银杏内酯B
银杏内酯B对心肌缺血再灌注损伤保护作用的实验研究
银杏内酯B对心肌缺血再灌注损伤保护作用的实验研究目的观察银杏内酯B对心肌缺血再灌注(MI/R)损伤的保护作用,探讨其作用机制。
方法采用冠状动脉结扎使心肌缺血30min再灌注2h的方法建立MI/R损伤大鼠模型,按随机数字表法分为模型组、银杏内酯B三个剂量组(2、4、8mg/kg)、假手术组(n=10),于术前1h和再灌注即刻分别进行尾静脉注射给药。
取血清,测定CK、LDH、SOD活性及MDA含量:取心脏,测定心肌梗死面积。
结果银杏内酯B高剂量可明显缩小MI/R损伤大鼠的心肌梗死面积,与模型组比较差异有统计学意义(P<0.05):银杏内酯B高、中剂量可显著降低血清CK和LDH活性(P<0.05或P<0.01),低剂量可明显降低血清CK活力(P<0.05):银杏内酯B各剂量组的血清SOD活性显著升高(P<0.05或P<0.01),血清MDA 含量则明显降低(P<0.01)。
结论银杏内酯B预处理对MI/R损伤的保护作用与其减少自由基的产生、抑制脂质过氧化反应等有关。
标签:银杏内酯B:心肌缺血再灌注损伤:超氧化物歧化酶:丙二醛心肌缺血再灌注(myocardial ischemia/reperfu-sion,MI/R)损伤是心肌组织在较长时间缺血后恢复血液灌流,反而出现比再灌注前更严重的损伤和功能障碍,包括冠状动脉血流量减少心脏收缩功能降低及血管反应性改变等。
目前临床上对于MI/R损伤的防治研究尚无突破性进展,从中药和天然药物中寻找具有潜在临床应用价值的心肌保护药正逐渐受到研究人员的重视银杏内酯B(ginkgolide B)是中药银杏叶的活性成分,具有抗炎、抗过敏、抗移植排斥及神经保护等作用,临床用于防治脑血管疾病。
近年研究证实,银杏内酯B 对MI/R动物的心肌损伤具有一定的改善作用。
本研究应用MI/R损伤大鼠模型,探讨银杏内酯B的心肌保护作用及其可能的作用机制。
1.材料和方法1.1动物:清洁级SD大鼠,雌雄各半,体重(220±20)g,由河北医科大学实验动物中心提供,许可证号:SCxK(冀)2008-1-1003。
银杏内酯B药理作用研究进展
功能 的 研 究 发 现 , G B 可以改善再灌注损伤左心室 功能 , 降低心肌梗死面积和乳酸脱氢酶的释放 , 阻止 大鼠心脏再灌注损伤 。 2 保护肠道及肠黏膜 金 黄 色 葡 萄 球 菌 分 泌 的 葡 萄 球 菌 肠 毒 素B
[ ] ( ) : 针刺研究 , J . 2 0 0 7, 3 2 6 3 6 8 3 7 2. - [ ] 罗文舒 , 杨卓欣 , 于海波 , 等. 电针任督脉经 穴 对 脑 缺 血 2 4 ] 大鼠侧脑 室 下 区 E 中 医 药 导 报, R K 通路的影响[ J . ( ) : 2 0 0 8, 1 4 5 3 5. - [ ] 罗文舒 , 皮敏 , 饶晓丹 , 等. 针刺督脉和膀胱 经 促 进 抑 郁 2 5 ] 症大鼠海马神经元再 生 的 实 验 研 究 [ 广 西 中 医 药, J . ( ) : 2 0 0 8, 3 1 4 4 6 4 8. - [ ] 杨忠华 , / 许能贵 , 易玮 , 等. 针刺调节 MA 2 6 P K E R K 通路 ] 广州中医药大学学 对脑缺血模型大鼠的干预作用 [ J . ( ) : 报, 2 0 1 0, 2 7 1 2 3 2 6. - ( ) 收稿日期 : 2 0 1 2 0 4 0 9 - -
8 6
: / / t t x u e b a o . a h t c m. e d u . c n a i l h x b b b 6 3. c o m W e b s i t e h E-m a @1 p j 安徽中医学院学报 第3 1卷 第 5期 2 0 1 2年 1 0月 J O U R N A L O F A N H U I T C M C O L L E G E V o l . 3 1 N o . 5 O c t . 2 0 1 2
简述银杏叶的主要化学成分及其主要的药理功能
简述银杏叶的主要化学成分及其主要的药理功能【转】银杏叶的主要化学成分及其主要的药理功能银杏叶,又称白果树叶,是著名的中药材之一。
它作为一种传统的中草药,拥有多种药理功能,被广泛应用于中医药领域。
本文将深入探讨银杏叶的主要化学成分及其主要的药理功能,并分享个人对这一主题的观点和理解。
一、化学成分:银杏叶主要的化学成分包括银杏内酯类、黄酮类、挥发油以及苦类物质等。
其中,银杏内酯类是银杏叶的主要活性成分,对于银杏叶的药理功能具有重要影响。
1. 银杏内酯类:银杏内酯类是银杏叶中最主要的成分之一,主要包括银杏内酯A、银杏内酯B、银杏内酯C等。
银杏内酯类具有丰富的生物活性,可以增强人体对氧的利用,改善组织缺氧状况,增强抵抗力,提高机体的适应性。
银杏内酯类还具有抗炎、抗氧化、抗肿瘤、促进血液循环等多种药理功能。
2. 黄酮类:银杏叶中的黄酮类物质包括槲皮素、儿茶素、杂黄酮等。
黄酮类具有较强的抗氧化作用和抗炎作用,可以清除自由基,减少细胞损伤,有助于预防心血管疾病,改善生理功能。
3. 挥发油:银杏叶中的挥发油主要包括α-蒎烯、螺旋烯、β-蒎烯等。
挥发油具有抗菌、消炎、镇痛等作用,可以缓解疼痛,减少炎症反应。
4. 苦类物质:银杏叶中的苦类物质主要包括黄酮苷和有机酸等。
苦类物质具有促进食欲、消化液分泌的作用,有助于改善消化不良等问题。
二、药理功能:银杏叶作为传统的中草药,拥有多种药理功能,应用广泛。
1. 改善脑功能:银杏叶具有改善脑功能的作用,可以促进脑细胞之间的通讯,增强记忆力和学习能力,提高智力。
银杏叶中的银杏内酯类成分能够改善脑血流量,增加脑供血,改善脑缺氧状态,对于预防和治疗老年性痴呆症有一定的效果。
2. 抗衰老:银杏叶具有抗衰老的作用,可以抑制自由基的生成和脂质过氧化反应,减少细胞损伤,延缓细胞衰老和器官功能的下降。
银杏叶中的黄酮类和苦类物质具有抗氧化作用,可以清除自由基,减少细胞氧化损伤,对于延缓衰老有一定功效。
银杏内酯B_来自古老植物的血小板活化因子拮抗剂
第25卷 增刊大学化学2010年4月银杏内酯B来自古老植物的血小板活化因子拮抗剂廖杰 段秋华(解放军总医院医学实验测试中心 北京100853)摘要 概述了银杏内酯B的结构、理化性质、药理作用和临床应用前景。
银杏(G inkgo biloba L.)是一种在地球上已存在了2亿多年的植物,是银杏科银杏属中唯一的生存种,被誉为 活化石 。
我国自古以来就有银杏叶入药和食疗的记载,如 本草品汇精要 中提到,银杏叶 归肺经,能敛肺平喘,益心止痛 。
随着国外20世纪70年代初用银杏叶提取物(extract o f G inkgo biloba,EGb)治疗中枢外周血流紊乱和脑血管动脉粥样硬化的报导出现,其药用价值受到了更为广泛的关注[1 2]。
国际市场上银杏叶制剂的年销售额达50亿美元,已成为植物药制剂的全球冠军品种。
我国银杏资源占世界总量的70%以上。
安徽、江苏、山东、广东、广西、浙江、湖北、贵州、四川等十几个省都盛产银杏,年产银杏干叶约3万吨。
银杏叶提取物是我国目前原药材深加工的主流产品,国内生产厂家有上百家,年产EGb超过500吨。
银杏的化学成分较为复杂,银杏叶中已有报导的化学成分多达180种,其中主要活性成分为萜内酯化合物(g i n kgolides and bil o ba li d es)和黄酮类化合物(flavono id g l y cosi d es)。
萜内酯类化合物包括银杏内酯A、B、C、J和M,均为血小板活化因子(platelet activating factor,PAF)拮抗剂,其中银杏内酯B的活性最强。
1 银杏内酯B的基本信息银杏内酯具有独特的二十碳 笼 分子结构,含3个内酯环,一个螺[4.4]壬环,属于二萜类,是一类罕见的天然化合物,至今尚未发现存在于除银杏外的其他植物中。
银杏内酯A、B、C结构差异仅在于所含的羟基数目及其连接位置不同(图1)。
银杏内酯B的化学名称为1 羟基 (1 ) 银杏内酯A,别名为银杏萜内酯B或银杏苦内酯B,CAS编号为[15291 77 7],分子式为C20H24O10,相对分子质量为424.40。
银杏内酯B注射液对局灶性脑缺血的保护作用
的保 护作 用 。
1 材 料
1 . 1 动物
1 . 3 仪器
S D雄 性 大 鼠 1 4 0只 , 体重 2 5 0 ~ 3 0 0 g . 南北 京 维 通利华 实 验动 物 巾心提 供 。合 格证 号 为 : S C X K
E C A与 I C A分 叉 处 约 0 . 5 e m 的 颈 总 动 脉 处 作 一 切 口 ,插 入 一 端 涂 有 石 蜡 的 尼 龙 线 ( 直 径 为 0 . 2 8 5 m m) . 插入深度为 1 8 . 5 + - 0 . 5 m m. 实现大脑 中 动脉 阻塞导 致脑 缺血 。 结 扎入 口处 , 尼龙线 外 留约 l e m, 缝合 皮肤 。 3 h后 轻轻 提拉 所 留线 头 至略有 阻
2 . 2 . 3 结果
表 1 显示 . 术后 2 4 h M C A F模 型组 大 鼠 、 各 给
药 组 的大 鼠均有 不 同 程度梗 塞 灶 . 银 杏 内酯 B注 射液 8 m g 、 4 mg / k g可 明显 减少梗 塞程 度 与 MC A F
表 2显 示 模 型 组 大 鼠 在 缺 血后 3 h 再 灌 注 2 1 h均 出现 偏瘫 样 症状 .主要 表 现为 手 术对侧 前 肢 内收 . 肩 内旋 . 前 肢肌 张力 降低 , 肩抗 力下 降 . 向
2 . 1 . 3 结果
2 . 2 . 2 分组 及给 药 7 4只大 鼠随机 分为 六组 .每组 1 2 ~ 1 3只 , 即 模型 组 、 银 杏 内酯 B注射液 8 m g 、 4 mg 、 2 m g / k g组 、 金纳 多 2 3 . 3 m g / 组、 假 手术组 。造 模前 预 防给药 两天 ( i p ) , 一E l 一次 ; 造模后 给 药 ( i p ) 一次。
银杏内酯B对CIA大鼠成纤维样滑膜细胞增殖的影响
朱 丽 艳 耿 菲 杨 林 ①
