有理数知识点梳理
有理数的知识点总结
有理数的知识点总结一、有理数的定义及基本性质:有理数是指所有可以表示为两个整数的比值的数,包括整数、分数和零。
有理数可以用一组整数的比值表示成两种形式:分数形式(也称作比例效应)和小数形式(也称作数列形式)。
有理数的集合通常记作Q。
有理数具有以下基本性质:1. 有理数的加法、减法、乘法和除法仍然是有理数,也就是说,有理数集合对于这四种运算是封闭的。
2. 有理数满足交换律和结合律,在加法和乘法运算中,a+b =b+a,(a+b)+c = a+(b+c);在乘法运算中,a×b = b×a,(a×b)×c= a×(b×c)。
3. 有理数乘法和除法具有倒数性质,即对于任意非零有理数a,存在一个有理数b使得a×b = 1。
4. 有理数乘法符合分配律,即对于任意有理数a、b和 c,a×(b+c) = a×b + a×c。
5. 有理数具有唯一分解性质,即任何一个非零有理数都可以唯一表示为两个整数的比值,而且这个比值对于最简分数形式是唯一的。
二、有理数的四则运算:1. 有理数的加法和减法:对于两个有理数a/b和 c/d,它们的加法定义为(a/b) + (c/d) = (ad+bc)/bd,减法定义为(a/b) - (c/d) = (ad-bc)/bd。
在进行加法和减法运算时,通常需要化简结果为最简分数形式。
2. 有理数的乘法和除法:对于两个有理数 a/b和 c/d,它们的乘法定义为(a/b) × (c/d) =ac/bd,除法定义为(a/b) ÷ (c/d) = ad/bc(其中c/d≠0)。
在进行乘法和除法运算时,同样需要化简结果为最简分数形式。
三、有理数的大小比较:在有理数集合中,任何两个有理数都可以通过大小比较运算来确定它们的相对大小。
有理数的大小比较有以下几个基本原则:1. 相同符号的有理数比较大小,绝对值越大的数为更大的数;2. 不同符号的有理数比较大小,正数大于零,零大于负数;3. 相同符号的两个有理数的绝对值比较,绝对值较小的数较小。
《有理数》的知识点汇总
第一章有理数1.1 正数与负数1.正数和负数的概念①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:(3) 0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
有理数知识点梳理
有理数知识点梳理有理数是数的一种形式,它包含了整数和分数。
理数经常被用来表示量的大小和顺序关系。
理数的知识点梳理包括了有理数的定义、有理数的分类、有理数的运算、有理数的性质以及有理数的应用等内容。
一、有理数的定义有理数指的是可以表示为两个整数的比的数,其中分母不为零。
有理数可以用分数来表示,也可以用小数来表示。
例如,1/2、-3/4、0.5等都是有理数。
二、有理数的分类根据有理数的大小和性质,可以将有理数分为以下几类:1.正有理数:大于0的有理数,比如1/2、3/4、5/6等。
2.负有理数:小于0的有理数,比如-1/2、-3/4、-5/6等。
3.零:等于0的有理数。
4.自然数:整数中大于等于1的数,包括正整数和零。
5.整数:正整数、负整数和0的集合。
三、有理数的运算1.加法和减法:有理数的加法和减法遵循相同符号相加减,异号相加减的原则。
例如,正数加正数为正数,正数加负数为正数,负数加负数为负数。
2.乘法和除法:有理数的乘法和除法遵循相同符号相乘除,异号相乘除得负数的原则。
例如,正数乘以正数为正数,正数乘以负数为负数,负数乘以负数为正数。
3.混合运算:有理数的混合运算可以通过先进行加减法,再进行乘除法的顺序来进行。
四、有理数的性质1.有理数的封闭性:有理数的加法、减法、乘法和除法的结果仍然是有理数。
2.有理数的唯一性:对于任意一个有理数,它的表示形式是唯一的。
例如,1/2和2/4表示的是相同的有理数。
3.有理数的有序性:有理数可以按照大小进行排列,其中正数大于零,零大于负数。
4.有理数的稠密性:在两个有理数之间,一定存在其他有理数。
例如,在1和2之间,存在1.5五、有理数的应用1.分数计算:有理数的常见应用之一是进行分数的计算。
例如,将分数相加、相减、相乘、相除等。
2.测量单位:有理数常用来表示测量单位,例如长度、体积、重量等。
3.比例关系:有理数可以用来表达比例关系,例如百分比、比率等。
4.经济学:有理数在经济学中广泛应用,用来表示货币、商品的价格和利润等。
有理数的知识点整理
有理数的知识点整理一、有理数的概念1. 定义- 整数和分数统称为有理数。
整数包括正整数、0、负整数,例如3、0、-5等;分数包括有限小数和无限循环小数,有限小数如0.25,无限循环小数如0.3̇。
2. 有理数的分类- 按定义分类:- 有理数cases(整数begin{cases}正整数0负整数)分数cases(正分数负分数)end{cases}- 按性质符号分类:- 有理数cases(正有理数begin{cases}正整数正分数)0负有理数cases(负整数负分数)end{cases}二、数轴1. 定义- 规定了原点、正方向和单位长度的直线叫做数轴。
原点、正方向、单位长度是数轴的三要素,缺一不可。
2. 数轴上的点与有理数的关系- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(还有无理数)。
例如,2可以用数轴上原点右边距离原点2个单位长度的点来表示;-1.5可以用原点左边距离原点1.5个单位长度的点来表示。
3. 利用数轴比较有理数的大小- 在数轴上表示的两个数,右边的数总比左边的数大。
正数大于0,0大于负数,正数大于负数。
