数
稳定常数:
Cu2++4NH3
Cu(NH3)42+
K稳=
[Cu(NH3)42+] [Cu2+][NH3]4
不稳定常数: Cu(NH3)42+ Cu2++4NH3
1 K不稳 = ——
K稳
K不稳= [Cu2+][NH3]4 [Cu(NH3)42+]

第五章 李雅普诺夫稳定性理论

第五章 李雅普诺夫稳定性理论

非线性系统的稳定性是相对系统的平衡态而言的, 非线性系统的稳定性是相对系统的平衡态而言的,很难 笼统地讨论非线性系统在整个状态空间的稳定性。 笼统地讨论非线性系统在整个状态空间的稳定性。 对于非线性系统, 对于非线性系统,其不同的平衡态有着不同的稳定 故只能分别讨论各平衡态附近的稳定性。 性,故只能分别讨论各平衡态附近的稳定性。 对于稳定的线性系统,由于只存在唯一的孤立平衡 对于稳定的线性系统, 态,所以只有对线性系统才能笼统提系统的稳定性 问题。 问题。 李雅普诺夫稳定性理论讨论的是动态系统各平衡态 附近的局部稳定性问题。 附近的局部稳定性问题。 它是一种具有普遍性的稳定性理论, 它是一种具有普遍性的稳定性理论,不仅适用于线 性定常系统,而且也适用于非线性系统、时变系统、 性定常系统,而且也适用于非线性系统、时变系统、 分布参数系统。 分布参数系统。
5.1 动态系统的外部稳定性
控制系统的外部稳定性,常称为有界输入有界输出稳定性。 控制系统的外部稳定性,常称为有界输入有界输出稳定性。 在讨论系统的外部稳定性时,一般只适用于线性动态系统, 在讨论系统的外部稳定性时,一般只适用于线性动态系统, 而且必须假定系统的初始条件为零。 而且必须假定系统的初始条件为零。 外部稳定性的定义是,初始条件为零的线性系统, 外部稳定性的定义是,初始条件为零的线性系统,在任何一 个有界的输入作用下,若系统所产生的输出也是有界的, 个有界的输入作用下,若系统所产生的输出也是有界的,就 称该动态系统是外部稳定的,又称为BIBO稳定。 稳定。 称该动态系统是外部稳定的,又称为 稳定 对于单输入单输出线性定常系统而言, 对于单输入单输出线性定常系统而言,在经典控制理论中定 义的传递函数正是表征了系统在零初始条件下, 义的传递函数正是表征了系统在零初始条件下,输出量与输 入量两者间的关系。因此,对线性定常系统, 入量两者间的关系。因此,对线性定常系统,具有外部稳定 性的充要条件等价于其传递函数的所有极点都位于s平面的 性的充要条件等价于其传递函数的所有极点都位于 平面的 左半边。 左半边。

第五章 系统的稳定性PDF

第五章 系统的稳定性PDF

第五章系统的稳定性讲授内容5.1系统稳定的初步概念一、稳定性的定义系统稳定性是指系统在干扰作用下偏离平衡位置,当干扰撤除后,系统自动回到平衡位置的能力。

若系统在初始状态的影响下,由它所引起的系统的时间响应随着时间的推移,逐渐衰减并趋向于零(即回到平衡位置),则称系统为稳定的;反之,由它所引起的系统的时间响应随着时间的推移而发散(即偏离平衡位置越来越远),则称系统为不稳定的。