( 华北 煤 炭 医学 院基 石部 机 能 实 验 室 , 药 理 学 教研 室 i = { i j ① 河北 席 1 0 30 ) h 60 0
[ 摘 要] ( i 3目的 探讨银 杏内酯 B对胶 原诱 导性关节 炎(o ae n ue r ri, I 大鼠成纤维样滑膜细胞( irbat iesnv cl gn—id cdat is C A) l ht Fbo l —l y oi s k —
c l g n,h n t e s n v a t s e w s tk n a d dg s d b ol g n s o r W u t r a d 3 t e ea in f s n va el ol e t e h y o i l i u a a e n i e t y c l e a e f rp i a s e a ma c l e, n o 5 g n r t s o y o ilc l u o s
华 北 煤 炭 医 学 院学 报
21 0 0年பைடு நூலகம்1 第 l 第 1 月 2卷 期
JN r h aC a M dcl nvr t 2 1 aur ,2 1 ot C i ol e i i sy 0 0Jn a 1 ( ) h n aU e i y
・3 1
银 杏 内酯 B对 CA大 鼠成 纤维 样 滑 膜 细 胞 增 殖 的影 响 I
银杏内酯b结构式
银杏内酯B是一种具有复杂结构的化合物,其结构式如下:
银杏内酯B是由多个环状结构和长链组成的化合物,其中包含多个手性碳原子,因此存在多种立体异构体。
在化学合成中,需要采用特定的合成路线和手性源来制备银杏内酯B,以确保获得具有生物活性的立体异构体。
银杏内酯B的化学名称是2-(3,4-二羟基苯基)-3-甲氧基-3-甲基丁酸乙酯,分子式为C19H28O5。
其相对分子质量为340.44。
银杏内酯B是银杏叶提取物中的一种重要成分,具有多种药理作用和生物活性。
研究表明,银杏内酯B具有显著的神经保护作用,可以有效地保护脑神经元免受缺血、缺氧等损伤。
此外,银杏内酯B还具有抗炎、抗氧化、抗肿瘤等作用,被广泛应用于治疗脑缺血、脑损伤、老年痴呆、帕金森病等疾病。
总之,银杏内酯B是一种具有复杂结构的化合物,其结构式表明了其化学组成和立体构型。
在化学合成和药物研究中,需要深入了解银杏内酯B的结构和性质,以更好地发挥其药理作用和生物活性。
血清中银杏内酯B和C的HPLC法测定
4.0%。
分别于4、2、4、8、12、24h进样,峰面积RSD为4.6%,表明甲疏咪唑溶液在24h内稳定。
2.6重复性试验取批号为144348的样品,分别精密称定样品6份,按“90.2”项下方法制备供试品溶液,按“91”项下色谱条件进行测定,甲疏咪唑的含量的平均值为904%, RSD为02%,表示方法的重复性良好。
2.7回收率实验精密称取已知含量的样品9份,按处方比例分别加入甲疏咪唑对照品溶液适量,分别制成处方量浓度的84%844%、34%的样品各3份,按供试品溶液制备方法制成样品溶液。
依照“93项下色谱条件进行测定,记录色谱图及峰面积,计算回收率。
结果表明本方法回收率良好。
甲疏咪唑的平均回收率为9078%,RSD为09%。
2.3样品含量测定精密称取样品适量,加流动相使溶解并稀释制成每1mL含甲疏咪唑14pg的溶液,作为供试品溶液;另取对照品适量,加流动相溶解并稀释制成每1mL含3 p g的溶液,作为对照品溶液。
分别取供试品溶液与对照品溶液各3p L,注入液相色谱仪测定。
按外标法计算含量,结果(见表1)。
表”样品的含量测定结果批号含量(%)3736595.014030895514030999.43讨论测定方法显色极其不明显,很难判断终点,且样品用量大。
采用HPLC方法测定,方法快捷,准确,且方法的重现性和回收率均较好。
3.2方东伟51、赵冯51测定甲疏咪唑片时采用流动相为040mcl•LT KH2PO-溶液(用H3PO4调pH值至3.2)-甲醇(85:28),该流动相比较复杂,经实验,采用甲醇-水(10:90)作为流动相,甲疏咪唑峰峰型良好,配制简单,经济环保。
参考文献〔〕国家药典委员会编・中国药典(二部))S〕北京:化学工业出版社,2015,220-〔2〕方东伟.高效液相色谱法测定甲疏咪唑片的含量31-药物鉴定, 2004,15(10):5015〕赵冯・高效液相色谱法测定甲疏咪唑片的含量研究5〕医药前沿,20187(3):563-31赵维娟,张梅,许景峰,等.高效液相色谱法测定甲疏咪唑乳膏的含量3〕解放军药学学报,2002,18(5):181-182-5〕张丽芳,陈博.高效液相色谱法测定甲疏咪唑片的含量3〕-中国地方病防治杂志,2009,2(3):225-3〕韦耀丽・甲疏咪唑治疗甲亢的研究进展〔J〕-右江民族医学院学报,20372):409-67113〕周单生,段雪云,陈树和,等.两种不同方法测定复方甲亢片中甲疏咪唑的含量3〕-湖北中医药大学学报,200,15(2):50-595〕孙亦群,黄月纯,唐洪梅.高效液相色谱法测定瘿气灵片中甲疏咪唑的含量3〕-广州中医药大学学报,2005,22(”):6065-3〕温欣荣,涂常青.Fc(m)-磺基水杨酸褪色光度法测定甲疏咪唑3〕分析试验室,2614,3”(5):35-3513.12215版《中国药典》采用滴定法测定甲疏咪唑含量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ReviewGinkgolides and bilobalide:Their physical,chromatographic and spectroscopic propertiesTeris A.van Beek *Laboratory of Organic Chemistry,Natural Products Chemistry Group,Wageningen University,Dreijenplein 8,6703HB Wageningen,The NetherlandsReceived 8April 2005;accepted 26May 2005Available online 29June 2005Dedicated to Professor Koji Nakanishi,who is unsurpassed in actively contributing to the isolation,purification,structure elucidation,spectroscopy,chemical conversion and pharmacology of ‘‘his’’ginkgolides during the past 40years.Abstract—Ginkgolides A,B,C,J,K,L and M and bilobalide are rare terpene trilactones that have been isolated from leaves and root bark of the Chinese tree Ginkgo biloba .The structures of the highly oxidized ginkgolides were independently elucidated in the 1960s by the groups of Nakanishi and ter these compounds were found to be potent and selective antagonists of platelet activating factor,which fact triggered much new research.During the past 40years,much physical,chromatographic and spectro-scopic data have been published on these compounds in various,sometimes inaccessible,sources.The published melting points,sol-ubility in different solvents,ionization constants,chromatographic behaviour,specific optical rotations,UV,IR,MS and NMR data,and X-ray studies are summarized and,where necessary,discussed.The literature until April 2005has been reviewed.Ó2005Elsevier Ltd.All rights reserved.Contents1.Introduction .............................................................50022.Appearance and physical data.................................................50022.1.Taste and appearance ..................................................50022.2.Melting points........................................................50032.3.Solubilities ..........................................................50032.4.Water/n -octanol partition coefficient (P ).....................................50032.5.Ionization constants....................................................50033.Chromatographic