高考专题:数列、极限、数学归纳法(下)
高考数学极限知识点总结及解题思路方法
特别地,如果 C 是常数,那么
. lim (C
n
a
n
)
lim
n
C
lim a
n
n
Ca
⑷数列极限的应用:
求无穷数列的各项和,特别地,当 q 1时,无穷等比数列的各项和为 S a1 ( q 1) .
1 q
(化循环小数为分数方法同上式)
注:并不是每一个无穷数列都有极限.
3. 函数极限; ⑴当自变量 x 无限趋近于常数 x0(但不等于 x0 )时,如果函数 f (x) 无限
整数)
6. 几个常用极限:
① lim q n 0, q 1 n
② lim a n 0(a 0)
n n!
③ lim nk 0(a 1, k 为常数)
n a n
④ lim ln n 0
n n
⑤ lim (ln n)k 0( 0, k 为常数)
n n
高考数学极限知识点总结及解题思路方法
考试内容:
教学归纳法.数学归纳法应用.
数列的极限.
函数的极限.根限的四则运算.函数的连续性.
考试要求:
(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学
命题.
(2)了解数列极限和函数极限的概念.
(3)掌握极限的四则运算法则;会求某些数列与函数的极限.
(4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小
xx0
xx0
注:①各个函数的极限都应存在.
②四则运算法则可推广到任意有限个极限的情况,但不能推广到无限
个情况.
⑶几个常用极限:
① lim 1 0
n x
② lim a x 0 (0< a <1); lim a x 0 ( a >1)
【新人教】高考数学总复习专题训练数列、极限和数学归纳法
数列、极限和数学归纳法安徽理(11)如图所示,程序框图(算法流程图)的输出结果是____________ (11)15【命题意图】本题考查算法框图的识别,考查等差数列前n 项和. 【解析】由算法框图可知(1)1232k k T k +=++++=,若T =105,则K =14,继续执行循环体,这时k =15,T >105,所以输出的k 值为15. (18)(本小题满分12分)在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令,lg n n a T =1n ≥.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1tan tan ,n n n b a a += 求数列{}n b 的前n 项和n S .(本小题满分13分)本题考查等比和等差数列,指数和对数的运算,两角差的正切公式等基本知识,考查灵活运用知识解决问题的能力,综合运算能力和创新思维能力. 解:(I )设221,,,+n l l l 构成等比数列,其中,100,121==+n t t 则,2121++⋅⋅⋅⋅=n n n t t t t T ①, ,1221t t t t T n n n ⋅⋅⋅⋅=++ ②①×②并利用得),21(1022131+≤≤==+-+n i t t t t n i n.1,2lg ,10)()()()()2(2122112212≥+==∴=⋅⋅⋅⋅=+++++n n T a t t t t t t t t T n n n n n n n n(II )由题意和(I )中计算结果,知.1),3tan()2tan(≥+⋅+=n n n b n另一方面,利用,tan )1tan(1tan )1tan())1tan((1tan kk kk k k ⋅++-+=-+=得.11tan tan )1tan(tan )1tan(--+=⋅+kk k k 所以∑∑+==⋅+==231tan )1tan(n k n k k n k k b S23tan(1)tan tan(3)tan3(1)tan1tan1n k k k n n +=+-+-=-=-∑安徽文(7)若数列}{n a 的通项公式是()()n a n =-13-2g ,则a a a 1210++=L (A ) 15 (B) 12 (C ) -12 (D) -15(7)A 【命题意图】本题考查数列求和.属中等偏易题. 【解析】法一:分别求出前10项相加即可得出结论;法二:12349103a a a a a a +=+==+= ,故a a a 1210++=3⨯5=15L .故选A. 北京理11.在等比数列{}n a 中,若112a =,44a =-,则公比q =________;12||||||n a a a +++= ________.【解析】112a =,442a q =-⇒=-,{||}n a 是以12为首项,以2为公比的等比数列,1121||||||22n n a a a -+++=- 。
数列极限知识点归纳总结