线性系统的稳定性是系统的固有特性,仅与系统的结构及参数有关;而非线性系统的稳定性不仅与系统的结构及参数有关,而且还与系统的输入有关。

二、系统稳定的充要条件系统稳定的充要条件是的系统所有特征根的实部全都小于零,或系统传递函数的所有极点均分布在s平面的左半平面内。

若系统传递函数的所有极点中,只有一个位于虚轴上,而其它极点均分布在s平面的左半平面内,则系统临界稳定。

而临界稳定的系统极易因为系统的结构或参数的细微变化而变成不稳定的系统。

因此,临界稳定往往也归结为不稳定的一种。

5.2 (劳斯)稳定判据Routh Routh 判据是判别系统特征根分布的一个代数判据。

一、系统稳定的必要条件要使系统稳定,即系统全部特征根均具有负实部,就必须满足以下两个条件:1)特征方程的各项系数都不等于零。

2)特征方程的各项系数的符号都相同。

此即系统稳定的必要条件。

按习惯,一般取最高阶次项的系数为正,上述两个条件可以归结为一个必要条件,即系统特征方程的各项系数全大于零,且不能为零。

二、系统稳定的充要条件系统稳定的充要条件是表的第一列元素全部大于零,且不能等于零。

Routh 运用判据还可以判定一个不稳定系统所包含的具有正实部的特征根的个数为表第一列元素中符号改变的次数。

Routh Routh 运用判据的关键在于建立表。

建立表的方法请参阅相关的例题或教材。

运用判据判定系统的稳定性,需要知道系统闭环传递函数或系统的特征方程。

Routh Routh Routh Routh 在应用判据还应注意以下两种特殊的情况:Routh 1.如果在表中任意一行的第一个元素为0,而其后各元不全为0,则在计算下一行的第一个元时,该元将趋于无穷大。

第五章 控制系统的稳定性

第五章 控制系统的稳定性

例 5 - 2. 设有下列特征方程 s 4 + 2s 3 + 3s 2 + 4s + 5 = 0
试用Routh判据判别该特征方程正实部根的个数。 判据判别该特征方程正实部根的个数。 试用 判据判别该特征方程正实部根的个数
解 : 列写 劳斯 阵列 : s4 s3 s2 s s
1 0
1 2
2× 3 - 4 2
s3 s2 s s0
1 0≈ε
- 3ε - 2
-3 2 0
改变一次
ε
2
改变一次
∴ 有两实部为正的根。
b.劳斯表某行全为零 说明特征方程中存在一些大小相等,但方向相反的 根。 可用全零行的前一行数值组成辅助方程 A' ( s ),并用 dA' ( s ) / ds 的系数代替全零行的各项,完成劳斯表 ,利用 的系数代替全零行的各项,完成劳斯表, 可解得那些对称根。 辅助方程 A' ( s )可解得那些对称根。
一幅 原 . 角 理 设 (S)是 变 的 项 之 ,除 S平 的 限 奇 复 量 多 式 比 在 面 有 个 F 点 ,为 值 续 则 数又 P为 (S)极 数 , Z为 (S) 外 单 连 正 函 . 设 F 点 目 F 的 点 目 其 包 重 点 重 点 目 以 F(S)的 零 数 , 中 括 极 与 零 数 , 及 全 部 点 零 均 布 S平 的 闭 线 S内 而 S不 过 极 与 点 分 在 面 封 轨 Γ , Γ 通 F(S)的 何 点 零 . 在 种 况 , 当 S以 时 方 任 极 与 点 这 情 下 点 顺 针 向 沿 S 运 , ΓS在 F(S)]平 上 映 ΓF按 时 方 包 原 Γ 动 [ 面 的 射 顺 针 向 围 点 次 的 数 N = Z- P N>0 N<0 N =0 表 ΓF顺 针 围 点 次 示 时 包 原 N 表 ΓF逆 针 围 点 次 示 时 包 原 N 表 ΓF不 围 点 示 包 原

第五章稳定性理论

第五章稳定性理论

稳定性理论5.1 外部稳定性和内部稳定性运动稳定性分为基于I/O 描述的外部稳定性和基于状态空间描述的内部稳定性。

内容包括 外部稳定性 内部稳定性内部稳定性和外部稳定性关系(1)外部稳定性考虑以I/O 描述的线性因果系统,假定初始条件为零,外部稳定性定义如下:定义5.1 称一个因果系统为外部稳定,如果对任意有界输入u (t ),对应输出y (t )均有界,即 102(),[,]()u t t t y t ββ∀≤<∞∈∞⇒≤<∞外部稳定也称为BIBO 稳定。

定理5.1 对零初始条件线性时变系统,t 0时刻BIBO 稳定的充分必要条件是 01212(,),,,,;,,,tij t h t d i q j pττβ≤<∞==∫L L证明:先证SISO 情形。

充分性,已知脉冲响应函数绝对可积,证明系统BIBO 稳定。

由基于脉冲响应的输出关系式,有ττβττττττd u d u t h d u t h t y tt tt tt ∫∫∫≤⋅≤=000)()(),()(),()(因此,对任意有界输入u (t ) ∞<≤1β)(t u ∞<≤≤⇒∫10ββττβd u t y tt )()(即系统BIBO 稳定。