retention...................................................50033.1.TLC on silica gel......................................................50033.2.Reversed-phase HPLC..................................................50043.3.Gas chromatography ...................................................50044.Spectroscopic data .........................................................50044.1.Specific optical rotation .................................................50044.2.Ultraviolet (UV)spectra.................................................50044.3.Optical rotatory dispersion (ORD)spectra....................................50044.4.Infrared (IR)spectra ...................................................50044.5.Electron impact mass spectrometry (EI-MS)..................................50054.6.Atmospheric pressure ionization mass spectrometry (API-MS)......................50064.7.GC–MS data of trimethylsilyl ethers ........................................50064.8.NMR data ..........................................................50074.9.X-ray crystallography ..................................................5007References and notes .................................. (5010)0968-0896/$-see front matter Ó2005Elsevier Ltd.All rights reserved.doi:10.1016/j.bmc.2005.05.056Keywords :Ginkgo terpene trilactones;Ginkgo biloba ;Solubility;[a ]D ;UV;IR;MS;NMR;X-ray.*Tel.:+31317482376;fax:+31317484914;e-mail:teris.vanbeek@wur.nl Bioorganic &Medicinal Chemistry 13(2005)5001–50121.IntroductionGinkgo biloba L.is the only remaining species of the once large order Ginkgoales.Its extraordinary botanical posi-tion and other peculiar properties have attracted,since long,the attention of scientists of different disciplines, for example,botanists,entomologists,natural products chemists and pharmacologists.In the1960s,the groups of Nakanishi and co-workers1–5and Sakabe6,7indepen-dently isolated from,Ginkgo root bark and Ginkgo leaves,respectively,a so far unique class of plant constit-uents.They called them ginkgolides.These C20terpenes consist of sixfive-membered rings,that is,a spiro[4,4]non-ane carbocylic ring,three lactones and a tetrahydrofuran (1–7).Until now they are the only natural products pos-sessing a tert-butyl group.Nakanishi has reviewed the structure elucidation of the ginkgolides elsewhere.8–11 Originally ginkgolide A(1),B(2),C(3)and M(4)were identified.8In1987,Weinges et al.identified ginkgolide J(4)as a minor constituent in the Ginkgo leaves.12 Recently,Wang et al.reported on two new trace ginkgo-lides and called them ginkgolide K(6)and L(7).13In the mid-1980s,it was discovered that ginkgolides were potent and selective antagonists of platelet activating fac-tor(PAF).14,15PAF is a highly active mediator in the hu-man body and has been implicated in various disease states.This discovery rapidly led to an enormous increase in the number of papers devoted to all aspects of ginkgo-lides(Fig.1).So far four books have appeared on Ginkgo biloba and its chemical constituents.16–19As a result of the intense pharmacological and clinical research,phyto-pharmaceuticals based on partially purified Ginkgo biloba leaf extracts are now among the most sold drugs in France and Germany.Total worldwide sales offinished products were estimated at half a billion US dollars in2000.20 These extracts,containing24%flavonol glycosides and 6%terpene trilactones,are primarily prescribed for prob-lems associated with a poor central and peripheral blood circulation like mild forms of dementia and difficulties with walking,respectively.21A positive clinical trial for the treatment of AlzheimerÕs disease with a Ginkgo ex-tract has been reported.22Although constituents from different chemical classes contribute to the overall phar-macological effect of Ginkgo extracts,ginkgolides are held responsible for a significant part of the beneficial ef-fect.More recently,it was discovered that,apart from PAF-antagonism,they also exert antagonistic effects on glycine receptors23–25and an anxiolytic effect.26A closely related C15terpene trilactone,which is the major terpene in Ginkgo leaves,is named bilobalide(8).Its structure was elucidated due to a concerted effort of Nakanishi and colleagues shortly after the discovery of ginkgolides A,B,C and M.27This terpene trilactone lacks PAF antag-onistic activity but shows neuroprotective effects.28,29 