高中数学(人教版必修5)配套练习:3.2 一元二次不等式及其解法 第2课时

合集下载

高中数学 第三章 3.2 一元二次不等式及其解法 第二课时 一元二次不等式的应用课件 新人教A版必修5

高中数学 第三章 3.2 一元二次不等式及其解法 第二课时 一元二次不等式的应用课件 新人教A版必修5

6 ∴只需 m<7即可.
本例中,是否存在实数m,使f(x)≥0恒成立? 解:假设存在实数m,使f(x)≥0恒成立.
∵f(x)=mx2-mx-1,且 f(x)≥0 恒成立,
m>0, ∴ Δ≤0. m>0, 即 2 m +4m≤0, m>0, ∴ -4≤m≤0,
1 -3+2 b 1 1 5 -c= c = 1 = 1 +2=-2, -3×2 -3 a 1 ∴x1= 1 =-3,x2=2, -3 ∴不等式 cx2+bx+a<0(c>0)的解集为 1 {x|-3<x<2}. 1
b -a
[研一题]
[例2] (2011· 抚顺六校联考)设函数f(x)=mx2-mx-1.
b 5 ∴a=-3. c 2 又a=-3, 5 2 ∴b=-3a,c=-3a. 2 2 5 ∴不等式变为(-3a)x +(-3a)x+a<0,
即 2ax2+5ax-3a>0. 又∵a<0,∴2x2+5x-3<0, 1 所求不等式的解集为{x|-3<x<2}.
1 b 1 c 法二: 由已知得 a<0 且(-3)+2=-a, (-3)×2=a知 c>0, 设方程 cx2+bx+a=0 的两根分别为 x1,x2, b a 则 x1+x2=- c,x1· x2= c, a 其中 c= 1 3 =-2, 1 -3×2
1 2 1 所以不等式 qx +px+1>0 即为-6x +6x+1>0,整理
2
得 x2-x-6<0,解得-2<x<3. 即不等式 qx2+px+1>0 的解集为{x|-2<x<3}.
[悟一法]
求一般的一元二次不等式ax2+bx+c>0(a>0)或ax2+bx

高中数学《3.2一元二次不等式及其解法》评估训练2 新人教A版必修5

高中数学《3.2一元二次不等式及其解法》评估训练2 新人教A版必修5

第2课时 一元二次不等式的应用双基达标 限时20分钟1.已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +3x -1<0,N ={x |x ≤-3},则集合{x |x ≥1}等于( ). A .M ∩NB .M ∪NC .∁R (M ∩N )D .∁R (M ∪N )解析x +3x -1<0⇔(x +3)(x -1)<0,故集合M 可化为{x |-3<x <1},将集合M 和集合N 在数轴上表示出来(如图),易知答案.答案 D2.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( ).A .100台B .120台C .150台D .180台解析 y -25x =-0.1x 2-5x +3 000≤0, ∴x 2+50x -30 000≥0,x ≥150. 答案 C3.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是 ( ).A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}解析 若a =0时符合题意,a >0时,相应二次方程中的Δ=a 2-4a ≤0,得{a |0<a ≤4},综上得{a |0≤a ≤4},故选D. 答案 D4.不等式2-x4+x >0的解集是________.解析 原不等式可化为(2-x )(4+x )>0,即(x -2)(x +4)<0,解得-4<x <2. 答案 {x |-4<x <2}5.关于x 的不等式ax 2-2ax +2a +3>0的解集为R ,则实数a 的取值范围为________.解析 当a ≠0时,由题意得⎩⎪⎨⎪⎧a >0Δ<0,即⎩⎪⎨⎪⎧a >04a 2-4a 2a +3<0,解得a >0.当a =0时,恒有3>0,不等式也成立. 故a 的取值范围是[0,+∞). 答案 [0,+∞) 6.解不等式 (1)x -1x -2≥0; (2)2x -13-4x>1. 解 (1)原不等式等价于⎩⎪⎨⎪⎧x -1x -2≥0x -2≠0,解得x ≤1或x >2,∴原不等式的解集为{x |x ≤1或x >2}. (2)原不等式可改写为2x -14x -3+1<0,即6x -44x -3<0,∴(6x -4)(4x -3)<0,∴23<x <34.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <34. 综合提高 限时25分钟7.若关于x 的不等式x 2-4x -m ≥0对任意x ∈(0,1]恒成立,则m 的最大值为 ( ). A .1B .-1C .-3D .3解析 由已知可得m ≤x 2-4x 对一切x ∈(0,1]恒成立, 又f (x )=x 2-4x 在(0,1]上为减函数, ∴f (x )min =f (1)=-3,∴m ≤-3. 答案 C8.(2011·泰安高二检测)在R 上定义运算:A B =A (1-B ),若不等式(x -a )(x +a )<1对任意的实数x ∈R 恒成立.则实数a 的取值范围为 ( ).A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12解析 (x -a )(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a ,∴-x 2+x +a 2-a <1,即x 2-x -a 2+a +1>0对x ∈R 恒成立. ∴Δ=1-4(-a 2+a +1)=4a 2-4a -3<0, ∴(2a -3)(2a +1)<0,即-12<a <32.答案 C9.(2011·济南高二检测)不等式x 2-2x +3≤a 2-2a -1在R 上的解集是∅,则实数a 的取值范围是________.解析 ∵x 2-2x -(a 2-2a -4)≤0的解集为∅, ∴Δ=4+4(a 2-2a -4)<0, ∴a 2-2a -3<0,∴-1<a <3. 答案 (-1,3)10.关于x 的方程x 2+(a 2-1)x +a -2=0的两根满足(x 1-1)(x 2-1)<0,则a 的取值范围是________.解析 (x 1-1)(x 2-1)<0⇔一根大于1,一根小于1. 令f (x )=x 2+(a 2-1)x +a -2, 则f (1)<0⇒-2<a <1. 答案 -2<a <111.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,问k 应怎样确定?解 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.因此,当2≤k ≤8(单位:元)时,每年在此项经营中所收附加税金不少于112万元. 12.(创新拓展)已知不等式x 2+px +1>2x +p .(1)如果不等式当|p |≤2时恒成立,求x 的取值范围; (2)如果不等式当2≤x ≤4时恒成立,求p 的取值范围. 解 (1)不等式化为:(x -1)p +x 2-2x +1>0,令f (p )=(x -1)p +x 2-2x +1,则f (p )的图象是一条直线.又因为|p |≤2,所以-2≤p ≤2,于是得:⎩⎪⎨⎪⎧f -2>0,f 2>0.即⎩⎪⎨⎪⎧x -1·-2+x 2-2x +1>0,x -1·2+x 2-2x +1>0.即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0.∴x >3或x <-1.故x 的取值范围是x >3或x <-1. (2)不等式可化为(x -1)p >-x 2+2x -1, ∵2≤x ≤4,∴x -1>0. ∴p >-x 2+2x -1x -1=1-x .由于不等式当2≤x ≤4时恒成立, 所以p >(1-x )max .而2≤x ≤4,所以(1-x )max =-1, 于是p >-1.故p 的取值范围是p >-1.。

高二数学必修五第三章《不等式》3.2一元二次不等式及其解法

高二数学必修五第三章《不等式》3.2一元二次不等式及其解法

2
O
x1


x1=x2
x2
x
a x b x c 0的 解
2

Hale Waihona Puke 25金太阳教育网
判别式 △=b2- 4ac
品质来自专业 函数 、方程、不等式之间的关系 信赖源于诚信
△>0 y x1 O
y>0
△=0
△<0
y>0
y=ax2+bx+c 的图象
y
y
y>0
(a>0)
ax2+bx+c=0 (a>0)的根


1 a
6, 即a
1 6

1 解集为 : x x 或x 6 a
⑵ 当 ⑶
1
6, 即a
1

①当a<0时, a
②当a>0时, a
0,
1 解集为 x 6 x a 1
0
解集为 : x x R或x 6 1 1 当 6, 即0 a 时 a 6
(a-2)x2 + (a-2)x +1 ≥ 0恒成立, 试求a的取值范围.
解:由题意知: ①当a -2=0,即a =2时,不等式化为 1 ≥ 0,它恒成立,满足条件. ②当a -2≠0,即a ≠2时,原题等价于
a 2 0 2 (a 2) 4(a 2) 0
a 2 即 2 a 6 a 2 即 (a 2)(a 6) 0
解集为:
5 x x R且x a 2 ;
5
3.当⊿=25a2-24<0,

2015版高中数学(人教版必修5)配套练习:3.2 一元二次不等式及其解法 第2课时

2015版高中数学(人教版必修5)配套练习:3.2 一元二次不等式及其解法 第2课时

第三章 3.2 第2课时一、选择题1.(北京学业水平测试)不等式(x -1)(2x -1)<0的解集是( ) A .{x |1<x <2} B .{x |x <1或x >2} C .{x |x <12或x >1}D .{x |12<x <1}[答案] D[解析] 方程(x -1)(2x -1)=0的两根为x 1=1,x 2=12,所以(x -1)(2x -1)<0的解集为{x |12<x <1},选D .2.设集合M ={x |0≤x ≤2},N ={x |x 2-2x -3<0},则M ∩N 等于( ) A .{x |0≤x <1} B .{x |0≤x ≤2} C .{x |0≤x ≤1} D .{x |0≤x ≤2}[答案] D[解析] ∵N ={x |x 2-2x -3<0}={x |-1<x <3},M ={x |0≤x ≤2}, ∴M ∩N ={x |0≤x ≤2},故选D .3.若{x |2<x <3}为x 2+ax +b <0的解集,则bx 2+ax +1>0的解集为( ) A .{x |x <2或x >3} B .{x |2<x <3} C .{x |13<x <12}D .{x |x <13或x >12}[答案] D[解析] 由x 2+ax +b <0的解集为{x |2<x <3},知方程x 2+ax +b =0的根分别为x 1=2,x 2=3.由韦达定理,得x 1+x 2=-a ,x 1·x 2=b , 即a =-5,b =6.所以不等式bx 2+ax +1>0,即6x 2-5x +1>0,解集为{x |x <13,或x >12},故选D .4.不等式(x -2)2(x -3)x +1<0的解集为( )A .{x |-1<x <2或2<x <3}B .{x |1<x <3}C .{x |2<x <3}D .{x |-1<x <3}[答案] A[解析] 原不等式等价于⎩⎪⎨⎪⎧(x -3)(x +1)<0,x +1≠0,(x -2)2≠0,解得-1<x <3,且x ≠2,故选A .5.若0<t <1,则不等式x 2-(t +1t )x +1<0的解集是( )A .{x |1t <x <t }B .{x |x >1t 或x <t }C .{x |x <1t 或x >t }D .{x |t <x <1t}[答案] D[解析] 化为(x -t )(x -1t )<0,∵0<t <1,∴1t >1>t ,∴t <x <1t.6.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4 D .a <-4或a >4[答案] A[解析] 欲使不等式x 2+ax +4<0的解集为空集,则△=a 2-16≤0,∴-4≤a ≤4. 二、填空题7.关于x 的不等式:x 2-(2m +1)x +m 2+m <0的解集是________. [答案] {x |m <x <m +1}[解析] 解法一:∵方程x 2-(2m +1)x +m 2+m =0的解为x 1=m ,x 2=m +1,且知m <m +1.∴二次函数y =x 2-(2m +1)x +m 2+m 的图象开口向上,且与x 轴有两个交点. ∴不等式的解集为{x |m <x <m +1}.解法二:注意到m 2+m =m (m +1),及m +(m +1)=2m +1, 可先因式分解,化为(x -m )(x -m -1)<0, ∵m <m +1,∴m <x <m +1. ∴不等式的解集为{x |m <x <m +1}.8.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是________.[答案] 0<a ≤4[解析] ①若a =0,则1<0不成立,此时解集为空.②若a ≠0,则⎩⎪⎨⎪⎧Δ=a 2-4a ≤0,a >0,∴0<a ≤4.三、解答题 9.解下列不等式: (1)2x -13x +1>0; (2)ax x +1<0. [解析] (1)原不等式等价于(2x -1)(3x +1)>0, ∴x <-13或x >12.故原不等式的解集为{x |x <-13或x >12}.(2)axx +1<0⇔ax (x +1)<0. 当a >0时,ax (x +1)<0⇔x (x +1)<0⇔-1<x <0, ∴解集为{x |-1<x <0};当a =0时,原不等式的解集为∅;当a <0时,ax (x +1)<0⇔x (x +1)>0⇔x >0或x <-1,∴解集为{x |x >0,或x <-1}. 10.解关于x 的不等式x 2-(a +a 2)x +a 3>0. [解析] 原不等式可化为(x -a )(x -a 2)>0.则方程x 2-(a +a 2)x +a 3=0的两根为x 1=a ,x 2=a 2, 由a 2-a =a (a -1)可知, (1)当a <0或a >1时,a 2>a . ∴原不等式的解集为x >a 2或x <a . (2)当0<a <1时,a 2<a , ∴原不等的解为x >a 或x <a 2.(3)当a =0时,原不等式为x 2>0,∴x ≠0.(4)当a =1时,原不等式为(x -1)2>0,∴x ≠1. 综上可知:当a <0或a >1时,原不等式的解集为{x |x <a 或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2或x >a }; 当a =0时,原不等式的解集为{x |x ≠0}; 当a =1时,原不等式的解集为{x |x ≠1}.一、选择题1.若f (x )=-x 2+mx -1的函数值有正值,则m 的取值范围是( ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2 D .1<m <3[答案] A[解析] ∵f (x )=-x 2+mx -1有正值, ∴△=m 2-4>0,∴m >2或m <-2.2.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解是( ) A .x >5a 或x <-a B .x >-a 或x <5a C .5a <x <-a D .-a <x <5a [答案] B[解析] 化为:(x +a )(x -5a )>0,相应方程的两根x 1=-a ,x 2=5a ∵a <0,∴x 1>x 2.∴不等式解为x <5a 或x >-a . 3.函数y =-x 2-3x +4x 的定义域为( )A .[-4,1]B .[-4,0)C .(0,1]D .[-4,0)∪(0,1] [答案] D[解析] 要使函数有意义,则需⎩⎨⎧-x 2-3x +4≥0x ≠0,解得-4≤x ≤1且x ≠0,故定义域为[-4,0)∪(0,1].4.如果不等式2x 2+2mx +m4x 2+6x +3<1对一切实数x 均成立,则实数m 的取值范围是( )A .(1,3)B .(-∞,3)C .(-∞,1)∪(2,+∞)D .(-∞,+∞)[答案] A[解析] 由4x 2+6x +3=(2x +32)2+34>0对一切x ∈R 恒成立,从而原不等式等价于2x 2+2mx +m <4x 2+6x +3(x ∈R )⇔2x 2+(6-2m )x +(3-m )>0对一切实数x 恒成立 ⇔Δ=(6-2m )2-8(3-m )=4(m -1)(m -3)<0, 解得1<m <3. 二、填空题5.已知函数y =(m 2+4m -5)x 2+4(1-m )x +3对任意实数x ,函数值恒大于零,则实数m 的取值范围是__________.[答案] 1≤m <19[解析] ①当m 2+4m -5=0时,m =-5或m =1,若m =-5,则函数化为y =24x +3.对任意实数x 不可能恒大于0. 若m =1,则y =3>0恒成立. ②当m 2+4m -5≠0时,据题意应有,⎩⎪⎨⎪⎧m 2+4m -5>016(1-m )2-12(m 2+4m -5)<0, ∴⎩⎪⎨⎪⎧m <-5或m >11<m <19,∴1<m <19. 综上可知,1≤m <19.6.不等式[(a -1)x +1](x -1)<0的解集为{x |x <1或x >2},则a =________. [答案] 12[解析] 由题意x =2是方程(a -1)x +1=0的根, 且a -1<0,∴a =12.三、解答题7.解关于x 的不等式:x 2+2x -3-x 2+x +6<0.[解析] 原不等式⇔(x +3)(x -1)(x +2)(x -3)>0⇔(x +3)(x +2)(x -1)(x -3)>0.令(x +3)(x +2)(x -1)(x -3)=0,则有x 1=-3,x 2=-2,x 3=1,x 4=3. 如图.由图可知,原不等式的解集为{x |x <-3或-2<x <1或x >3}. 8.当a 为何值时,不等式(a 2-1)x 2+(a -1)x -1<0的解集是R? [解析] 由a 2-1=0,得a =±1.当a =1时,原不等式化为-1<0恒成立, ∴当a =1时,满足题意.当a =-1时,原不等式化为-2x -1<0, ∴x >-12,∴当a =-1时,不满足题意,故a ≠-1.当a ≠±1时,由题意,得⎩⎪⎨⎪⎧a 2-1<0Δ=(a -1)2+4(a 2-1)<0, 解得-35<a <1.综上可知,实数a 的取值范围是-35<a ≤1.。