例如,在数轴上3在1的右边,所以3 > 1;-2在-3的右边,所以-2>-3。
三、相反数1. 定义- 只有符号不同的两个数叫做互为相反数。
0的相反数是0。
例如,3和-3互为相反数,-(1)/(2)和(1)/(2)互为相反数。
2. 性质- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。
例如,5+(-5) = 0。
- 在数轴上,表示互为相反数的两个点位于原点两侧,且到原点的距离相等。
例如,3和-3在数轴上到原点的距离都是3个单位长度。
四、绝对值1. 定义- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
例如,|3| = 3,| - 3|=3。
2. 性质- 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
有理数知识点总结
有理数知识点总结1. 有理数的定义和性质1.1 有理数的定义有理数是可以表示为两个整数的比的数,包括整数、分数和零。
1.2 有理数的性质•有理数可以进行加、减、乘、除运算,并仍为有理数。
•有理数的加法和乘法满足交换律、结合律和分配律。
2. 有理数的表示和分类2.1 有理数的表示有理数可以用分数的形式表示,即分子和分母都是整数,并且分母不为零。
2.2 有理数的分类有理数可以分为以下几类: - 正数:大于零的有理数。
- 负数:小于零的有理数。
- 零:既不大于零也不小于零的有理数。
3. 有理数的比较和大小关系3.1 有理数的比较•对于同号的两个有理数,绝对值大的数较大。
•对于异号的两个有理数,正数较大。
3.2 有理数的大小关系•两个正数比较大小,数值大的较大。
•两个负数比较大小,数值小的较大。
•正数大于零,零大于负数。
4. 有理数的运算4.1 加法和减法有理数的加法和减法满足交换律和结合律,可以通过以下步骤进行: - 对于同号的两个有理数,将它们的绝对值相加(减),并保持符号不变。
- 对于异号的两个有理数,将它们的绝对值相减,结果的符号由绝对值较大的数决定。
4.2 乘法和除法有理数的乘法和除法满足交换律、结合律和分配律,可以通过以下步骤进行: -两个有理数的乘积的符号由乘数的符号决定。
- 两个有理数的商的符号由被除数和除数的符号决定。
5. 有理数的进一步思考5.1 有理数的无穷性有理数是无穷的,可以无限接近但无法达到某些无理数,如圆周率π和自然对数的底数e。
5.2 有理数的应用有理数在实际生活中有广泛的应用,如计算、测量、金融等领域。
在金融中,有理数可以表示货币的数量,进行利息计算等。
5.3 有理数的拓展有理数是数的一个重要分支,还有其他类型的数如无理数、实数、复数等。
无理数是无法表示为两个整数的比的数,实数是有理数和无理数的统称,而复数是实数和虚数的组合。
结论有理数是可以表示为两个整数的比的数,包括整数、分数和零。
《有理数》知识点整理
第一章《有理数》知识点整理1 和统称有理数,有理数又可以分为,,.2. 0既不是,也不是,它是和的分界点。
3. 规定了,和的直线叫数轴。
有理数和无理数都可以用数轴上的点来表示,反过来,数轴上的任意一点都表示一个或,正数用原点边的点表示,负数用原点边的点来表示。
4 (1)数轴上表示的两个数,边的数总比边的数大。
(2)正数0,负数0,正数负数。
(3)两个正数,绝对值大的数值。
两个负数,绝对值大的数值。
5 数轴上表示的一个数的点与叫做这个数的绝对值,绝对值是数。
6 相反数的概念:(1)从“图形”的角度:在数轴上原点的,且到原点的距离的两个点表示的数互为相反数。
(2)从“数”的角度:不同,相同的两个数互为相反数,0的相反数是。
(3)若a,b互为相反数,则a+b= (常用于整体带入求值)7 多重符号的化简,要关注的个数,当的个数为奇数个时,结果仍,当的个数为偶数个时,结果。
8 正数的绝对值等于,0的绝对值等于,负数的绝对值等于。
概述,的绝对值等于它本身,有个,的绝对值等于它相反数,有个。
9 有理数的加法法则:(1)同号两数相加,取的符号,并把绝对值。
(2)异号两数相加:当绝对值相等时,和为。
即两个互为数相加和为;当绝对值不等时,取的符号,并用较大的绝对值较小的绝对值。
(3)一个数与0相加,仍得。
10 有理数的减法法则:减去一个数,等于这个数的。
11 有理数的乘法法则(1)两数相乘,同号得,异号得,并把相乘。
(2)0与任何数相乘都得。
(3)几个不为0的有理数相乘,积的符号可以由的个数决定,当它的个数为奇数个时,积的符号为,当它的个数为偶数个时,积的符号为。
几个数相乘,有一个因数为0,积为。
12 乘积为的两个数互为倒数。
13 有理数的除法法则:除以一个的数,等于这个数的。
14 求的运算叫做乘方,乘方的结果叫做。
表示乘方是要注意底数是和,对底数加括号。
求幂时看清底数,分清是底数中的符号还是幂前负号。
正数的任何次幂都是数,负数的次幂是数,负数的次幂是数,0的次幂得。
关于有理数的知识点总结
关于有理数的知识点总结一、有理数的概念及性质1. 有理数的定义有理数是指可以表示为两个整数的比的数,它通常用分数形式表示。
实际上,每个有理数都可以写成一个整数和一个非零整数的商。
例如,2/3、-5/4、3等都是有理数。
2. 有理数的性质(1)有理数可以用分数形式表示,例如2/3、-5/4等。
(2)有理数中包括正整数、负整数、零以及所有的分数。
(3)有理数的数轴表示:有理数可以用数轴上的点来表示,正数在原点的右侧,负数在原点的左侧,0在原点上。
二、有理数的表示和分类1. 有理数的表示有理数可以用分数形式表示或者小数形式表示。