According to a literature search with SciFinder Scholar, in total1363papers and patents appeared in the period 1965–2005in which either ginkgolide A[15291-75-5](1), ginkgolide B[15291-77-7](2),ginkgolide C[15291-76-6] (3),ginkgolide J[107438-79-9](4),ginkgolide K [153355-70-5](6),ginkgolide L[148637-23-4](7),ginkgo-lide M[15291-78-8](5)or bilobalide[33570-04-6](8)occurred(Fig.1a).A minor part of these papers deals with their analysis or spectroscopic data(Fig.1b).Somewhat surprisingly however,not a single review has yet ap-peared,which deals exclusively with all the physical and spectroscopic data of Ginkgo terpene trilactones.The sometimes conflicting data on their solubility in various solvents,melting points,ionization constants,TLC R f values,HPLC capacity factors,GC retention indices,spe-cific optical rotations and IR,UV,MS,1H NMR,13C NMR and X-ray data have appeared over a period of 40years in many different—sometimes inaccessible—sources.These data of all the eight presently known Ginkgo terpene trilactones are summarized below and commented on,if deemed necessary.If identical data have been published multiple times,only thefirstly published data will be presented unless the newer data are better. Throughout the remaining part of this paper ginkgolides A,B,C,J,K,L and M will be abbreviated as G-A,G-B, G-C,G-J,G-K,G-L and G-M,respectively.Bilobalide will be abbreviated as BB.2.Appearance and physical data2.1.Taste and appearanceGinkgolides in pure form occur in the form of white odourless crystals or powders.They have a bitter taste.15002T.A.van Beek/Bioorg.Med.Chem.13(2005)5001–5012They are stable to light and moisture.30BB (8)is also reported to be311.Ginkgolide A:R 1=R 2=H,R 3=OH 2.Ginkgolide B:R 1=R 3=OH,R 2=H 3.Ginkgolide C:R 1=R 2=R 3=OH 4.Ginkgolide J:R 1=H,R 2=R 3=OH 5.Ginkgolide M:R1=R 2=OH,R 3=H6.Ginkgolide K:R=OH 7.Ginkgolide L:R =H8.Bilobalide 2.2.Melting pointsGinkgolides are relatively stable substances,which con-tain a large number of functional groups and,therefore,possess high melting points.Their melting points have been summarized in Table 1.There are significant differ-ences in the reported melting points which must be due to the solvent used for crystallization,purity and exper-imental conditions.Melting points are thus of limited value for identification or purity assessment of ginkgo-lides.Terahara has stated that G-A (1),G-B (2)andG-C (3)can be sublimed at 10À3mmHg at temperatures of 280–300°C.302.3.SolubilitiesGinkgolides are soluble in acetone,ethanol,methanol,ethyl acetate,tetrahydrofuran,dioxane,acetic acid,tri-fluoroacetic acid,acetonitrile,pyridine and dimethyl sulfoxide.They are sparingly soluble in ether and water.They are insoluble in hexane,benzene,chloroform and carbon tetrachloride.Ginkgolides are extremely stable towards mineral acids,for example,evaporation to dry-ness of a concentrated nitric acid solution results in recovery of crystalline starting material,and dissolution of the ginkgolides in warm concentrated sulfuric acid followed by addition of water affords unchanged gink-golides.Ginkgolides readily dissolve in dilute alkali and are recovered quantitatively on subsequent acidification.38Mixtures of acetone–water or methanol–water have been frequently used to extract terpene trilactones from leaves indicating a good solubility in these mixed solvents.39–50They can also be extracted by supercrit-ical carbon dioxide modified with 10%methanol at 335atm and 45°C.51A discussion of the extraction of terpene trilactones from leaves has been published.52Specific solubility data on BB (8)are not available but its polarity and solubility appears to be similar to those of the ginkgolides.For instance,with the mixed solvents mentioned above it is well extracted.An exception is its instability above pH 7.53,542.4.Water/n -octanol partition coefficient (P )A log P value of 1.72was reported for G-B (2).552.5.Ionization constantsThe following three p K a values were reported forG-B (2):p K a1=7.14,p K a2=8.60and p K a3=11.89.55These are due to the presence of the three lactone rings.That one of the lactone rings is more difficult to open with base,had already been noted by Nakanishi.83.Chromatographic retention3.1.TLC on silica gelTerpene trilactones are poorly resolved on normal silica gel.BB (8)has the highest R f