5平面直角坐标系

合集下载

平面直角坐标系

平面直角坐标系

平面直角坐标系在数学中,平面直角坐标系是一种常用的坐标系统,用于描述平面上的点的位置。

它由两个互相垂直的坐标轴组成,分别称为x轴和y轴。

这个坐标系的使用非常广泛,不仅在数学中有着重要的应用,同时在物理学、工程学以及计算机科学等领域也起到关键的作用。

平面直角坐标系的构建非常简单,通常我们将x轴水平地画在平面上,将y轴垂直地画在x轴的上方。

两个坐标轴的交点被称为原点,记作O。

我们可以选择一个合适的单位长度,在x轴上选择一个正方向,通常向右为正,而在y轴上选择一个正方向,通常向上为正。

这样,平面上的任意一点都可以用一对有序实数(x, y)来唯一地表示。

在平面直角坐标系中,每个点都有一个唯一的坐标表示。

坐标轴将平面分为四个象限,分别记作第一象限、第二象限、第三象限和第四象限。

第一象限是所有x坐标和y坐标都是正数的区域,第二象限是所有x坐标为负数、y坐标为正数的区域,第三象限是所有x坐标和y坐标都为负数的区域,第四象限是所有x坐标为正数、y坐标为负数的区域。

这种划分方便我们对平面上的点进行位置的判断和研究。

平面直角坐标系的应用十分广泛。

在数学中,它是解析几何的基础。

通过坐标系,我们可以描述平面上的点、线、圆等几何图形的性质,并应用代数的方法研究它们的关系。

在物理学中,平面直角坐标系常用于描述物体的运动,通过坐标系我们可以表示物体在平面上的位置和运动状态,从而研究物体的运动规律。

在工程学中,平面直角坐标系用于设计、建模和测量。

通过坐标系,工程师可以精确地描述和定位物体,计算物体之间的距离和角度,从而进行合理的设计和规划。

在计算机科学中,平面直角坐标系是计算机图形学的基础。

通过坐标系,计算机可以实现平面上的各种图形和图像的生成、变换和绘制,为计算机游戏、动画等应用提供支持。

总结起来,平面直角坐标系是一种重要的数学工具,可以描述平面上的点的位置和运动状态。

它在数学、物理学、工程学和计算机科学等领域都具有广泛的应用。

苏科版八年级数学上册《第5章 平面直角坐标系》

苏科版八年级数学上册《第5章 平面直角坐标系》

初中数学试卷《第5章平面直角坐标系》一、填空1.如图所示,在平面直角坐标系中各点的坐标分别是A ,B ,C ,D ,E ,F ,G .这些点中,点A与点B的坐标相同,线段AB 横轴,纵轴.2.已知点P(3,﹣4),它到x轴的距离是,到y轴的距离是.3.已知点A(2,3)在第一象限,则与点A关于x轴对称的点的坐标为,与点A关于y轴对称的点的坐标为,与点A关于原点对称的点的坐标为.4.已知点P(m﹣3,m+4)在第一象限,则m的取值范围是;如在第二象限,则m的取值范围是.5.在平面直角坐标系中,点A是y轴上一点,若点A的坐标为(a+1,a﹣2),则a= ,另一点B的坐标(a+2,a+3)为.6.已知点P(3k﹣9,1﹣k)在第三象限,且点P的横纵坐标都是整数,求点P关于y轴对称的点的坐标和与关于原点对称的点的坐标为.7.如果讲一个三角形的各顶点的横、纵坐标分别乘以﹣1,则所得的图案与原图案将.8.若点P(x,y)在第二象限角平分线上,则x与y的关系是.9.若将三角形各顶点的纵坐标保持不变,横坐标均乘以﹣1,则所得三角形的形状与原三角形相比;若让纵坐标不变,横坐标均增加2,则所得三角形的形状与原三角形相比;若让横坐标不变,纵坐标均乘以2,则所得三角形的形状与原三角形相比.二、选择:10.在x轴上到点A(3,0)的距离为4的点一定是()A.(7,0) B.(﹣1,0)C.(7,0)和(﹣1,0) D.以上都不对11.在坐标轴上与点M(3,﹣4)距离等于5的点共有()A.2个B.3个C.4个D.1个12.已知一个点的横坐标与纵坐标都是整数,并且它们的乘积等于9,满足这样条件的点共有()A.3个B.6个C.8个D.9个13.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限14.在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限 B.第二象限 C.第三象限 D.第四象限15.在平面直角坐标系中,点A(5,﹣3)关于原点对称的点的坐标为()A.(﹣5,﹣3) B.(5,3) C.(﹣5,3)D.(5,﹣3)16.点(﹣l,4)关于坐标原点对称的点的坐标是()A.(﹣1,﹣4) B.(1,﹣4)C.(1,4) D.(4,﹣1)17.已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A.原点上B.x轴上C.y轴上D.坐标轴上18.若,则点P(x,y)的位置是()A.在数轴上 B.在去掉原点的横轴上C.在纵轴上 D.在去掉原点的纵轴上19.在平面直角坐标系中,点P(3,2)向下平移两个单位长度后的坐标为()A.(1,2) B.(3,0) C.(5,2) D.(3,4)20.在平面直角坐标系中,点Q(﹣1,3)向右平移3个单位长度后的坐标为()A.(﹣1,0)B.(﹣1,6)C.(2,3) D.(2,6)21.在平面直角坐标系中,将某三角形纵向拉长了2倍,又向右平移了3个单位长度,则所得三角形三个顶点坐标与原来三角形三个顶点坐标相比有何变化()A.先纵坐标不变,横坐标均扩大2倍,横坐标均增加3B.先横坐标不变,纵坐标均扩大2倍,再横坐标不变,纵坐标均增加3C.先横坐标不变,纵坐标均扩大2倍,再纵坐标不变,横坐标均增加3D.先横坐标不变,纵坐标均增加2,再纵坐标不变,横坐标均增加322.在平面直角坐标系中,若一图形各点的横坐标不变,纵坐标分别减3,那么图形与原图形相比()A.向右平移了3个单位长度B.向左平移了3个单位长度C.向上平移了3个单位长度D.向下平移了3个单位长度23.点P(﹣3,4)关于y轴的对称点的坐标是()A.(﹣3,﹣4) B.(3,﹣4)C.(3,4) D.(﹣4,3)24.A为平面直角坐标系内任意一点,顺次连接A点与它关于x轴,y轴和原点的对称点所组成的图形是()A.任意四边形B.正方形C.矩形 D.菱形25.已知点P关于y轴的对称点为(2,y),关于x轴的对称点是(x,﹣2),则点P的坐标是()A.(y,﹣x)B.(x,﹣y)C.(﹣2,2)D.(2,﹣2)三、解答:26.在如图所示的直角坐标系中,描出下列各点:(0,4),(﹣1,1),(﹣4,1),(﹣2,﹣1),(﹣3,﹣4),(0,﹣2),(3,﹣4)(2,﹣1),(4,1),(1,1),(0,4).依次连接各点,观察得到图形,你觉得它像什么?27.已知两点P(﹣3,m),Q(n,5),若PQ平行y轴,求m和n的值.28.已知A(﹣2,0),B(2,0),C(3,2),且A,B,C为一个平行四边形的三个顶点,求第四个顶点D的坐标.29.在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(﹣5,0),B(4,0),C(2,5),求S.△ABC30.已知点A(k﹣3,k﹣7)在二、四象限的角平分线上,且点A关于x轴、y轴和原点的对称点分别为B、D、C.(1)在同一坐标系里分别描出四点.(2)判断四边形ABCD的形状.31.如图是某市区部分简图,请你建立适当的坐标系,并分别写出各地的坐标.32.如图,在△ABC中,已知AB=6,AC=BC=5,建立适当的坐标系,把△ABC的各顶点坐标写出来.33.如图所示,是一个菱形衣帽架,建立适当的坐标系,表示菱形个顶点的位置.(菱形的一个角是60°,边长为2)34.在平面直角坐标系中有一个平行四边形ABCD,如果将此平行四边形沿x轴正方向移动3个单位,则各点坐标的变化特征是怎样的?35.在平行四边形ABCD中,AB=3,BC=4,∠A=60°,建立适当的平面直角坐标系,把平行四边形ABCD的各个顶点的坐标写出来.(要求写出一组坐标即可)36.如图一、图二,在两个平面直角坐标系只能够分别有一个四边形.(1)分别写出图一和图二中的四边形的四个顶点坐标.(2)与图一相比,图二中的四边形发生了怎样的变化?(3)与图一相比,图二中的四边形顶点的坐标发生了怎样的变化?37.将一个梯形各顶点的横坐标变为原来的2倍,纵坐标变为原来的,(1)则所得的图形仍为梯形么?(2)它与原梯形相比发生了哪些变化?(3)它的面积与原来梯形的面积之间有什么关系?《第5章平面直角坐标系》参考答案与试题解析一、填空1.如图所示,在平面直角坐标系中各点的坐标分别是A (3,0),B (3,3),C (0,3),D (0,0),E (﹣1,﹣2),F (2,﹣3),G (﹣3,1).这些点中,点A与点B的横坐标相同,线段AB 垂直于横轴,平行于纵轴.【考点】坐标与图形性质.【分析】利用坐标系中各点的位置直接得出各点坐标以及A,B两点的特点和线段AB与横纵坐标的性质.【解答】解:由图象可得出:在平面直角坐标系中各点的坐标分别是:A (3,0),B(3,3),C(0,3),D(0,0),E (﹣1,﹣2),F (2,﹣3),G (﹣3,1).这些点中,点A与点B的横坐标相同,线段AB垂直于横轴,平行于纵轴.故答案为:(3,0),(3,3),(0,3),(0,0),(﹣1,﹣2),(2,﹣3),(﹣3,1).横,垂直于,平行于.【点评】此题主要考查了坐标与图形的性质,根据已知坐标系得出各点坐标是解题关键.2.已知点P(3,﹣4),它到x轴的距离是 4 ,到y轴的距离是 3 .【考点】点的坐标.【分析】根据点的坐标的几何意义即可解答.【解答】解:∵点P(3,﹣4),∴它到x轴的距离是|﹣4|=4,到y轴的距离是|3|=3.故答案填:4、3.【点评】本题主要考查了点的坐标的几何意义,横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.3.已知点A(2,3)在第一象限,则与点A关于x轴对称的点的坐标为(2,﹣3),与点A关于y轴对称的点的坐标为(﹣2,3),与点A关于原点对称的点的坐标为(﹣2,﹣3).【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】利用关于原点对称点的坐标性质和关于x轴、y轴对称点的性质分别得出即可.【解答】解:∵点A(2,3)在第一象限,∴与点A关于x轴对称的点的坐标为:(2,﹣3),与点A关于y轴对称的点的坐标为:(﹣2,3),与点A关于原点对称的点的坐标为:(﹣2,﹣3).故答案为:(2,﹣3),(﹣2,3),(﹣2,﹣3).【点评】此题主要考查了关于原点对称点的坐标性质和关于x轴、y轴对称点的性质,熟练掌握相关的性质是解题关键.4.已知点P(m﹣3,m+4)在第一象限,则m的取值范围是m>3 ;如在第二象限,则m的取值范围是﹣4<m<3 .【考点】点的坐标;解一元一次不等式组.【分析】根据第一象限的点的横坐标与纵坐标都是正数列不等式组求解即可;根据第二象限的点的横坐标是负数,纵坐标是正数列不等式组求解即可.【解答】解:∵点P(m﹣3,m+4)在第一象限,∴,解不等式①得,m>3,解不等式②得,m>﹣4,所以,不等式组的解集是m>3;∵点P(m﹣3,m+4)在第二象限,∴,解不等式①得,m<3,解不等式②得,m>﹣4,所以,不等式组的解集是﹣4<m<3.故答案为:m>3;﹣4<m<3.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.在平面直角坐标系中,点A是y轴上一点,若点A的坐标为(a+1,a﹣2),则a= ﹣1 ,另一点B的坐标(a+2,a+3)为(1,2).【考点】点的坐标.【分析】根据y轴上点的横坐标是0列式求出a的值,然后求出点B的坐标即可.【解答】解:∵点A(a+1,a﹣2)在y轴上,∴a+1=0,解得a=﹣1,∴a+2=﹣1+2=1,a+3=﹣1+3=2,所以,点B的坐标为(1,2).故答案为:﹣1;(1,2).【点评】本题考查了点的坐标,主要利用了y轴上点的横坐标是0,需熟记.6.已知点P(3k﹣9,1﹣k)在第三象限,且点P的横纵坐标都是整数,求点P关于y轴对称的点的坐标和与关于原点对称的点的坐标为(3,﹣1),(3,1).【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】首先利用第三象限点的坐标性质和不等式的解法得出k的值,进而利用关于y轴对称的点的坐标和与关于原点对称的点的坐标的特点得出即可.【解答】解:∵点P(3k﹣9,1﹣k)在第三象限,且点P的横纵坐标都是整数,∴,解得:1<k<3,∴k=2,∴P点坐标为:(﹣3,﹣1),∴点P关于y轴对称的点的坐标和与关于原点对称的点的坐标分别为:(3,﹣1),(3,1).故答案为:(3,﹣1),(3,1).【点评】此题主要考查了关于原点对称点和关于y轴对称点的坐标性质和不等式的解法等知识,根据已知得出P点坐标是解题关键.7.如果讲一个三角形的各顶点的横、纵坐标分别乘以﹣1,则所得的图案与原图案将关于坐标原点中心对称.【考点】关于原点对称的点的坐标.【分析】利用横、纵坐标均乘以﹣1,即横、纵坐标变为相反数,图形关于原点中心对称.【解答】解:∵横、纵坐标均乘以﹣1,∴对应点的横、纵坐标互为相反数,∴对应点关于原点对称,∴所得图形关于坐标原点中心对称,故答案为:关于坐标原点中心对称.【点评】此题主要考查了关于原点对称点的坐标性质,利用横、纵坐标都乘以﹣1,图形关于原点中心对称得出是解题关键.8.若点P(x,y)在第二象限角平分线上,则x与y的关系是x+y=0 .【考点】坐标与图形性质.【分析】根据二四象限角平分线上点的特点即横纵坐标互为相反数解答.【解答】解:∵点P(x,y)在第二象限角平分线上,∴x,y互为相反数,即x+y=0.