数列极限知识点归纳总结数列是数学中的一个重要概念,由一系列有序的数字组成。
数列极限是数列在无穷项处的趋势或趋近的值。
在数学分析中,数列极限是一个基本的概念,具有广泛的应用。
本文将对数列极限的相关知识进行归纳总结,并以此为标题。
一、数列的定义和性质1. 数列的定义:数列是按照一定的规律排列的一系列数字。
2. 数列的通项公式:数列中的每一项可以用一个公式来表示,这个公式称为数列的通项公式。
3. 数列的性质:数列可以是有界的或无界的,可以是递增的或递减的,还可以是周期性的或非周期性的。
二、数列的极限1. 数列的极限定义:对于一个数列,如果随着项数的增加,数列中的元素逐渐接近一个确定的值,那么这个确定的值就是数列的极限。
2. 数列极限的表示:数列极限常用符号lim表示,写作lim(an)=a,其中an为数列的第n项,a为数列的极限。
3. 数列极限的存在性:数列的极限可能存在,也可能不存在。
如果数列极限存在,则称数列收敛;如果数列极限不存在,则称数列发散。
三、数列极限的计算方法1. 直接计算法:对于一些简单的数列,可以通过对数列的通项公式进行计算,得到数列的极限。
2. 套路法:对于一些特殊的数列,可以利用一些已知的极限结果和数列运算的性质,通过一些套路求得数列的极限。
3. 夹逼准则:对于一些复杂的数列,可以通过夹逼准则来求得数列的极限。
夹逼准则指的是如果数列a(n)≤b(n)≤c(n),且lim(a(n))=lim(c(n))=a,那么lim(b(n))=a。
四、数列极限的性质1. 唯一性:如果数列极限存在,则极限值唯一。
2. 保号性:如果数列的极限为正数(负数),那么数列的项数足够大时,数列的元素大于(小于)零。
3. 有界性:如果数列的极限存在,则数列有界。
五、数列极限的应用1. 函数极限:函数极限是数列极限的推广,通过将自变量取为数列,将函数值作为数列的项,就可以研究函数的极限。
2. 数列极限在微积分中的应用:数列极限在微积分中有广泛的应用,如计算导数、积分等。
高考数学中的数列与数学归纳法题解技巧
高考数学中的数列与数学归纳法题解技巧数列和数学归纳法是高考数学中的重要考点,掌握相关解题技巧对于提高数学成绩至关重要。
本文将介绍高考数学中的数列和数学归纳法题解技巧,帮助考生更好地应对考试。
一、数列的基本概念和性质数列是由一系列按照一定规律排列的数所组成的序列。
在高考数学中,常见的数列有等差数列、等比数列和等差中项数列。
掌握数列的基本概念和性质是解题的基础。
以等差数列为例,设数列的首项为a₁,公差为d,第n项为aₙ,则有公式:aₙ = a₁ + (n - 1)d通过这一公式,我们可以求得数列的任意一项的值。
同时,还需了解等差数列的前n项和公式:Sₙ = (a₁ + aₙ) × n/2此外,还需掌握等比数列的通项公式和前n项和公式,以及等差中项的计算方法等相关性质。
二、数学归纳法的基本原理数学归纳法是解决数列相关问题常用的数学推理方法,也是高考数学中常见的一种解题技巧。
掌握数学归纳法的基本原理对于解题至关重要。
数学归纳法的基本原理分为三步:1. 验证基本情况:证明当n取某个特定值时命题成立。
2. 假设成立:假设当n=k时命题成立,即前k项满足题设条件。
3. 推理步骤:利用假设成立和题设条件推导出n=k+1时,命题也成立。
通过以上步骤,我们可以得出命题对于一切自然数n都成立的结论。
三、数列与数学归纳法的综合应用在高考数学中,数列和数学归纳法常常结合使用,解决一些复杂的问题。
以下是一个综合应用的示例题目:【例】设数列{an}满足an = 2^n - 1,证明aₙ > n,其中n为自然数。
解析:我们通过数学归纳法来解决这道题目。
(1)验证基本情况:当n=1时,a₁ = 2¹ - 1 = 1 > 1,基本条件成立。
(2)假设成立:假设当n=k时命题成立,即aₙ > k。
(3)推理步骤:当n=k+1时,aₙ₊₁ = 2^(k+1) - 1 = 2 × 2^k - 1 = 2 × (2^k - 1) + 1根据假设成立的条件,aₙ > k,我们可以得到aₙ₊₁ > 2k + 1 > k + 1所以,通过数学归纳法可知,数列{an}满足an = 2^n - 1时,aₙ > n,命题成立。
02高三二轮复习-数学归纳法、极限-教师版