value,followed by G-A/G-B as a pair and G-J/G-C as a pair.The poor separation of G-A (1)and G-B (2)is caused by the strong hydrogen bonding between the 1-and 10-hydroxyl groups in G-B.Due to the hydrogen bonding,G-B is equal in polarity to G-A in normal phase chromatography in spite of the presence of an extra hydroxyl group.Exactly the same phenomenon occurs with G-J (4)(3hydroxyls)and G-C (3)(4hydroxyls),which possess R f values ofTable 1.Reported melting points of ginkgolides and bilobalide Compound Melting point (°C)Reference G-A,G-B,G-C 330–350(with decomposition)30G-A,G-B,G-C $3006G-A,G-B,G-C,BB >30031G-A 310;332–33532,33G-B 295–297;295–29834,35G-B 30136G-C 310;>300;28532,33,35G-J 320(decomposing from 295)12G-J29032G-K,G-L >30013G-M 320–324(with decomposition)37BB30034T.A.van Beek /Bioorg.Med.Chem.13(2005)5001–501250030.20and 0.19,respectively,in toluene/acetone (7:3),a TLC solvent that was used by the group of Weinges et al.12A complete separation of BB,G-A,G-B,G-J and G-C can be obtained if the silica gel plates are impregnated with sodium acetate prior to development.As solvent,pure methyl acetate was used.56Supposedly the sodium acetate disrupts the internal hydrogen bonding in G-B (2)and G-C (3),which results in a much better resolu-tion of the five major Ginkgo terpene trilactones.The compounds now elute according to the type and number of their hydroxyl groups:BB (one 2°-OH and one 3°-OH,R f =0.58),G-A (one 2°-OH and one 3°-OH,R f =0.41),G-B (two 2°-OH and one 3°-OH,R f =0.25),G-J (two 2°-OH and one 3°-OH,R f =0.12)and finally G-C (three 2°-OH and one 3°-OH,R f =0.06).56The ginkgolides are probably more re-tained than BB because of the additional tetrahydrofu-ran ring present.3.2.Reversed-phase HPLCA thorough study on finding the optimal solvent for the separation of G-A,G-B,G-C and BB on C18columns was carried out as far back as 1983.The results are sum-marized in Table 2.According to these studies the opti-mal solvent was methanol/tetrahydrofuran/water (1:3:15).At a flow rate of 1.5mL/min this solvent gave a good separation of BB,G-A,G-B and G-C within 20min.57A further optimized solvent was published by Teng.58His separation took place on a 125·4mm Merck RP C18column at 30°C and was completed within 9min in combination with the solvent water/methanol/tetrahy-drofuran (7:2:1)at 1.0mL/min.The capacity factors (k 0)for G-J (4),G-C (3),BB (8),G-A (1)and G-B (2)were 1.85,2.62,3.30,4.29and 6.05.The solvent tetrahydrofu-ran has a significant influence on the retention of BB (8)relative to the ginkgolides.3.3.Gas chromatographyGinkgolides and bilobalide are too involatile to be analysed as such by gas chromatography.However,after silylation they can be easily analysed by gas chromatography on a non-polar column.The reten-tion indices of silylated BB (8)and G-A (1),G-B (2)and G-C (3)on a dimethylpolysiloxane phase at three different temperatures have been reported and are given in Table 3.594.Spectroscopic data4.1.Specific optical rotationIn Table 4the specific optical rotation of all ginkgolides and bilobalide at 589nm are given.4.2.Ultraviolet (UV)spectraDue to the absence of carbon–carbon double bonds,gink-golides A,B,C,J and M show only a weak maximum around 220nm.Okabe et al.reported the following k max (EtOH)values:G-A (1):219nm (log e 2.72);G-B (2):219nm (log e 2.37);G-C (3):220nm (log e 2.30).6G-L (7):217nm (e 10,500),238nm (sh,e 6000).38Due to the low e values,UV is unsuitable for detection purposes after HPLC and instead refractive index (RI),evaporative light scattering (ELSD)or MS detection should be used.4.3.Optical rotatory dispersion (ORD)spectraGinkgolides show negative plain ORD curves exhibiting no Cotton effect in the range 250–700nm.8,384.4.Infrared (IR)spectraA detailed study of the IR spectra of G-A (1),G-B (2)and G-C (3)has been published by Broquet and Bra-quet.61They recorded standard spectra in nujol and Fourier Transform spectra in KBr.All the spectra were very complex.For a reliable assignment of the stretch vibrations of the hydroxyls,some spectra were recorded after deuteration with CD 3OD as well.In Tables 5a–c the most characteristic signals are presented together with the assignment suggested by Broquet and Braquet.Non-characteristic bands such as the C–C stretch around 2900cm À1have been omitted.The stretching bands in