【点评】解答此题的关键是熟知二四象限角平分线上点的坐标特征.9.若将三角形各顶点的纵坐标保持不变,横坐标均乘以﹣1,则所得三角形的形状与原三角形相比关于y轴对称;若让纵坐标不变,横坐标均增加2,则所得三角形的形状与原三角形相比向右平移2个单位长度;若让横坐标不变,纵坐标均乘以2,则所得三角形的形状与原三角形相比纵向拉长为原来的2倍.【考点】坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.【分析】将三角形各顶点的纵坐标保持不变,横坐标均乘以﹣1,即横坐标都为原来的相反数,由此得到所得三角形的形状与原三角形关于y轴对称;当把原三角形向右平移2个单位长度得到的新三角形的各点的纵坐标不变,横坐标均增加2;若让横坐标不变,纵坐标均乘以2,则所得三角形由原三角形纵向拉长2倍得到.【解答】解:将三角形各顶点的纵坐标保持不变,横坐标均乘以﹣1,则所得三角形的形状与原三角形关于y轴对称;若让纵坐标不变,横坐标均增加2,则所得三角形由原三角形向右平移2个单位长度得到;若让横坐标不变,纵坐标均乘以2,则所得三角形由原三角形纵向拉长2倍得到.故答案为关于y轴对称;向右平移2个单位长度;纵向拉长为原来的2倍.【点评】本题考查了坐标与图象变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).二、选择:10.在x轴上到点A(3,0)的距离为4的点一定是()A.(7,0) B.(﹣1,0)C.(7,0)和(﹣1,0) D.以上都不对【考点】点的坐标.【专题】分类讨论.【分析】x轴上的点纵坐标是0,这点有可能在点A的左边,也有可能在点A的右边.【解答】解:∵3+4=7,3﹣4=﹣1,∴点的横坐标是7或﹣1,∴在x轴上到点A(3,0)的距离为4的点为(7,0)和(﹣1,0).故选C.【点评】本题考查了点到坐标轴距离的含义,到x轴上到一定点等于定长的点的有2个.11.在坐标轴上与点M(3,﹣4)距离等于5的点共有()A.2个B.3个C.4个D.1个【考点】两点间的距离公式.【分析】符合题意的点即在以M为圆心,5为半径画圆上,找圆与坐标轴的交点即可.【解答】解:在坐标轴上与点M(3,﹣4)距离等于5的点在以M为圆心,5为半径画圆上,而圆与坐标轴的交点为(0,0),(0,﹣8),(6,0),共3个,故选B.【点评】本题主要考查了点的坐标的意义以及与图形相结合的具体运用,要把点的坐标和图形有机结合起来求解.12.已知一个点的横坐标与纵坐标都是整数,并且它们的乘积等于9,满足这样条件的点共有()A.3个B.6个C.8个D.9个【考点】点的坐标.【分析】把9分解质因数,然后根据点的坐标解答.【解答】解:∵1×9=(﹣1)×(﹣9)=3×3=(﹣3)×(﹣3)=9,∴点的坐标为(1,9)、(9,1)、(﹣1,﹣9)、(﹣9,﹣1)、(3,3)、(﹣3,﹣3)共6个.故选B.【点评】本题考查了点的坐标,根据乘积是9求出点的横坐标和纵坐标的值是解题的关键.13.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.【解答】解:∵点P(﹣1,2)的横坐标﹣1<0,纵坐标2>0,∴点P在第二象限.故选:B.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.在平面直角坐标系中,点A(5,﹣3)关于原点对称的点的坐标为()A.(﹣5,﹣3) B.(5,3) C.(﹣5,3)D.(5,﹣3)【考点】关于原点对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),然后直接作答即可.【解答】解:根据中心对称的性质,可知:点A(5,﹣3)关于原点O中心对称的点的坐标为(﹣5,3).故选:C.【点评】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.16.点(﹣l,4)关于坐标原点对称的点的坐标是()A.(﹣1,﹣4) B.(1,﹣4)C.(1,4) D.(4,﹣1)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】让两点的横纵坐标均互为相反数可得所求的坐标.【解答】解:∵两点关于原点对称,∴横坐标为1,纵坐标为﹣4.故选B.【点评】考查关于原点对称的坐标的特点:两点的横坐标互为相反数;纵坐标互为相反数.17.已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A.原点上B.x轴上C.y轴上D.坐标轴上【考点】点的坐标.【分析】根据坐标轴上的点的特征:至少一个坐标为0解答.【解答】解:若ab=0,则a=0,或b=0,或a,b均为0.当a=0,M在y轴上;当b=0,M在x轴上;当a,b均为0,M在原点;即点M在坐标轴上.故选D.【点评】本题主要考查了点在坐标轴上时点的符号特点,注意考虑问题要全面,坐标轴上的点的特点要记清.18.若,则点P(x,y)的位置是()A.在数轴上 B.在去掉原点的横轴上C.在纵轴上 D.在去掉原点的纵轴上【考点】点的坐标.【分析】根据分式值为0的条件求出y=0,再根据点在x轴上坐标的特点解答.【解答】解:∵,x不能为0,∴y=0,∴点P(x,y)的位置是在去掉原点的横轴上.故选B.【点评】本题考查了点在x轴上时坐标的特点,特别注意要保证条件中的式子有意义.19.在平面直角坐标系中,点P(3,2)向下平移两个单位长度后的坐标为()A.(1,2) B.(3,0) C.(5,2) D.(3,4)【考点】坐标与图形变化-平移.【专题】数形结合.【分析】把点P(3,2)向下平移两个单位长度后,横坐标不变,纵坐标减去2即可得到平移后点的坐标.【解答】解:点P(3,2)向下平移两个单位长度后的坐标为(3,0).故选B.【点评】本题考查了坐标与图象变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).20.在平面直角坐标系中,点Q(﹣1,3)向右平移3个单位长度后的坐标为()A.(﹣1,0)B.(﹣1,6)C.(2,3) D.(2,6)【考点】坐标与图形变化-平移.【专题】数形结合.【分析】把点Q(﹣1,3)向右平移3个单位长度后,所得点的纵坐标不变,横坐标加上3即可.【解答】解:点Q(﹣1,3)向右平移3个单位长度后的坐标为(2,3).故选C.【点评】本题考查了坐标与图象变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).21.在平面直角坐标系中,将某三角形纵向拉长了2倍,又向右平移了3个单位长度,则所得三角形三个顶点坐标与原来三角形三个顶点坐标相比有何变化()A.先纵坐标不变,横坐标均扩大2倍,横坐标均增加3B.先横坐标不变,纵坐标均扩大2倍,再横坐标不变,纵坐标均增加3C.先横坐标不变,纵坐标均扩大2倍,再纵坐标不变,横坐标均增加3D.先横坐标不变,纵坐标均增加2,再纵坐标不变,横坐标均增加3【考点】坐标与图形变化-平移.【分析】将某三角形纵向拉长了2倍,就是把原来三角形三个顶点的纵坐标扩大2倍,当再向右平移了3个单位长度,就是在纵坐标扩大2倍后,横坐标都增加3.【解答】解:将某三角形纵向拉长了2倍,又向右平移了3个单位长度,则把原来三角形三个顶点的纵坐标扩大2倍后,再把纵坐标不变,横坐标都增加3.故选C.【点评】本题考查了坐标与图象变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).22.在平面直角坐标系中,若一图形各点的横坐标不变,纵坐标分别减3,那么图形与原图形相比()A.向右平移了3个单位长度B.向左平移了3个单位长度C.向上平移了3个单位长度D.向下平移了3个单位长度【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:此题规律是(x,y﹣3),照此规律可知图形与原图形相比向下平移了3个单位长度.故选D.【点评】本题考查了图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移相同.23.点P(﹣3,4)关于y轴的对称点的坐标是()A.(﹣3,﹣4) B.(3,﹣4)C.(3,4) D.(﹣4,3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点P(﹣3,4)关于y轴的对称点的坐标是(3,4).故选C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.24.A为平面直角坐标系内任意一点,顺次连接A点与它关于x轴,y轴和原点的对称点所组成的图形是()A.任意四边形B.正方形C.矩形 D.菱形【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),关于x 轴、y轴的对称点分别是(x,﹣y),(﹣x,y),然后直接作答即可.【解答】解:∵A为平面直角坐标系内任意一点,顺次连接A点与它关于x轴,y轴和原点的对称点,∴对应点横、纵坐标绝对值相等,只是符号不同,∴这4个点所组成的图形是矩形.故选:C.【点评】本题考查了关于x轴、y轴以及关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.25.已知点P关于y轴的对称点为(2,y),关于x轴的对称点是(x,﹣2),则点P的坐标是()A.(y,﹣x)B.(x,﹣y)C.(﹣2,2)D.(2,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:设P(m,n),∵点P关于y轴的对称点为(2,y),∴m=﹣2,∵关于x轴的对称点是(x,﹣2),∴n=2,∴P(﹣2,2)故选:C.【点评】此题主要考查了关于x、y轴对称的点的坐标特点,关键是掌握点的坐标的变化规律.三、解答:26.在如图所示的直角坐标系中,描出下列各点:(0,4),(﹣1,1),(﹣4,1),(﹣2,﹣1),(﹣3,﹣4),(0,﹣2),(3,﹣4)(2,﹣1),(4,1),(1,1),(0,4).依次连接各点,观察得到图形,你觉得它像什么?【考点】坐标与图形性质.【分析】根据各点坐标,在坐标系中描出即可,进而确定它的形状.【解答】解:如图所示:是五角星.【点评】此题主要考查了确定点的坐标,根据坐标系中点的确定位置得出是解题关键.27.已知两点P(﹣3,m),Q(n,5),若PQ平行y轴,求m和n的值.【考点】坐标与图形性质.【分析】根据平行于y轴点的坐标横坐标相等,纵坐标不同进而得出即可.【解答】解:∵两点P(﹣3,m),Q(n,5),PQ平行y轴,∴n=﹣3,m≠5.【点评】此题主要考查了坐标与图形的性质,利用平行于y轴点的坐标性质得出是解题关键.28.已知A(﹣2,0),B(2,0),C(3,2),且A,B,C为一个平行四边形的三个顶点,求第四个顶点D的坐标.【考点】坐标与图形性质.【分析】建立平面直角坐标系,然后根据平行四边形的性质找出点D的位置即可.【解答】解:如图,点D的坐标为(﹣1,2)或(﹣3,﹣2)或(7,2).【点评】本题考查了坐标与图形性质,熟练掌握平行四边形的性质是解题的关键,作出图形更形象直观.29.在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(﹣5,0),B(4,0),C(2,5),求S.△ABC【考点】坐标与图形性质;三角形的面积.【分析】利用已知点的坐标画出图形进而求出图形面积即可.【解答】解:如图所示:∵A(﹣5,0),B(4,0),C(2,5),=×9×5=22.5.∴S△ABC【点评】此题主要考查了坐标与图形的性质,利用已知点得出在坐标系中位置是解题关键.30.已知点A(k﹣3,k﹣7)在二、四象限的角平分线上,且点A关于x轴、y轴和原点的对称点分别为B、D、C.(1)在同一坐标系里分别描出四点.(2)判断四边形ABCD的形状.【考点】坐标与图形性质.【分析】(1)根据第二四象限角平分线上的点的横坐标与纵坐标互为相反数列方程求出k值,从而求出点A的坐标,再根据关于x轴、y轴对称点的坐标和关于原点的对称点的位置,顺次连接即可;(2)根据图形判断即可.【解答】解:(1)∵点A(k﹣3,k﹣7)在二、四象限的角平分线上,∴k﹣3+k﹣7=0,解得k=5,所以,点A(2,﹣2);如图所示;(2)四边形ABCD是正方形.【点评】本题考查了坐标与图形性质,主要利用了平面直角坐标系中描出点的位置的方法.31.如图是某市区部分简图,请你建立适当的坐标系,并分别写出各地的坐标.【考点】坐标确定位置.【分析】以超市为坐标原点,建立平面直角坐标系,然后写出各地的坐标即可.【解答】解:如图,超市(0,0),医院(3,1),文化宫(0,3),体育馆(﹣1,5),火车站(4,3.8).【点评】本题考查了坐标位置的确定,是开放型题目,根据坐标原点位置的不同,答案也不相同,但熟练掌握平面直角坐标系的特点是解题的关键.32.(2013秋•乐清市期末)如图,在△ABC中,已知AB=6,AC=BC=5,建立适当的坐标系,把△ABC 的各顶点坐标写出来.【考点】坐标与图形性质.【分析】首先以A点为原点建立坐标系,过点C作CD⊥BA于点D,根据等腰三角形的性质可得AD=BD=AB,再利用勾股定理可计算出CD的长,进而得到答案.【解答】解:以A点为原点建立坐标系,过点C作CD⊥BA于点D,∵AB=6,∴AD=BD=3,∴CD==4,∴A点坐标为:(0,0),C点坐标为;(3,4),B点坐标为:(0,6),。