数学归纳法、数列极限1、知识点分布:1.用数学归纳法证明命题的步骤为:(1)验证当n 取第一个值0n 时命题成立,这是推理的基础;(2)假设当n=k ),(0*n k N k ≥∈时命题成立.在此假设下,证明当1+=k n 时命题也成立是推理的依据; (3)结论.2.探索性问题在数学归纳法中的应用(思维方式): 观察⇒归纳⇒猜想⇒推理⇒论证.3.注意:(1)用数学归纳法证明问题时首先要验证0n n =时成立,注意0n 不一定为1; (2)在第二步中,关键是要正确合理地运用归纳假设,尤其要弄清由k 到k+1时命题的变化2、考纲考点分析:理解水平:数列、项、通项、有穷、无穷、递增数列、递减数列、摆动数列、常数列 探究水平:通项、前N 项和公式,简单递推数列问题,数列四则运算,无穷等比数列求和,数学归纳法证明整除问题,猜想、推理能力1、用数学归纳法证明22>n n ,5n N n ∈≥,则第一步应验证n = . 【参考答案】n =5(注:跟学生说明0n 不一定都是1或2,要看题目)2、设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”. 那么,下列命题总成立的是( )A .若1)1(<f 成立,则100)10(<f 成立;B .若4)2(<f 成立,则1)1(<f 成立;C .若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立;D .若(4)25f ≥成立,则当4k ≥时,均有2()f k k ≥成立. 【参考答案】B3、用数学归纳法证明命题:若n 是大于1的自然数,求证:n n <-++++12131211 ,从k 到+1k ,不等式左边添加的项的项数为 .【参考答案】当k n =时,左边为1214131211-+++++k . 当1+=k n 时,左边为1212211212112141312111-+++++++-++++++k k k k k .左边需要添的项为121221121211-+++++++k k kk ,项数为k k k 212121=+--+. 4、等式22222574123 (2)n n n -+++++=( ).A. n 为任何正整数时都成立B. 仅n =1,2,3时成立C. n =4时成立,n =5时不成立D. n =4时不成立,其他成立. 答案:B5、已知某个命题与正整数有关,如果当)(*N k k n ∈=时该命题成立,那么可以推得1+=k n 时该命题也成立.现已知5=n 时该命题不成立,则( ) A 4=n 时该命题成立 B 6=n 时该命题不成立C 4=n 时该命题不成立D 6=n 时该命题成立答案:C6、用数学归纳法证明2n >n 2(n ∈N,n ≥5),则第一步应验证n= ; 答案:57、(2015宝山一模理18文18)用数学归纳法证明等式1+3+5+…+(2n -1)=2n (n ∈*N )的过程中,第二步假设n =k 时等式成立,则当n =k +1时应得到( )A 、1+3+5+…+(2k +1)=2kB 、1+3+5+…+(2k +1)=2(1)k + C 、1+3+5+…+(2k +1)=2(2)k + D 、1+3+5+…+(2k +1)=2(3)k + 【答案】B8、用数学归纳法证明22111...(1)1n n a a a a a a++-++++=≠-,在验证1n =时,左端计算所得项为 . 答案:21a a ++9、若)(n f 为12+n 所表示的数字的各位数字之和,(n 为正整数),例如:因为1971142=+,17791=++,所以17)14(=f ,)()(1n f n f =,[])()(2n f f n f =, ,[])()(1n f f n f k k =+(k 为正整数),则)11(2010f =【参考答案】1110、利用数学归纳法证明“对任意偶数*()n n N ∈,n n a b -能被a b +整除”时,其第二步论证应该是 . 答案:若*2,n k k N =∈,有22k k a b -能被a b +整除,则22n k =+时,有2222k k a b ++-能被a b +整除11、用数学归纳法证明:*1111(,1)2321n n n N n +++⋅⋅⋅+<∈>-时, ,第一步验证不等式_________成立;在证明过程的第二步从n=k 到n=k+1成立时,左边增加的项数是 .答案:1122+<,k 212、数学归纳法证明:111111111......234212122n n n n n-+-++-=+++-++(*n N ∈)时,当n 从k 到1k +时等式左边增加的项为 ;等式右边增加的项为 . 答案:11111,212212122k k k k k --+++++++、13、凸n 边形内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+___________. 答案:180°14、观察下列式子:1+23212<,1+223121+<35,1+47413121222<++,…则可归纳出:___________. 答案:1+112)1(13121222++<++⋅⋅⋅++n n n15、观察以下等式:211=,22343++=,2345675++++=,……,将上述等式推广到一般情形:对n N *∈,有等式: . 