对于分数形式,它可以用a/b的形式表示,其中a为分子,b为分母;对于小数形式,它可以用有限小数或者循环小数来表示。
2. 有理数的分类有理数可以分为正数、负数和零三种。
其中正数是大于0的数,负数是小于0的数,零表示0。
三、有理数的加法和减法1. 有理数的加法(1)同号数的加法:两个正数相加或者两个负数相加,结果为正数;例如2+3=5,(-2)+(-3)=-5。
(2)异号数的加法:两个正数相加或者一个正数和一个负数相加,结果的绝对值大的减去绝对值小的,符号取绝对值大的数的符号;例如2+(-3)=-1,(-2)+3=1。
2. 有理数的减法有理数的减法可以转化为加法来进行,即a-b=a+(-b)。
也就是说,将减法问题转化为加法问题,然后按照加法的规则进行计算。
四、有理数的乘法和除法1. 有理数的乘法(1)同号数的乘法:两个正数相乘或者两个负数相乘,结果为正数;例如2*3=6,(-2)*(-3)=6。
(2)异号数的乘法:一个正数和一个负数相乘,结果为负数;例如2*(-3)=-6。
2. 有理数的除法有理数的除法同样可以转化为乘法来进行,即a/b=a*(1/b)。
也就是说,将除法问题转化为乘法问题,然后按照乘法的规则进行计算。
五、有理数的绝对值1. 有理数绝对值的定义有理数a的绝对值定义为a的非负数表示,即a的绝对值记为|a|,有两种定义形式:(1)当a>=0时,|a|=a;(2)当a<0时,|a|=-a。
有理数的知识点总结
有理数1. 重要观点有理数是数学中的一类数,它包括整数和分数。
有理数可以表示为两个整数的比值,其中分母不为零。
有理数的重要观点如下:1.1 有理数的定义有理数是可以表示为两个整数的比值的数,其中分母不为零。
有理数可以用分数形,其中a和b是整数,b不为零。
式表示,如ab1.2 有理数的分类有理数可以分为正有理数、负有理数和零。
正有理数是大于零的有理数,负有理数是小于零的有理数,零是整数中的特殊有理数。
1.3 有理数的运算有理数的运算包括加法、减法、乘法和除法。
有理数的加法和乘法满足交换律、结合律和分配律。
有理数的减法可以转化为加法,除法可以转化为乘法。
1.4 有理数的比较有理数的大小可以通过比较其大小关系来确定。
两个有理数a和b,如果a−b大于零,则a大于b;如果a−b小于零,则a小于b;如果a−b等于零,则a等于b。
1.5 有理数的绝对值有理数的绝对值表示有理数的距离到零的距离,可以用来表示有理数的大小。
一个有理数a的绝对值,表示为|a|,如果a大于等于零,则|a|=a;如果a小于零,则|a|=−a。
1.6 有理数的约分有理数可以进行约分操作,即将分子和分母同时除以它们的公因数,得到一个等价的有理数。
约分可以使有理数的表示更简洁。
2. 关键发现在学习有理数的过程中,我们可以发现以下关键点:2.1 有理数与整数的关系整数是有理数的一种特殊情况,可以看作分母为1的有理数。
有理数的加法、减法和乘法运算也适用于整数。
2.2 有理数的小数表示有理数可以通过将分子除以分母得到小数表示形式。
有些有理数可以精确表示为有限小数,有些有理数则会出现循环小数。
2.3 有理数的运算性质有理数的运算满足交换律、结合律和分配律。
这些运算性质使得有理数的运算更加方便和灵活。
2.4 有理数的应用有理数在日常生活和实际问题中有广泛的应用。
例如,有理数可以用来表示温度、货币、时间等实际量,并进行相关的计算。
3. 进一步思考学习有理数的过程中,我们可以深入思考以下问题:3.1 无理数与有理数的关系除了有理数,还存在一类不能表示为两个整数的比值的数,称为无理数。
有理数知识点梳理
有理数知识点梳理有理数是指可以表示为两个整数的比值的数,包括整数、分数、小数等。
在数学中,了解和掌握有理数的概念和性质是非常重要的。
本文将对有理数的知识点进行梳理,帮助读者更好地理解和应用有理数。
一、有理数的定义和表示有理数是指可以表示为两个整数的比值的数。
有理数包括整数、分数和小数。
1. 整数:整数是没有小数部分的数,可以是正数、负数或零,如-3、0、5等。
2. 分数:分数是整数与整数之间的比值,它由分子和分母两部分组成,分子表示被分成的份数,分母表示整体被分成的总份数。
分数可以是正数、负数或零,如2/3、-1/4、0等。
3. 小数:小数是不能化为整数比值的有理数,小数有有限小数和无限循环小数两种形式。
有限小数是指小数部分有限位数的数,如0.5、-3.14等;无限循环小数是指小数部分有无限多位数并且有规律地重复的数,如1/3=0.333...、2/7=0.285714285714...等。
二、有理数的四则运算掌握有理数的四则运算是深入理解和应用有理数的基础。
1. 加法:有理数的加法是指两个有理数相加的运算。
对于同号的有理数,将它们的绝对值相加,并保持它们的符号不变;对于异号的有理数,将它们的绝对值相减,并取绝对值大的数的符号。
2. 减法:有理数的减法是指两个有理数相减的运算。
减去一个有理数等于加上这个有理数的相反数。
3. 乘法:有理数的乘法是指两个有理数相乘的运算。
两个有理数相乘,乘积的符号由这两个有理数的符号决定,绝对值相乘。
4. 除法:有理数的除法是指两个有理数相除的运算。
除数不为零时,两个有理数相除,商的符号由这两个有理数的符号决定,绝对值相除。
三、有理数的比较和大小关系了解不同有理数之间的大小关系,可以帮助我们进行正确的数值比较和排序。
1. 相等:两个有理数相等意味着它们的值相同。
两个有理数相等的充分必要条件是它们的分子、分母比值相等。
2. 大于和小于:对于两个正数,分子较大的数大于分子较小的数;对于两个负数,分子绝对值较小的数大于分子绝对值较大的数。