the region between 1200and 1050cm À1were very difficult to assign because of the large number of C–O bonds in the ginkgolides.One of these bands could possibly correspond with the C–O–C moiety of the tetrahydrofuran ring (ring D),which undergoes conformational changes according to the de-gree of substitution.The precise stereochemistry at C-1Table 2.HPLC retention times in minutes of ginkgolides A–C,and bilobalide on LiChrosorb RP-1810l m,25·0.4cm SolventFlow (mL/min)BB G-C G-A G-B Methanol/water (3:7)18.810.621.424.2Acetonitrile/water (1:4)110.013.627.027.0Tetrahydrofuran/water (1:4)124.817.223.237.4Methanol/tetrahydrofuran/water (1:3:15) 1.513.69.211.919.3Data taken from Lobstein-Guth et al.57Table 3.Retention indices of the trimethylsilyl ethers of ginkgolides A–C and bilobalide 59Compound 290°C 300°C 310°C BB 2481.92504.22526.7G-A 3130.73153.13175.6G-B 3211.03235.03259.0G-C3241.93263.43285.05004T.A.van Beek /Bioorg.Med.Chem.13(2005)5001–5012could not be determined with IR spectroscopy.What could be observed is some intra-molecular hydrogen bonding in G–C(3).This induces a shift to higher wave-lengths of the OH stretch(3560cmÀ1).61Zhu et al.have performed a quantum chemistry calcu-lation at the DFT-B3LYP/6-31G*level on the geome-try and IR spectrum of G-B.62a The fully optimized geometry of G-B(2)was found to be consistent with an X-ray crystal structure.There was a good corre-spondence between the156predicted bands and the experimental IR spectrum.The O–H stretching bonds were located between3501and3443cmÀ1and the C@O stretching bonds between1788and1764cmÀ1. The stretching of C–H bonds and the rocking of the tert-butyl group were found around2900and 1460cmÀ1,respectively.The bands below1192cmÀ1 could not be assigned to any C–O stretching bond but are the result of the breathing of the condensed ring structure and other vibrations such as the rocking of C–H bonds.62a Recently,this group performed a new modelling structure on117ginkgolide derivatives to derive which parts of the molecule are involved in PAF-antagonism.62bIn Table6some additional IR data have been summarized.4.5.Electron impact mass spectrometry(EI-MS)Only once have EI-MS data been reported.31All spec-tra were obtained at70eV.Qualitatively,the fragmen-tation pattern for G-A(1),G-B(2)and G-C(3)is the same.The molecular ion can lose a methyl group, water,carbon monoxide,carbon dioxide and isobutene giving rise to fragments at[MÀ15]+,[MÀ18]+Å, [MÀ28]+Å,[MÀ44]+Åand[MÀ56]+Å,respectively.After the loss of CO2,a further loss of the hydroxylactone ring is characteristic for the ginkgolides:ions at m/z 290,306and322for G-A,G-B and G-C,respective-ly.31In all the cases,the base peak is found at m/z 57corresponding to the stable tert-butyl carbocation. The fragmentation pattern for G-A(1),G-B(2)and G-C(3)according to Weinges is schematically depicted in Figure2while that of BB(8)can be found in Figure3.The mass spectrum of G-J(4)was given by Weinges et al.,EI-MS:m/z(relative intensity): 424[M+Å](0.71),409(0.59),396(0.56),380(3.12), 378(0.59),362(0.89),350(0.56),57(100).12For G-K,G-L and G-M no EI-MS have been published.Table4.Specific optical rotations of ginkgolides and bilobalideCompound[a]D(°)Temperature(°C)Solvent Concentration(g/100mL)ReferenceG-AÀ53.424Ethanol16G-AÀ39?Dioxane 1.01G-BÀ52.624Ethanol16G-BÀ5224Ethanol135G-BÀ63?Dioxane 1.01G-CÀ14.723Ethanol16G-CÀ12.523Ethanol135G-CÀ19?Dioxane 1.01G-JÀ2.520Dioxane112G-J+1.6?Dioxane0.06132G-K+25?Acetonitrile137G-L+40.7?Acetonitrile160G-MÀ39?Dioxane 1.01G-MÀ36?Dioxane 1.037BBÀ64.320Acetone231?,unknown.Table5.IR characteristicsWave number(cmÀ1)Transmission(%)Assignment(a)IR characteristics of G-A(1)(nujol)354635OH stretch345030OH stretch179820Lactone stretch176118Lactone stretch175915Lactone stretch118425C–O–C stretch115015C–O–C stretch113415C–O–C stretch106530C–OH stretch104425C–OH stretch(b)IR characteristics of G-B(2)(nujol)3480a(shoulder)25OH stretch3446a(wide)15OH stretch1789(broad)5Lactone stretch1774(broad)5Lactone stretch1175(broad)25C–O–C stretch116015C–O–C stretch1131(broad)15C–O–C stretch107010C–OH stretch104325C–OH stretch(c)IR characteristics of G-C(3)(nujol)3560(sharp)30OH stretch350015OH stretch3400(broad)15OH stretch183510Lactone stretch17895Lactone stretch1768(shoulder)10Lactone stretch116520C–O–C stretch114010C–O–C stretch1080(broad)10C–OH