【参考答案】2(1)(2)(32)(21)n n n n n ++++++-=-16、设*n N ∈,用()N n 表示n 的最大奇因数,如:()()33,105N N ==,设()()()()()123212n n n S N N N N N =++++-+,则数列{}()12n n S S n --≥的前n 项和的表达式为【参考答案】()()112112S N N =+=+=;()()()()2123411316S N N N N =+++=+++=;()()()312822S N N N =+++=;21324,16S S S S ∴-=-=,由归纳法可得:114n n n S S ---=,∴{}1n n S S --的前n 项和的表达式为:()()414441143n n-=-- 17、设f (n )=(1+)11()111)(1nn n n++⋅⋅⋅++,用数学归纳法证明f (n )≥3.在“假设n =k 时成立”后,f (k +1)与f (k )的关系是f (k +1)=f (k )·___________. 答案:(1+1)2211)(121+⋅+++k kk k18、若*111()1()2331f n n n =++++∈-N ,则对于*k ∈N ,(1)()f k f k +=+ 【分析】:分别代入n k =和1n k =+,规律看前面【解答】:令n k =,得111()12331f k k =++++-令1n k =+,得111111(1)1233133132f k k k k k +=+++++++-++111(1)()33132f k f k k k k ∴+-=++++ 答案:11133132k k k ++++ 19、用数学归纳法证明等式“123+++…()()(21)121n n n ++=++(n N *∈)”时,从1n k n k ==+到时,等式左边需要增加的是____________。
数列、数列的极限与数学归纳法
一、复习策略本章内容是中学数学的重点之一,它既具有相对的独立性,又具有一定的综合性和灵活性,也是初等数学与高等数学的一个重要的衔接点,因而历来是高考的重点.高考对本章考查比较全面,等差、等比数列,数列的极限的考查几乎每年都不会遗漏.就近五年高考试卷平均计算,本章内容在文史类中分数占13%,理工类卷中分数占11%,由此可以看出数列这一章的重要性.本章在高考中常见的试题类型及命题趋势:(1)数列中与的关系一直是高考的热点,求数列的通项公式是最为常见的题目,要切实注意与的关系.关于递推公式,在《考试说明》中的考试要求是:“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,近几年命题严格按照《考试说明》,不要求较复杂由递推公式求通项问题.(2)探索性问题在数列中考查较多,试题没有给出结论,需要考生猜出或自己找出结论,然后给以证明.探索性问题对分析问题解决问题的能力有较高的要求.(3)等差、等比数列的基本知识必考.这类考题既有选择题,填空题,又有解答题;有容易题、中等题,也有难题.(4)求和问题也是常见的试题,等差数列、等比数列及可以转化为等差、等比数列求和问题应掌握,还应该掌握一些特殊数列的求和.(5)将数列应用题转化为等差、等比数列问题也是高考中的重点和热点,从本章在高考中所占的分值来看,一年比一年多,而且多注重能力的考查.通过上述分析,在学习中应着眼于教材的基本知识和方法,不要盲目扩大,应着重做好以下几方面:理解概念,熟练运算巧用性质,灵活自如二、典例剖析考点一:数列的通项与它的前n项和例1、只能被1和它本身整除的自然数(不包括1)叫做质数.41,43,47,53,61,71,83,97是一个由8个质数组成的数列,小王正确地写出了它的一个通项公式,并根据通项公式得出数列的后几项,发现它们也是质数.试写出一个数P满足小王得出的通项公式,但它不是质数,则P=__________.解析:,.显然当时有因数41,此时.答案:1681点评:本题主要考查了根据数列的前n项写数列的通项的能力.体现了根据数列的前n项写通项只能是满足前n项但不一定满足其所有的性质的特点.例2、已知等差数列中,,前10项之和是15,又记.(1)求的通项公式;(2)求;(3)求的最大值.(参考数据:ln2=0.6931)解析:(1)由,得,.(2).(3)法一:,,由ln2=0.6931,计算>0,<0,所以极大值点满足,但,所以只需比较与的大小:,.法二:数列的通项,令,.点评:求时,也可先求出,这要正确理解“”,其中应处在的表达式中的位置.例3、已知数列的首项,前项和为,且.(1)证明数列是等比数列;(2)令,求函数在点处的导数,并比较与的大小.解析:(1)由已知时,.两式相减,得,即,从而.当时,.又.从而.故总有.又.从而.即是以为首项,2为公比的等比数列.(2)由(1)知,.当n=1时,(*)式=0,;当n=2时,(*)式=-12<0,;当n≥3时,n-1>0.又,,即(*)式>0,从而.