再证必要性,已知系统BIBO 稳定,反设有t 1,使得 ∞=∫ττd t h t t 11),(构造有界输入 ⎪⎩⎪⎨⎧<−=>+==0100011111),(,),(,),(,),(sgn )(ττττt h t h t h t h t u∞===⇒∫∫τττττd t h d u t h t y tt t t 1010111),()(),()(这与系统BIBO 稳定矛盾,必要性得证。

MIMO 情形:对输出的每一分量,有 pj q i dt t h ij ,,,;,,,,)(L L 21210==∞<≤∫∞β定理5.2 对零初始条件线性时不变系统,BIBO 稳定的充分必要条件是,传递函数矩阵G (s )所有极点均具负实部。

第五章稳定性理论

第五章稳定性理论

稳定性理论5.1 外部稳定性和内部稳定性运动稳定性分为基于I/O 描述的外部稳定性和基于状态空间描述的内部稳定性。

内容包括外部稳定性内部稳定性内部稳定性和外部稳定性关系(1)外部稳定性考虑以I/O 描述的线性因果系统,假定初始条件为零(保证系统输入输出描述的唯一性),外部稳定性定义如下:(t时刻输出仅取决于t时刻及之前的输入) 定义5.1 称一个因果系统为外部稳定,如果对任意有界输入u (t ),对应输出y (t )均有界,即102(),[,]()u t t t y t ββ∀≤<∞∈∞⇒≤<∞外部稳定也称为BIBO 稳定。

(有界输入-有界输出)β为有界常数。

1范数:向量各元素绝对值之和;2范数:向量各元素平方之和的1/2次方。

性质1: 非负性;齐次性;三角不等式。

定理5.1 对零初始条件线性时变系统,t 0时刻BIBO 稳定的充分必要条件是(设H(t,τ)为系统脉冲响应矩阵,hij(t,τ)一个元) 01212(,),,,,;,,,tij t h t d i q j pττβ≤<∞==∫L L 证明:先证SISO 情形。

充分性,已知脉冲响应函数绝对可积,证明系统BIBO 稳定。

由基于脉冲响应的输出关系式,有 ττβττττττd u d u t h d u t h t y tt t t t t ∫∫∫≤⋅≤=000)()(),()(),()(因此,对任意有界输入u (t )∞<≤1β)(t u∞<≤≤⇒∫10ββττβd u t y tt )()( 即系统BIBO 稳定。

再证必要性,已知系统BIBO 稳定,反设有t 1,使得∞=∫ττd t h t t 101),(构造有界输入(分段函数)⎪⎩⎪⎨⎧<−=>+==010*******),(,),(,),(,),(sgn )(ττττt h t h t h t h t u∞===⇒∫∫τττττd t h d u t h t y tt t t 1010111),()(),()(这与系统BIBO 稳定矛盾,必要性得证。

第五章稳定性分析

第五章稳定性分析

第五章稳定性分析第五章:控制系统的稳定性分析3.3.5 控制系统的稳定性分析稳定性的概念线性系统稳定的充要条件线性系统稳定的必要条件代数判据(⼀般情况,特殊情况,劳斯,赫尔维茨)劳斯判据的应⽤(确定稳定域判断稳定性,求系统的极点,设计系统中的参数3.3.5.1 稳定性的概念分析⼩球平衡点的稳定性定义:若线性控制系统在初始扰动的影响下,其过渡过程随着时间的推移逐渐衰减并趋向于零,则称该系统为渐近稳定,简称稳定。

反之,若在初始扰动的影响下,系统的过渡过程随时间的推移⽽发散,则称该系统不稳定。

3.3.5.2线性系统稳定性的充要条件设系统的微分⽅程模型为:分析系统的稳定性是分析在扰动的作⽤下,当扰动消失后系统是否能回到原来的平衡状态的性能,亦系统在作⽤下的性能,亦与系统的输⼊信号⽆关,只与系统的内部结构有关。

对上述微分⽅程描述的系统亦只与等式的左端有关,⽽与右端⽆关,亦:系统的稳定性是由下列齐次⽅程所决定:其稳定性可转化为上述齐次⽅程的解c(t)若则系统稳定,则系统不稳定。

分析齐次⽅程的解的特征。

由微分⽅程解的知识,上述⽅程对应的特征多项式为:设该⽅程有k个实根(i=1,2,…k)r对复根(i=1,2,…r)k+2r=n 且各根互异(具有相同的根时分析⽅法相同,推导稍繁琐)则上述齐次⽅程的⼀般解为:其中为常数,由式中的决定,分析可见:只有当时,否则。