平面直角坐标系与形的表示

平面直角坐标系与形的表示

平面直角坐标系与形的表示平面直角坐标系是在平面上确定一个点的坐标的一种方式。

它由两个相互垂直的坐标轴组成,通常称为x轴和y轴。

在这个坐标系中,每个点都可以通过它在x轴和y轴上的坐标来表示。

这种表示方法不仅简洁直观,而且在几何学和图形学中具有重要意义。

一、平面直角坐标系的基本概念在平面直角坐标系中,x轴和y轴的交点称为原点O,它的坐标表示为(0,0)。

x轴向右延伸为正方向,y轴向上延伸为正方向。

两条轴之间的距离称为单位长度,可以根据具体情况来确定。

二、点的坐标表示方法在平面直角坐标系中,每个点都有唯一的坐标表示。

以点A为例,假设其横坐标为x,纵坐标为y,则其坐标表示为(x,y)。

x表示点A在x轴上的位置,y表示点A在y轴上的位置。

通过横纵坐标的组合,我们可以准确地确定点A在平面上的位置。

三、直线的方程表示方法直线在平面直角坐标系中可以通过方程来表示。

一般情况下,直线的方程可以写成y = kx + b的形式。

其中,k为直线的斜率,表示直线与x轴的夹角的正切值;b为直线与y轴交点的纵坐标。

通过斜率和截距,我们可以准确地描述一条直线在坐标系中的位置和走向。

四、矩形的表示方法矩形是平面直角坐标系中最常见的图形之一。

它由四条相互垂直的边组成,具有四个顶点。

矩形的边与坐标轴平行,因此可以使用坐标轴上的点来表示矩形的位置和大小。

以矩形ABCD为例,顶点A的坐标表示为(x1,y1),顶点B的坐标表示为(x2,y2),顶点C的坐标表示为(x3,y3),顶点D的坐标表示为(x4,y4)。

根据这些坐标的组合,我们可以准确地描述矩形在平面直角坐标系中的位置和形状。

五、其他形状的表示方法除了矩形,平面直角坐标系还可以用来表示其他各种形状,如圆、椭圆、三角形等。

对于圆来说,可以使用圆心的坐标表示圆的位置,使用半径表示圆的大小。

对于椭圆来说,可以使用两个焦点的坐标表示椭圆的位置,使用两个半轴的长度表示椭圆的大小和形状。

对于三角形来说,可以使用三个顶点的坐标表示三角形的位置和形状。

直角坐标系与平面直角坐标系

直角坐标系与平面直角坐标系

直角坐标系与平面直角坐标系直角坐标系是一种用于描述平面上点的特定坐标系。

它由两条相互垂直的坐标轴组成,通常为水平的x轴和垂直的y轴。

这两条坐标轴相交于一个起点,称为原点,通常表示为O。

平面直角坐标系是直角坐标系在平面上的具体应用。

它由两个相交的直线(坐标轴)及其所有可能的点所组成。

其中一条直线是水平的,叫作x轴;另一条是垂直的,叫作y轴。

x轴和y轴的交点是原点O,原点是该坐标系的起点。

在平面直角坐标系中,每个点都可以用一对有序实数(x, y)来表示。

其中,x是该点在x轴上的坐标,y是该点在y轴上的坐标。

这种表示方式称为点的笛卡尔坐标。

在平面直角坐标系中,x轴和y轴将整个平面分为四个象限,分别命名为第一象限、第二象限、第三象限和第四象限。

第一象限位于x轴和y轴的正方向上方,其中x轴和y轴上的坐标值都为正数。

第二象限位于x轴的负方向上方,y轴的正方向的左侧,x轴上的坐标值为负数,y轴上的坐标值为正数。

第三象限位于x轴和y轴的负方向上方,x轴和y轴上的坐标值都为负数。

第四象限位于x轴的正方向的右侧,y轴的负方向下方,x轴上的坐标值为正数,y轴上的坐标值为负数。

平面直角坐标系广泛应用于数学、物理、工程等领域。

它的使用方便且直观,可以准确描述平面上点的位置和运动。

在平面直角坐标系中,我们可以进行各种运算和推导。

例如,求两点之间的距离可以使用勾股定理来计算。

设A(x1, y1)和B(x2, y2)是平面直角坐标系中的两个点,它们之间的距离d可以通过以下公式求得:d=sqrt((x2-x1)^2+(y2-y1)^2)。