考点二:等差数列与等比数列例4、有n2(n≥4)个正数,排成n×n矩阵(n行n列的数表,如下图).其中每一行的数成等差数列,每一列的数成等比数列,并且所有的公比都相等,且满足:a24=1,a42=,a43=,(1)求公比q;(2)用k表示a4k;(3)求a11+a22+a33+…+a nn的值.分析:解答本题的关键首先是阅读理解,熟悉矩阵的排列规律,其次是灵活应用等差、等比数列的相关知识求解.解:(1)∵每一行的数列成等差数列,∴a42,a43,a44成等差数列,∴2a43= a42+a44,a44=;又每一列的数成等比数列,a44=a24·q2,a24=1,∴q2=,且a n>0,∴q=.(2)a4k= a42+(k-2)d=+(k-2)( a43-a42)=.(3)∵第k列的数成等比数列,∴a kk= a4k·q k-4=·()k-4= k·()k (k=1,2,…,n).记a11+a22+a33+…+a nn=S n,则S n=+2·()2+3·()2+…+n·()n,S n=()2+2·()3+…+(n-1) ()n+n()n+1,两式相减,得S n=+()2+…+()n-n()n+1=1-,∴S n=2-,即a11+a22+a33+…+a nn=2-.例5、已知分别是轴,轴方向上的单位向量,且(n=2,3,4,…),在射线上从下到上依次有点,且=(n=2,3,4,…).(1)求;(2)求;(3)求四边形面积的最大值.解析:(1)由已知,得,(2)由(1)知,.且均在射线上,..(3)四边形的面积为.又的底边上的高为.又到直线的距离为.,而,.点评:本题将向量、解析几何与等差、等比数列有机的结合,体现了在知识交汇点设题的命题原则.其中割补法是解决四边形面积的常用方法.考点三:数列的极限例6、给定抛物线,过原点作斜率为1的直线交抛物线于点,其次过作斜率为的直线与抛物线交于.过作斜率为的直线与抛物线交于,由此方法确定:一般地说,过作斜率为的直线与抛物线交于点.设的坐标为,试求,再试问:点,…向哪一点无限接近?解析:∵、都位于抛物线上,从而它们的坐标分别为,∴直线的斜率为,于是,即,.因此,数列是首项为,公比的等比数列.又,,因此点列向点无限接近.点评:本例考查极限的计算在几何图形变化中的应用,求解问题的关键是要利用图形的变化发现点运动的规律,从而便于求出极限值来.例7、已知点满足:对任意的,.又已知.(1)求过点的直线的方程;(2)证明点在直线上;(3)求点的极限位置.解析:(1),,则.化简得,即直线的方程为.(2)已知在直线上,假设在直线上,则有,此时,也在直线上.∴点在直线上.(3),即构成等差数列,公差,首项,,故...故的极限位置为(0,1).考点四:数学归纳法例8、设是满足不等式的自然数的个数.(1)求的解析式;(2)设,求的解析式;(3),试比较与的大小.解析:先由条件解关于的不等式,从而求出.(1)即得.(2).(3).n=1时,21-12>0;=2时,22-22=0;n=3时,23-32<0;n=4时,24-42=0;n=5时,25-52>0;n=6时,26-62>0.猜想:n≥5时,,下面对n≥5时2n>n2用数学归纳法证明:(i)当n=5时,已证25>52.(ii)假设时,,那么..,即当时不等式也成立.根据(i)和(ii)时,对,n≥5,2n>n2,即.综上,n=1或n≥5时,n=2或n=4时时.点评:这是一道较好的难度不太大的题,它考查了对数、不等式的解法,数列求和及数学归纳法等知识.对培养学生综合分析问题的能力有一定作用.例9、已知数列中,,.(1)求的通项公式;(2)若数列中,,,证明:,.解:(1)由题设:,.所以,数列是首项为,公比为的等比数列,,即的通项公式为,.(2)用数学归纳法证明.(ⅰ)当时,因,,所以,结论成立.(ⅱ)假设当时,结论成立,即,也即.当时,,又,所以.也就是说,当时,结论成立.根据(ⅰ)和(ⅱ)知,.考点五:数列的应用例10、李先生因病到医院求医,医生给他开了处方药(片剂),要求每12小时服一片,已知该药片每片220毫克,他的肾脏每12小时排出这种药的60%,并且如果这种药在体内残留量超过386毫克,将会产生副作用,请问:李先生第一天上午8时第一次服药,则第二天早上8时服完药时,药在他体内的残留量是多少毫克?如果李先生坚持长期服用此药,会不会产生副作用?为什么?解:(1)设第次服药后,药在他体内残留量为毫克,依题意,故第二天早上8时第三次服完药时,药在他体内的残留量是343.2毫克.(2)由,,.故长期服用此药不会产生副作用.例11、(07安徽高考)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n 年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,……,以T n表示到第n年末所累计的储备金总额。
SXA277高考数学必修_数列、极限和数学归纳法