注:只能是⼩于零,等于或⼤于均不⾏。

等于零的情况为临界稳定,属不稳定。

综:线性系统稳定的充要条件(iff)是:其特征⽅程式的所有根均为负实数或具有负的实部。

亦:特征⽅程的根均在根平⾯(复平⾯、s平⾯)的左半部。

亦:系统的极点位于根平⾯(复平⾯、s平⾯)的左半部。

从上⾯的充要条件可以看出:系统稳定性的判断只需计算上系统的极点,看其在s平⾯上的位置,勿需去计算齐次⽅程的解(当系统复杂时的计算可能很繁),勿需去计算系统的脉冲响应。

3.3.5.3 线性系统稳定的必要条件设系统特征⽅程式中所有系数均为实数,并设(若,对特征⽅程两端乘(-1)),可以证明上述特征⽅程中所有系数均⼤于零(即)是该特征⽅程所有根在s平⾯的左半平⾯的必要条件。

第5章系统的稳定性

第5章系统的稳定性

经典控制论中,系统稳定性判据

代数判据


Routh(劳斯)判据 Hurwitz(古尔维茨)判据 Nyquist判据 Bode判据

几何判据

5.2 Routh(劳斯)稳定判据
Routh稳定判据
不求解特征方程的根,直接根据特征方程的系 数,判断系统的稳定性,回避了求解高次方程根 的困难。

【例】D(s) s 4 3s3 4s 2 12s 16
【解】:Routh表为: s4 s3 s2 s1 s0 1 3 4 16 12
12 48 48
0( ) 16 12 48 0

很小时,

12

0
16
【结论】:系统不稳定,并有两个正实部根。
【情况2】:
n n n an1 an2 an3 si, si s j, an an an i 1 i j i j k i 1, j 2
(1)
n
s
i 1
n
i
si s j sk,
i 1, j 2, k 3
n a0 n , (1) si an i 1
系统稳定的必要条件:特征方程中所有项的系数均大 于0,只要有一项等于或小于0,则为不稳定系统。 充分必要条件:Routh表第一列元素均大于0。

必要条件证明
D(s) an s n an1s n1 an1 n1 得:s s an 再展开,得
n
a1s a0 0,两端同除以an,并分解因式, (s sn )
其中N+为:正穿越与半次正穿越次数的和。 其中N-为:负穿越与半次负穿越次数的和。

第五章 稳定性理论

第五章  稳定性理论

为向量的2范数或欧几里德范数 15

x(t, x0 , t0 ) xe
t t0
球域S()
则称xe 是李氏意义下的稳定。
当与t0无关时,称为一致稳定
2.渐近稳定
1)是李氏意义下的稳定
2) lim t
x(t,
x0 , t0 )
xe
0
当与t0无关时,称为一致渐近稳定
球域S()被称为平衡状态xe=0的吸引域。
第五章 稳定性理论
1
5.1 外部稳定性和内部稳定性
1、外部稳定性(又称有界输入有界输出稳定性) 定义:对于零初始条件的因果系统,如果存在一个固定的有限常
数k及一个标量使得对于任意的 t [t0 , )
当系统的输入u(t)满足
u(t) k , t [t0 , )
所产生的输出y(t)一定满足
y(t) k , t [t0, )
4.不稳定性
对于某个和任意个,不管有多小、有多
大,只要由S() 内的x0 出发的轨迹超出S()
以外,则xe不稳定
17
(a)稳定平衡状态及一条典型轨迹 (b)渐近稳定平衡状态及一条典型轨迹 (c)不稳定平衡状态及一条典型轨迹
在经典控制理论稳定的概念与李亚普诺夫意义下稳定不完全一
致。
经典控制理论 (线性定常系统)
V (0) 0
V (x) 0(x 0) V (0) 0(x 0)
V(x)正定 V (x) x12 x22 V(x)负定 V (x) 2(x12 3x22 )
V (x) 0(x 0),V (0) 0 V (x) 0(x 0),V (0) 0
正半定 V (x) (x1 x2 )2 负半定 V (x) (2x1 x2 )2