有理数知识点整理
有理数知识点整理有理数是数学中的一种数形集合,是可以用整数或者整数的比来表示的数。
有理数的主要性质是可以进行加减乘除等基本运算。
下面是对有理数的知识点进行整理。
一、有理数的定义和表示方法有理数是可以表示成分数的数,可以用整数或整数的比来表示。
二、有理数的基本运算1.有理数的加法对于任意两个有理数a和b,它们的加法运算为a+b=c,其中c也是一个有理数。
5.有理数的整除性如果在有理数a和b中,b整除a且b不等于0,则可以表示为a=n×b。
6.有理数的商的整除性如果有理数a÷b是有理数q,而q也可以表示为q=m/n,则有a=nq=bm。
这种情况称为有理数的商的整除性。
三、有理数的大小比较两个有理数相等的充分必要条件是它们的差为0。
四、有理数的绝对值有理数a的绝对值记作|a|,表示a到0的距离。
六、有理数的倒数有理数a的倒数记作1/a或a-1,表示a的倒数是1/a,其中a不等于0。
七、有理数的基本性质1.有理数的加法、减法、乘法和除法都满足结合律、交换律和分配律。
2.对于任意的有理数a,有加数等于减去它的相反数,即a+a'=0。
3.对于任意的有理数a和b,有乘数等于被除以它的倒数,即a×1/a=1。
4.有理数的加法和乘法满足可逆性。
八、有理数的比值有理数a和b之间的比a:b可以表示为a÷b或a/b。
九、有理数的平方根有理数a的平方根是一个有理数b,当b^2=a时,也就是说b是满足b×b=a的正有理数。
总之,有理数是数学中的一个重要概念,掌握有理数的定义、表示方法、基本运算、大小比较、绝对值、相反数和倒数等知识点,对于学好数学有很大的帮助。
有理数知识点整理
有理数知识点整理有理数是指可以表示为两个整数的比值的数,包括正整数、负整数、零以及所有可以表示为分数的数。
在数学中,有理数是一种基本的数学概念,我们在日常生活和学习中经常会接触到它们。
下面将整理一些有关有理数的知识点。
1. 有理数的定义和表示:有理数可以通过一个分子和一个非零的分母的比值来表示,分子和分母都是整数。
通常用分数的形式来表示有理数,例如1/2、3/4等。
有理数可以是正数、负数或零。
2. 有理数的加法和减法:有理数的加法和减法可以通过分数的加减法来进行。
当两个有理数的分母相同时,只需将分子进行相应的加减操作即可。
当两个有理数的分母不同时,可以通过通分的方法,将两个有理数的分母变成相同的,然后进行相应的加减操作。
3. 有理数的乘法和除法:有理数的乘法和除法可以通过分数的乘除法来进行。
乘法要将两个有理数的分子相乘,分母相乘;除法要将除数的分子和被除数的分母相乘,除数的分母和被除数的分子相乘。
4. 有理数的大小比较:有理数的大小比较可以通过它们的绝对值来判断。
绝对值是一个数的大小与符号无关的值,即该数与0的距离。
绝对值大的数比绝对值小的数要大。
当两个有理数的绝对值相同时,可以根据它们的符号来判断大小。
5. 有理数的相反数和倒数:有理数的相反数是指与该有理数的绝对值相等,符号相反的数。
例如,-2是2的相反数,2是-2的相反数。
有理数的倒数是指与该有理数的乘积为1的数。
例如,2的倒数是1/2,-3的倒数是-1/3。
6. 有理数的约分和分数的化简:有理数的约分是指将一个分数的分子和分母同时除以同一个非零整数,得到一个相等的分数。
分数的化简是指将一个分数的分子和分母同时除以它们的公因数,得到一个最简形式的分数。
有理数知识点梳理
第一部分有理数知识点梳理一、有理数的意义1、正数和负数知识点1 负数的引入正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6和零下等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。
用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。
知识点2 正数和负数的概念(1)像3、1.5、、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大。
(2)像-3、-1.5、、-584等在正数前面加“-”(读作负)号的数,叫做负数。
负数比0小。
(3)零即不是正数也不是负数,零是正数和负数的分界。
注意:(1)为了强调,正数前面有时也可以加上“+”(读作正)号,例如:3、1.5、也可以写作+3、+1.5、+。
(2)对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?答案是不一定。
因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了(此时-a是正数)。
知识点3 有理数的有关概念(1)有理数:整数和分数统称为有理数。
注:(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。
但是本讲中的分数不包括分母是1的分数。
(2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数。
(3)“0”即不是正数,也不是负数,但“0”是整数。
(2)整数包括正整数、零、负整数。
例如:1、2、3、0、-1、-2、-3等等。
(完整版)《有理数》章节知识点归纳总结