数列、极限和数学归纳法一、基础篇一、考试内容1.数列,等差数列及其通项公式,等差数列前n项和公式;等比数列及其通项公式,等比数列前n项和公式。
对数列的考查,客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式,对基本的计算技能要求比较高,解答题大多以考查数列,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.数列推理题是新出现的命题热点.2.数列的极限及其四则运算。
数列极限是高等数学在高考中的应用,高考命题对其要求不高,仅要求会利用四则运算法则求得极限即可.3.数学归纳法及其应用。
数学归纳法作为一种重要的推理方法,是高考重点考查内容.极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具.二、考试要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项和。
2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能够应用这些知识解决一些问题。
3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能够运用这些知识解决一些问题。
4.了解数列极限的定义,掌握极限的四则运算法则,会求公比的绝对值小于1的无穷等比数列前n项和的极限。
5.了解数学归纳法的原理,并能用数学归纳法证明一些简单的问题。
三、考点简析1.数列及相关知识关系表2.内容与意义分析(1)数列是函数概念的继续和延伸,对于等差数列而言,可以把它看作自然数n的“一次函数”,前n 项和是自然数n 的“二次函数”。
等比数列可看作自然数n 的“指数函数”。
应用等差等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的.(2)数列的极限这部分知识的学习,教给了学生“求极限”这一数学思路,为学习高等数学作好准备。
(3)数学归纳法是一种数学论证方法,同时又是一种数学思想。
数列、极限、数学归纳法(下)
【例题解析】例1 完成下列各选择题(1)“公差为0的等差数列是等比数列”;“公比为21的等比数列一定是递减数列”;“a,b,c三数成等比数列的充要条件是b 2=ac ”;“a,b,c 三数成等差数列的充要条件是2b=a+c ”,以上四个命题中,正确的有( ) A.1个 B.2个C.3个D.4个(2)命题1:若数列{a n }的前n 项和S n =a n +b(a ≠1),则数列{a n }是等比数列; 命题2:若数列{a n }的前n 项和S n =an 2+bn+c(a ≠0),则数列{a n }是等差数列; 命题3:若数列{a n }的前n 项和S n =na -n ,则数列{a n }既是等差数列,又是等比数列;上述三个命题中,真命题有( ) A.0个 B.1个C.2个D.3个(3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A.1 B.2 C.4 D.6 解析 (1)四个命题中只有最后一个是真命题。
命题1中未考虑各项都为0的等差数列不是等比数列; 命题2中可知a n+1=a n ×21,a n+1<a n 未必成立,当首项a 1<0时,a n <0,则21a n >a n ,即a n+1>a n ,此时该数列为递增数列;命题3中,若a=b=0,c ∈R ,此时有ac b =2,但数列a,b,c 不是等比数列,所以应是必要而不充分条件,若将条件改为b=ac ,则成为不必要也不充分条件。
(2)上述三个命题均涉及到S n 与a n 的关系,它们是a n =⎩⎨⎧--,11n nS S a 时当时当21≥=n n正确判断数列{a n }是等差数列或等比数列,都必须用上述关系式,尤其注意首项与其他各项的关系。
上述三个命题都不是真命题,选择A 。
由命题1得,a 1=a+b ,当n ≥2时,a n =S n -S n -1=(a -1)·a n -1。
高三数学 特殊数列求和、数列极限的意义及运算、数列极限的应用、数学归纳法、归纳猜想、证明 知识精讲
高三数学 特殊数列求和、数列极限的意义及运算、数列极限的应用、数学归纳法、归纳猜想、证明知识精讲一. 特殊数列求和:1. 概念:这里所指的“特殊数列”是指中学阶段能够求和的数列,包括:等差、等比数列,常数列,自然数列,自然数的平方数列,自然数的立方数列,项部分相消数列等。
数列求和,就是通过一些手段将数列转化为上述这些特殊数列而达到求和的目的。