另外,平面直角坐标系也可以用来表示线段、直线、曲线、图形等。

通过设定合适的方程或条件,我们可以在平面直角坐标系中描述并解决各种几何问题。

总结来说,直角坐标系是一种用于描述平面上点位置的坐标系,而平面直角坐标系是直角坐标系在平面上的具体应用。

它们是数学研究和实际问题求解中不可或缺的工具。

平面直角坐标系

平面直角坐标系

平面直角坐标系平面直角坐标系是解析几何中常用的坐标系,用于描述平面上的点和其它几何图形。

本文将详细介绍平面直角坐标系的定义、性质及应用。

一、定义平面直角坐标系由两个互相垂直的数轴(x轴和y轴)构成。

x轴水平放置,从左到右逐渐增大;y轴垂直于x轴,从下往上逐渐增大。

两条轴的交点称为原点,记作O。

平面直角坐标系将平面上的点与有序的实数对(x,y)一一对应。

二、性质1. 坐标轴性质:x轴上的点坐标为(x, 0),y轴上的点坐标为(0, y)。

2. 坐标线性质:对于坐标系内的一点P(x, y),以x轴和y轴为边,可以得到4个区域,分别对应第一象限、第二象限、第三象限和第四象限。

3. 距离计算公式:两点P1(x1, y1)和P2(x2, y2)之间的距离d可以通过勾股定理求得:d = √[(x2 - x1)² + (y2 - y1)²]。

三、应用平面直角坐标系在解析几何中有广泛的应用,常与方程、图形和向量等相关联。

1. 方程:通过坐标系可以解决一元和两元方程的问题。

对于一元方程,可以将其在坐标系中表示为一条直线,并求解其根;对于两元方程,可以表示为一条曲线,通过坐标系求解方程组的解。

2. 图形:通过坐标系,可以准确地表示和描述各种几何图形,如直线、抛物线、双曲线等。

在坐标系中,每个点都有唯一的坐标,因此可以使用坐标来确定图形上的点的位置。

3. 向量:向量是平面直角坐标系中的重要概念之一。

向量的起点可以任意选取,表示为一个有向线段,并通过坐标系表示其方向和大小。

向量可以进行加法、减法、数量积等运算,在物理学、工程学等领域有广泛的应用。

总结:平面直角坐标系是解析几何中最基本的坐标系之一,通过两个垂直的坐标轴构成。

它具有一些重要的性质,如坐标轴和坐标线的性质,以及距离计算公式。

平面直角坐标系在方程、图形和向量等方面有广泛的应用,能够准确地描述和解决各种几何问题。

八年级数学上册第5章平面直角坐标系专题训练13直角坐标系中几何问题习题课件新版苏科版

八年级数学上册第5章平面直角坐标系专题训练13直角坐标系中几何问题习题课件新版苏科版
点A'的坐标.
1
2
3
4
5
6
7
8
9
解:作A'H⊥ y 轴于 H ,则∠OHA'=90°.
∵ B (2,0),∴ OB =2.由旋转可得△A'OB'是等边三角形
且OB'= OB =2.∴OA'=OB'=2.
∵A'H⊥OB',∴ OH =HB'=1,
∴A'H= ′ − = − = ,∴A'(- ,
(3)如图③所示, PD = OD =5,点 P 在点 D 的右侧.过点
P 作 PE ⊥ x 轴于点 E ,则 PE =4.在Rt△ PDE 中,由勾股
定理得 DE = − = − =3,∴ OE = OD
+ DE =5+3=8,∴此时点 P 的坐标为(8,4).综上所
垂直平分线交 x 轴于点 C ,则点 C 的坐标为
点拨:如图,连接 BC ,
设 OC = x ,
∵ A (8,0), B (0,4),
∴ OA =8, OB =4.
1
2
3
4
5
6
7
8
9
(3,0)
.

∵ CD 垂直平分 AB ,
∴ BC = AC =8- x .
∵∠ BOC =90°,∴ BC2= OB2+ OC2,
=2,∴此时点 P 的坐标为(2,4);
1
2
3
4
5
6
7
8
9
(2)如图②所示, OP = OD =5.过点 P 作 PE ⊥ x 轴于点
E ,则 PE =4.
在Rt△ POE 中,由勾股定理得 OE = − =

第5章 平面直角坐标系

第5章 平面直角坐标系
4 2


’4 n 0

3 0 O。
图 1
( 4 )标 志 物 定 位 法
轴、 y 轴上 , 对 应 的数 m、 1 7 , 分 别 叫做 点 P 自 勺 横 利 用 确 定 的标 志 物 可 以描 述 运 动 物 体 坐 标 、 纵坐标 , 用 有序实数 对 ( m, n ) 表 示 点 位 置 的变化 , 但 这 种 描 述 方 法 有 时 不 够 精 P 的坐标. 确, 标 志 物越 多 , 精确程度越 高.


上 智 慧数 学
辩 0
黪 鹈鏊
H l J《 蘸
平面直角坐标系核心概念解读
贾 物 体 位 置 的确 定 彬


对, 两 者 缺一 不 可 .
如 : 电影 院 里 的 “ 7排 1 2号 ” 用( 7 , l 2 )
( 3 )方 位 角 、 距 离定 位 法
1 . 用有 序 实数 对 确 定 点 的位 置 方法 , 一 般 是用 两个 数 据 来表 示 , 即一对
泛. 用 经 纬 度 可 以准 确 地 描 述 地 球 上 任 意 E( 3, 3 0 0 。 ) 、 5, 2 1 0 。 ) .

点 的位 置 , 改 变经 纬 度 的数 值 , 点 的 位
l2U
9 无锡 市江南 中学位 于北纬 3 1 。 3 3 4 2 ” ,

般地 , 点( a , b ) 与( 6 , n ) 表 示 不 同 的位 置 .
2 . 其 他 确 定位 置 的 方 法
表 示 位 置 的方 法实 质 就是 用 角 度表 示方
向, 用距离确定位置 .

《平面直角坐标系》数学教学PPT课件(5篇)

《平面直角坐标系》数学教学PPT课件(5篇)

新知讲解
练习:
如图,在平面直角坐标系中,你能分别写出点A,B,
C,D的坐标吗?x轴和y轴上的点的坐标有什么特点?原
点的坐标是什么?
新知讲解
解:
A(4,0),B(-2,0),
C(0,5),D(0,-3)
① x轴上的点的纵坐标为0,一般记为(x,0);
② y轴上的点的横坐标为0,一般记为(0,y);
横轴,一般取向右方向为正方向;竖直的数轴称为y轴或纵轴,
一般取向上方向为正方向。
3.坐标原点:在平面直角坐标系中,两坐标轴的交点为平面
直角坐标系的原点,一般用O来表示。
再 见
第七章 平面直角坐标系
平面直角坐标系
学习目标
1
了解平面直角坐标系及相关概念.
2
用象限或坐标轴说明直角坐标系内点的位置,能根据横、纵坐
为象限.

-2

第三象限
-1
-2
-3
-4
O
1
4
2
3
x

第四象限
5
第二象限
4

3
y
第一象限
点的位置 横坐标符号 纵坐标符号

第一象限
2
1
-4
-1
-3
-2

第三象限
-1
-2
-3
-4
第二象限
O
1
4
2
3
x

第四象限
第三象限
第四象限
x轴
y轴








纵坐标为0
横坐标为0
例2

第5讲 平面直角坐标系

第5讲 平面直角坐标系

★ 例题精讲
4. 点P(m+1,m+3)在y轴上,则点P的坐标是 (0,2) .
★ 例题精讲
例题2 1. 在平面直角坐标系中,已知点M在第四象限,且到x轴的距离为1,
到y轴的距离为2,则M点的坐标为
.
解:设点M坐标为(x,y)
∵点M到x轴的距离为1,∴|y|=1
∵点M到y轴的距离为2,∴|x|=2
★ 例题精讲
例题3 如图,长方形ABCD在坐标平面内,点A的坐标是( 2,1),且边AB, CD与x轴平行,边AD,BC与y轴平行,AB=4,AD=2. (1)求B,C,D三点的坐标; (2)怎样平移,才能使A点与原点重合?
解:(1)∵A( 2,1),AB=4,AD=2, ∴边BC到y轴的距离为4+ 2,边CD到x轴的距离2+1=3, ∴B(4+ 2,1)、C(4+ 2,3)、D( 2,3) (2)将长方形ABCD先向下平移1个单位,再向左平移 2个单位.
A.(−2,−3) C.(1,3)
B.(−2,6) D.(−2,1)
★ 小练习2
3. 在平面直角坐标系中,将点A(1,3)向左平移2个单位长度,再向下平移 4个单位长度,所得到的点的坐标为(−1,−1) .
★ 小练习2
4. 在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移 3个单位长度后与点B(−3,2)重合,则点A的坐标是(2,−1) .
.
解:∵点P在x轴上 ∴3a+6=0,解得a=−2 当a=−2时,2−a=4 ∴点P的坐标为(4,0)
★ 例题精讲
练习1 1. 点P(a,b),ab>0,a+b<0,则点P在第 三 象限.
★ 例题精讲

平面直角坐标系5

平面直角坐标系5
你想知道坐标是谁最先使用 的吗,请点击这里查看小档案
到 几 何 画 板 中
你能说出原点的坐标吗?你能说出在x轴、y轴 上的点的坐标有什么特征吗?
y
4 3
2
1
-5 -4 -3 -2
-1 0 -1
-2
1
2
3
4
5
x
小结
1、数轴上的点可以用一个数来表示。这个数叫做这个点的坐标。 2、平面直角坐标系是由两条相互垂直且有相同原点的数轴 构成的,其中横轴画成水平,正方向向右,并在正方向上 标上x;纵轴画成竖直,正方向向上,并在正方向上标上y。
数轴
B -2 -1 0
原点O
正方向
1
A 2 3
点A表示的数是3 点B表示的数是-2
单位长度
数轴上的点可以用一个数来表示。这个数叫做这个点的坐标。
·
E
·
A
·
C
·
B
·
D
纵轴 (y轴)
4 3
坐标系的画法 及相关概念
y
2
原点 1 -5 -4 -3 -2 -1 0 -1
横轴 (x轴)
1
2
3
4
5
x
-2
用这种方法确定上图中 点A、B、C、D的坐标。
只要我努力,没有什么学不会的。
请完成课本第49页第一题。
小档案
数学方面的主要成就
笛卡尔 ,法国著名哲学家,数学家。1596年 出生于法国拉镇,法国巴黎普瓦捷大学毕业, 获法律学位。
哲学专著《方法论》一书中的《几何学》, 第一次将x看作点的横坐标,把y看作是点的 纵坐标,将平面内的点与一种坐标对应起来。
平面直角坐标系
复习 数轴 坐标系的画法 点的坐标的确定方法 坐标的定义 小结 小档案

中考数学复习考点知识与题型专题讲解5---平面直角坐标系(解析版)

中考数学复习考点知识与题型专题讲解5---平面直角坐标系(解析版)

中考数学复习考点知识与题型专题讲解专题05 平面直角坐标系【思维导图】【知识要点】知识点一平面直角坐标系的基础有序数对概念:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a ,b)。