高中数学人教版必修5课时练习:第三章 不等式3-2 一元二次不等式及其解法

高中数学人教版必修5课时练习:第三章 不等式3-2 一元二次不等式及其解法

∴M∩N={x|0≤x≤2},故选 D.
3.若{x|2<x<3}为 x2+ax+b<0 的解集,则 bx2+ax+1>0 的解集为( )
A.{x|x<2 或 x>3}
B.{x|2<x<3}
C.{x|31<x<12}
D.{x|x<31或 x>21}
[答案] D
[解析] 由 x2+ax+b<0 的解集为{x|2<x<3},知方程 x2+ax+b=0 的根分别为 x1=2,x2 =3.
则不等式 ax2+bx+c>0 的解集是________.
[答案] {x|x<-2 或 x>3}
[解析] 由表知 x=-2 时 y=0,x=3 时,y=0. ∴二次函数 y=ax2+bx+c 可化为 y=a(x+2)(x-3),又当 x=1 时,y=-6,∴a=1. ∴不等式 ax2+bx+c>0 的解集为{x|x<-2 或 x>3}. 三、解答题
<x<1},选 D.
2.设集合 M={x|0≤x≤2},N={x|x2-2x-3<0},则 M∩N 等于( )
A.{x|0≤x<1}
B.{x|0≤x≤2}
C.{x|0≤x≤1}
D.{x|0≤x≤2}
[答案] D
[解析] ∵N={x|x2-2x-3<0}={x|-1<x<3},M={x|0≤x≤2},
C.{x|x<1t 或 x>t}
D.{x|t<x<1t }
[答案] D
[解析] 化为(x-t)(x-1t )<0,
∵0<t<1,∴1t >1>t,∴t<x<1t .
6.已知不等式 x2+ax+4<0 的解集为空集,则 a 的取值范围是( )

高中数学新人教A版必修5学案 3.2 一元二次不等式及其解法(第2课时)

高中数学新人教A版必修5学案 3.2 一元二次不等式及其解法(第2课时)

3.2 一元二次不等式及其解法(第2课时)学习目标1.巩固一元二次方程、一元二次不等式与二次函数的关系,进一步熟悉一元二次不等式的解法.2.会解含参数的一元二次不等式.3.能应用一元二次不等式解决简单问题.合作学习一、设计问题,创设情境题组一:再现型题组解答下列各题:(1)已知二次函数f(x)=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的解是;一元二次不等式ax2+bx+c>0的解集是.(2)若关于x的不等式x2+2x+m>0的解集为R,则实数m的取值范围是.(3)已知a<0,则关于x的不等式(x-a)(x+a)<0的解集为.(4)若关于x的不等式x2+ax+b<0的解集为{x|1<x<2},则a+b= .二、信息交流,揭示规律问题1:二次函数f(x)=ax2+bx+c(a≠0)、一元二次方程ax2+bx+c=0(a≠0)和一元二次不等式ax2+bx+c>0(a≠0)之间有怎样的关系?问题2:通过前面的学习思考:确定一元二次不等式的解集的因素有哪些?三、运用规律,解决问题题组二:提高型题组【例1】已知关于x的不等式ax2+x+2>0.(1)若该不等式对任意实数x恒成立,求实数a的取值范围;(2)若该不等式的解集为{x|-1<x<t},求实数t的值.【例2】已知a>0,解关于x的不等式ax2-(a+1)x+1<0.【例3】某种牌号的汽车在水泥路面上的刹车距离s m和汽车的速度x km/h有如下的关系:s=x+x2.在一次交通事故中,测得这种车的刹车距离大于39.5m,那么这辆汽车刹车前的速度是多少?(精确到0.01km/h)四、变式训练,深化提高题组三:反馈型题组变式训练1:若不等式ax2+x+2>0对任意的x∈(-1,2)恒成立,求实数a的取值范围.变式训练2:若将例2中的条件“a>0”换为“a∈R”,再去求解.五、反思小结,观点提炼问题3:本节课主要学习了哪些知识?主要涉及哪些数学思想?参考答案一、设计问题,创设情境题组一:再现型题组(1)0,4 {x|0<x<4}(2)(1,+∞)(3)(a,-a)(4)-1二、信息交流,揭示规律问题1:规律一:一元二次方程和一元二次不等式都可以看做是相应二次函数的特殊情形.一元二次方程的解是相应二次函数的函数值等于零时,自变量的取值.也就是二次函数图象与x轴交点的横坐标.而一元二次不等式的解集是相应的二次函数的函数值大于零时,自变量的取值集合,也就是函数图象在x轴上方的部分对应的横坐标的取值集合.一元二次不等式解集的情形与一元二次不等式的根的个数的情形相对应.当一元二次不等式ax2+bx+c>0(a≠0)的解集为{x|x<x1或x>x2}时,可以得到a>0,且x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个解;当一元二次不等式ax2+b x+c>0(a≠0)的解集为{x|x1<x<x2}时,可以得到a<0,且x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个解.问题2:规律二:首先是二次项系数a的符号;其次是相应一元二次方程的根的判别式Δ=b2-4ac的符号;最后是相应一元二次方程的根.总之,一元二次不等式的系数a,b,c决定了它的解集.因此,当系数a,b,c不确定时,往往按照上述三个方面的情形分类讨论.三、运用规律,解决问题题组二:提高型题组【例1】解:(1)由题意,得解得a>.(2)由题意,-1,t是关于x的方程ax2+x+2=0的两根,所以解得a=-1,t=2.【例2】解:不等式可化为a(x-1)<0,①当<1,即a>1时,不等式的解集为;②当=1,即a=1时,不等式的解集为⌀;③当>1,即0<a<1时,不等式的解集为.综上所述,当a>1时,不等式的解集为;当a=1时,不等式的解集为⌀;当0<a<1时,不等式的解集为.【例3】解:设这辆汽车刹车前的速度至少为x km/h,根据题意,我们得到x+x2>39.5.移项整理得:x2+9x-7110>0,显然Δ>0,方程x2+9x-7110=0有两个实数根,即x1≈-88.94,x2≈79.94.所以不等式的解集为{x|x<-88.94,或x>79.94}.在这个实际问题中x>0,所以这辆汽车刹车前的车速至少为79.94km/h.四、变式训练,深化提高题组三:反馈型题组变式训练1:解:方法一:设f(x)=ax2+x+2,①当a≥0时,因为-1<x<2,所以x+2>0,故f(x)>0显然成立;②当a<0时,由二次函数图象知,只需即解得a≥-1,所以-1≤a<0.综上可知,实数a的取值范围是a≥-1.方法二:①当x=0时,不等式ax2+x+2>0显然成立,此时a∈R;②当x≠0时,不等式ax2+x+2>0可以化为a>-2,令t=,则t∈(-∞,-1)∪.由题意,不等式a>-2t2-t在t∈(-∞,-1)∪时恒成立,所以,a≥-1.综上可知,实数a的取值范围是[-1,+∞).变式训练2:解:①当a=0时,不等式的解集为(1,+∞);②当a>0时,同例2;③当a<0时,因为<1,所以,不等式的解集为∪(1,+∞).综上所述,当a>1时,不等式的解集为;当a=1时,不等式的解集为⌀;当0<a<1时,不等式的解集为;当a=0时,不等式的解集为(1,+∞);当a<0时,不等式的解集为∪(1,+∞).五、反思小结,观点提炼问题3:利用三个“二次”之间的关系,解答有关一元二次不等式问题和解含参数的一元二次不等式;函数与方程的思想、数形结合思想、分类讨论思想.。

人教A版高中数学必修五课件3.2第2课时一元二次不等式及其解法习题课.pptx

人教A版高中数学必修五课件3.2第2课时一元二次不等式及其解法习题课.pptx

知足常足,终身不辱;知止常止,终身不 耻。——老聃
所以这辆汽车刹车前的车速至少为 79.94 km / h.
例2一个车辆制造厂引进了一条摩托车整车装配流水线,这 条流水线生产的摩托车数量x(辆)与创造的价值y(元)之间 有如下的关系:
y 2x2 220x.
若这家工厂希望在一个星期内利用这条流水线创收 6000元以上,那么它在一个星期内大约应该生产多少 辆摩托车?
空白演示
在此输入您的封面副标题
第2课时一元二次不等式及其解法习 题课
1.能应用一元二次不等式解决与之相关的实际问题; 2.掌握一元二次不等式、一元二次方程与一元二次函数的 关系,并且会利用三个“二次”之间的关系解决恒成立问 题;(重点、难点)
3.会解含参数的一元二次不等式.
汽车在行驶中,由于惯性作用,刹车后还要继续向前滑行 一段距离才能停住,我们称这段距离为“刹车距离”.刹 车距离是分析事故的一个重要因素.一般来说刹车距离与 车速是二次函数关系,我们可以根据刹车距离判断汽车的 速度.
分析:一元二次函数开y口= a向x2下+(,a - 1)x + a - 1 且与x轴无交点.
x∈R
解:(1)当时a,= 0不等式为
-x - 1 < 0,即x > -1.
不符合题意.
(2)当时a≠,0则
解之得
a
<
-
1 3
.
a < 0, Δ=(a
综上所述,a的取值范围是
-
1)2 - 4a(a -
a|a <
例3已知一元二次不等式的解集为
ax,-b2求< x的< 值1,.
分析:-2和1是一元二次方程的两个根.