第5章系统的稳定性

第5章系统的稳定性
第五章 系统的稳定性
稳定性是控制系统正常工作的首要条件。 稳定性是控制系统正常工作的首要条件。控制系统在实 际运行中,总会受到外界和内部一些因素的扰动, 际运行中,总会受到外界和内部一些因素的扰动,如负载或 能源的波动、环境条件的改变、系统参数的变化等。 能源的波动、环境条件的改变、系统参数的变化等。 如果系统不稳定,当它受到扰动时, 如果系统不稳定,当它受到扰动时,系统中各物理量就 会偏离其平衡工作点,并且越偏越远,即使扰动消失了,也 会偏离其平衡工作点,并且越偏越远,即使扰动消失了, 不可能恢复原来的平衡状态。 不可能恢复原来的平衡状态。

系统特征方程 D( s ) = s 6 + 2s 5 + 8s 4 + 12s 3 + 20s 2 + 16s + 16 = 0, 试用劳斯判据判别系统的稳定性。 试用劳斯判据判别系统的稳定性。
解: (1)特征方程的所有系数均为正实数,满足系统稳定 )特征方程的所有系数均为正实数, 的必要条件。 的必要条件。 (2)列劳斯数列表 )
得系统的脉冲响应函数
A C(s) = φ(s) = ∑ i i=1 s − si
n sit i=1
n
g(t) = c(t) = ∑Ae i
若系统稳定
n sit t →∞ t →∞ i=1
lim g(t) = lim∑Ae = 0 i
si (2)若 (2)若 s 为复数 i
(1)若 (1)若 为实数
t →∞

已知系统特征方程 D( s ) = s 5 + 3s 4 + 3s 3 + 9s 2 − 4s − 12 = 0 , 试用劳斯判据判别系统的稳定性。 试用劳斯判据判别系统的稳定性。

线性系统理论(第五章)

线性系统理论(第五章)

x0 − xe
≤ δ ( ε , t 0 ) 的任一初态 x 0 出发的受扰
S (ε )
S (δ )
运动都同时满足不等式: 运动都同时满足不等式:
φ (t ; x0 , t0 ) − xe ≤ µ
∀ t ≥ t0 + T ( µ ,δ , t0 )
运动的有界性。 运动的有界性。
x0 xe
φ (t ; x0 , t0 )
001
系统运动的稳定性
讨论内部稳定性。 讨论内部稳定性。 李亚普诺夫方法(А.М.Ляпунов) Ляпунов) 李亚普诺夫方法( 线性系统 定常系统 非线性系统 ; 时变系统 ; 离散时间系统。 离散时间系统。
连续时间系统
002
系统运动的稳定性
5.1 外部稳定性和内部稳定性 外部稳定性 考虑一个线性因果系统,如果对应于一个有界的输入 u ( t ) , 考虑一个线性因果系统, 即满足条件: 即满足条件:
G ( t ) 为其脉冲响应矩阵, ˆ ( s ) 为其传递函数矩阵,则系统 G 为其脉冲响应矩阵, 为其传递函数矩阵,
为 B I B O 稳定的充分必要条件是,存在一个有限常数 k , 稳定的充分必要条件是,
j = 1, 2 , L , p ) 均满足关系式: 均满足关系式:
G (t )
的每一个元
大范围渐近稳定为全局渐近稳定。 大范围渐近稳定为全局渐近稳定。 小范围渐近稳定为局部渐近稳定。 小范围渐近稳定为局部渐近稳定。 大范围渐近稳定,除了原点平衡状态外, 大范围渐近稳定,除了原点平衡状态外,不存在其它孤立平 衡点。 衡点。 线性系统渐近稳定==大范围渐近稳定 线性系统渐近稳定==大范围渐近稳定。 大范围渐近稳定。
006
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