有理数章节知识点归纳总结一、基本运算和基本概念本身之迷①倒数是它本身的数是±1②绝对值是它本身的数是非负数(正数和0)③平方等于它本身的数是0,1 ④立方等于经本身的数是±1,0⑤偶数次幂等于本身的数是0、1 ⑥奇数次幂等于本身的数是±1,0⑦相反数是它本身的数是0数之最①最小的正整数是1②最大的负整数是-1③绝对值最小的数是0 ④平方最小的数是0 ⑤最小的非负数是0 ⑥最大的非正数0⑦没有最大和最小的有理数⑧没有最大的正数和最小的负数例、填空:①两个互为相反数的数的和是_____; ②____与它绝对值的差为0;③两个互为相反数的数的商是___;(0除外)④ ____的倒数等于它本身;⑤____的绝对值与它本身互为相反数; ⑥ ____的平方与它的立方互为相反数;⑦_ __的倒数与它的平方相等;⑧____的平方是4,_____的绝对值是4;1、(1)、 ,___)9()6(=-++(2)、,___)9()6(=--+(3)、,(4)、___)9()6(=-⨯+, ___)14()56(=-÷-(5)、,(6)、___4716=-,___46=+-(7)、,(8)、____)3(3=-,____)2(4=-(9)、,(10)、____24=-,____)1(2008=-(11)、,(12)、____)2(3=--,___565=--(13)、,(14)、___2131=-, ___)103()65(=-⨯-(15)、,(16)、___8325.0=÷-,____5.04=(17)、,(18)、___55=+-,___1020=--(19)、, ___)1.6()9.5(=---(20)、。
___)13(0)56()7(=-÷⨯-⨯-(21)、=-------------- (22)、 =---------2)2(-23-----(23)、 =--------------(24)、 =----------2)32(-22-----(25)、 =-------------- ( 26)、 =-----32322----------”b=b4=43(2二、数的分类1、把下列各数填在相应的括号内:-16,26,-12,-0.92, 0, 0.1008,-4.95正数集合{ }; 负数集合{ };整数集合{ };正分数集合{ };负分数集合{ };2、下列各数中:7,-9.25,,-301,109-274,31.25, ,-1573.5,0,2,-7,1.25,-,-3,2153743-。
有理数章知识点总结
有理数章知识点总结一、有理数的概念有理数是指可以表示为两个整数的比值的数,包括有限小数、无限循环小数和整数。
有理数的特点是可以表示为分数形式,即p/q的形式,其中p和q都是整数,且q不能为0。
有理数用符号Q表示,其中Q={a/b|a∈Z, b∈Z*, b≠0}。
有理数的分类:1. 正有理数:大于0的有理数,如1/2、3/4等;2. 负有理数:小于0的有理数,如-1/3、-5/6等;3. 零:0也是一个有理数。
二、有理数的性质1. 有理数的比较对于任意两个不相等的有理数a和b,有以下性质:(1)如果a>b,则-a<-b;(2)如果a<b,则-a>-b。
这表明有理数的大小可以相互比较,且有明确的大小关系。
2. 有理数的加法性质对于任意三个有理数a、b、c,有以下加法性质:(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c);(3)存在零元素:a+0=a;(4)存在相反元素:a+(-a)=0。
这些性质表明有理数的加法操作满足基本的性质。
3. 有理数的乘法性质对于任意三个有理数a、b、c,有以下乘法性质:(1)交换律:a×b=b×a;(2)结合律:(a×b)×c=a×(b×c);(3)存在单位元素:a×1=a;(4)存在倒数元素:a×(1/a)=1,其中a≠0。
这些性质表明有理数的乘法操作也满足基本的性质。
4. 有理数的除法性质对于任意两个有理数a和b,其中b≠0,有以下除法性质:(1)存在商:a/b是一个有理数;(2)零除不合法:a/0是不合法的;(3)乘法逆元:a/1=a;(4)除法逆元:a/(1/a)=a×a。
5. 有理数的分配律对于任意三个有理数a、b、c,有以下分配律:a×(b+c)=a×b+a×c三、有理数的运算1. 有理数的加法两个有理数a和b相加,可以通过以下步骤完成:(1)如果a和b的符号相同,则它们的绝对值相加,并保留原来的符号;(2)如果a和b的符号不同,则它们的绝对值相减,并以绝对值大的符号为结果的符号。
(完整版)有理数运算知识点总结
(完整版)有理数运算知识点总结有理数运算知识点总结1. 有理数的定义有理数是可以用两个整数的比(分数形式)表示的数。
有理数包括正数、负数和零。
2. 有理数的四则运算2.1 加法有理数的加法满足以下运算规则:- 正数与正数相加,结果为正数;- 负数与负数相加,结果为负数;- 正数与负数相加,结果的绝对值为两数绝对值之差,并且符号与绝对值较大的数相同。
2.2 减法有理数的减法可以转化为加法运算,即a - b = a + (-b)。
2.3 乘法有理数的乘法满足以下运算规则:- 正数与正数相乘,结果为正数;- 负数与负数相乘,结果为正数;- 正数与负数相乘,结果为负数。
2.4 除法有理数的除法可以转化为乘法运算,即a ÷ b = a × (1/b)。
3. 有理数的运算性质3.1 交换律加法和乘法满足交换律,即a + b = b + a,a × b = b × a.3.2 结合律加法和乘法满足结合律,即(a + b) + c = a + (b + c),(a × b) × c = a × (b × c).3.3 分配律乘法对加法满足左分配律和右分配律,即a × (b + c) = (a × b) + (a × c),(a + b) × c = (a × c) + (b × c).4. 有理数的大小比较4.1 绝对值比较对于两个有理数a和b,如果|a| = |b|,则a = b,如果|a| > |b|,则a > b,如果|a| < |b|,则a < b.4.2 正负数比较对于一个正数和一个负数,正数大于负数。