人教A版高中数学必修五3.2-2《一元二次不等式及其解法》

人教A版高中数学必修五3.2-2《一元二次不等式及其解法》

• 分式不等式的常见解法
►Suffering is the most powerful teacher of life. 苦难是人生最伟大的老师。 ►For man is man and master of his fate. 人就是人,是自己命运的主人。 ►A man can't ride your back unless it is bent. 你的腰不弯,别人就不能骑在你的背上。
• 2.不等式(x2-7x+12)(x2+x+1)>0的解集为
()
• A.(-∞,-4)∪(-3,+∞)
• B.(-∞,3)∪(4,+∞)
• C.(-4,-3)
• D.(3,4)
• 解析:∵x2+x+1>0恒成立,∴原不等式等价于x2-7x+12>0,∴x<3 或x>4.故选B.
• 答案:B
• 3.若关于x的不等式(a-2)x2+2(a-2)x-4<0的解为一切实数,则a
即 k>23或k<-4, k>2或k<-4,
解得 k<-4 或 k>2. 故所求的实数 k 的取值范围是 k<-4 或 k>2.
• [点评] 解决这类一元二次方程两实根正负性的讨论问题,只需抓 住判别式和韦达定理,由它们构建关于参数的一元二次不等式组, 解之即可.
• 迁移变式3 m为何值时,关于x的方程(m+1)x2+2(2m+1)x+(1- 3m)=0有两个异号的实根.
解:若有两个异号实根,则此问题等价于
m+1≠0, x1·x2<0,
m+1≠0, 即1-3m
m+1 <0
⇔ mm≠ <--11,,或m>13,
∴m<-1

2020版高中数学3.2一元二次不等式及其解法第2课时含参数一元二次不等式的解法课时作业案人教版必修5

2020版高中数学3.2一元二次不等式及其解法第2课时含参数一元二次不等式的解法课时作业案人教版必修5

第2课时 含参数一元二次不等式的解法A 级 基础巩固一、选择题1.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解是( B ) A .x >5a 或x <-a B .x >-a 或x <5a C .5a <x <-aD .-a <x <5a[解析] 化为:(x +a )(x -5a )>0,相应方程的两根x 1=-a ,x 2=5a ,∵a <0,∴x 1>x 2.∴不等式解为x <5a 或x >-a . 2.不等式(x -2)2(x -3)x +1<0的解集为( A )A .{x |-1<x <2或2<x <3}B .{x |1<x <3}C .{x |2<x <3}D .{x |-1<x <3}[解析] 原不等式等价于⎩⎪⎨⎪⎧(x -3)(x +1)<0x +1≠0(x -2)2≠0,解得-1<x <3,且x ≠2,故选A .3.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( A ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4D .a <-4或a >4[解析] 因不等式x 2+ax +4<0的解集为空集,则Δ=a 2-16≤0,∴-4≤a ≤4. 4.函数y =-x 2-3x +4x的定义域为( D )A .[-4,1]B .[-4,0)C .(0,1]D .[-4,0)∪(0,1][解析] 要使函数有意义,则需⎩⎪⎨⎪⎧-x 2-3x +4≥0x ≠0,解得-4≤x ≤1且x ≠0,故定义域为[-4,0)∪(0,1].5.若f (x )=-x 2+mx -1的函数值有正值,则m 的取值范围是( A ) A .m <-2或m >2B .-2<m <2C .m ≠±2D .1<m <3[解析] ∵f (x )=-x 2+mx -1有正值, ∴Δ=m 2-4>0,∴m <-2或m >2.6.下列选项中,使不等式x <1x<x 2成立的x 的取值范围是( A )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)[解析] 本题考查了分式不等式解法等.由1x >x 知1x -x >0,1-x 2x>0即x (1-x 2)>0,所以x <-1或0<x <1;由1x <x 2知1x -x 2<0,1-x 3x<0,即x (1-x 3)<0,所以x <0或x >1,所以不等式x <1x<x 2的解为x <-1,选A .本题可也用特殊值代入法进行排除.二、填空题7.不等式x 2+mx +m2>0恒成立的条件是__0<m <2__.[解析] x 2+mx +m2>0恒成立,等价于Δ<0,即m 2-4×m2<0,解得0<m <2.8.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是__0≤a ≤4__. [解析] ①若a =0,则1<0不成立,此时解集为空.②若a ≠0,则⎩⎪⎨⎪⎧Δ=a 2-4a ≤0a >0,∴0<a ≤4.综上知0≤a ≤4. 三、解答题 9.解下列不等式: (1)2x -13x +1>0; (2)axx +1<0.[解析] (1)原不等式等价于(2x -1)(3x +1)>0, ∴x <-13或x >12.故原不等式的解集为{x |x <-13或x >12}.(2)axx +1<0⇔ax (x +1)<0.当a >0时,ax (x +1)<0⇔x (x +1)<0⇔-1<x <0, ∴解集为{x |-1<x <0};当a =0时,原不等式的解集为∅;当a <0时,ax (x +1)<0⇔x (x +1)>0⇔x <-1或x >0, ∴解集为{x |x <-1,或x >0}.综上可知,当a >0时,原不等式的解集为{x |-1<x <0};当a =0时,原不等式的解集为∅;当a <0时,原不等式的解集为{x |x <-1或x >0}.10.当a 为何值时,不等式(a 2-1)x 2+(a -1)x -1<0的解集是R? [解析] 由a 2-1=0,得a =±1. 当a =1时,原不等式化为-1<0恒成立, ∴当a =1时,满足题意.当a =-1时,原不等式化为-2x -1<0,∴x >-12,∴当a =-1时,不满足题意,故a ≠-1.当a ≠±1时,由题意,得⎩⎪⎨⎪⎧a 2-1<0Δ=(a -1)2+4(a 2-1)<0,解得-35<a <1.综上可知,实数a 的取值范围是-35<a ≤1.B 级 素养提升一、选择题1.已知关于x 的不等式x 2-4x ≥m 对任意x ∈(0,1]恒成立,则有( A ) A .m ≤-3 B .m ≥-3 C .-3≤m <0D .m ≥-4[解析] 令f (x )=x 2-4x =(x -2)2-4,因为f (x )在(0,1]上为减函数,所以当x =1时,f (x )取最小值-3,所以m ≤-3.2.如果不等式2x 2+2mx +m4x 2+6x +3<1对一切实数x 均成立,则实数m 的取值范围是( A )A .(1,3)B .(-∞,3)C .(-∞,1)∪(2,+∞)D .(-∞,+∞)[解析] 由4x 2+6x +3=(2x +32)2+34>0对一切x ∈R 恒成立,从而原不等式等价于2x 2+2mx +m <4x 2+6x +3(x ∈R )⇔2x 2+(6-2m )x +(3-m )>0对一切实数x 恒成立⇔Δ=(6-2m )2-8(3-m )=4(m -1)(m -3)<0,解得1<m <3.3.已知关于x 的不等式组⎩⎪⎨⎪⎧x 2-x -2>0,2x 2+(2k +5)x +5k <0的整数解只有-2,则实数k 的取值范围是( A )A .[-3,2)B .(-∞,2)C .(-3,2]D .(-∞,2][解析] 由x 2-x -2>0得x <-1或x >2,由2x 2+(2k +5)x +5k <0得(2x +5)(x +k )<0,依题意,结合数轴得-2<-k ≤3,即-3≤k <2.故选A .4.已知不等式:(1)x 2-4x +3<0;(2)x 2-6x +8<0;(3)2x 2-9x +m <0.若同时满足(1)(2)的x 的值也满足(3),则实数m 的取值范围是( C )A .{m |m >9}B .{m |m =9}C .{m |m ≤9}D .{m |0<m <9}[解析] 解不等式(1)得1<x <3.解不等式(2)得2<x <4,所以同时满足不等式(1)(2)的x 的取值范围是{x |2<x <3}.依题意,当2<x <3时2x 2-9x +m <0恒成立,即m <-2x 2+9x 恒成立,而当x ∈(2,3)时,-2x 2+9x ∈(9,818].故当m ≤9时,m <-2x 2+9x 恒成立.故选C .二、填空题5.若关于x 的方程8x 2-(m -1)x +m -7=0的两根均大于1,则m 的取值范围是__{m |m ≥25}__.[解析] 令f (x )=8x 2-(m -1)x +m -7. ∵方程8x 2-(m -1)x +m -7=0的两根均大于1,∴由二次函数图象得⎩⎪⎨⎪⎧Δ=(m -1)2-32(m -7)≥0,m -116>1,f (1)>0,解得⎩⎪⎨⎪⎧m ≥25或m ≤9,m >17,m ∈R ,∴m 的取值范围是{m |m ≥25}.6.已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +4),则实数c 的值为__4__.[解析] 因为函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),所以Δ=a 2-4b =0,又f (x )<c 的解集为(m ,m +4),即m ,m +4是方程x 2+ax +a 24-c=0的两根,所以⎩⎪⎨⎪⎧m +m +4=-a ,m (m +4)=a 24-c ,将a =-2m -4代入m (m +4)=a 24-c ,整理得c =4.三、解答题7.(2019·山东寿光现代中学高二月考)解关于x 的不等式x 2-(a +a 2)x +a 3>0. [解析] 原不等式可化为(x -a )(x -a 2)>0.则方程x 2-(a +a 2)x +a 3=0的两根为x 1=a ,x 2=a 2, 由a 2-a =a (a -1)可知, (1)当a <0或a >1时,a 2>a . ∴原不等式的解为x >a 2或x <a . (2)当0<a <1时,a 2<a , ∴原不等的解为x >a 或x <a 2.(3)当a =0时,原不等式为x 2>0,∴x ≠0. (4)当a =1时,原不等式为(x -1)2>0,∴x ≠1. 综上可知:当a <0或a >1时,原不等式的解集为{x |x <a 或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2或x >a }; 当a =0时,原不等式的解集为{x |x ≠0}; 当a =1时,原不等式的解集为{x |x ≠1}.8.某省每年损失耕地20万亩,每亩耕地价值24 000元,为了减小耕地损失,决定按耕地价格的t %征收耕地占用税,这样每年的耕地损失可减少52t 万亩,为了既减少耕地的损失又保证此项税收一年不少于9 000万元,t %应在什么范围内变动?[解析] 由题意可列不等式如下:(20-52t )·24 000·t %≥9 000,整理得t 2-8t +15≤0,解得,3≤t ≤5.所以t %应控制在3%到5%范围内.。

一元二次不等式及其解法第2课时

一元二次不等式及其解法第2课时
数学必修5第三章3.2一元二次不等式及其解法
课题:一元二次不等式 及其解法第2课时 授课:张贤华 学校:衡阳市第八中学
时间:2009年下期
问题提出
1.什么是一元二次不等式?其一般 形式如何? 概念:只含有一个未知数,且未知 数的最高次数是2的不等式;
一般形式: ax
bx c 0(a 0) 2 ax bx c 0(a 0)
课 后 纪 要 :x 的 取 值 范 围 是 (0,1/3).
理论迁移
例2 某省每年损失耕地20万亩,每亩 耕地价格2.4万元,为了减少耕地损失, 决定按耕地价格的t%征收耕地占用税, 这样每年的耕地损失可减少2.5t万亩. 为了既减少耕地损失,又保证该项税 收一年不少于9000万元,应怎样确定t 的范围?
ቤተ መጻሕፍቲ ባይዱ
理论迁移
例3 汽车在行驶中由于惯性的作用,刹车 后还要继续向前滑行一段距离才能停住, 这段距离称为“刹车距离”,它是分析交 通事故的一个重要因素.在一个限速40km/h 的弯道上,甲、乙两汽车相向而行,发现 情况不对同时刹车,但还是相碰了.事发后 现场测得甲车的刹车距离略超过12m,乙车 的刹车距离略超过10m,已知甲、乙两种车 型的刹车距离s(m)与车速x(km/h)之间分别 有如下关系: =0.1x+0.01x2 , =0.05x S甲 S乙 +0.005x2. 问超速行驶谁应负主要责任?
A B
课后纪要:本题可考虑用余弦定 理,也可以采用几何方法.
课堂小结
1.解决一元二次不等式的应用性问题, 关键在于构造一元二次不等式模型. 其基本思路是:将题中的某个主变量 设为x→用x表示其他相关变量→根据 题中的不等关系列出不等式→解不等 式得结论.
2.解一元二次不等式的应用性问题时, 要注意结果必须有实际意义,并对问 题作出相应回答.