stretch104915C–OH stretcha In another paper by one of the authors only one OH stretch value of3455cmÀ1is given.15T.A.van Beek/Bioorg.Med.Chem.13(2005)5001–501250054.6.Atmospheric pressure ionization mass spectrometry (API-MS)During the last 12years LC–MS has been frequently employed for the analysis of Ginkgo terpene trilactones,mostly for quantitative purposes.Initially a thermo-spray interface (TSP)was used.63Nowadays,atmo-spheric pressure chemical ionization (APCI)64,65and electrospray (ESI)66,67interfaces in either negative orpositive mode are standard.These soft ionization tech-niques give very little fragmentation and are,thereforefrom a spectroscopic point of view,not very informa-tive.Mostly,pseudomolecular ions are observed like [M+H]+,[M+NH 4]+,[M+Na]+and [M ÀH]À.Mass spectra showing more fragmentation can be obtained by in-source fragmentation or by working in MS/MS mode (ion trap or triple quadrupole instruments).In the latter case,fragmentation arises through collision in-duced dissociation (CID).The best MS/MS study so far was carried out on a triple quadrupole working in neg-ative mode with an ESI source and argon as collision gas at 10–15eV collision energy.67The spectra have been summarized in Table 7.Very similar spectra—also obtained with negative mode ESI—have been published by Lu et al.68,69and Lang et al.70The mass spectral interpretation by Lu et al.appears erroneous at some points.4.7.GC–MS data of trimethylsilyl ethersAfter silylation in DMF with N ,O -bis-(trimethylsilyl)-trifluoroacetamide (BSTFA)containing 1%trimethyl-chlorosilane (TMCS)at 120°C,all Ginkgo terpenetrilactones can be analysed by GC–MS.The 70eV EI mass spectra of the TMS ethers of G-A (1),G-B (2)and G-C (3)have been published by Braquet without further discussion.15,71Unfortunately,the spectra pub-lished in that paper are too small to discern individual mass peaks.It is possible to observe that the base peak for all three compounds is the [M ÀCH 3]+and that fur-ther fragmentation is limited.The [M ÀCH 3]+is found at m /z 537,625and 713for G-A,G-B and G-C.BetterTable 6.Additional IR data of ginkgolides B,C,J,K and L,and bilobalide Compound Matrix Wave numbers (cm À1)G-B KBr 3520,2950,2860,1780,1630,1480,1450,1353,1135,943,793,75235G-C KBr 3580,3520,2990,2925,1785,1630,1410,1173,937,892,80035G-J ?3600,3500,3440(all OH stretch)15G-K KBr 178038G-K ?3558,3500,3130,1783,1757,162013G-L Nujol 1811,176538G-L ?3588,3468,3352,1789,176513BB Nujol3450,1820,1810,1775,1210,1150,1005,95531?,unknown.5006T.A.van Beek /Bioorg.Med.Chem.13(2005)5001–5012spectra of the TMS ethers of BB,G-A,G-B and G-C were published by Tang et al.72and Deng and Zito 73and are summarized in Table 8.Numbering system for ginkgolide skeleton.A–F in italic are for designation of the six rings.The structure actual-ly shown is that of G-C (3).Numbering system for bilobalide (8).4.8.NMR dataNMR data of Ginkgo terpene trilactones have been published by many different authors.The most complete or reliable studies on all ginkgolides are summarized in Tables 9–11.References to all NMR studies can be found in Table 12.Some of these studies contain incor-rect structures or assignments and preference should be given to the data in Tables 9–11.Earlier studies suffermore from second order effects due to lower field strengths,making assignments more difficult.Addition-ally more recent NMR studies can confirm assign-ments by 2D experiments.Fewer studies have been carried out on BB (8).The NMR data of 8are reported below.1H NMR bilobalide (8)(acetone-d 6,250MHz)d :1.20(H-18,19,20), 2.32(H-7b ,dd,J =13.6,7.0Hz), 2.74(H-7a ,dd,J =13.6,7.0Hz), 2.80(H-1b ,d,J =18.0Hz),3.02(H-1a ,d,J =18.0Hz),4.63(OH-8,s,1H),4.99(H-6,t,J =7.0Hz),5.40(H-10,d,J =4.3Hz),6.36(H-12,s),6.38(OH-10,d,J =4.3Hz).27,8113C NMR bilobalide (8)(acetone-d 6,100MHz)d :27.0,36.9,38.2,43.2,59.0,66.4,69.7,83.8,87.4,100.4,173.4,173.6,178.3.81NMR has also been used for quantitative studies of Ginkgo terpene trilactones in leaves and extracts.Such studies are based on the appearance of H-12as a sharp singlet in a relatively non-crowded part of the NMR spectrum.The H-12protons of bilobalide and ginkgo-lide A,B,C and J each resonate at a slightly different frequency and a careful integration of all H-12signals and that of a singlet of a suitable internal standard in