4.3 同号数比较对于两个正数或两个负数,绝对值较大的数较大。
5. 有理数的相反数和倒数5.1 相反数一个有理数a的相反数记作-a,即a + (-a) = 0。
有理数知识点整理
有理数知识点整理有理数知识点整理数学是一门基础学科,其中有理数是非常重要的基础知识之一。
本文将为大家梳理有理数的定义、性质和相关知识点,帮助大家更好地理解和掌握这一内容。
一、有理数的定义有理数是指可以表示为两个整数之比的数,其中分母不为零。
具体地,有理数可以写成分数形式,如$\frac{m}{n}$(其中m为分子,n为分母),且n不为零。
整数也是有理数的一种,当分母为1时,分数可以简化为整数。
二、有理数的性质1、有理数是封闭的,即所有的有理数都可以表示为分数形式,并且不存在无限循环的有理数。
2、有理数是有限的,即有理数可以用有限的数字和符号来表示,这一点在计算机科学中具有重要意义。
3、有理数具有加法和乘法的交换律和结合律,即对于任何有理数a 和b,有:(1)a+b=b+a;(2)a×b=b×a;(3)(a+b)+c=a+(b+c);(4)(a×b)×c=a×(b×c)。
4、有理数具有乘法分配律,即对于任何两个有理数a和b,以及任意整数c,有:(1)(a+b)×c=ac+bc;(2)a×(b+c)=ab+ac。
三、相关知识点1、有理数的加减法:有理数的加减法遵循交换律和结合律,即对于任何有理数a和b,有:(1)a+b=b+a;(2)a-b=-(b-a)。
2、有理数的乘除法:有理数的乘除法遵循交换律和结合律,即对于任何两个有理数a和b,有:(1)a×b=b×a;(2)(a×b)×c=a×(b×c)。
同时,对于任何有理数a和b(其中b不为零),有:(1)a÷b=a×(1/b);(2)a÷(1/b)=ab。
3、有理数的化简:通过约分和通分,可以将有理数化简为最简形式,即分子和分母没有公共因数。
同时,对于任何有理数a和b(其中b 不为零),有:(1)a/b=(-a)/(-b);(2)a/(b/c)=ac/b;(3)1/a=1×(1/a);(4)(-1)/a=(-1)×(1/a)。
有理数的知识点
有理数的知识点1. 有理数的定义有理数是可以表示为两个整数的比的数,形式为a/b,其中a和b是整数,且b不等于0。
有理数集合包括所有的整数、分数和它们的负数。
2. 有理数的性质- 封闭性:有理数集合在加法、减法、乘法和除法(除数不为零)下是封闭的。
- 有序性:任何两个有理数都可以比较大小,即对于任意两个有理数a 和b,总有a=b、a>b或a<b中的一种关系成立。
- 稠密性:任何两个有理数之间都存在另一个有理数。
3. 有理数的分类- 正有理数:大于0的有理数。
- 负有理数:小于0的有理数。
- 整数:分母为1的有理数,即形式为a/1的数。
- 分数:分子和分母都是整数,且分母不为1的有理数。
4. 有理数的运算规则- 加法:(a/b) + (c/d) = (ad + bc) / bd- 减法:(a/b) - (c/d) = (ad - bc) / bd- 乘法:(a/b) * (c/d) = (ac) / (bd)- 除法:(a/b) / (c/d) = (a/b) * (d/c) = (ad) / (bc)5. 有理数的简化通过约分,可以将有理数化为最简形式,即分子和分母没有公因数(除了1)。
6. 有理数的比较- 正有理数都大于0。
- 负有理数都小于0。
- 正有理数大于所有的负有理数。
- 两个负有理数比较大小,绝对值大的反而小。
7. 有理数的混合运算在进行有理数的混合运算时,应先乘除后加减,并注意括号的优先级。
8. 有理数的分数形式- 真分数:分子小于分母的分数。
- 假分数:分子大于或等于分母的分数。
- 带分数:一个整数和一个真分数的和,形式为a + b/c,其中a和c是整数,b是大于1的整数。
9. 有理数的实际应用有理数在日常生活中广泛应用,如计算价格、测量距离、统计数据等。
10. 有理数与无理数有理数与无理数是实数的两个子集。
无理数不能表示为两个整数的比,例如√2和π。
以上是有理数的主要知识点,理解和掌握这些知识点对于学习更高级的数学概念至关重要。
《有理数》章节知识点归纳总结
《有理数》章节知识点归纳总结有理数是数学中的一种基本概念,它包括了整数、分数和零。
有理数可以用分数形式表示,分子是整数,分母是正整数。
一、有理数的定义和性质1.有理数的定义:有理数表示为两个整数的比值,其中分母不为零。
有理数可以用分数形式表示为a/b的形式,其中a是整数,b是正整数。
2.有理数的四则运算法则:加法:同号求和,异号作差,结果的符号跟两个有理数的符号相同。
减法:转化为加法运算,将减法问题转化为加法问题。
乘法:同号得正,异号得负。
除法:将除法转化为乘法,取倒数后将除法问题转换为乘法问题。
3.有理数的乘方运算:有理数的乘方运算是将一个有理数乘以自身若干次。
有理数的乘方运算的结果仍然是有理数。
4.有理数的比较运算:可以通过比较大小符号来比较有理数的大小,如果两个有理数的大小符号相同,则比较绝对值的大小。
5.有理数的约分:可以将一个有理数化简成最简形式,即将分子和分母互质的形式。
二、有理数的绝对值和相反数1.有理数的绝对值:绝对值表示有理数距离零的距离,绝对值是非负的。
正数的绝对值是它本身,负数的绝对值是它的相反数。
2.有理数的相反数:一个有理数的相反数是与它的绝对值相等但符号相反的数。