2020学年高中数学3.2一元二次不等式及其解法第2课时一元二次不等式及其解法习题课练习人教A版必修5

2020学年高中数学3.2一元二次不等式及其解法第2课时一元二次不等式及其解法习题课练习人教A版必修5

第2课时 一元二次不等式及其解法习题课1.不等式2x +1x≤0的解集为A.⎝ ⎛⎦⎥⎤-12,0B.⎣⎢⎡⎭⎪⎫-12,0 C.⎝⎛⎭⎪⎫-∞,-12∪[0,+∞)D.⎝⎛⎦⎥⎤-∞,-12∪[0,+∞) 解析 原不等式等价于⎩⎪⎨⎪⎧(2x +1)x ≤0x ≠0, 即⎩⎪⎨⎪⎧-12≤x ≤0x ≠0,即-12≤x <0.故原不等式的解集为⎣⎢⎡⎭⎪⎫-12,0. 答案 B2.若不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 均成立,则实数a 的取值范围是 A.(-2,2] B.[-2,2] C.(2,+∞)D.(-∞,2]解析 当a -2=0,即a =2时,符合题意;当a -2≠0时,需满足a -2<0且Δ=4(a -2)2+4(a -2)×4<0,即-2<a <2,故选A.答案 A3.已知集合P ={0,m },Q ={x |2x 2-5x <0,x ∈Z},若P ∩Q ≠∅,则m 等于 A.1 B.2 C.1或25D.1或2解析 因为Q =⎩⎨⎧⎭⎬⎫x |0<x <52,x ∈Z )={1,2},所以m =1或2. 答案 D4.若关于x 的不等式x 2-4x ≥m 对任意x ∈[0,1]恒成立,则实数m 的取值范围是________.解析 设f (x )=x 2-4x =(x -2)2-4, 所以f (x )在x ∈[0,1]上单调递减,所以当x =1时,函数f (x )取得最小值f (1)=-3. 所以要使x 2-4x ≥m 对于任意x ∈[0,1]恒成立, 则需m ≤-3. 答案 (-∞,-3]5.某商品每件成本价80元,售价为100元,每天售出100件,若售价降x 成,售出商品数量就增加850x ,且售价不低于成本价.(1)设该商店一天营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.解析 (1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x ,因售价不低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,所以y =20(10-x )(50+8x ), 定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260, 化简得8x 2-30x +13≤0,解得12≤x ≤134,所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.不等式x -43-2x<0的解集是A.⎩⎨⎧⎭⎬⎫x |32≤x <4) B.{x |3<x <4}C.⎩⎨⎧⎭⎬⎫x |x <32或x >4)D.⎩⎨⎧⎭⎬⎫x |32<x <4) 解析 不等式x -43-2x <0等价于⎝ ⎛⎭⎪⎫x -32(x -4)>0,∴不等式的解集是⎩⎨⎧⎭⎬⎫x |x <32或x >4).答案 C2.若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是 A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)解析 由一元二次方程有两个不相等的实数根,可得:判别式Δ>0,即m 2-4>0,解得m <-2或m >2.答案 C3.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式ax +bx -2>0的解集是A.(-∞,0)∪(1,+∞)B.(-1,2)C.(1,2)D.(-∞,-1)∪(2,+∞)解析 ∵ax -b >0的解集为(1,+∞), ∴a =b >0,∴ax +b x -2>0⇔a (x +1)x -2>0, ∴x <-1或x >2. 答案 D4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是 A.{a |0<a <4} B.{a |0≤a <4} C.{a |0<a ≤4}D.{a |0≤a ≤4}解析 ∵集合A ={x |ax 2-ax +1<0}=∅, ∴不等式ax 2-ax +1<0的解集为∅. 若a =0,则ax 2-ax +1<0⇔1<0, 其解集为∅,符合题意.若a ≠0,则⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,解之得:0<a ≤4. 综上0≤a ≤4. 答案 D5.某产品的总成本y (万元)与产量x (台)之间的函数关系式为y =3 000+20x -0.1x 2(0<x <240,x ∈N),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是A.100台B.120台C.150台D.180台解析 3 000+20x -0.1x 2≤25x ⇔x 2+50x -30 000≥0,解得x ≤-200(舍去)或x ≥150. 答案 C6.(能力提升)对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是A.(1,3)B.(-∞,1)∪(3,+∞)C.(1,2)D.(-∞,1)∪(2,+∞)解析 f (x )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4. 令g (a )=(x -2)a +x 2-4x +4. 当a ∈[-1,1]时,其图象是一条线段. 由题意当a ∈[-1,1]时,g (a )>0恒成立,故⎩⎪⎨⎪⎧g (1)>0,g (-1)>0,即⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0, 解之,得x >3或x <1. 答案 B二、填空题(每小题5分,共15分)7.不等式x +5(x -1)2≥2的解为________.解析 原不等式可化为⎩⎪⎨⎪⎧2(x -1)2≤x +5,x ≠1,即⎩⎪⎨⎪⎧2x 2-5x -3≤0,x ≠1, 解之,得-12≤x <1或1<x ≤3.答案 ⎣⎢⎡⎭⎪⎫-12,1∪(1,3] 8.已知不等式x 2-2x +k 2-1>0对一切实数x 恒成立,则实数k 的取值范围为________. 解析 由题意,知Δ=4-4×1×(k 2-1)<0,即k 2>2, ∴k >2或k <- 2.答案 (-∞,-2)∪(2,+∞)9.(能力提升)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.解析 由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f (m )=2m 2-1<0,f (m +1)=2m 2+3m <0,解得-22<m <0. 答案 ⎝ ⎛⎭⎪⎫-22,0 三、解答题(本大题共3小题,共35分)10.(11分)不等式(m 2-2m -3)x 2-(m -3)x -1<0对一切x ∈R 恒成立,求实数m 的取值范围.解析 若m 2-2m -3=0,则m =-1或m =3,当m =-1时,原不等式为4x -1<0对一切x ∈R 不恒成立,不合题意;当m =3时,原不等式为-1<0对一切x ∈R 恒成立,符合题意.若m 2-2m -3≠0,设f (x )=(m 2-2m -3)x 2-(m -3)x -1,由题意得⎩⎪⎨⎪⎧m 2-2m -3<0,Δ=[-(m -3)]2+4(m 2-2m -3)<0, 解得-15<m <3,综上所述,实数m 的取值范围是-15<m ≤3.11.(12分)已知f (x )=x 2+ax +3-a ,若x ∈[-2,2],f (x )≥0恒成立,求a 的取值范围.解析 设函数f (x )=x 2+ax +3-a 在x ∈[-2,2]时的最小值为g (a ),则(1)当对称轴x =-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,解得a ≤73,与a >4矛盾,不符合题意.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=3-a -a 24≥0,解得-6≤a ≤2,此时-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0,解得a ≥-7,此时-7≤a <-4. 综上,a 的取值范围为-7≤a ≤2.12.(12分)(能力提升)某摩托车生产企业,上年度生产车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆,本年度为适应市场需要,计划提高产品档次,适度增加投入成本,若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.75x ,同时预计年销量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 之间的关系式;(2)为使本年度的利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 解析 (1)每辆车投入成本增加的比例为x ,则每辆车投入成本为1×(1+x )万无,出厂价为 1.2×(1+0.75x )万元,年销量为 1 000×(1+0.6x )辆.所以y =[1.2×(1+0.75x )-1×(1+x )]×1 000×(1+0.6x ), 即y =-60x 2+20x +200(0<x <1). (2)欲保证本年度的利润比上年度有所增加,则⎩⎪⎨⎪⎧y -(1.2-1)×1 000>0,0<x <1, 即⎩⎪⎨⎪⎧-60x 2+20x >0,0<x <1. 所以0<x <13.即为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应在⎝ ⎛⎭⎪⎫0,13范围内.。

人教a版必修5学案:3.2一元二次不等式及其解法(含答案)

人教a版必修5学案:3.2一元二次不等式及其解法(含答案)

3.2 一元二次不等式及其解法材拓展1.一元一次不等式通过同解变形,一元一次不等式可化为:ax >b .若a >0,则其解集为⎩⎨⎧⎭⎬⎫x |x >b a .若a <0,则其解集为⎩⎨⎧⎭⎬⎫x |x <b a .若a =0,b <0,解集为R ;b ≥0,解集为∅. 2.三个“二次”的关系通过同解变形,一元二次不等式可化为:ax 2+bx +c >0或ax 2+bx +c <0 (a >0). 不妨设方程ax 2+bx +c =0的两根为x 1、x 2且x 1<x 2.从函数观点来看,一元二次不等式ax 2+bx +c >0 (a >0)的解集,就是二次函数y =ax 2+bx +c (a >0)在x 轴上方部分的点的横坐标x 的集合;ax 2+bx +c <0 (a >0)的解集,就是二次函数y =ax 2+bx +c (a >0)在x 轴下方部分的点的横坐标x 的集合.从方程观点来看,一元二次方程的根是对应的一元二次不等式解集的端点值.3.简单的高次不等式的解法——数轴穿根法数轴穿根法来源于实数积的符号法则,例如要解不等式(x -1)(x -2)(x -3)>0.我们可以列表如下:x 的区间x <1 1<x <2 2<x <3 x >3 x -1 - + + + x -2 - - + + x -3 - - - +(x -3)(x -2)·(x -1) - + - +把表格的信息“浓缩”在数轴得:据此,可写出不等式(x -1)(x -2)(x -3)>0的解集是{x |1<x <2或x >3}. 一般地,利用数轴穿根法解一元高次不等式的步骤是:(1)化成形如p (x )=(x -x 1)(x -x 2)…(x -x n )>0 (或<0)的标准形式; (2)将每个因式的根标在数轴上,从右上方依次通过每个点画曲线; (3)奇次根依次穿过,偶次根穿而不过(即不要改变符号);(4)根据曲线显现出的p (x )的符号变化规律,标出p (x )的正值区间和负值区间; (5)写出不等式的解集,并检验零点是否在解集内. 4.分式不等式的解法 (1)f (x )g (x )>0⇔f (x )·g (x )>0. (2)f (x )g (x )<0⇔f (x )·g (x )<0. (3)f (x )g (x )≥0⇔⎩⎪⎨⎪⎧f (x )·g (x )≥0g (x )≠0. (4)f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x )≤0g (x )≠0. 注意:解不等式时,一般情况下不要在两边约去相同的因式.例如:解不等式:2x +1x -3>2x +13x -2.解 原不等式⇔2x +1x -3-2x +13x -2>0⇔(2x +1)2(x -3)(3x -2)>0⇔⎝⎛⎭⎫x +122(x -3)⎝⎛⎭⎫x -23>0⇔x <-12或-12<x <23或x >3.∴原不等式的解集为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,23∪(3,+∞).5.恒成立问题(1)f (x )≥a ,x ∈D 恒成立⇔f (x )min ≥a ,x ∈D 恒成立; f (x )≤a ,x ∈D 恒成立⇔f (x )max ≤a ,x ∈D 恒成立;(2)ax 2+bx +c >0恒成立⇔⎩⎨⎧ a >0Δ<0或⎩⎪⎨⎪⎧a =b =0c >0ax 2+bx +c <0恒成立⇔⎩⎨⎧ a <0Δ<0或⎩⎪⎨⎪⎧a =b =0c <0. 6.一元二次方程根的分布我们以ax 2+bx +c =0 (a >0)为例,借助开口方向向上的二次函数的图象给出根的分布的充要条件.根的分布 二次函数的图象 充要条件x 1<k <x 2f (k )<0x 1<x 2<k⎩⎨⎧ f (k )>0-b2a <k Δ>0k <x 1<x 2⎩⎨⎧f (k )>0-b 2a >k Δ>0k 1<x 1 <x 2<k 2⎩⎨⎧f (k 1)>0f (k 2)>0k 1<-b 2a <k 2Δ>0k 1<x 1<k 2 <x 2<k 3⎩⎪⎨⎪⎧f (k 1)>0f (k 2)<0f (k 3)>0法突破一、分式不等式的解法方法链接:解分式不等式通常是移项通分再求解,切忌随意去分母(仅在分母恒大于零时可以去分母).例1 解不等式:x 2+2x -23+2x -x 2≥x .解 原不等式⇔x 2+2x -23+2x -x 2-x ≥0⇔x 3-x 2-x -23+2x -x 2≥0⇔(x 3-2x 2)+(x 2-x -2)3+2x -x 2≥0⇔(x -2)x 2+(x -2)(x +1)x 2-2x -3≤0⇔(x -2)(x 2+x +1)(x -3)(x +1)≤0⇔x -2(x +1)(x -3)≤0. 由图可知,原不等式的解集为{x |x <-1或2≤x <3}.二、含参数不等式的解法方法链接:对于含有参数的不等式,由于参数的取值范围不同,其结果就不同,因此必须对参数进行分类讨论,即要产生一个划分参数的标准.例2 解不等式:(x -k )(x +3)x +2<x +1 (k ∈R ).解 原不等式⇔kx +3k +2x +2>0⇔(x +2)(kx +3k +2)>0当k =0时,原不等式解集为{x |x >-2}; 当k >0时,(kx +3k +2)(x +2)>0,变形为⎝⎛⎭⎫x +3k +2k (x +2)>0.∵3k +2k =3+2k >3>2,∴-3k +2k<-2.∴x <-3k +2k 或x >-2.故解集为⎩⎨⎧⎭⎬⎫x |x >-2或x <-3k +2k . 当k <0时,原不等式⇔(x +2)⎝⎛⎭⎫x +3k +2k <0由(-2)-⎝⎛⎭⎫-3k +2k =k +2k .∴当-2<k <0时,k +2k <0,-2<-3k +2k ,不等式的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-3k +2k ; 当k =-2时,-3k +2k=-2,原不等式⇔(x +2)2<0不等式的解集为∅;当k <-2时,k +2k >0,-2>-3k +2k .不等式的解集为⎩⎨⎧⎭⎬⎫x |-3k +2k <x <-2.综上所述,当k =0时,不等式的解集为{x |x >-2}; 当k >0时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |x <-3k +2k 或x >-2;当-2<k <0时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |-2<x <-3k +2k ;当k =-2时,不等式的解集为∅; 当k <-2时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |-3k +2k <x <-2.三、恒成立问题的解法方法链接:在含参数的恒成立不等式问题中,参数(“客”)和未知数(“主”)是相互牵制、相互依赖的关系,在这里是已知参数a (“客”)的取值范围,反过来求x (“主”)的取值范围,若能转换“主”与“客”两者在问题中的地位:视参数a 为“主”,未知数x 为“客”,则关于x 的一元二次不等式就立即转化为关于a 的一元一次不等式,运用反“客”为“主”的方法,使问题迎刃而解.例3 已知不等式x 2+px +1>2x +p .(1)如果不等式当|p |≤2时恒成立,求x 的取值范围; (2)如果不等式当2≤x ≤4时恒成立,求p 的取值范围.分析 题中不等式含有两个字母x ,p ,由(1)的条件可知,应视p 为变量,x 为常量,再求x 的范围;由(2)的条件可知,应视x 为变量,p 为常量,再求p 的范围.解 (1)不等式化为:(x -1)p +x 2-2x +1>0, 令f (p )=(x -1)p +x 2-2x +1,则f (p )的图象是一条直线.又因为|p |≤2,所以-2≤p ≤2,于是得:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0.即⎩⎪⎨⎪⎧(x -1)·(-2)+x 2-2x +1>0,(x -1)·2+x 2-2x +1>0. 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0. ∴x >3或x <-1. 故x 的取值范围是x >3或x <-1.(2)不等式可化为(x -1)p >-x 2+2x -1, ∵2≤x ≤4,∴x -1>0.∴p >-x 2+2x -1x -1=1-x .由于不等式当2≤x ≤4时恒成立,所以p >(1-x )max .而2≤x ≤4,所以(1-x )max =-1, 于是p >-1.故p 的取值范围是p >-1. 四、一元二次方程根的分布 方法链接:一元二次方程根的分布一般要借助一元二次函数的图象加以分析,准确找到限制根的分布的充要条件.常常从以下几个关键点去限制,①判别式,②对称轴,③根所在区间端点函数值的符号.例4 已知关于x 的一元二次方程x 2+2mx +2m +1=0.若方程有两根,其中一根在(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.解 设f (x )=x 2+2mx +2m +1,根据题意,画出示意图由图分析可得,m 满足不等式组 ⎩⎪⎨⎪⎧f (0)=2m +1<0f (-1)=2>0f (1)=4m +2<0f (2)=6m +5>0解得:-56<m <-12.五、一元二次不等式的实际应用 方法链接:解一元二次不等式应用题的关键在于构造一元二次不等式模型,解出不等式后还应注意变量应具有的“实际含义”.例5 国家原计划以2 400元/吨的价格收购某种农产品m 吨.按规定,农户向国家纳税为:每收入100元纳税8元(称作税率为8个百分点.即8%).为了减轻农民负担,制定积极的收购政策.根据市场规律,税率降低x 个百分点,收购量能增加2x 个百分点.试确定x 的范围,使税率调低后,国家此项税收总收入不低于原计划的78%.分析对比项 调整前 调整后税率 8% (8-x )%收购量 m (吨) (1+2x %)m (吨)税收总收入 2 400m ×8%2 400(1+2x %)m×(8-x)%解 设税率调低后的“税收总收入”为y 元. y =2 400m (1+2x %)·(8-x )%=-1225m (x 2+42x -400) (0<x ≤8).依题意,y ≥2 400m ×8%×78%即:-1225m (x 2+42x -400)≥2 400m ×8%×78%整理得x 2+42x -88≤0,解得-44≤x ≤2. 根据x 的实际意义,知0<x ≤8, 所以0<x ≤2为所求.区突破1.忽略判别式的适用范围而致错例1 若不等式(a -2)x 2+2(a -2)x -4<0对x ∈R 恒成立,求实数a 的取值范围. [错解] 不等式(a -2)x 2+2(a -2)x -4<0, 对x ∈R 恒成立.⇔{ a -Δ<0 ⇔{ a(a -2)2-4(a -2)(-4)<0 ⇔-2<a <2.[点拨] 当a -2=0时,原不等式不是一元二次不等式,不能应用根的判别式,应当单独检验不等式是否成立.[正解] 当a -2=0,即a =2时,原不等式为-4<0,所以a =2时成立. 当a -2≠0时,由题意得{ a -Δ<0, 即{ a(a -2)2-4(a -2)(-4)<0, 解得-2<a <2.综上所述,可知-2<a ≤2. 温馨点评 在中学阶段,“判别式”是与“二次”联系在一起的,对于一元一次不等式不能应用判别式法来判断.在处理形如ax 2+bx +c 的问题时,要注意对x 2系数的讨论.2.混淆“定义域为R ”与“值域为R ”的区别而致错例2 若函数y =lg(ax 2-2x +a )的值域为R ,求a 的取值范围. [错解1] ∵函数y =lg(ax 2-2x +a )的值域为R . ∴ax 2-2x +a >0对x ∈R 恒成立.∴{ aΔ<0, 即{ a-4a 2<0,∴a >1. [错解2] ∵函数y =lg(ax 2-2x +a )的值域为R . ∴代数式ax 2-2x +a 能取遍一切正值. ∴Δ=4-4a 2≥0, ∴-1≤a ≤1.[点拨] 上述解法1把值域为R 误解为定义域为R ;解法2虽然理解题意,解题方向正确,但是忽略了a <0时,代数式ax 2-2x +a 不可能取到所有正数,从而也是错误的.[正解] 当a =0时,y =lg(-2x )值域为R , a =0适合.当a ≠0时,ax 2-2x +a =a ⎝⎛⎭⎫x -1a 2+⎝⎛⎭⎫a -1a 为使y =lg(ax 2-2x +a )的值域为R , 代数式ax 2-2x +a 应取到所有正数.所以a 应满足⎩⎨⎧a a -1a ≤0,解得0<a ≤1. 综上所述,0≤a ≤1.题多解例 解不等式:lg x -1≤3-lg x . 解 方法一 lg x -1≤3-lg x⇔{ lg x -1≥-lg x ≥x -1≤(3-lg x )2 ⇔{ 1≤lg x ≤2x -7lg x +10≥0 ⇔{ 1≤lg x ≤x ≤2或lg x ≥5 ⇔1≤lg x ≤2⇔10≤x ≤100. 方法二 设lg x -1=t , 则lg x =t 2+1 (t ≥0).∴lg x -1≤3-lg x⇔{ t ≥t ≤2-t 2⇔0≤t ≤1⇔0≤lg x -1≤1 ⇔1≤lg x ≤2 ⇔10≤x ≤100.方法三 解方程lg x -1=3-lg x , 解得:x =100. 令f (x )=lg x -1,易知f (x )在[10,+∞)为增函数,g (x )=3-lg x 在[10,+∞)为减函数. 且f (100)=g (100)=1.为使f (x )≤g (x ), 则10≤x ≤100.方法四 令lg x =t ,f (t )=t -1,g (t )=3-t .在同一坐标系中画出它们的图象如图所示: 易知交点为(2,1).当1≤t ≤2时,f (t )≤g (t ). 即lg x -1≤3-lg x 成立. 由1≤t ≤2,即1≤lg x ≤2, 解得:10≤x ≤100.题赏析1.(2009·江西)若不等式9-x 2≤k (x +2)-2的解集为区间[a ,b ],且b -a =2,则k =________.解析 令y 1=9-x 2,y 2=k (x +2)-2,在同一个坐标系中作出其图象,因9-x 2≤k (x +2)-2的解集为[a ,b ]且b -a =2.结合图象知b =3,a =1,即直线与圆的交点坐标为(1,22).∴k =22+21+2= 2.答案 2赏析 本题主要考查解不等式、直线过定点问题以及数形结合的数学方法. 2.(2009·天津)设0<b <1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( )A .-1<a <0B .0<a <1C .1<a <3D .3<a <6解析 (x -b )2>(ax )2,(a 2-1)x 2+2bx -b 2<0,要使x 的解集中恰有3个整数,必须有a 2-1>0.又a +1>0,∴a >1.不等式变形为[(a -1)x +b ][(a +1)x -b ]<0.∵a >1,b >0,∴b a -1>0,0<ba +1<1,∴b 1-a <x <b a +1, 其中含三个整数,∴-3≤b 1-a <-2,2<ba -1≤3.∴2a -2<b ≤3a -3.∴{ 3a -3≥b >0,a -2<b <a +1,∴{ a >1,a <3,∴1<a <3. 答案 C赏析 本题考查了一元二次不等式知识灵活地运用.。