【注意】a、b的先后顺序对位置的影响。

平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。

两轴的定义:水平的数轴叫做x轴或横轴,通常取向右为正方向;竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向。

平面直角坐标系原点:两坐标轴交点为其原点。

坐标平面:坐标系所在的平面叫坐标平面。

象限的概念:x轴和y轴把平面直角坐标系分成四部分,每个部分称为象限。

按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。

【注意】坐标轴上的点不属于任何象限。

点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b 分别叫做点A 的横坐标和纵坐标,有序数对A(a ,b)叫做点A 的坐标,记作A(a ,b)。

知识点二 点的坐标的有关性质(考点) 性质一 各象限内点的坐标的符号特征性质二 坐标轴上的点的坐标特征 1.x 轴上的点,纵坐标等于0; 2.y 轴上的点,横坐标等于0; 3.原点位置的点,横、纵坐标都为0. 性质三 象限角的平分线上的点的坐标1.若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2.若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;象限 横坐标x 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限 负 负 第四象限正负在第一、三象限的角平分线上 在第二、四象限的角平分线上 性质四 与坐标轴平行的直线上的点的坐标特征 1.在与x 轴平行的直线上, 所有点的纵坐标相等;m ;2.在与y 轴平行的直线上,所有点的横坐标相等;n ;性质五 点到坐标轴距离在平面直角坐标系中,已知点P ),(b a ,则 1.点P 到x 轴的距离为b ; 2.点P 到y 轴的距离为a ;3.点P 到原点O 的距离为PO = 22b aXXXY性质六 平面直角坐标系内平移变化性质七 对称点的坐标1. 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;2. 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3.点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;P (b a ,)abxy OXyPP mm -nOXyP1Pnn -mO小结:【考查题型】考查题型一 用有序数对表示位置【解题思路】要确定位置坐标,需根据题目信息、明确行和列的实际意义是解答本题的关键. 典例1.(2021·湖北宜昌市中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).X-A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列【答案】B【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.【详解】解:A. 小李现在位置为第1排第4列,故A选项错误;B. 小张现在位置为第3排第2列,故B选项正确;C. 小王现在位置为第2排第3列,故C选项错误;D. 小谢现在位置为第4排第4列,故D选项错误.故选:B.变式1-1.(2018·广西柳州市中考模拟)初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)【答案】C【详解】根据题意知小李所对应的坐标是(7,4).故选C.变式1-2.(2017·北京门头沟区一模)小军邀请小亮去他家做客,以下是他俩的对话: 小军:“你在公交总站下车后,往正前方直走400米,然后右转直走300米就到我家了” 小亮:“我是按照你说的走的,可是走到了邮局,不是你家…”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方走才能到我家…” 根据两人的对话记录,从邮局出发走到小军家应( ) A .先向北直走700米,再向西走100米 B .先向北直走100米,再向西走700米 C .先向北直走300米,再向西走400米 D .先向北直走400米,再向西走300米 【答案】A【分析】根据对话画出图形即可得出答案.【详解】解:如图所示:从邮局出发走到小军家应:向北直走700米,再向西直走100米.故选:A .考查题型二 求点的坐标典例2.(2021·天津中考真题)如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是()A .()6,3B .()3,6C .()0,6D .()6,6【答案】D【分析】利用O ,D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB ,BC 的长度,进而得出C 点的坐标即可.【详解】解:∵O ,D 两点的坐标分别是()0,0,()0,6,∴OD =6,∵四边形OBCD 是正方形,∴OB ⊥BC ,OB =BC =6 ∴C 点的坐标为:()6,6, 故选:D .变式2-1.(2021·山东滨州市·中考真题)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为() A .()4,5- B .(5,4)-C .(4,5)-D .(5,4)-【答案】D【分析】根据点到坐标轴的距离及点所在的象限解答即可. 【详解】设点M 的坐标为(x ,y ), ∵点M 到x 轴的距离为4, ∴4y =, ∴4y =±,∵点M 到y 轴的距离为5,x=,∴5x=±,∴5∵点M在第四象限内,∴x=5,y=-4,即点M的坐标为(5,-4)故选:D.4,0,点C的坐标变式2-2.(2021·湖北襄阳市模拟)如图,四边形ABCD为菱形,点A的坐标为() 4,4,点D在y轴上,则点B的坐标为()为()A.(4,2)B.(2,8)C.(8,4)D.(8,2)【答案】D【分析】根据菱形的性质得出D的坐标(0,2),进而得出点B的坐标即可.【详解】连接AC,BD,AC、BD交于点E,∵四边形ABCD是菱形,OA=4,AC=4,∴ED=OA=EB=4,AC=2EA=4,∴BD=8,OD=EA=2∴点B 坐标为(8,2), 故选:D .变式2-3.(2021·广东二模)已知点2,24()P m m +-在x 轴上,则点Р的坐标是() A .()4,0 B .()0,8C .()4,0-D .()0,8-【答案】A【分析】根据点P 在x 轴上,即y=0,可得出m 的值,从而得出点P 的坐标. 【详解】解:∵点2,24()P m m +-在x 轴上, ∴240m -=, ∴2m =;∴2224m +=+=, ∴点P 为:(4,0); 故选:A .变式2-4.(2021·广西一模)点M (3,1)关于y 轴的对称点的坐标为( ) A .(﹣3,1) B .(3,﹣1)C .(﹣3.﹣1)D .(1,3)【答案】A【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案. 【详解】点M (3,1)关于y 轴的对称点的坐标为(﹣3,1),故选:A . 考查题型三 点的坐标的规律探索【解题思路】考查坐标的规律探索,解题的关键是根据题意找到坐标的变化规律.典例3.(2021·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2021的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)【答案】A【分析】观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,由于2021÷4=504…3,A2021在x轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.【详解】解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2021÷4=504 (3)∴A2021在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2021的横坐标为﹣(2021﹣3)×12=﹣1008.∴A2021的坐标为(﹣1008,0).故选A.变式3-1.(2021·山东菏泽市·中考真题)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A,第二次移动到点2A……第n次移动到点n A,则点2019A的坐标是()A .()1010,0B .()1010,1C .()1009,0D .()1009,1【答案】C 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点2019A 的坐标.【详解】()10,1A ,()21,1A ,()31,0A ,()42,0A ,()52,1A ,()63,1A ,…,201945043÷=⋅⋅⋅,所以2019A 的坐标为()50421,0⨯+,则2019A 的坐标是()1009,0,故选C .变式3-2.(2021·辽宁阜新市·中考真题)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C 100的坐标为( )A .121200,5⎛⎫ ⎪⎝⎭ B .()600,0 C .12600,5⎛⎫ ⎪⎝⎭ D .()1200,0【答案】B 【分析】根据三角形的滚动,可得出:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上,由点A ,B 的坐标利用勾股定理可求出AB 的长,进而可得出点C 2的横坐标,同理可得出点C 4,C 6的横坐标,根据点的横坐标的变化可找出变化规律“点C 2n 的横坐标为2n×6(n 为正整数)”,再代入2n=100即可求出结论.【详解】解:根据题意,可知:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴,∴点C 2的横坐标为4+5+3=12=2×6, 同理,可得出:点C 4的横坐标为4×6,点C 6的横坐标为6×6,…, ∴点C 2n 的横坐标为2n×6(n 为正整数), ∴点C 100的横坐标为100×6=600, ∴点C 100的坐标为(600,0).故选:B .考查题型四 判断点的象限【解题思路】各象限内点的坐标的符号特征需记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 典例4.(2021·湖南株洲市·中考真题)在平面直角坐标系中,点(,2)A a 在第二象限内,则a 的取值可.以.是( ) A .1B .32-C .43D .4或-4 【答案】B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数即可判断.【详解】解:∵点(,2)A a 是第二象限内的点,∴0a <, 四个选项中符合题意的数是32-, 故选:B变式4-1.(2021·江苏扬州市中考真题)在平面直角坐标系中,点()22,3P x +-所在的象限是() A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】直接利用各象限内点的坐标特点分析得出答案.【详解】∵x 2+2>0,∴点P (x 2+2,−3)所在的象限是第四象限.故选:D . 变式4-2.(2021·湖北黄冈市·中考真题)在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【分析】根据点(,)A a b -在第三象限,可得0a <,0b -<,进而判定出点B 横纵坐标的正负,即可解决.【详解】解:∵点(,)A a b -在第三象限,∴0a <,0b -<,∴0b >,∴0ab ->,∴点B 在第一象限,故选:A .变式4-4.(2021·湖南邵阳市·中考真题)已知0,0a b ab +>>,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A .(),a bB .(),a b -C .(),a b --D .(),a b -【答案】B 【分析】根据0,0a b ab +>>,得出0,0a b >>,判断选项中的点所在的象限,即可得出答案.【详解】∵0,0a b ab +>>∴0,0a b >>选项A:(),a b 在第一象限选项B:(),a b -在第二象限选项C:(),a b --在第三象限选项D:(),a b -在第四象限小手盖住的点位于第二象限故选:B考查题型五 点坐标的有关性质1.坐标轴上的点的坐标特征1.(2017·四川中考模拟)如果点P(a -4,a)在y 轴上,则点P 的坐标是( )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)【答案】B【解析】由点P(a−4,a)在y 轴上,得a−4=0,解得a=4,P 的坐标为(0,4),故选B.2.(2018·广西柳州十二中中考模拟)点P (m +3,m +1)在x 轴上,则点P 坐标为() A .(0,﹣4) B .(4,0) C .(0,﹣2) D .(2,0)【答案】D【详解】解:∵点P (m+3,m+1)在x 轴上,∴y =0,∴m+1=0,解得:m =﹣1,∴m+3=﹣1+3=2,∴点P 的坐标为(2,0).故选:D .3.(2021·甘肃中考真题)已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( )A .(40),B .(04),C .40)(-,D .(0,4)-【答案】A【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,m=,解得:2∴+=,24m4,0.则点P的坐标是:()故选:A.4.(2021·甘肃中考模拟)已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【答案】A【详解】解:∵点P(m+2,2m﹣4)在x轴上,∴2m﹣4=0,解得:m=2,∴m+2=4,则点P的坐标是:(4,0).故选:A.5.(2021·广东华南师大附中中考模拟)如果点P(m+3,m+1)在平面直角坐标系的x轴上,则m=() A.﹣1 B.﹣3 C.﹣2 D.0【答案】A【详解】由P(m+3,m+1)在平面直角坐标系的x轴上,得m+1=0.解得:m=﹣1,故选:A.2.象限角的平分线上的点的坐标1.已知点A(-3+a,2a+9)在第二象限角平分线上,则a=_________ 【答案】-2【详解】∵点A在第二象限角平分线上∴它的横纵坐标互为相反数则-3+a+2a+9=0解得a=-22.(2018·广西中考模拟)若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N 的坐标是( )A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2)【答案】C【解析】已知点M在第一、三象限的角平分线上,点M到x轴的距离为2,所以点M到y轴的距离也为2.当点M在第一象限时,点M的坐标为(2,2);点M在第三象限时,点M的坐标为(-2,-2).所以,点M的坐标为(2,2)或(-2,-2).故选C.3.与坐标轴平行的直线上的点的坐标特征1.(2021·广西中考模拟)已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1 B.3 C.﹣1 D.5【答案】B【详解】解:∵AB∥y轴,∴点A横坐标与点A横坐标相同,为1,可得:a -2=1,a=3故选:B.2.(2018·天津中考模拟)如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等【答案】A【解析】试题解析:∵直线AB平行于y轴,∴点A,B的坐标之间的关系是横坐标相等.故选A.3.(2021·广东华南师大附中中考模拟)已知点A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,且B到y轴的距离等于4,那么点B是坐标是()A.(4,﹣2)或(﹣4,﹣2)B.(4,2)或(﹣4,2)C.(4,﹣2)或(﹣5,﹣2)D.(4,﹣2)或(﹣1,﹣2)【答案】A【详解】∵A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,∴B的纵坐标y=﹣2,∵“B到y轴的距离等于4”,∴B的横坐标为4或﹣4.所以点B的坐标为(4,﹣2)或(﹣4,﹣2),故选A.4.(2021·江苏中考模拟)若线段AB∥x轴且AB=3,点A的坐标为(2,1),则点B的坐标为()A.(5,1)B.(﹣1,1)C.(5,1)或(﹣1,1)D.(2,4)或(2,﹣2)【答案】C【详解】∵AB∥x轴且AB=3,点A的坐标为(2,1)∴点B的坐标为(5,1)或(﹣1,1)5.(2018·江苏中考模拟)已知点M(﹣1,3),N(﹣3,3),则直线MN与x轴、y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直【答案】D【详解】由题可知,M、N两点的纵坐标相等,所以直线MN与x轴平行,与y轴垂直相交.故选:D.4.点到坐标轴距离1.(2018·天津中考模拟)已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .2.(2018·江苏中考真题)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-【答案】C【解析】由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .3.(2017·北京中考模拟)点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A .(﹣3,4)B .( 3,﹣4)C .(﹣4,3)D .( 4,﹣3) 【答案】C【详解】由点且到x 轴的距离为3、到y 轴的距离为4,得|y|=3,|x|=4.由P 是第二象限的点,得x=-4,y=3.即点P 的坐标是(-4,3),故选C.4.(2012·江苏中考模拟)在平面直角坐标系中,点P(-3,4)到x轴的距离为( )A.3 B.-3 C.4 D.-4【答案】C【详解】∵|4|=4,∴点P(-3,4)到x轴距离为4.故选C.5.平面直角坐标系内平移变化1.(2021·山东中考真题)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【答案】A【解析】已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.2.(2021·北京中考模拟)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4) B.(4,3) C.(-1,-2) D.(-2,-1)【答案】A【详解】∵点A(4,﹣1)向左平移6个单位,再向上平移3个单位得到A′(﹣2,2),∴点B(1,1)向左平移6个单位,再向上平移3个单位得到的对应点B′的坐标为(﹣5,4).故选A.3.(2015·广西中考真题)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5) B.(-8,5) C.(-8,-1) D.(2,-1)【答案】D【解析】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.4.(2016·四川中考真题)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC 平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)【答案】C【解析】因为4-0=4,10-6=4,所以由点A到点A1的平移是向右平移4个单位,再向上平移4个单位,则点B 的对应点1B的坐标为(1,1)故选C.5.(2018·武汉市东西湖区教育局中考模拟)在坐标系中,将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标()A.(2,4)B.(1,5) C.(1,-3) D.(-5,5)【答案】B将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标(1,5).故选B.6.对称点的坐标1.(2021·广东中考模拟)在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)【答案】A【解析】点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.2.(2021·山东中考模拟)已知点P(a+1,2a﹣3)关于x轴的对称点在第二象限,则a的取值范围是()A.﹣1<a<B.﹣<a<1 C.a<﹣1 D.a>【答案】C【详解】依题意得P点在第三象限,∴,解得:a<﹣1.故选C.3.(2014·广西中考真题)已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1 B.1 C.2 D.3【答案】B关于x 轴对称的两个点的特点是,x 相同即横坐标,y 相反即纵坐标相反,故a=2014,b=-2013,故a+b=14.(2018·广西中考模拟)已知点P(a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( ) A .a 1<- B .31a 2-<< C .3a 12-<< D .3a 2>【答案】B【解析】∵点P (a +1,2a -3)关于x 轴的对称点在第一象限,∴点P 在第四象限。