三、有理数的数轴1.有理数的数轴是一条直线,可以用来表示有理数的大小关系。
2.在数轴上,正数表示为向右的方向,负数表示为向左的方向,原点为零。
3.数轴上,绝对值越大的数离原点越远,绝对值相同的数离原点的距离相等。
四、有理数的运算律1.有理数的加法符合交换律、结合律和分配律。
交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)分配律:a×(b+c)=a×b+a×c2.有理数的乘法符合交换律、结合律和分配律。
交换律:a×b=b×a结合律:(a×b)×c=a×(b×c)分配律:(a+b)×c=a×c+b×c五、有理数的应用1.有理数可以用来表示一些具体问题中的数值,比如表示温度、长度、质量等。
有理数知识点梳理
有理数知识点梳理有理数是整数和分数的统称,是数学中重要的概念。
本文将对有理数的相关知识点进行梳理和总结。
一、有理数的定义有理数是可以用两个整数比值表示的数,包括整数和分数。
有理数可以表示为 p/q 的形式,其中 p 和 q 是整数,且 q 不等于 0。
二、有理数的分类1. 正有理数:大于零的有理数,记作 Q+。
2. 负有理数:小于零的有理数,记作 Q-。
3. 零:既不是正有理数也不是负有理数,记作 0。
三、有理数的运算有理数的运算包括加法、减法、乘法和除法。
1. 加法:有理数的加法满足交换律和结合律。
当两个有理数符号相同时,将它们的绝对值相加,并保持符号不变;当两个有理数符号不同时,将它们的绝对值相减,并取绝对值大的数的符号。
2. 减法:减法可以转化为加法运算,在减法运算中,将减数取相反数,然后进行加法运算。
3. 乘法:有理数的乘法满足交换律和结合律。
将两个有理数的绝对值相乘,符号由乘法规则决定:同号得正,异号得负。
4. 除法:除法可以转化为乘法运算,即将被除数乘以除数的倒数。
除数不能为零。
四、有理数的比较有理数的大小可以通过比较绝对值的大小来确定。
当两个有理数符号相同时,比较它们的绝对值;当两个有理数符号不同时,正有理数大于负有理数,零等于零。
五、有理数的化简有理数可以进行化简操作,即将分子和分母同时除以它们的最大公约数,从而得到一个最简形式的有理数。
六、有理数的逆元有理数的逆元是指与其相加为零的数,对于有理数 a,它的逆元记作 -a,满足 a + (-a) = 0。
七、有理数在数轴上的表示有理数可以在数轴上表示出来,将数轴上的零点与每个有理数点对应起来,通过正数方向表示正有理数,负数方向表示负有理数,可以直观地理解有理数的大小和相对关系。
结语:通过对有理数的梳理,我们可以更清晰地认识到有理数的定义、分类、运算、比较等基本概念和操作。
有理数是数学中的重要概念,对于几乎所有数学领域都有着广泛的应用。
有理数知识点汇总
有理数知识点汇总一、有理数的概念和性质有理数是指可以表示为两个整数之比(分母不为零)的数。
有理数包括正整数、负整数、零以及正分数和负分数。
有理数的性质主要有以下几点:1. 有理数的加法和减法:有理数相加减时,可以先化简为同分母,然后对分子进行相应的运算。
同号数相加减,结果符号不变,异号数相加减,结果取绝对值较大的数的符号。
2. 有理数的乘法和除法:有理数相乘除时,先对分子分母分别进行相应的运算,然后再化简为最简形式。
同号数相乘除,结果为正数,异号数相乘除,结果为负数。
3. 有理数的比较:有理数大小的比较可以转化为同号数的比较。
对于两个同号数,绝对值较大的数较大;对于两个异号数,负数较大。
4. 有理数的绝对值:有理数的绝对值是该数去掉符号的值,即正数的绝对值还是正数,负数的绝对值就是对应的正数。
5. 有理数的倒数:非零有理数的倒数,是指该数的分子与分母互换位置所得的有理数。
二、有理数的运算法则1. 有理数的加法法则:同号数相加,保持符号,将绝对值相加;异号数相加,结果取绝对值较大的数的符号,将绝对值较小的数从绝对值较大的数上减去。
2. 有理数的减法法则:可以通过加法法则化简为加法运算。
3. 有理数的乘法法则:同号数相乘,结果为正,将绝对值相乘;异号数相乘,结果为负,将绝对值相乘。
4. 有理数的除法法则:除法可以通过乘法的倒数来计算,即将被除数乘以除数的倒数。
三、有理数的应用有理数在日常生活和实际问题中有广泛的应用,例如:1. 温度的表示:正数表示高温,负数表示低温,零表示冰点或零度。
2. 货币的计算:正数表示收入或盈利,负数表示支出或亏损。
3. 钱的存取:正数表示存钱,负数表示取钱。
4. 海拔的高低:正数表示海拔高,负数表示海拔低。
5. 游戏得分:正数表示得分,负数表示扣分或失分。
四、有理数的运算技巧在进行有理数的运算时,有一些技巧可以简化计算,例如:1. 加法与减法混合运算时,可以先合并同号数进行运算,再对异号数进行运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《有理数》知识点总结归纳正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。
0的相反数对应原点;原点表示0的相反数。
说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。
化简得-5a-b);⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)5.相反数的表示方法⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。