高中数学 3.2.2 一元二次不等式及其解法习题课 新人教A版必修5

高中数学 3.2.2 一元二次不等式及其解法习题课 新人教A版必修5

(2)当 a ≠时0 ,则
解之得 a < - 1 . 3
a<0, Δ=(a-1)2-4a(a-1)<0.
综上所述,a 的取值范围是
a
|
a
<

1 3
.
【提升总结】
含参不等式恒成立的问题
(1)一元二次不等式 ax2bxc0 恒成立.
y
a 0,
b2
4ac
0.
O
x
(2)一元二次不等式ax2bxc0恒成立.
a 0, b2 4ac 0.
y
O
x
(3)一元二次不等式 ax2bxc0恒成立.
a 0,
y
b2 4ac 0.
O
x
(4)一元二次不等式 ax2bxc0恒成立.
a 0,
y
b2
4ac
0.
O
x
探究点3 含参数的一元二次不等式的解法
例5 解关于 x 的不等式 2x2+kx-k≤0.
解:由根与系数的关系,得
2
+
1
=
b a
,
2
1
1 a
.
解得 a = b = - 1 . 2
寻找关 系式
例4 不等式 ax2+ (a-1)x+a-1<0对所有实数 x ∈ R 都成立,求a的取值范围.
分析:一元二次函数 y = ax2 +(a - 1开)x口+向a -下1,
且与x轴无交点. 解:(1)当 a =时0 ,不等式为 -x-1<0,即 x>-1. 不符合题意.
xx<- 8 8 . 9 4 或 x> 7 9 . 9 4.因为x > 0,

人教版高中数学必修五课时作业10:§3.2一元二次不等式及其解法

人教版高中数学必修五课时作业10:§3.2一元二次不等式及其解法

§3.2一元二次不等式及其解法1.已知不等式ax 2+bx +c<0(a≠0)的解集为∅,则( )A .a <0,Δ>0B .a <0,Δ≤0C .a >0,Δ≤0D .a >0,Δ>02.不等式4x 2+4x +1≤0的解集为( )A .{x |x ≠-12}B .{-12}C .∅D .R3.不等式3x 2-7x +2<0的解集为( )A .{x |13<x <2}B .{x |x <13或x >2}C .{x |-12<x <-13}D .{x |x >2}4.不等式3x 2-2x +1>0的解集为( )A.⎩⎨⎧⎭⎬⎫x |-1<x <13 B.⎩⎨⎧⎭⎬⎫x |13<x <1C .∅D .R5.函数y =x 2+x -12的定义域是( )A .{x |x <-4或x >3}B .{x |-4<x <3}C .{x |x ≤-4或x ≥3}D .{x |-4≤x ≤3}6.已知{x |ax 2+bx +c >0}=⎝⎛⎭⎫-13,2,则关于x 的不等式cx 2+bx +a <0的解集是() A.⎝⎛⎭⎫-2,13B.⎝⎛⎭⎫-3,12C .(-∞,-3)∪⎝⎛⎭⎫12,+∞D .(-∞,-2)∪⎝⎛⎭⎫13,+∞7.二次函数y =ax 2+bx +c (x ∈R )的部分对应值如下表:8.不等式-4<x 2-5x +2<26的整数解为______________.9.已知M ={x |-9x 2+6x -1<0},N ={x |x 2-3x -4<0}.求:M ∩N .10.解关于x 的不等式ax 2+(1-a )x -1>0(a >-1).11.假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米,那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?12.若不等式ax 2+bx -1>0的解集是{x |1<x <2}.(1)求a ,b 的值;(2)求不等式ax +1bx -1≥0的解集.参考答案1.C2.B【解析】4x 2+4x +1≤0⇒(2x +1)2≤0,∴x =-12. 3.A 【解析】3x 2-7x +2<0⇒(3x -1)(x -2)<0⇒13<x <2. 4.D【解析】∵Δ=(-2)2-4×3×1=-8<0,∴抛物线y =3x 2-2x +1开口向上,与x 轴无交点,故3x 2-2x +1>0恒成立,即不等式3x 2-2x +1>0的解集为R .5.C【解析】由x 2+x -12≥0,即(x +4)(x -3)≥0,∴x ≥3,或x ≤-4.6.B【解析】由题意,知a <0,且-13,2为方程ax 2+bx +c =0的两个根. ∴⎩⎨⎧ -13+2=-b a ,-13×2=c a ⇒⎩⎨⎧ b =-53a ,c =-23a .∴cx 2+bx +a <0,即-23ax 2-53ax +a <0, 即2x 2+5x -3<0,解得-3<x <12. 7. {x |-2<x <3}8.-2,-1,0,1,4,5,6,7【解析】 ⎩⎪⎨⎪⎧ x 2-5x +6>0,x 2-5x -24<0⇒⎩⎪⎨⎪⎧ x -2x -3>0,x -8x +3<0⇒⎩⎪⎨⎪⎧x >3,或x <2,-3<x <8. ∴-3<x <2,或3<x <8.9.解:由-9x 2+6x -1<0,得9x 2-6x +1>0.即(3x -1)2>0.解得x ≠13. ∴M ={x |x ∈R ,且x ≠13}. 由x 2-3x -4<0,得(x -4)(x +1)<0.解得-1<x <4.∴N ={x |-1<x <4}.∴M ∩N ={x |-1<x <4,且x ≠13}. 10.解:二次项系数含有参数,因此对a 在0点处分开讨论.若a ≠0,则原不等式ax 2+(1-a )x -1>0等价于(x -1)(ax +1)>0.其对应方程的根为-1a与1. 又因为a >-1,则:①当a =0时,原不等式为x -1>0,所以原不等式的解集为{x |x >1};②当a >0时,-1a<1, 所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >1,或x <-1a ; ③当-1<a <0时,-1a>1, 所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <-1a . 11.解:(1)设中低价房面积形成数列{a n },由题意,知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n n -12×50=25n 2+225n ,令25n 2+225n ≥4750,即n 2+9n -190≥0,而n 是正整数,所以n ≥10,所以到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米.(2)设新建住房面积形成数列{b n },由题意,可知{b n }是等比数列,其中b 1=400,q =1.08,则b n =400×(1.08)n -1.由题意,可知a n >0.85b n ,即250+(n -1)·50>400×(1.08)n -1×0.85.满足上述不等式的最小正整数为n =6,所以到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.12. 解:(1)∵不等式ax 2+bx -1>0的解集是{x |1<x <2},∴a <0,且1和2是方程ax 2+bx -1=0的两个根,∴⎩⎪⎨⎪⎧ a +b -1=0,4a +2b -1=0.解得⎩⎨⎧ a =-12,b =32.(2)由(1)知不等式ax +1bx -1≥0即为-12x +132x -1≥0⇔x -23x -2≤0. ⇔⎩⎪⎨⎪⎧3x -2≠0,x -23x -2≤0⇔23<x ≤2. 即原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪23<x ≤2.。