2. 常用求和公式(1)等差:S n a a na n n d n n =+=+-()()11212(2)等比:S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()() (3)i n n i n =∑=+1121() (4)i n n n i n 211216=∑=++()() (5)i n n i n 31212=∑=+[()] 3. 常见数列求和的方法大致有五种如:直接由求和公式求和(如等差、等比数列的求和),裂项分组求和,裂项相消求和,错位相减求和,倒序相加求和。
(1)在求等比数列前n 项和S n 时,一定要注意分清公比q =1还是q ≠1;(2)裂项法的关键是研究通项公式,裂项的目的是转化成几个等差或等比数列或自然数的平方组成的数列求和,或者正、负相消;(3)错位相减法求和,主要用于一个等差与一个等比数列相应项相乘所得的数列求和;(4)含有组合数的数列求和,注意考虑利用组合数的性质公式求和或利用倒序相加求和;(5)三角函数求和考虑裂项相消求和或利用复数转化为等比数列求和;学习时,还要注意归纳总结一些常见类型的数列求和方法。
二. 数列极限的意义及运算1. 数列极限的概念对于数列{}a n ,如果存在一个常数A ,无论预先指定多么小的正整ε都能在数列中找到一项a N 使得这一项后面的所有项a n 与A 的差的绝对值都小于ε,(即当n N >时,恒有||a A n -<ε成立),就把常数A 叫做数列{}a n 的极限,记作:lim n n a A →∞=。
数列极限数学归纳法知识点总结
数列极限数学归纳法知识点总结数列是数学中常见的一种数学对象,它由一系列有序的数字组成。
数列极限是数列中最重要的概念之一,描述了数列中随着项数增加而逐渐趋近于某个值的性质。
在数列的研究中,数学归纳法也是一种经常被使用的证明方法。
本文将对数列极限和数学归纳法的知识点进行总结。
一、数列极限的定义和性质1. 定义:给定一个数列{an},当其中的项数n趋近于无穷大时,如果数列的项an也趋近于一个确定的值A,则称数列{an}收敛于A,记作lim(an)=A。
如果数列{an}不存在极限,则称数列{an}发散。
2. 性质:a. 数列极限唯一性:数列的极限值是唯一的,也就是说,如果数列{an}的极限lim(an)存在,则其极限值A是唯一确定的。
b. 夹逼准则:如果数列{an}的每一项都满足a<=an<=b,且lim(a)=lim(b)=L,那么数列{an}的极限lim(an)=L。
c. 有限项数列的极限:一个有限项的数列必定收敛,并且其极限等于最后一项的值。
二、常用的数列极限类型1. 等差数列的极限:对于等差数列{an},它的公差为d,那么当n趋近于无穷大时,数列{an}的极限为lim(an)=a1,即等差数列的极限等于首项的值。
2. 等比数列的极限:对于等比数列{an},它的公比为q,那么当|q|<1时,数列{an}的极限为lim(an)=0;当|q|>1时,数列{an}的极限不存在;当q=-1时,数列{an}的极限在-1和1之间取值;当q=1时,数列{an}的极限为1。
3. 斐波那契数列的极限:斐波那契数列是指以0和1开始,从第三项开始,每一项都等于前两项之和的数列。
斐波那契数列的极限是黄金分割比:lim(an/an-1)=1.618...。
三、数学归纳法的应用数学归纳法是一种常用的证明方法,用于证明与自然数有关的命题。
它由归纳基和归纳步两部分组成,具体步骤如下:1. 归纳基:首先证明当n取某个特定值时,命题成立。
高考数学一轮总复习数列与数列极限的数学归纳法证明步骤
高考数学一轮总复习数列与数列极限的数学归纳法证明步骤高考数学一轮总复习:数列与数列极限的数学归纳法证明步骤数列与数列极限是高中数学中的重要概念,在高考数学考试中也是常见的考点。
本文将介绍数学归纳法证明数列与数列极限的步骤及其应用。
在解题过程中,我们将以具体的例子进行说明,以帮助读者更好地理解和掌握这一重要的数学方法。
一、数学归纳法的基本思想数学归纳法是一种基于数学归纳思想的证明方法,常用于证明一般性陈述在自然数集上成立。
使用数学归纳法证明一个命题通常分为三个步骤:1. 证明基本情况:首先证明当 n 取一个特定的值时,命题成立。
这一步又称为“递归起点”。
2. 归纳假设:假设当 n=k 时,命题成立,即假设命题对于某个特定的自然数 k 成立。
3. 归纳步骤:通过归纳假设证明当 n=k+1 时,命题也成立。
这一步又称为“递归关系”。
二、数列定义与数列极限的概念在进行数学归纳法证明数列与数列极限之前,我们先来回顾一下数列的定义及数列极限的概念。
数列是将自然数与实数联系起来的一种函数关系。
通常用 {an} 或者 (an) 表示一个数列,其中 an 表示数列的第 n 个元素。
数列极限是指数列随着 n 趋向无穷大时的极限值。
当数列随着 n 的增大无限逼近某个实数 L 时,就称数列 {an} 的极限为 L,记作 lim an = L。
三、数学归纳法证明数列与数列极限的步骤下面我们将以一个具体的例子来说明如何使用数学归纳法证明数列与数列极限。