lim x(t , x0 , t0 ) xe 0
t
s ( )
xe 大范围渐近稳定
对所有的状态(状态空间中的所有点),如果由这些状态出发的 轨迹都保持渐近稳定性,则平衡状态xe称为大范围渐近稳定。 大范围渐近稳定的必要条件是状态空间中只有一个平衡态。 当与时刻t无关时系统称为大范围一致渐近稳定。 4.不稳定性 对于某个和任意个,不管有多小、有多 大,只要由S() 内的x0 出发的轨迹超出S() 以外,则xe不稳定
9
例:已知系统的状态方程为
2 (t ) 1 X 0
0 2 0
0 0 0 X (t ) 1u (t ) , 1 3
y (t ) 1
0
1X (t )
试判断该系统是否渐近稳定;是否BIBO稳定。 例: s2 0 0
sI A 1 0
第五章 稳定性理论
1
5.1 外部稳定性和内部稳定性
1、外部稳定性(又称有界输入有界输出稳定性) 定义:对于零初始条件的因果系统,如果存在一个固定的有限常 数k及一个标量使得对于任意的 t [t0 , ) 当系统的输入u(t)满足
u (t ) k , t [t0 , )
所产生的输出y(t)一定满足
s 2,
s2 0
s 2 ,
0 s3
( s 2)( s 2)( s 3) 0
不稳定
1
s 3
0 0 s 2 1 s 2 1 1 0 1 0 G ( s ) C ( sI A) B 0 s 3 0 是BIBO稳定。


t0
g ij (t ) dt k
i 1, q, j 1, p
或者G(s)为真有理分式,且每一个元传递函数gij (s)的所有 极点处在左半复平面 证明: gij (s)为真有理分式,可以部分分式展开
i i、ki为常数 ( s i ) ki k 1 t i i ' t e ki 1 i 对应的拉氏反变换
y (t ) k , t [t 0 , )
那么称此因果系统是外部稳定的,也称有界输入有界输出稳定, 简记为BIBO稳定。 BIBO稳定是通过输入输出关系来体现稳定性,但稳定性本身仍然 是由系统结构和参数决定的,与外部输入无关。
2
2、外部稳定性的判断 1)线性时变系统 对于零初始条件的线性时变系统,设G(t,)为其脉冲响 应矩阵,则系统为BIBO稳定的充要条件是存在一个有限常数 k使得对于任意的t[t0,∞), G(t,) 的每一个元gij (t,)都满 足下式
解:令
1 0 x
x1 0 ,
3 x2 x2 0
2 0 x
3 x1 x2 1) 0
xe 1 0

0
0 xe2 1
0 xe3 1
14
有三个平衡状态。
李亚普诺夫第二法是建立在更为普遍的情况之上的,即:如果系统 有一个渐近稳定的平衡状态,则当其运动到平衡状态的吸引域内 时,系统存储的能量随着时间的增长而衰减,直到在平稳状态达到 极小值为止。提出一个能量函数(李亚普诺夫函数)的概念
V ( x, t )
随着时间的增长而衰减
能量函数
V ( x, t ) 0
0 1 1 ( s 3) 1 10
5.2 Lyapunov稳定性理论
1892年,俄国Lyapunov在《运动稳定性的 一般问题》中提 出了稳定性理论
李氏第一法(间接法):求解特征方程的特征值 李氏第二法(直接法):
是一种定性分析方法
从力学系统出发将系统能量与系统稳定性联系起来 但对于非力学系统,从数学的角度抽象一个能量函数的概 念来分析系统的稳定性。 不仅提供了线性系统平衡状态稳定的充要条件,还提供了 非线性系统平衡状态稳定的充分条件。
x0 [ x10 , x20 xn 0 ]T
球域S()
T
xe [ x1e , x2 e xne ]
x0 xe ( x10 x1e ) 2 ( xn 0 xne ) 2
为向量的2范数或欧几里德范数
15