人教版高中数学必修五课时作业5:3.2 一元二次不等式及其解法(二)

人教版高中数学必修五课时作业5:3.2  一元二次不等式及其解法(二)

3.2 一元二次不等式及其解法(二)一、基础达标1.不等式x +5(x -1)2≥2的解是( )A.⎣⎡⎦⎤-3,12B.⎣⎡⎦⎤-12,3C.⎣⎡⎭⎫12,1∪(1,3]D.⎣⎡⎭⎫-12,1∪(1,3]答案 D解析 x +5(x -1)2≥2⇔⎩⎪⎨⎪⎧ x +5≥2(x -1)2x -1≠0⇔⎩⎪⎨⎪⎧ -12≤x ≤3,x ≠1,∴x ∈⎣⎡⎭⎫-12,1∪(1,3].2.若关于x 的不等式x 2-4x -m ≥0对任意x ∈(0,1]恒成立,则m 的最大值为() A .1 B .-1 C .-3 D .3答案 C解析 由已知可得m ≤x 2-4x 对一切x ∈(0,1]恒成立,又f (x )=x 2-4x 在(0,1]上为减函数,∴f (x )min =f (1)=-3,∴m ≤-3.3.不等式(x -1)x +2≥0的解集是( )A .{x |x >1}B .{x |x ≥1}C .{x |x ≥1或x =-2}D .{x |x ≤-2或x =1}答案 C解析 当x =-2时,0≥0成立.当x >-2时,原不等式变为x -1≥0,即x ≥1.∴不等式的解集为{x |x ≥1或x =-2}.4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}答案 D解析 a =0时符合题意.a >0时,相应二次方程中的Δ=a 2-4a ≤0,得{a |0<a ≤4},综上得{a |0≤a ≤4},故选D.5.不等式ax 2+2ax -(a +2)≥0的解集是∅,则实数a 的取值范围是__________. 答案 -1<a ≤0解析 当a =0时,-2≥0解集为∅; 当a ≠0时,a 满足条件:⎩⎨⎧a <0Δ=4a 2+4a (a +2)<0, 解得-1<a <0.综上可知,-1<a ≤0.6.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________.答案 (-∞,-5]解析 设f (x )=x 2+mx +4,要使x ∈(1,2)时,不等式x 2+mx +4<0恒成立. 则有⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0,即⎩⎪⎨⎪⎧1+m +4≤0,4+2m +4≤0.解得m ≤-5. 7.求使关于x 的不等式ax 2+4x -1≥-2x 2-a 对任意实数x 恒成立的a 的取值范围. 解 原不等式可化为(a +2)x 2+4x +a -1≥0.当a +2=0,即a =-2时,不等式可化为4x -3≥0,解得x ≥34.不满足对任意实数x 不等式恒成立,故a ≠-2;当a +2≠0,即a ≠-2时,要使不等式对任意实数x 恒成立,必须满足⎩⎪⎨⎪⎧ a +2>0,Δ≤0,即⎩⎪⎨⎪⎧a >-2,42-4(a +2)(a -1)≤0. 解得a ≥2.8.某工厂生产商品M ,若每件定价80元,则每年可销售80万件,税务部门对市场销售的商品要征收附加税.为了既增加国家收入,又有利于市场活跃,必须合理确定征收的税率.据市场调查,若政府对商品M 征收的税率为P %(即每百元征收P 元)时,每年的销售量减少10P 万件,据此,问:(1)若税务部门对商品M 每年所收税金不少于96万元,求P 的范围;(2)在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,应如何确定P 值;(3)若仅考虑每年税收金额最高,又应如何确定P 值.解 税率为P %时,销售量为(80-10P )万件,即f (P )=80(80-10P ),税金为80(80-10P )·P %,其中0<P <8. (1)由⎩⎪⎨⎪⎧ 80(80-10P )·P %≥96,0<P <8,解得2≤P ≤6. (2)∵f (P )=80(80-10P ) (2≤P ≤6)为减函数,∴当P =2时,f (2)=4 800(万元).(3)∵0<P <8,g (P )=80(80-10P )·P %=-8(P -4)2+128,∴当P =4时,国家所得税金最高,为128万元.二、能力提升9.已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x +3x -1<0,N ={x |x ≤-3},则集合{x |x ≥1}等于( ) A .M ∩NB .M ∪NC .∁R (M ∩N )D .∁R (M ∪N )答案 D解析 x +3x -1<0⇔(x +3)(x -1)<0,故集合M 可化为{x |-3<x <1},将集合M 和集合N 在数轴上表示出来(如图),易知答案.10.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2答案 B 解析 设g (a )=(x -2)a +(x 2-4x +4),g (a )>0,恒成立且a ∈[-1,1]⇔⎩⎪⎨⎪⎧ g (1)=x 2-3x +2>0,g (-1)=x 2-5x +6>0⇔⎩⎪⎨⎪⎧x <1或x >2,x <2或x >3⇔x <1或x >3. 11.方程x 2+(m -3)x +m =0有两个正实根,则m 的取值范围是________.答案 (0,1] 解析 由题意得⎩⎪⎨⎪⎧ Δ=(m -3)2-4m ≥0,x 1+x 2=3-m >0,x 1x 2=m >0,解得0<m ≤1.12.国家原计划以2 400元/t 的价格收购某种农产品m t .按规定,农民向国家纳税:每收入100元纳税8元(称作税率为8个百分点.即8%).为了减轻农民负担,国家制定积极的收购政策,根据市场规律,税率降低x 个百分点,收购量能增加2x 个百分点,试确定x 的取值范围.使税率调低后,国家此项税收总收入不低于原计划的78%.解 “税率降低x 个百分点”,即调节后税率为(8-x )%;“收购量能增加2x 个百分点”时,总收购量为m (1+2x %)t ,总收购款为2 400m (1+2x %)元; “总收入不低于原计划的78%”,即税率调低后,税收总收入≥2 400m ×8%×78%. 设税率调低后的“税收总收入”为y 元,y =2 400m (1+2x %)(8-x )%=-1225m (x 2+42x -400)(0<x ≤8), 所以y ≥2 400m ×8%×78%,即-44≤x ≤2.又0<x ≤8,所以0<x ≤2.所以x 的取值范围是0<x ≤2.三、探究与创新13.已知不等式ax 2+bx +c >0的解集为(α,β),且0<α<β,求不等式cx 2+bx +a <0的解集.解 由已知不等式的解集为(α,β)可得a <0,∵α、β为方程ax 2+bx +c =0的两根,∴由根与系数的关系可得⎩⎨⎧ b a =-(α+β)<0,①c a =αβ>0.②∵a <0,∴由②得c <0, 则cx 2+bx +a <0可化为x 2+b c x +a c>0, ①÷②得b c =-(α+β)αβ=-⎝⎛⎭⎫1α+1β<0, 由②得a c =1αβ=1α·1β>0, ∴1α、1β为方程x 2+b c x +a c=0的两根. ∵0<α<β,∴不等式cx 2+bx +a <0的解集为{x |x <1β或x >1α}.。

高二数学人教A必修5练习:3.2 一元二次不等式及其解法(二) Word版含解析

高二数学人教A必修5练习:3.2 一元二次不等式及其解法(二) Word版含解析

§3.2 一元二次不等式及其解法(二)【课时目标】1.会解可化为一元二次不等式(组)的简单分式不等式. 2.会解与一元二次不等式有关的恒成立问题.1.一元二次不等式的解集:判别式 Δ=b 2-4acΔ>0x 1<x 2 Δ=0 Δ<0 ax 2+bx +c >0(a >0){x |x< x 1或x>x 2} {x |x ∈R 且x ≠-b 2a }R ax 2+bx +c <0 (a >0) {x |x 1<x <x 2} ∅∅(1)f (x )g (x )>0⇔f (x )·g (x )>0; (2)f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x )≤0g (x )≠0;(3)f (x )g (x )≥a ⇔f (x )-ag (x )g (x )≥0. 3.处理不等式恒成立问题的常用方法: (1)一元二次不等式恒成立的情况:ax 2+bx +c >0 (a ≠0)恒成立⇔⎩⎨⎧a >0Δ<0;ax 2+bx +c ≤0 (a ≠0)恒成立⇔⎩⎪⎨⎪⎧a <0Δ≤0.(2)一般地,若函数y =f (x ),x ∈D 既存在最大值,也存在最小值,则: a >f (x ),x ∈D 恒成立⇔a >f (x )max ; a <f (x ),x ∈D 恒成立⇔a <f (x )min .一、选择题1.不等式x -2x +3>0的解集是( )A .(-3,2)B .(2,+∞)C .(-∞,-3)∪(2,+∞)D .(-∞,-2)∪(3,+∞) 答案 C解析 解不等式x -2x +3>0得,x >2或x <-3.2.不等式(x -1)x +2≥0的解集是( )A .{x |x >1}B .{x |x ≥1}C .{x |x ≥1或x =-2}D .{x |x ≤-2或x =1}答案 C解析 当x =-2时,0≥0成立.当x >-2时,原不等式变为x -1≥0,即x ≥1. ∴不等式的解集为{x |x ≥1或x =-2}.3.不等式x 2-2x -2x 2+x +1<2的解集为( )A .{x |x ≠-2}B .RC .∅D .{x |x <-2或x >2} 答案 A解析 原不等式⇔x 2-2x -2<2x 2+2x +2⇔x 2+4x +4>0⇔(x +2)2>0,∴x ≠-2. ∴不等式的解集为{x |x ≠-2}.4.不等式x +5(x -1)2≥2的解是( )A .[-3,12]B .[-12,3]C .[12,1)∪(1,3]D .[-12,1)∪(1,3]答案 D解析 x +5(x -1)2≥2⇔⎩⎪⎨⎪⎧x +5≥2(x -1)2x -1≠0⇔⎩⎪⎨⎪⎧-12≤x ≤3,x ≠1,∴x ∈[-12,1)∪(1,3].5.设集合A ={x |(x -1)2<3x +7,x ∈R },则集合A ∩Z 中元素的个数是( ) A .4 B .5 C .6 D .7 答案 C解析 解不等式(x -1)2<3x +7,然后求交集. 由(x -1)2<3x +7,得-1<x <6,∴集合A 为{x |-1<x <6},∴A ∩Z 的元素有0,1,2,3,4,5,共6个元素.6.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2 答案 B解析 设g (a )=(x -2)a +(x 2-4x +4),g (a )>0恒成立且a ∈[-1,1]⇔⎩⎪⎨⎪⎧g (1)=x 2-3x +2>0g (-1)=x 2-5x +6>0 ⇔⎩⎪⎨⎪⎧x <1或x >2x <2或x >3⇔x <1或x >3. 二、填空题7.若关于x 的不等式x -a x +1>0的解集为(-∞,-1)∪(4,+∞),则实数a =________.答案 4解析 x -a x +1>0⇔(x +1)(x -a )>0⇔(x +1)(x -4)>0 ∴a =4.8.若不等式-x 2+2x -a ≤0恒成立,则实数a 的取值范围是________. 答案 a ≥1解析 ∵Δ=4-4a ≤0,∴a ≥1.9.若全集I =R ,f (x )、g (x )均为x 的二次函数,P ={x |f (x )<0},Q ={x |g (x )≥0},则不等式组⎩⎪⎨⎪⎧f (x )<0,g (x )<0的解集可用P 、Q 表示为________.答案 P ∩∁I Q解析 ∵g (x )≥0的解集为Q , 所以g (x )<0的解集为∁I Q ,因此⎩⎪⎨⎪⎧f (x )<0,g (x )<0的解集为P ∩∁I Q .10.如果A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围为________. 答案 0≤a ≤4解析 a =0时,A =∅;当a ≠0时,A =∅⇔ax 2-ax +1≥0恒成立⇔⎩⎪⎨⎪⎧a >0Δ≤0⇔0<a ≤4,综上所述,实数a 的取值范围为0≤a ≤4. 三、解答题11.某省每年损失耕地20万亩,每亩耕地价值24 000元,为了减小耕地损失,决定按耕地价格的t %征收耕地占用税,这样每年的耕地损失可减少52t 万亩,为了既减少耕地的损失又保证此项税收一年不少于9 000万元,t %应在什么范围内变动?解 由题意可列不等式如下: ⎝⎛⎭⎫20-52t ·24 000·t %≥9 000⇔3≤t ≤5. 所以t %应控制在3%到5%范围内.12.关于x 的不等式组⎩⎪⎨⎪⎧x 2-x -2>0,2x 2+(2k +5)x +5k <0的整数解的集合为{-2},求实数k 的取值范围.解 由x 2-x -2>0,可得x <-1或x >2. ∵⎩⎪⎨⎪⎧x 2-x -2>0,2x 2+(2k +5)x +5k <0的整数解的集合为{-2}, 方程2x 2+(2k +5)x +5k =0的两根为-k 与-52,①若-k <-52,则不等式组的整数解的集合就不可能为{-2};②若-52<-k ,则应有-2<-k ≤3,∴-3≤k <2.综上,所求的k 的取值范围为-3≤k <2. 【能力提升】13.已知x 1、x 2是方程x 2-(k -2)x +k 2+3k +5=0(k ∈R )的两个实数根,则x 21+x 22的最大值为( )A .18B .19 C.509D .不存在答案 A解析 由已知方程有两实数根得,Δ≥0, 即(k -2)2-4(k 2+3k +5)≥0.解得-4≤k ≤-43,又x 21+x 22=(x 1+x 2)2-2x 1x 2=-(k +5)2+19,∴当k =-4时,x 21+x 22有最大值,最大值为18. 14.已知不等式x 2+px +1>2x +p .(1)如果不等式当|p |≤2时恒成立,求x 的取值范围; (2)如果不等式当2≤x ≤4时恒成立,求p 的取值范围. 解 (1)不等式化为(x -1)p +x 2-2x +1>0, 令f (p )=(x -1)p +x 2-2x +1,则f (p )的图象是一条直线.又∵|p |≤2,∴-2≤p ≤2,于是得:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0.即⎩⎪⎨⎪⎧(x -1)·(-2)+x 2-2x +1>0,(x -1)·2+x 2-2x +1>0. 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0. ∴x >3或x <-1. 故x 的取值范围是x >3或x <-1.(2)不等式可化为(x -1)p >-x 2+2x -1, ∵2≤x ≤4,∴x -1>0.∴p >-x 2+2x -1x -1=1-x .由于不等式当2≤x ≤4时恒成立, ∴p >(1-x )max .而2≤x ≤4, ∴(1-x )max =-1,于是p >-1. 故p 的取值范围是p >-1.1.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解.若不等式含有等号时,分母不为零.2.对于有的恒成立问题,分离参数是一种行之有效的方法.这是因为将参数予以分离后,问题往往会转化为函数问题,从而得以迅速解决.当然这必须以参数容易分离作为前提.分离参数时,经常要用到下述简单结论:(1)a >f (x )恒成立⇔a >f (x )max ;(2)a <f (x )恒成立⇔a <f (x )min .。