【单元测试】第5章 平面直角坐标系(综合能力拔高卷)(解析版)

【单元测试】第5章 平面直角坐标系(综合能力拔高卷)(解析版)

【高效培优】2022—2023学年八年级数学上册必考重难点突破必刷卷(苏科版)【单元测试】第5章平面直角坐标系(综合能力拔高卷)(考试时间:100分钟试卷满分:120分)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.数对(1,3)表示第1组,第3行,那么小明坐第4组,第5行,用()可以表示他的位置.A.(4,5)B.(5,4)C.(4,4)D.(5,5)【答案】A【分析】根据题意可知数对中的第一个数表示“组数”,第二个数表示“行数”,据此即可作答.【详解】∵数对(1,3)表示第1组,第3行,∴小明坐第4组,第5行,用数对表示为(4,5),故选:A.【点睛】此题主要考查了用数对表示位置的方法,理解题意是解答本题的基础.2.下列数据能确定物体具体位置的是()A.朝阳大道右侧B.好运花园2号楼C.东经103°,北纬30°D.南偏西55°【答案】C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:朝阳大道右侧、好运花园2号楼、南偏西55°都不能确定物体的具体位置,东经103°,北纬30°能确定物体的具体位置,故选:C.【点睛】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置.3.已知点B的坐标为(3,﹣4),而直线AB平行于x轴,那么A点坐标有可能为()A.(3,﹣2)B.(﹣3,﹣4)C.(﹣3,2)D.(2,4)【答案】B【分析】根据平行于x 轴的直线上的点的纵坐标相同,判断选择即可【详解】因为点B 的坐标为(3,﹣4),而直线AB 平行于x 轴,所以A 点坐标的纵坐标一定是-4,故选B .【点睛】本题考查了平行于x 轴的直线上的点的纵坐标相同,熟练掌握这一条性质是解题的关键.4.定义:平面内的直线1l 与2l 相交于点O ,对于该平面内任意一点M ,点M 到直线1l 、2l 的距离分别为a 、b ,则称有序非负实数对(),a b 是点M 的“距离坐标”,根据上述定义,“距离坐标”为()2,1的点的个数有( ).A .1个B .2个C .3个D .4个【答案】D 【分析】首先根据题意,可得距离坐标为(2,1)的点是到l 1的距离为2,到l 2的距离为1的点;然后根据到l 1的距离为2的点是两条平行直线,到l 2的距离为1的点也是两条平行直线,可得所求的点是以上两组直线的交点,一共有4个,据此解答即可.【详解】解:如图1,,到l 1的距离为2的点是两条平行于l 1的直线l 3、l 4,到l 2的距离为1的点是两条平行于l 2直线l 5、l 6,∵两组直线的交点一共有4个:A 、B 、C 、D ,∴距离坐标为(2,1)的点的个数有4个.故选D .【点睛】此题主要考查了点的坐标,以及对“距离坐标”的含义的理解和掌握,解答此题的关键是要明确:到l 1的距离为2的点是两条平行直线,到l 2的距离为1的点也是两条平行直线.5.已知点(3,27)A m --在x 轴上,点(2,4)B n +在y 轴上,则点(,)C n m 位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【分析】根据x 轴上的点的纵坐标为0;y 轴上的点的横坐标为0,分别求出m 、n 的值,再判断点C 所在象限即可.【详解】解:(3,27)A m --Q 在x 轴上,点(2,4)B n +在y 轴上,270m \-=,20n +=,解得 3.5m =,2n =-,\点(,)C n m 在第二象限,故选:B .【点睛】本题考查点的坐标的相关知识,解题的关键是熟知x 轴和y 轴上的点的坐标特点.6.已知一次函数y kx b =+中y 随x 的增大而减小,且0kb <,则在直角坐标系内它的大致图象是( )A .B .C .D .【答案】A 【分析】根据一次函数的图象及性质由y 随x 的增大而减小即可判断k 的符号,再由0kb <即可判断b 的符号,即可得出答案.【详解】解: Q 一次函数y kx b =+中y 随x 的增大而减小,\0k <,又Q 0kb <,0b \>,\一次函数y kx b =+的图象经过一、二、四象限,故选A .【点睛】本题考查了一次函数的图象及性质,解题关键在于熟练掌握一次函数四种图象的情况.7.如图,在平面直角坐标系中,点A 、B 的坐标分别为()2,0,()0,1,将线段AB 平移至A B ¢¢,那么a b +的值为( )A.2B.3C.4D.5【答案】A【分析】根据点的坐标的变化分析出AB的平移方法,再利用平移中点的变化规律算出a、b的值.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:根据题意:A、B两点的坐标分别为A(2,0),B(0,1),A′(3,b),B′(a,2),即线段AB向上平移1个单位,向右平移1个单位得到线段A′B′;则:a=0+1=1,b=0+1=1,∴a+b=2.故选A.【点睛】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.8.如图是雷达在一次探测中发现的三个目标,其中目标A,B的位置分别表示为(120°,5),(240°,4),按照此方法可以将目标C的位置表示为( )A.(30°,1)B.(210°,6)C.(30°,6)D.(60°,2)【答案】C【分析】根据点A、B的位置表示方法可知,横坐标为度数,纵坐标为圈数,由此即可得到目标C的位置.【详解】解:∵A,B的位置分别表示为(120°,5),(240°,4),∴目标C的位置表示为(30°,6),故选:C.【点睛】此题考查了有序数对,正确理解有序数对的表示方法及图形中点的位置是解题的关键.9.如图,在平面直角坐标系中,已知点A(0,4),B(2,0),在平面内有一点C(不与点B重合),使得△AOC与△AOB全等,这样的点C有()A.1个B.2个C.3个D.4个【答案】C【分析】画出图形即可得到答案.【详解】如图所示,满足条件的点有三个,分别为C1(-2,0),C2(-2,4),C3(2,4)故选:C【点睛】本题考查了坐标与图形、三角形全等的判定,全等三角形的判定及图形坐标特征是解题的关键.10.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A .(2,0)B .(-1,-1)C .(-1,1)D .(1,-1)二、填空题(本大题共8个小题,每题3分,共24分)11.课间操时,小华,小军,小刚的位置如图.若小华的位置用()0,0表示,小军的位置用()2,1表示,则小刚的位置用坐标表示为______.4,3【答案】()【分析】根据小军和小刚的坐标建立平面直角坐标系,据此可得答案.【详解】解:由小军和小华的坐标可建立如图所示平面直角坐标系:小刚的位置用坐标表示为(4,3).故答案为:(4,3).【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应,记住直角坐标系中特殊位置点的坐标特征.12.如图,点A在射线OX上,OA等于2cm,如果OA绕点O按逆时针方向旋转30°到OA′,那么点A′的位置可以用(2,30°)表示.若OB=3cm,且OA′⊥OB,则点B的位置可表示为_____.【答案】(3,120°)【分析】根据题意得出坐标中第一个数为线段长度,第二个数是逆时针旋转的角度,进而得出B点位置即可.【详解】解:∵OA 等于2cm ,如果OA 绕点O 按逆时针方向旋转30°到OA ′,那么点A ′的位置可以用(2,30°)表示,∵OA ′⊥OB ,∴∠BOA =90°+30°=120°,∴∵OB =3cm ,∴点B 的位置可表示为:(3,120°).故答案为:(3,120°).【点睛】此题主要考查了用有序数对表示位置,解决本题的关键是理解所给例子的含义.13.如图,点 A 在射线 OX 上,OA =2.若将 OA 绕点 O 按逆时针方向旋转 30°到 OB ,那么点 B 的位置可以用(2,30°)表示.若将 OB 延长到 C ,使 OC =3,再将 OC 按逆时针方向继续旋转 55°到 OD ,那么点 D 的位置可以用(_________,_________)表示.【答案】 5 85°【分析】根据题意画出图形,进而得出点D 的位置.【详解】解:如图所示:由题意可得:OD =OC =5,∠AOD =85°,故点D 的位置可以用:(5,85°)表示.故答案为:5,85°.【点睛】此题主要考查了有序实数对确定位置,正确作出图形是解题关键.14.如图,建立适当的直角坐标系后,正方形网格上B 的坐标是()0,1,C 点的坐标是()1,1-,那么点A 的坐标是__________.【答案】()1,2-【分析】先建立平面直角坐标系,然后得出点A 的坐标即可.【详解】解:∵B 的坐标是()0,1,C 点的坐标是()1,1-,∴建立如下的平面直角坐标系:∴点A 的坐标为:()1,2-.故答案为:()1,2-.【点睛】本题主要考查了建立平面直角坐标系确定点的坐标,解题的关键是根据点B 、点C 的坐标确定平面直角坐标系.15.如图,在平面直角坐标系中,OAB V 的顶点坐标分别是(60),(05)A B -,,,OA B AOB ¢¢V V ≌,若点A ¢在x 轴上,则点B ¢的坐标是_____.【答案】6,5-()【分析】根据点、A B 的坐标求出=6=5OA OB ,,根据全等三角形的性质得出6OA OA ¢==,==5A B OB ¢¢,再求出点B ¢的坐标即可.【详解】解:∵(60),(05)A B -,,,∴=6=5=90°OA OB AOB Ð,,,∵OA B AOB ¢¢V V ≌,∴==6==5=90°OA OA A B OB B A O Т¢¢¢¢,,,∵点B ¢在第四象限,∴点B ¢的坐标是6,5-(),故答案为:6,5-().【点睛】本题考查了坐标与图形的性质,全等三角形的性质,能熟记全等三角形的对应边相等是解此题的关键.16.