x(t , x0 , t0 ) xe
t t0
17
(a)稳定平衡状态及一条典型轨迹 (b)渐近稳定平衡状态及一条典型轨迹 (c)不稳定平衡状态及一条典型轨迹
在经典控制理论稳定的概念与李亚普诺夫意义下稳定不完全一 致。
经典控制理论 (线性定常系统) 李亚诺夫意义下 不稳定 (Re(s)>0) 不稳定 临界情况 (Re(s)=0) 稳定 稳定 (Re(s)<0) 渐近稳定
Lyapunov稳定性的定义和概念 Lyapunov直接法
11
5.2.1 系统的基本概念
1、自治系统:输入为0的系统 对于一般系统
f ( x, t ) , t t0 x
(*)
对于线性系统,就是齐次状态方程
A(t ) x x
2、平衡状态(平衡点) 对于(*)系统,如果存在某个状态xe,使下式成立
球域S() 则称xe 是李氏意义下的稳定。 当与t0无关时,称为一致稳定 2.渐近稳定 1)是李氏意义下的稳定 2) lim
t
x (t , x0 , t0 ) xe 0
当与t0无关时,称为一致渐近稳定 球域S()被称为平衡状态xe=0的吸引域。
16
3.大范围内渐近稳定性 对 x s ( ) 0 都有
但如果线性化系统的系数矩阵A的特征值中,即使只有一个实部 为零,其余的都具有负实部,此时实际系统不能依靠线性化的 数学模型判别其稳定性。 这时系统稳定与否,与被忽略的高阶导数项有关,必须分析原始 的非线性数学模型才能决定其稳定性。 当然这里讨论的都是各个平衡状态的稳定性问题。
20
5.2.4 Lyapunov直接法
x (t ) x (t ; x 0 , t 0 ) , t t 0
称为是初始状态x0的受扰运动。 讨论的稳定性就是指平衡状态的稳定性,即当系统由于初始状 态偏离平衡状态时,系统能否在自治的情况下返回到平衡状 态,或限制在某个区域。
13
例:求非线性系统的平衡点
1 x1 x
3 x2 x1 x2 x2
lim (t , t0 ) x0 0
t
则称系统是内部稳定或是渐近稳定; 若系统是定常的,当t0=0,有
(t , t0 ) x0 e At x0 L1[ sI A]1 x0
当矩阵A的所有特征根在s平面的左边,系统就是内部稳定。 内部稳定通过自由运动定义稳定性 有界输入有界状态稳定(BIBS稳定)


t0
g ij (t ) d k
i 1, q, j 1, p
则系统一定是BIBO稳定。
8
2)线性定常系统如果是BIBO稳定,则系统未必是内部稳定的。 证明:根据结构分解定理知道系统由4个子空间组成, 系统的输入输出特性只能反映既能控又能观测子空间 其余三个子空间不能从输入输出关系上体现。 当不能控或不能观测子空间中有不稳定因子,那么系统内部不 稳定,而BIBO稳定。 3)当线性定常系统是既能控又能观测的,那么内部稳定性和外 部稳定性是等价的。 不论是BIBO稳定还是内部稳定,系统稳定性都是由系统内部结 构决定的,对于BIBO稳定只不过是通过输入输出关系体现系统 的稳定性。
18
5.2.3 Lyapunov间接法
基本思路是:首先将非线性系统线性化,然后计算线性化方 程的特征值,最后根据特征值判定原非线性系统的稳定性。 与以前介绍的线性定常系统的方法类似。 线性及线性化系统稳定性的特征值判据:
Ax x
Re( i ) 0
x(0) x0
t0
1)李氏渐近稳定的充要条件:
5.2.2 Lyapunov稳定性的定义
1.李氏意义下的稳定 xe为如下系统的一个孤立平衡状态
f ( x, t ) , t t0 x
如果对任一正实数 满足 其中初态 平衡状态
(*)
0 都对应存在另一个正实数 ( , t0 ) 0
x0 xe ( , t0 )
表明系统在有界输入的情况下,输出无界,与条件矛盾。 所以必要性得证。
5
2)定常系统 对于零初始条件的线性定常系统,设G(t)为其脉冲响应矩 阵, G(s)为传递函数阵,则系统为BIBO稳定的充要条件是存在 一个有限常数k使得对于任意的t[t0,∞), G(t) 的每一个元gij (t) 都满足下式
当ki=0时,拉氏反变换为函数,其余只有i在左半平面,各 项拉氏反变换才收敛,系统BIBO稳定。 6
2、内部稳定性 考虑如下线性系统
A(t ) x B (t )u x y c(t ) x D (t )u
x(t0 ) x0 , t [t0 , t f ]
若系统的外部输入恒为零,即 u 0 那么当初始状态x0是有界的,如果下式满足
e f ( xe , t ) 0 , t t0 x
那么xe为系统的一个平衡状态。 大多数情况下平衡状态在原点处,即xe =0; 对于线性定常系统
Ax x
12
若A为非奇异矩阵,平衡状态一定在原点
3、孤立平衡状态 如果系统的平衡状态在状态空间中呈现为彼此分隔的孤立点,则 称其为孤立平衡状态。 对于孤立的平衡状态,总是可以通过移动坐标系将其转化为空间 原点。 所以下面讨论总认为平衡状态在座标原点。 4、受扰运动 对于自治系统,如果初始状态为x0≠xe

t
t0
g ij (t , ) d k
i 1, q, j 1, p
证明:先证充分性,当上式满足时,且外加有限输入
相关文档
最新文档