高中数学新人教A版必修5第三章 3.2 第二课时 一元二次不等式及其解法(习题课)

高中数学新人教A版必修5第三章   3.2  第二课时 一元二次不等式及其解法(习题课)

第二课时 一元二次不等式及其解法(习题课)解简单的分式不等式[典例] 解下列不等式: (1)x +23-x ≥0;(2)2x -13-4x>1. [解] (1)原不等式等价于⎩⎪⎨⎪⎧(x +2)(3-x )≥0,3-x ≠0,即⎩⎪⎨⎪⎧(x +2)(x -3)≤0,x ≠3⇒-2≤x <3. ∴原不等式的解集为{x |-2≤x <3}. (2)原不等式可化为2x -13-4x -1>0,即3x -24x -3<0.等价于(3x -2)(4x -3)<0. ∴23<x <34. ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪23<x <34.(1)解分式不等式时,要注意先移项,使右边化为零,要注意含等号的分式不等式的分母不为零.(2)分式不等式的4种形式及解题思路 ①f (x )g (x )>0⇔f (x )g (x )>0; ②f (x )g (x )<0⇔f (x )g (x )<0; ③f (x )g (x )≥0⇔f (x )g (x )≥0且g (x )≠0⇔f (x )g (x )>0或f (x )=0; ④f (x )g (x )≤0⇔f (x )g (x )≤0且g (x )≠0⇔f (x )g (x )<0或f (x )=0. (3)不等式与不等式组的同解关系①f (x )g (x )≥0⇔⎩⎪⎨⎪⎧ f (x )≥0,g (x )≥0或⎩⎪⎨⎪⎧ f (x )≤0,g (x )≤0, ②f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )≥0,g (x )≤0或⎩⎪⎨⎪⎧f (x )≤0,g (x )≥0, ③f (x )g (x )>0⇔⎩⎪⎨⎪⎧ f (x )>0,g (x )>0或⎩⎪⎨⎪⎧ f (x )<0,g (x )<0,④f (x )g (x )<0⇔⎩⎪⎨⎪⎧ f (x )>0,g (x )<0或⎩⎪⎨⎪⎧f (x )<0,g (x )>0.[活学活用]1.若集合A ={x |-1≤2x +1≤3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x -2x ≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}解析:选B ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2}, ∴A ∩B ={x |0<x ≤1}.2.已知关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式ax -bx -2>0的解集是( )A.{}x |x <-1或x >2B.{}x |-1<x <2C.{}x |1<x <2D.{}x |x >2解析:选A 依题意,a >0且-ba =1. ax -b x -2>0⇔(ax -b )(x -2)>0⇔⎝⎛⎭⎫x -ba (x -2)>0, 即(x +1)(x -2)>0⇒x >2或x <-1.不等式中的恒成立问题2取值范围.[解] 由题意可知,只有当二次函数f (x )=x 2+2(a -2)x +4的图象与直角坐标系中的x 轴无交点时,才满足题意,则其相应方程x 2+2(a -2)x +4=0此时应满足Δ<0,即4(a -2)2-16<0,解得0<a <4.故a 的取值范围是(0,4).对于x ∈[a ,b ],f (x )<0(或>0)恒成立,应利用函数图象.1.已知f (x )=x 2+2(a -2)x +4,是否存在实数a ,使得对任意x ∈[-3,1],f (x )<0恒成立.若存在求出a 的取值范围;若不存在说明理由.解:若对任意,x ∈[-3,1],f (x )<0恒成立,则满足题意的函数f (x )=x 2+2(a -2)x +4的图象如图所示.由图象可知,此时a 应该满足⎩⎪⎨⎪⎧ f (-3)<0,f (1)<0,即⎩⎪⎨⎪⎧25-6a <0,1+2a <0,解得⎩⎨⎧a >256,a <-12.这样的实数a 是不存在的,所以不存在实数a 满足:对任意x ∈[-3,1],f (x )<0恒成立. 对此类问题,要弄清楚哪个是参数,哪个是自变量.2.已知函数y =x 2+2(a -2)x +4,对任意a ∈[-3,1],y <0恒成立,试求x 的取值范围.解:原函数可化为g (a )=2xa +x 2-4x +4,是关于a 的一元一次函数. 要使对任意a ∈[-3,1],y <0恒成立,只需满足⎩⎪⎨⎪⎧ g (1)<0,g (-3)<0,即⎩⎪⎨⎪⎧x 2-2x +4<0,x 2-10x +4<0.因为x 2-2x +4<0的解集是空集,所以不存在实数x ,使函数y =x 2+2(a -2)x +4,对任意a ∈[-3,1],y <0恒成立.(1)解决恒成立问题一定要搞清谁是自变量,谁是参数.一般地,知道谁的范围,谁就是自变量,求谁的范围,谁就是参数.分离参数法是解决不等式恒成立问题的一种行之有效的方法.a ≥f (x )恒成立⇔a ≥f (x )max (f (x )存在最大值); a ≤f (x )恒成立⇔a ≤f (x )min (f (x )存在最小值).(2)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定区间上全部在x 轴下方.一元二次不等式的实际应用[典例] 某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内?[解] (1)由题意,得y =[1.2×(1+0.75x )-1×(1+x )]×1 000×(1+0.6x )(0<x <1),整理得y =-60x 2+20x +200(0<x <1).(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎪⎨⎪⎧ y -(1.2-1)×1 000>0,0<x <1,即⎩⎪⎨⎪⎧-60x 2+20x >0,0<x <1,解不等式组,得0<x <13,所以为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 的范围为⎝⎛⎭⎫0,13.用一元二次不等式解决实际问题的步骤(1)理解题意,搞清量与量之间的关系;(2)建立相应的不等关系,把实际问题抽象为数学中的一元二次不等式问题; (3)解这个一元二次不等式,得到实际问题的解.[活学活用]某校园内有一块长为800 m ,宽为600 m 的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.解:设花卉带的宽度为x m(0<x <600),则中间草坪的长为(800-2x )m ,宽为(600-2x )m.根据题意可得(800-2x )(600-2x )≥12×800×600,整理得x 2-700x +600×100≥0,即(x -600)(x -100)≥0,所以0<x ≤100或x ≥600,x ≥600不符合题意,舍去.故所求花卉带宽度的范围为(0,100]m.层级一 学业水平达标1.不等式x -1x ≥2的解集为( )A .[-1,+∞)B .[-1,0)C .(-∞,-1]D .(-∞,-1]∪(0,+∞)解析:选B 不等式x -1x ≥2,即x -1x -2≥0,即-x -1x ≥0,所以x +1x ≤0,等价于x (x +1)≤0且x ≠0,所以-1≤x <0.2.不等式4x +23x -1>0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >13或x <-12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >13 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12 解析:选A4x +23x -1>0⇔(4x +2)(3x -1)>0⇔x >13或x <-12,此不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >13或x <-12.3.若不等式x 2+mx +m2>0恒成立,则实数m 的取值范围是( )A .(2,+∞)B .(-∞,2)C .(-∞,0)∪(2,+∞)D .(0,2)解析:选D ∵不等式x 2+mx +m2>0,对x ∈R 恒成立,∴Δ<0即m 2-2m <0,∴0<m <2.4.某商品在最近30天内的价格f (t )与时间t (单位:天)的函数关系是f (t )=t +10(0<t ≤20,t ∈N);销售量g (t )与时间t 的函数关系是g (t )=-t +35(0<t ≤30,t ∈N),则使这种商品日销售金额不小于500元的t 的范围为( )A .[15,20]B .[10,15]C .(10,15)D .(0,10]解析:选B 由日销售金额为(t +10)(-t +35)≥500, 解得10≤t ≤15.5.若关于x 的不等式x 2-4x -m ≥0对任意x ∈(0,1]恒成立,则m 的最大值为( ) A .1 B .-1 C .-3D .3解析:选C 由已知可得m ≤x 2-4x 对一切x ∈(0,1]恒成立,又f (x )=x 2-4x 在(0,1]上为减函数,∴f (x )min =f (1)=-3,∴m ≤-3. 6.不等式5-x x +4≥1的解集为________.解析:因为5-x x +4≥1等价于1-2x x +4≥0,所以2x -1x +4≤0,等价于⎩⎪⎨⎪⎧(2x -1)(x +4)≤0,x +4≠0,解得-4<x ≤12.答案:⎝⎛⎦⎤-4,12 7.若不等式x 2-4x +3m <0的解集为空集,则实数m 的取值范围是________. 解析:由题意,知x 2-4x +3m ≥0对一切实数x 恒成立,所以Δ=(-4)2-4×3m ≤0,解得m ≥43.答案:⎣⎡⎭⎫43,+∞8.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意的实数x 都成立,则a 的取值范围是________.解析:根据定义得(x -a )⊗(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a ,又(x -a )⊗(x +a )<1对任意的实数x 都成立,所以x 2-x +a +1-a 2>0对任意的实数x 都成立,所以Δ<0,即1-4(a +1-a 2)<0,解得-12<a <32.答案:⎝⎛⎭⎫-12,32 9.已知f (x )=-3x 2+a (5-a )x +b .(1)当不等式f (x )>0的解集为(-1,3)时,求实数a ,b 的值; (2)若对任意实数a ,f (2)<0恒成立,求实数b 的取值范围. 解:(1)由f (x )>0,得-3x 2+a (5-a )x +b >0, ∴3x 2-a (5-a )x -b <0. 又f (x )>0的解集为(-1,3),∴⎩⎪⎨⎪⎧ 3+a (5-a )-b =0,27-3a (5-a )-b =0,∴⎩⎪⎨⎪⎧ a =2,b =9或⎩⎪⎨⎪⎧a =3,b =9.(2)由f (2)<0,得-12+2a (5-a )+b <0, 即2a 2-10a +(12-b )>0.又对任意实数a ,f (2)<0恒成立, ∴Δ=(-10)2-4×2(12-b )<0,∴b <-12,∴实数b 的取值范围为⎝⎛⎭⎫-∞,-12. 10.某工厂生产商品M ,若每件定价80元,则每年可销售80万件,税务部门对市场销售的商品要征收附加税.为了既增加国家收入,又有利于市场活跃,必须合理确定征收的税率.据市场调查,若政府对商品M 征收的税率为P %(即每百元征收P 元)时,每年的销售量减少10P 万件,据此,问:(1)若税务部门对商品M 每年所收税金不少于96万元,求P 的范围;(2)在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,应如何确定P 值;(3)若仅考虑每年税收金额最高,又应如何确定P 值. 解:税率为P %时,销售量为(80-10P )万件, 即f (P )=80(80-10P ),税金为80(80-10P )·P %, 其中0<P <8.(1)由⎩⎪⎨⎪⎧80(80-10P )·P %≥96,0<P <8,解得2≤P ≤6. 故P 的范围为[2,6].(2)∵f (P )=80(80-10P )(2≤P ≤6)为减函数, ∴当P =2时,厂家获得最大的销售金额, f (2)=4 800(万元). (3)∵0<P <8,g (P )=80(80-10P )·P %=-8(P -4)2+128, ∴当P =4时,国家所得税金最高,为128万元.层级二 应试能力达标1.不等式x +5(x -1)2≥2的解是( )A.⎣⎡⎦⎤-3,12 B.⎣⎡⎦⎤-12,3 C.⎣⎡⎭⎫12,1∪(1,3]D.⎣⎡⎭⎫-12,1∪(1,3] 解析:选D x +5(x -1)2≥2⇔⎩⎪⎨⎪⎧x +5≥2(x -1)2,x -1≠0⇔⎩⎪⎨⎪⎧-12≤x ≤3,x ≠1,∴x ∈⎣⎡⎭⎫-12,1∪(1,3]. 2.已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x +3x -1<0,N ={x |x ≤-3},则集合{x |x ≥1}等于( ) A .M ∩N B .M ∪N C .∁R (M ∩N ) D .∁R (M ∪N )解析:选Dx +3x -1<0⇔(x +3)(x -1)<0,故集合M 可化为{x |-3<x <1},将集合M 和集合N 在数轴上表示出来(如图),易知答案.3.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(1,2)D .(-∞,1)∪(2,+∞)解析:选B 设g (a )=(x -2)a +(x 2-4x +4),g (a )>0恒成立且a ∈[-1,1]⇔⎩⎪⎨⎪⎧ g (1)=x 2-3x +2>0,g (-1)=x 2-5x +6>0⇔⎩⎪⎨⎪⎧x <1或x >2,x <2或x >3⇔x <1或x >3. 4.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( )A .[15,30]B .[12,25]C .[10,30]D .[20,30]解析:选C 设矩形的另一边长为y m ,则由三角形相似知,x 40=40-y40,∴y =40-x ,∵xy ≥300,∴x (40-x )≥300,∴x 2-40x +300≤0,∴10≤x ≤30.5.若函数f (x )=log 2(x 2-2ax -a )的定义域为R ,则a 的取值范围为________. 解析:已知函数定义域为R ,即x 2-2ax -a >0对任意x ∈R 恒成立. ∴Δ=(-2a )2+4a <0. 解得-1<a <0. 答案:(-1,0)6.现有含盐7%的食盐水200克,生产上需要含盐5%以上、6%以下的食盐水,设需要加入含盐4%的食盐水为x 克,则x 的取值范围是________.解析:5%<x ·4%+200·7%x +200<6%,解得x 的范围是(100,400). 答案:(100,400)7.已知不等式mx 2-2x +m -2<0.(1)若对于所有的实数x 不等式恒成立,求m 的取值范围;(2)设不等式对于满足|m |≤2的一切m 的值都成立,求x 的取值范围.解:(1)对所有实数x ,都有不等式mx 2-2x +m -2<0恒成立,即函数f (x )=mx 2-2x +m -2的图象全部在x 轴下方.当m =0时,-2x -2<0,显然对任意x 不能恒成立; 当m ≠0时,由二次函数的图象可知有⎩⎪⎨⎪⎧m <0,Δ=4-4m (m -2)<0,解得m <1-2, 综上可知,m 的取值范围是(-∞,1-2).(2)设g (m )=(x 2+1)m -2x -2,它是一个以m 为自变量的一次函数,由x 2+1>0,知g (m )在[-2,2]上为增函数,则只需g (2)<0即可,即2x 2+2-2x -2<0,解得0<x <1. 故x 的取值范围是(0,1).8.已知函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求a 的取值范围; (2)当x ∈[-2,2]时,f (x )≥a 恒成立,求a 的取值范围.解:(1)f (x )≥a 恒成立,即x 2+ax +3-a ≥0恒成立,必须且只需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0,∴-6≤a ≤2.∴a 的取值范围为[-6,2]. (2)f (x )=x 2+ax +3=⎝⎛⎭⎫x +a 22+3-a 24. ①当-a2<-2,即a >4时,f (x )min =f (-2)=-2a +7, 由-2a +7≥a ,得a ≤73,∴a ∈∅.②当-2≤-a 2≤2,即-4≤a ≤4时,f (x )min =3-a 24,由3-a 24≥a ,得-6≤a ≤2.∴-4≤a ≤2.③当-a2>2,即a <-4时,f (x )min =f (2)=2a +7,由2a +7≥a ,得a ≥-7,∴-7≤a <-4. 综上,可得a 的取值范围为[-7,2].。