如图,在△ABC 中,AB = AC = 10,AD = 8,AD 、BE 分别是△ABC 边BC 、AC 上的高,P 是AD 上的动点,则PE+PC 的最小值是 _________.【答案】9.6【分析】由等腰三角形的三线合一可得出AD 垂直平分BC ,则BP =CP ,要求BE +CE 的最小值,将此题转化为“将军饮马”类型问题即可求解,根据题意可知,点C 关于AD 的对称点为点C ,当点P 在AD 与BE 的交点位置时BE +CE 最小,在△ABC 中,利用面积法可求出BE 的长度,此题得解.【详解】解:∵AB =AC ,AD 是△ABC 的高,∴AD 是BC 的垂直平分线,∴BP =CP ,∠ADB =90°,∵BE 是AC 边上的高,∴当B 、P 、E 三点共线时,PE+PC 的值最小,即BE 的长,∵AB =AC =10,AD =8,∴BD =6,0,3出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长17.如图,动点P从()3,0,则第2022次碰到长方形边上的点的坐方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为()标为_____.【答案】()【分析】根据图形得出图形变化规律:每碰撞6次回到始点,从而可以得出2022次碰到长方形边上的点的坐标.【详解】根据题意,如下图示:根据图形观察可知,每碰撞6次回到始点,根据图形可知:依次经过的点的坐标为:()0,3、()3,0、()7,4、()8,3、()5,0、()1,4.∵2022÷6=337,∴第2022次碰到长方形边上的点的坐标为()0,3,故答案为:()0,3.【点睛】本题考查点的坐标的规律问题,关键是根据题意画出符合要求的图形,找出其中的规律.18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“®”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)¼根据这个规律,第2019个点的坐标为___.【答案】(45,6)【分析】根据图形推导出:当n 为奇数时,第n 个正方形每条边上有(n +1)个点,连同前边所有正方形共有(n +1)2个点,且终点为(1,n );当n 为偶数时,第n 个正方形每条边上有(n +1)个点,连同前边所以正方形共有(n +1)2个点,且终点为(n +1,0). 然后根据2019=452-6,可推导出452是第几个正方形连同前边所有正方形共有的点,最后再倒推6个点的坐标即为所求.【详解】解:由图可知:第一个正方形每条边上有2个点,共有4=22个点,且终点为(1,1);第二个正方形每条边上有3个点,连同第一个正方形共有9=32个点,且终点为(3,0);第三个正方形每条边上有4个点,连同前两个正方形共有16=42个点,且终点为(1,3);第四个正方形每条边上有5个点,连同前两个正方形共有25=52个点,且终点为(5,0);故当n 为奇数时,第n 个正方形每条边上有(n +1)个点,连同前边所有正方形共有(n +1)2个点,且终点为(1,n );当n 为偶数时,第n 个正方形每条边上有(n +1)个点,连同前边所以正方形共有(n +1)2个点,且终点为(n +1,0).而2019=452-6n+1=45解得:n =44由规律可知,第44个正方形每条边上有45个点,且终点坐标为(45,0),由图可知,再倒着推6个点的坐标为:(45,6).故答案为: (45,6).【点睛】此题考查的是图形的探索规律题,根据图形探索规律并归纳公式是解决此题的关键.三、解答题(本大题共8小题,共66分;第19-22每小题6分,第23-24每小题8分,第25小题12分,第26小题14分)19.如图是中国象棋棋盘的一部分,棋盘中“马”所在的位置用(2,3)表示.(1)图中“象”的位置可表示为____________;(2)根据象棋的走子规则,“马”只能从“日”字的一角走到与它相对的另一角;“象”只能从“田”字的一角走到与它相对的另一角.请按此规则分别写出“马”和“象”下一步可以到达的位置.【答案】(5,3)【详解】整体分析:(1)根据“马”所在的位置确定原点,再确定“象”的位置;(2)根据象棋的走子规则,确定“马”和“象”下一步可以到达的位置.解:(1)(5,3)(2)“马”下一步可到达的位置有(1,1),(3,1),(4,2),(1,5),(3,5),(4,4);“象”下一步可到达的位置有(3,1),(7,1),(3,5),(7,5).20.如图,一只甲虫在55´的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B ®++,从B 到A记为:(1,4)B A ®--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C ®(________,________),B C ®(________,________),C D ®(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.【答案】(1)+3,+4;+2,0;+1,-2;(2)见解析【分析】(1)根据规定及实例可知A→C 记为(+3,+4),B→C 记为(+2,0),C→D 记为(+1,-2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P 的坐标,在图中标出即可.【详解】(1)∵规定:向上向右走为正,向下向左走为负,∴A→C 记为(+3,+4);B→C 记为(+2,0);C→D 记为(+1,-2);故答案为:+3,+4;+2,0;+1,-2;(2)P 点位置如图所示..【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.21.研学旅行继承和发扬了我国的传统游学,成为素质教育的新内容和新方式,是当下很多学生暑假都要参加的活动.2021年7月,某校举行了去远方的研学活动,主办方告诉学员们A 、B 两点的位置及坐标分别为(﹣3,1).(﹣2.﹣3),同时只告诉学员们活动中心C 的坐标为(3,2)(单位:km ).(1)请在图中建立直角坐标系并确定点C的位置;(2)若学员们打算从点B处直接赶往C处,请用方向角和距离描述点C相对于点B的位置..(2)以点B为坐标原点,建立新的平面直角坐标系如下,此时点22.如图,在直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A'B′C′,请画出平移后对应的△A′B′C′,并写出C′的坐标.作图如下所示;【点睛】此题主要考查了平移变换以及三角形面积求法,正确平移图象的各顶点坐标是解题关键.23.如图,在平面直角坐标系xOy 中,A (1,2),B (3,1),C (﹣2,﹣1).(1)在图中作出△ABC 关于x 轴的对称图形△A 1B 1C 1(2)写出点A 1,B 1,C 1的坐标(直接写答案)A 1________ ;B 1________;C 1________(3)求△ABC 的面积.【答案】(1)见解析(2)(1,-2),(3,-1),(-2,1)(3)4.5【分析】(1)分别确定,,A B C 关于x 轴的对称点111,,,A B C 再顺次连接111,,A B C 即可;(2)根据点111,,A B C 在坐标系内的位置,直接写出其坐标即可;(3)利用长方形的面积减去周围三个三角形的面积即可.【详解】(1)解:∵A (1,2),B (3,1),C (﹣2,﹣1).分别确定A 、B 、C 关于 x 轴的对称点A (1,24.如图,在平面直角坐标系中,已知(0,)A a ,(,0)B b ,(,)C b c 三点,其中a 、b 、c 满足关系式2(3)0b -=,2(4)0c -…(1)求a 、b 、c 的值;(2)如果在第二象限内有一点1(,)2P m -,请用含m 的式子表示四边形ABOP 的面积;D的面积相等?若存在,求出点P的坐(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与ABC标;若不存在,请说明理由.25.如图为某校区分布图的一部分,方格纸中每个小方格是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为(-2,-1).解答以下问题:(1)在图中找到坐标系中的原点O ,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),食堂坐标为D (2,0),请在图中标出体育馆和食堂的位置;(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD ,求四边形ABCD 的面积.(2)体育馆(1,3)C -,食堂(2,0)D (3)四边形ABCD 的面积45=´-20 4.53 1.51=----,2010=-,10=.【点睛】本题考查了坐标确定位置,平面直角坐标系的定义,网格结构中不规则四边形的面积的求解,熟记概念并熟练运用网格结构是解题的关键.26.例.如图①,平面直角坐标系xOy 中有点()2,3B 和(5,4)C ,求OBC V 的面积.解:过点B 作BD x ^轴于D ,过点C 作CE x ^轴于E .依题意,可得OBC OBD OCEBDEC S S S S =+-梯形△△△111()()222BD CE OE OD OD BD OE CE =+-+×-××111(34)(52)2354 3.5222=´+´-+´´-´´=.∴OBC V 的面积为3.5.(1)如图②,若()11,B x y 、()22,C x y 均为第一象限的点,O 、B 、C 三点不在同一条直线上.仿照例题的解法,求OBC V 的面积(用含1x 、2x 、1y 、2y 的代数式表示);(2)如图③,若三个点的坐标分别为(2,5)A ,(7,7)B ,(9,1)C ,求四边形OABC 的面积.。