known concentration yields the absolute quantity of each terpene trilactone.82–844.9.X-ray crystallographyThe structures of most Ginkgo terpene trilactones have been confirmed by X-ray studies.This method was al-ready used by Sakabe et al.for the initial elucidation of the structure of G-A (1).7They used crystals of the 1-p -bromobenzoate derivative of G-A.The absolute configuration of G-A was determined by the method of Bijvoet,Peerdeman and van Bommel.No detailed X-ray data were presented in their paper.Almost 20years later a Belgian group published an X-ray study of G-B monohydrate (2).The crystals were formed by slow evaporation of amethanol–acetone–Table 8.GC-EI–MS data of silylated ginkgolides A–C and J,and bilobalide Compound m /z [fragment](relative intensity)G-A-(TMS)2537[M ÀCH 3]+(100%),493,451,391,207,187,147,113,7372,73G-B-(TMS)3625[M ÀCH 3]+(80%),581,207,147,73(100%)72G-C-(TMS)4713[M ÀCH 3]+(30%),537,207,147,73(100%)72BB-(TMS)2455[M ÀCH 3]+,426,398,299(100%),269,223,179,147,7372Table 7.Negative mode LC-ESI–MS/MS data of ginkgolides A–C and J,and bilobalide 67Compound m /z [fragment](relative intensity)G-A 407[M ÀH]À(100),379[M ÀH–CO]À(20),363[M ÀH–CO 2]À(20),351[M ÀH–CO–CO]À(90),319[M ÀH–CO 2–CO 2]À(10)G-B 423[M ÀH]À(25),395[M ÀH–CO]À(10),367[M ÀH–CO–CO]À(100)G-C 439[M ÀH]À(25),411[M ÀH–CO]À(10),383[M ÀH–CO–CO]À(100)G-J 423[M ÀH]À(100),395[M ÀH–CO]À(3),379[M ÀH–CO 2]À(10),367[M ÀH–CO–CO]À(25)BB325[M ÀH]À(30),281[M ÀH–CO 2]À(2),251[M ÀH–H 2O–C 4H 8]À(30),237[M ÀH–CO 2–CO 2]À(25),207[M ÀH–H 2O–C 4H 8–CO 2]À(10),193[M ÀH–CO 2–CO 2–CO 2]À(25),163[M ÀH–H 2O–C 4H 8–CO 2–CO 2]À(100)T.A.van Beek /Bioorg.Med.Chem.13(2005)5001–501250075008T.A.van Beek/Bioorg.Med.Chem.13(2005)5001–5012Table9.1H NMR chemical shifts(ppm)and coupling constants(Hz)for ginkgolides A(1),B(2),C(3),J(4),L(5),K(6)and M(7)Solvent Me2CO DMSO Me2CO DMSO Me2CO DMSO DMSO DMSO DMSO DMSO MHz600400600400600400300300200200 Reference74757475747512377637 Compound G-A G-A G-B G-B G-C G-C G-J G-K G-L G-MH-1a 2.92 2.70a———— 2.72— 2.72—H-1b 2.06 1.76a 4.29 4.03 4.24 4.00 1.81 3.84 1.53 4.13 OH-1——— 4.89 4.80 4.98— 5.17— 4.83 H-2 4.94 4.78 4.73 4.62 4.72 4.64 4.82 5.52 5.48 4.95 H-3————————— 2.95 OH-3 5.30 6.33 5.54 6.45— 6.48 6.27———H-6 5.00 4.88 5.44 5.29 5.17 4.94 4.62 5.47 5.10 4.95 H-7a 2.30 1.99 2.18 1.92 4.37 4.07 4.20 2.19 2.09 4.00 H-7b 2.24 1.99 2.32 2.12——— 1.89 2.09—OH-7————— 5.65 5.41—— 5.60 H-8 2.00 1.65 2.01 1.71 1.86 1.57 1.57 1.89 1.86 1.61 H-10 5.23 4.88 5.33 5.00 5.34 4.99 4.92 5.00 4.95 4.95 OH-10 6.11 6.77—7.44—7.58 6.807.18 6.677.40 H-12 6.12 5.96 6.17 6.05 6.19 6.09 6.03 6.06 6.04 6.10 H-14 3.20 2.88 3.09 2.83 3.07 2.83 2.92—— 2.76 H-16 1.32 1.06 1.31 1.08 1.33 1.13 1.13 1.91 1.93 1.17 t-Bu 1.210.96 1.22 1.01 1.31 1.10 1.10 1.04 1.0360 1.09 J(Hz)J(1a-1b)À15.2À15.2————À15.2—À13.4—J(1a-2)7.37.7————7.8—7.1—J(1b-2)8.97.78.07.47.27.07.87.9—7.0 J(1b-OH-1)——————— 4.1— 3.8 J(2-3)—————————8.7 J(2-16)——————— 2.0 2.28.7 J(3-14)—————————10.7 J(6-7a) 4.2— 4.3 4.0 4.2— 4.0 3.0 3.4 4.4 J(6-7b)0.8—0.3—————0.0—J(7a-7b)À13.6—À14.0À13.8——————J(7a-8)14.19.414.214.112.411.712.5—12.512.5 J(7a-OH-7)—————— 6.6—— 6.4 J(7b-8) 4.99.4 4.8 4.1———— 6.6—J(10-OH-10)— 5.2— 5.6— 3.9 5.0 5.4— 5.4 J(14-16)7.27.17.17.07.2 6.97.0—— 6.9—,This denotes shift or J not present,not observable or not measurable.a Assignment changed from original assignment.Table10.13C NMR chemical shifts(ppm)for ginkgolides A(1),B(2),C(3),J(4),L(5),K(6)and M(7)Solvent Me2CO DMSO DMSO DMSO DMSO DMSO DMSO DMSO MHz15010010010075?5050 Reference7475757577137637C G-A G-A G-B G-C G-J G-K G-L G-M137.937.173.873.836.674.137.577.0* 288.987.991.892.087.785.380.385.4 387.986.382.983.186.0155.2160.448.8# 4101.7100.598.598.4100.192.392.894.8 569.7*68.371.766.663.276.472.467.0 686.885.578.679.285.980.986.979.9 737.536.536.674.273.435.635.073.4* 850.348.848.649.249.348.848.648.9# 968.5*67.067.463.962.669.268.264.4 1070.568.969.069.168.669.069.068.9 11174.9174.5174.0174.0174.3174.1173.3a173.9 12111.4109.7109.6109.7109.5109.1109.6109.5 13171.9171.1170.3170.8171.1169.2169.1a174.0 1442.140.641.541.740.5125.1124.136.0 15177.4176.8176.4176.6176.6173.4174.0177.3 168.88.47.98.18.38.88.514.8 1733.332.132.032.132.51232.031.731.9 18,19,2029.829.028.929.129.028.828.628.9 ?,unknown.*,#Assignments may be interchanged.a Assignment changed from original assignment.。