当a>0时,-a<0(正数的相反数是负数)当a<0时,-a>0(负数的相反数是正数)当a=0时,-a=0,(0的相反数是0)6.多重符号的化简多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
绝对值⒈绝对值的几何定义一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.可用字母表示为:①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。
可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。
)②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。
)3.绝对值的性质任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。
所以,a取任何有理数,都有|a|≥0。
即⑴0的绝对值是0;绝对值是0的数是0.即:a=0 <═> |a|=0;⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;⑶任何数的绝对值都不小于原数。
即:|a|≥a;⑷绝对值是相同正数的数有两个,它们互为相反数。
即:若|x|=a(a>0),则x=±a;⑸互为相反数的两数的绝对值相等。
即:|-a|=|a|或若a+b=0,则|a|=|b|;⑹绝对值相等的两数相等或互为相反数。
即:|a|=|b|,则a=b或a=-b;⑺若几个数的绝对值的和等于0,则这几个数就同时为0。
即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)4.有理数大小的比较⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
5.绝对值的化简①当a≥0时,|a|=a ;②当a≤0时,|a|=-a6.已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
有理数的加减法1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与零相加,仍得这个数。
2.有理数加法的运算律⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。
即:⑴当b>0时,a+b>a ⑵当b<0时,a+b<a ⑶当b=0时,a+b=a4.有理数减法法则减去一个数,等于加上这个数的相反数。
用字母表示为:a-b=a+(-b)。
5.有理数加减法统一成加法的意义在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”②按运算意义读作“负8减7减6加5”6.有理数加减混合运算中运用结合律时的一些技巧:Ⅰ.把符号相同的加数相结合(同号结合法)(-33)-(-18)+(-15)-(+1)+(+23)原式=-33+(+18)+(-15)+(-1)+(+23) (将减法转换成加法)=-33+18-15-1+23 (省略加号和括号)=(-33-15-1)+(18+23) (把符号相同的加数相结合)=-49+41 (运用加法法则一进行运算)=-8 (运用加法法则二进行运算)Ⅱ.把和为整数的加数相结合 (凑整法)(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8) (将减法转换成加法)=6.6-5.2+3.8-2.6-4.8 (省略加号和括号)=(6.6-2.6)+(-5.2-4.8)+3.8 (把和为整数的加数相结合)=4-10+3.8 (运用加法法则进行运算)=7.8-10 (把符号相同的加数相结合,并进行运算) =-2.2 (得出结论)Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法) -53-21+43-52+21-87 原式=(-53-52)+(-21+21)+(+43-87) =-1+0-81=-181Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)(+0.125)-(-343)+(-381)-(-1032)-(+1.25) 原式=(+81)+(+343)+(-381)+(+1032)+(-141) =81+343-381+1032-141 =(343-141)+(81-381)+1032 =221-3+1032 =-3+1361 =1061Ⅴ.把带分数拆分后再结合(先拆分后结合) -351+10116-12221+4157 原式=(-3+10-12+4)+(-51+157)+(116-221) =-1+154+2211 =-1+308+3015 -307Ⅵ.分组结合2-3-4+5+6-7-8+9…+66-67-68+69原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)=0Ⅶ.先拆项后结合(1+3+5+7...+99)-(2+4+6+8 (100)有理数的乘除法1.有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法则四:几个数相乘,如果其中有因数为0,则积等于0.2.倒数乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a ·a1=1(a ≠0),就是说a 和a 1互为倒数,即a 是a 1的倒数,a 1是a 的倒数。