平面直角坐标系与空间直角坐标系

平面直角坐标系与空间直角坐标系

平面直角坐标系与空间直角坐标系直角坐标系是数学中一种重要的坐标系统,用于描述和定位点在平面或空间中的位置。

平面直角坐标系和空间直角坐标系是两种常见的直角坐标系,它们在不同的维度中使用,并有一些细微的差别。

本文将介绍平面直角坐标系和空间直角坐标系的定义、特点和应用。

一、平面直角坐标系平面直角坐标系是二维空间中最基本的坐标系。

它由两条相互垂直的直线构成,一条称为x轴,另一条称为y轴。

两条直线的交点被定义为原点O,用作坐标的起点。

x轴和y轴的正方向可以任意选取,一般选择向右和向上。

平面直角坐标系中的点P可以通过两个坐标数(x, y)来表示,其中x表示点P在x轴上的投影距离,y表示点P在y轴上的投影距离。

平面直角坐标系具有以下特点:1. 两条坐标轴相互垂直,且坐标轴上的单位长度相等;2. 原点是坐标轴的交点,相当于零点位置;3. 坐标轴上的正方向可以任意选取;4. 基于平面直角坐标系可以描述平面内的点、图形和函数关系。

平面直角坐标系广泛应用于几何学、代数学和物理学等领域。

在几何学中,平面直角坐标系可用于描述平面内点的几何位置和线段之间的关系。

在代数学中,平面直角坐标系可用于表示二元一次方程的解的集合。

在物理学中,平面直角坐标系可用于描述物体在平面上的运动轨迹和受力情况。

二、空间直角坐标系空间直角坐标系是三维空间中的坐标系统,相较于平面直角坐标系多出了一条垂直于平面的直线,称为z轴。

空间直角坐标系的x轴、y 轴和z轴相互垂直,它们的交点仍然是坐标系的原点O。

空间直角坐标系中的点P可以通过三个坐标数(x, y, z)来表示,其中x表示点P在x 轴上的投影距离,y表示点P在y轴上的投影距离,z表示点P在z轴上的投影距离。

空间直角坐标系具有以下特点:1. 三条坐标轴相互垂直,且坐标轴上的单位长度相等;2. 原点是坐标轴的交点,相当于零点位置;3. 坐标轴上的正方向可以任意选取;4. 可以通过三个坐标数唯一确定三维空间中的一点。

专题5:平面直角坐标系中的变化规律

专题5:平面直角坐标系中的变化规律
上的点为准,点的总个数等于x轴上右 下角的点的横坐标的平方,若右下角的 点的横坐标为n时,共有n²个整数点,
∵45²=2025,45是奇数, ∴第2025个点是(45,0), 第2023个点是(45, 3),
针对练习
2.如图,在平面直角坐标系中,每个小正 方形方格的边长都是1个单位长度, P1,P2,P3 ......均在格点上,其顺序按箭头方 向排列,如: P1(0,0),P2(0,1),P3(1,1),P4(1,-1), P5(-1,-1),P6(-1,2) ......根据这个规律, 点P2016的坐标为则顶点P2018的坐标是 (,)
知识点二:图绕原点呈“回”字型运动点的坐标规律探究
例2. 如图,由里向外数第2个正方 形开始,分别是由第1个正方形各 顶点的横坐标和纵坐标都乘2,3,… 得到的,请你观察图形,猜想由里 向外第10个正方形四个顶点的坐 标分别是多少?
(0,10) (10,0)
(-10,0) (0,-10)
y
4 3 2 1
人教版.七年级下册 专题5:平面直角坐标系中的变化规律
学习目标: 1. 在掌握点的平移与坐标变化之间的关系的基础上解决点 的坐标规律问题. 2.通过图形的变化探究图形各个点的坐标变化规律,从而 解决图形变化的点的坐标规律问题 重、难点: 图形变化的点的坐标规律问题.
知识点一:沿坐标轴方向运动的点的坐标规律探究
y
3
A A1
A2
A3
2
1
O 1 B2 3 B41 5 6 7 B8 2 9 10 11 12 13 14 15 16B137
x
分析:由A1(2,3),A2(4,3),A3(8,3),可以发现它们各点横坐标 是2n,纵坐标都是3.故点An的坐标为(2n,3).由B1(4.0)、 B2(8,0),B3(16,0),可以发现它们各点横坐标是2n+1,纵坐标都 是0,故点Bn的坐标为(2n+1,0).

专题五--平面直角坐标系

专题五--平面直角坐标系

平面直角坐标系一、知识点归纳:1、 在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、 坐标平面上的任意一点P 的坐标,都和惟一的一对有序实数对(b a ,)一一对应;其中,a 为横坐标,b 为纵坐标坐标;3、点的坐标特征:四个象限内的点的特征:一(+,+) 二(-,+) 三(-,-) 四坐标轴上的点的坐标特征:①x 轴上所有点的纵坐标为0,如P(x,0) ;②y 轴上所有点的横坐标为0,如小结:(1)点P (y x,)所在的象限 横、纵坐标x 、y 的取值的正负性;(2)点P (y x ,)所在的数轴 横、纵坐标x 、y 中必有一数为零;4、 在平面直角坐标系中,已知点P ),(b a ,则(1)点P 到x轴的距离为b ; (2)点P 到y 轴的距离为a ; (3)点P 到原点O 的距离为PO = 22b a +5、 平行直线上的点的坐标特征: . 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m 点C 、D 的横坐标都等于n ; 61) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等;2) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;73)x 轴的对称点为),(1n m P -,4)y 轴的对称点为),(2n m P -, 5)),(3n m P --8)2 AB =中点P 的坐标为:)2,2(2121y y + 9、点的平移:在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点(x +a ,y );将点(x ,y )向左平移a 个单位长度,可以得到对应点( x -a ,y );将点(x ,y )向上平移b 个单位长度,可以得到对应点(x ,y +b );将点(x ,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。

注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系
二、知识要点梳理
知识点一:有序数对
比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。

我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作:(a,b).
要点诠释:
对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。

知识点二:平面直角坐标系以及坐标的概念
1.平面直角坐标系
在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。

水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。

注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。

平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。

2.点的坐标
点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。

在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。

注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。

横、纵坐标的位置不能颠倒。

②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。

知识点三:点坐标的特征
l.四个象限内点坐标的特征:
两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).
2.数轴上点坐标的特征:
x轴上的点的纵坐标为0,可表示为(a,0);
y轴上的点的横坐标为0,可表示为(0,b).
注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。

坐标轴上的点不属于任何一个象限,这一点要特别注意。

3.象限的角平分线上点坐标的特征:
第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);
第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).
注:若点P(a,b)在第一、三象限的角平分线上,则a=b;
若点P(a,b)在第二、四象限的角平分线上,则a=-b。

4.对称点坐标的特征:
P(a,b)关于x轴对称的点的坐标为(a,-b);
P(a,b)关于y轴对称的点的坐标为(-a,b);
P(a,b)关于原点对称的点的坐标为(-a,-b).
5.平行于坐标轴的直线上的点:
平行于x轴的直线上的点的纵坐标相同;
平行于y 轴的直线上的点的横坐标相同。

6.各个象限内和坐标轴上点的坐标符号规律:象限横纵坐标符号(a,b)
图象
第一象限(+,+)a>0,b>0第二象限(-,+)a<0,b>0第三象限(-,-)a<0,b<0第四象限(+,-)a>0,b<0x 轴上
正半轴(+,0)负半轴(-,0)
y 轴上
正半轴(0,+)负半轴(0,-)
原点
(0,0)
五、特殊位置点的特殊坐标:知识点四:简单应用
l.用坐标表示地理位置
根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,一般地只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起。

利用平面直角坐标系绘制区域内一些地点分布情况,也就是绘制平面图的过程:
(1)建立坐标系,选择一个适当的参照点为原点,确定x 轴,y 轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:
在建立平面直角坐标系时,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等。

在具体问题中要注意分析题目,灵活运用。

而建立平面直角坐标系的方法是不唯一的。

2.用坐标表示平移(1)点的平移:
在平面直角坐标系中,将点(x,y)向右或向左平移a 个单位长度,可以得到对应点(x
坐标轴上点P(x,y)连线平行于坐标轴的点点P(x,y)在各象限的坐标特点象限角平分线上的点X 轴Y 轴原点平行X 轴平行Y 轴第一象限第二象限第三象限第四象限第一、三象限第二、四象限(x,0)
(0,y )
(0,0)
纵坐标相同横坐标不同
横坐标相同纵坐标不同
x>0y>0
x<0y>0
x<0y<0
x>0y<0
(m,m)
(m,-m )
+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b)。

由上可归纳为:
①在坐标系内,左右平移的点的坐标规律:右加左减;
②在坐标系内,上下平移的点的坐标规律:上加下减;
③在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.
(2)图形的平移:
在平面直角坐标系内,如果把一个图形各个点的横坐标都加上或减去一个正数a,相应的新图形就是把原图形向右或向左平移a个单位长度;如果把各个点的纵坐标都加上或减去一个正数a,相应的新图形就是把原图形向上或向下平移了a个单位长度。

注:平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决。

注意平移只改变图形的位置,图形的大小和形状不发生变化.
三、规律方法指导
学习本章首先要理解好有序数对的概念,也就是在这里的数不但表示大小,还表示方向.并且它的位置也是不能改变的.其次,平面直角坐标系的引入,它是帮助我们研究事物的位置关系的一个工具,那么,对于点坐标的特征要熟练掌握,这样对于解题和应用都有很大帮助.最后就是应用平面直角坐标系解决实际问题,尤其是平移图形,这里学生一定要画平面直角坐标系,体会数形结合在数学中的作用,这是利用左右脑学习的最好方法.。

相关文档
最新文档