一元二次不等式及其解法第二课时练习与答案-数学必修五第三章不等式3.2人教A版

一元二次不等式及其解法第二课时练习与答案-数学必修五第三章不等式3.2人教A版

第三章不等式3.1 第一课时一元二次不等式及其解法测试题1、求下列不等式的解集:(1)0442>+--x x (2)0322≤-+x x(3)02122<--x x (4)05832≥++x x(5)031082>-+x x (6)01212≥--x x (7)02102<-+x x (8)0)3)(1(≤+---x x2、求下列函数的定义域:(1)1452--=x x y (2)362-+-=x x y3、若关于x 的一元二次方程0)12(2=--+m x m x 没有实数根,求m 的取值范围。

4、已知集合}034|{},02|{22<-+-=>-=x x x B x x x A ,求B A ⋃。

5、已知函数41249)(2-+=x x x f ,求使函数值小于0的取值范围。

6、解关于x 的不等式0)12(22<+++-m m x m x7、(2013重庆高考)关于x 的不等式)0(,08222><--a a ax x 的解集为)(21,x x ,且,1512=-x x 求a 的值。

8、(2013陕西高考)在如图所示的锐角三角形空地中,欲建一个面积不小于300平方米的内接矩形花园(阴影部分),则其边长x (单位为米)的取值范围是?9、(2013全国卷文科)求不等式2|2|2<-x 的解集10、求函数的定义域)1lg(43)(2-+++-=x x x x f11、(2015浙江省慈溪市校级期中)已知关于x 的不等式}1|{0232b x x x x ax ><>+-或的解集为,(1)求a,b 的值;(2)当)(,0)(2表示用的不等式时,解关于c bc x b ac ax x R x <++-∈【参考答案】1、求下列不等式的解集:解析:(1),032)4(144,04422>=-⨯⨯-=∆<-+x x ,2222324±-=±-=x 所以不等式的解集为}222222|{+<<--∴x x(2)∴≤≤-∴≤+-,13,0)3)(1(x x x 不等式的解集为}13|{≤≤-x x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 3.2 第2课时一、选择题1.(北京学业水平测试)不等式(x -1)(2x -1)<0的解集是( ) A .{x |1<x <2} B .{x |x <1或x >2} C .{x |x <12或x >1}D .{x |12<x <1}[答案] D[解析] 方程(x -1)(2x -1)=0的两根为x 1=1,x 2=12,所以(x -1)(2x -1)<0的解集为{x |12<x <1},选D .2.设集合M ={x |0≤x ≤2},N ={x |x 2-2x -3<0},则M ∩N 等于( ) A .{x |0≤x <1} B .{x |0≤x ≤2} C .{x |0≤x ≤1} D .{x |0≤x ≤2} [答案] D[解析] ∵N ={x |x 2-2x -3<0}={x |-1<x <3},M ={x |0≤x ≤2}, ∴M ∩N ={x |0≤x ≤2},故选D .3.若{x |2<x <3}为x 2+ax +b <0的解集,则bx 2+ax +1>0的解集为( ) A .{x |x <2或x >3} B .{x |2<x <3} C .{x |13<x <12}D .{x |x <13或x >12}[答案] D[解析] 由x 2+ax +b <0的解集为{x |2<x <3},知方程x 2+ax +b =0的根分别为x 1=2,x 2=3.由韦达定理,得x 1+x 2=-a ,x 1·x 2=b , 即a =-5,b =6.所以不等式bx 2+ax +1>0,即6x 2-5x +1>0,解集为{x |x <13,或x >12},故选D .4.不等式(x -2)2(x -3)x +1<0的解集为( )A .{x |-1<x <2或2<x <3}B .{x |1<x <3}C .{x |2<x <3}D .{x |-1<x <3} [答案] A[解析] 原不等式等价于⎩⎪⎨⎪⎧(x -3)(x +1)<0,x +1≠0,(x -2)2≠0,解得-1<x <3,且x ≠2,故选A .5.若0<t <1,则不等式x 2-(t +1t )x +1<0的解集是( )A .{x |1t <x <t }B .{x |x >1t 或x <t }C .{x |x <1t 或x >t }D .{x |t <x <1t}[答案] D[解析] 化为(x -t )(x -1t )<0,∵0<t <1,∴1t >1>t ,∴t <x <1t.6.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4 D .a <-4或a >4[答案] A[解析] 欲使不等式x 2+ax +4<0的解集为空集,则△=a 2-16≤0,∴-4≤a ≤4. 二、填空题7.关于x 的不等式:x 2-(2m +1)x +m 2+m <0的解集是________. [答案] {x |m <x <m +1}[解析] 解法一:∵方程x 2-(2m +1)x +m 2+m =0的解为x 1=m ,x 2=m +1,且知m <m +1.∴二次函数y =x 2-(2m +1)x +m 2+m 的图象开口向上,且与x 轴有两个交点. ∴不等式的解集为{x |m <x <m +1}.解法二:注意到m 2+m =m (m +1),及m +(m +1)=2m +1, 可先因式分解,化为(x -m )(x -m -1)<0, ∵m <m +1,∴m <x <m +1. ∴不等式的解集为{x |m <x <m +1}.8.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是________. [答案] 0<a ≤4[解析] ①若a =0,则1<0不成立,此时解集为空.②若a ≠0,则⎩⎪⎨⎪⎧Δ=a 2-4a ≤0,a >0,∴0<a ≤4.三、解答题 9.解下列不等式: (1)2x -13x +1>0; (2)ax x +1<0. [解析] (1)原不等式等价于(2x -1)(3x +1)>0, ∴x <-13或x >12.故原不等式的解集为{x |x <-13或x >12}.(2)axx +1<0⇔ax (x +1)<0. 当a >0时,ax (x +1)<0⇔x (x +1)<0⇔-1<x <0, ∴解集为{x |-1<x <0};当a =0时,原不等式的解集为∅;当a <0时,ax (x +1)<0⇔x (x +1)>0⇔x >0或x <-1,∴解集为{x |x >0,或x <-1}. 10.解关于x 的不等式x 2-(a +a 2)x +a 3>0. [解析] 原不等式可化为(x -a )(x -a 2)>0.则方程x 2-(a +a 2)x +a 3=0的两根为x 1=a ,x 2=a 2, 由a 2-a =a (a -1)可知, (1)当a <0或a >1时,a 2>a . ∴原不等式的解集为x >a 2或x <a . (2)当0<a <1时,a 2<a , ∴原不等的解为x >a 或x <a 2.(3)当a =0时,原不等式为x 2>0,∴x ≠0. (4)当a =1时,原不等式为(x -1)2>0,∴x ≠1. 综上可知:当a <0或a >1时,原不等式的解集为{x |x <a 或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2或x >a }; 当a =0时,原不等式的解集为{x |x ≠0}; 当a =1时,原不等式的解集为{x |x ≠1}.一、选择题1.若f (x )=-x 2+mx -1的函数值有正值,则m 的取值范围是( )A .m <-2或m >2B .-2<m <2C .m ≠±2D .1<m <3[答案] A[解析] ∵f (x )=-x 2+mx -1有正值, ∴△=m 2-4>0,∴m >2或m <-2.2.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解是( ) A .x >5a 或x <-a B .x >-a 或x <5a C .5a <x <-a D .-a <x <5a[答案] B[解析] 化为:(x +a )(x -5a )>0,相应方程的两根x 1=-a ,x 2=5a ∵a <0,∴x 1>x 2.∴不等式解为x <5a 或x >-a . 3.函数y =-x 2-3x +4x 的定义域为( )A .[-4,1]B .[-4,0)C .(0,1]D .[-4,0)∪(0,1][答案] D[解析] 要使函数有意义,则需⎩⎪⎨⎪⎧-x 2-3x +4≥0x ≠0,解得-4≤x ≤1且x ≠0,故定义域为[-4,0)∪(0,1].4.如果不等式2x 2+2mx +m4x 2+6x +3<1对一切实数x 均成立,则实数m 的取值范围是( )A .(1,3)B .(-∞,3)C .(-∞,1)∪(2,+∞)D .(-∞,+∞)[答案] A[解析] 由4x 2+6x +3=(2x +32)2+34>0对一切x ∈R 恒成立,从而原不等式等价于2x 2+2mx +m <4x 2+6x +3(x ∈R )⇔2x 2+(6-2m )x +(3-m )>0对一切实数x 恒成立 ⇔Δ=(6-2m )2-8(3-m )=4(m -1)(m -3)<0, 解得1<m <3. 二、填空题5.已知函数y =(m 2+4m -5)x 2+4(1-m )x +3对任意实数x ,函数值恒大于零,则实数m 的取值范围是__________.[答案] 1≤m <19[解析] ①当m 2+4m -5=0时,m =-5或m =1,若m =-5,则函数化为y =24x +3.对任意实数x 不可能恒大于0. 若m =1,则y =3>0恒成立. ②当m 2+4m -5≠0时,据题意应有,⎩⎪⎨⎪⎧m 2+4m -5>016(1-m )2-12(m 2+4m -5)<0 , ∴⎩⎪⎨⎪⎧m <-5或m >11<m <19,∴1<m <19. 综上可知,1≤m <19.6.不等式[(a -1)x +1](x -1)<0的解集为{x |x <1或x >2},则a =________. [答案] 12[解析] 由题意x =2是方程(a -1)x +1=0的根, 且a -1<0,∴a =12.三、解答题7.解关于x 的不等式:x 2+2x -3-x 2+x +6<0.[解析] 原不等式⇔(x +3)(x -1)(x +2)(x -3)>0⇔(x +3)(x +2)(x -1)(x -3)>0.令(x +3)(x +2)(x -1)(x -3)=0,则有x 1=-3,x 2=-2,x 3=1,x 4=3. 如图.由图可知,原不等式的解集为{x |x <-3或-2<x <1或x >3}. 8.当a 为何值时,不等式(a 2-1)x 2+(a -1)x -1<0的解集是R? [解析] 由a 2-1=0,得a =±1.当a =1时,原不等式化为-1<0恒成立, ∴当a =1时,满足题意.当a =-1时,原不等式化为-2x -1<0,∴x >-12,∴当a =-1时,不满足题意,故a ≠-1.当a ≠±1时,由题意,得⎩⎪⎨⎪⎧a 2-1<0Δ=(a -1)2+4(a 2-1)<0,解得-35<a <1.综上可知,实数a 的取值范围是-35<a ≤1.。

相关文档
最新文档