【例】证明数列 {an} = 2^n + 1 是递增数列。
解:首先,我们先验证 n=1 时数列成立。
当 n=1 时,a1 = 2^1 + 1 = 3。
根据数列的定义,可以得出 a1 = 3,所以当 n=1 时,数列成立。
这就是我们要证明的基本情况。
接下来,我们假设当 n=k 时数列成立,即 ak < ak+1。
这个假设就是我们的归纳假设。
现在我们来证明当 n=k+1 时数列也成立,即证明 ak+1 < ak+2。
高三数学数列、极限、数学归纳法
学科:数学教学内容:数列、极限、数学归纳法一、考纲要求 1.掌握:①掌握等差数列、等比数列的概念、通项公式、前n 项和公式; ②能够运用这些知识解决一些实际问题; ③掌握极限的四则运算法则. 2.理解:①数列的有关概念;②能根据递推公式算出数列的前几项;③会求公比的绝对值小于1的无穷等比数列前n 项和的极限. 3.了解:①了解递推公式是给出数列的一种方法; ②了解数列极限的意义;③了解数学归纳法的原理;并能用数学归纳法证明一些简单问题.二、知识结构(一)数列的一般概念数列可以看作以自然数集(或它的子集)为其定义域的函数;因此可用函数的观点认识数列;用研究函数的方法来研究数列。
数列表示法有:列表法、图像法、解析法、递推法等。
列表法:就是把数列写成a 1,a 2,a 3……a n ……或简写成{a n };其中a n 表示数列第n 项的数值;n 就是它的项数;即a n 是n 的函数。
解析法:如果数列的第n 项能用项数n 的函数式表示为a n =f(n);这种表示法就是解析法;这个解析式叫做数列的通项公式。
图像法:在直角坐标系中;数列可以用一群分散的孤立的点来表示;其中每一个点(n,a n ) 的横坐标n 表示项数;纵坐标a n 表示该项的值。
用图像法可以直观的把数列a n 与n 的函数关系表示出来。
递推法:数列可以用两个条件结合起来的方法来表示:①给出数列的一项或几项。
②给出数列中用前面的项来表示后面的项的表达公式;这是数列的又一种解析法表示;称为递推法。
例如:数列2;4;5;529;145941…递推法表示为⎪⎩⎪⎨⎧∈+==+)(4211N n a a a a nn n ;其中a n+1=a n +n a 4又称为该数列的递推公式。
由数列项数的有限和无限来分数列包括穷数列和无穷数列。
由数列项与项之间的大小关系来分数列包括递增数列、递减数列、摆动数列以及常数列。
由数列各项绝对值的取值范围来分数列包括有界数列和无界数列。
高考数学中的数学归纳法和数列极限
高考数学中的数学归纳法和数列极限高考数学是考生们最关注的一门考试科目,其中数学归纳法和数列极限是高考数学中不可忽视的重点内容。
本文将从数学归纳法的基本原理及应用,数列极限的概念、性质和计算方法等多个方面进行分析和探讨,以期对广大高中生的数学学习有所帮助。
一、数学归纳法数学归纳法是高中数学中重要的证明方法。
归纳法的基本思想是证明当$x$满足某种条件时,命题$P(x)$成立,再证明当$x$不满足该条件时,命题$P(x)$依然成立。
下面介绍具体的数学归纳法思想及其应用。
1.1 数学归纳法的基本思想数学归纳法是一种用自然数的递增法证明表达式的方法。
它的基本思想是先证明当$n=1$时,命题成立,再证明当$n=k$时命题成立,则可以证明当$n=k+1$时也成立。
用公式表示为:如果$P(1)$成立且对于任意正整数$k$,只要$P(k)$成立,就有$P(k+1)$成立,那么对于所有正整数,$P(n)$都成立。
1.2 数学归纳法的应用数学归纳法广泛应用于高中数学中的数列、函数、不等式等问题的证明中,也是高考数学中的常见命题证明方法。
常见的应用如下:(1)证明数列性质:证明数列$a_{n+1}=f(a_n)$,$a_1$满足某些条件,则$a_n$满足某些性质。
(2)证明不等式:证明某个不等式在正整数范围内成立。
(3)证明等式:证明某个等式在正整数范围内成立。
二、数列极限数列极限是高中数学中的重要概念之一。
它是计算机科学、物理学、工程学等学科中的基础知识。
下面将从基本概念、性质和计算方法三个方面对数列极限进行分析和探讨。
2.1 基本概念数列极限是数学分析中用来描述数列等无限序列的一种重要概念。
常用的数列有等差数列、等比数列、Fibonacci数列等。
一个数列的极限是指随着$n$无限增大,数列的值逐渐接近某个值,称为这个数列的极限。
用数学符号表示为:$\lim\limits_{n\to\infty}{a_n}=a$,表示当$n$趋近于无穷大时,数列$a_n$的极限为$a$。
【高中数学】数列的应用问题数列的极限和数学归纳法
【高中数学】数列的应用问题数列的极限和数学归纳法【高中数学】数列的应用问题、数列的极限和数学归纳法一、课程内容:数列的应用问题、数列的极限和归纳法二、教学要求:1.了解数列的一般应用问题,理解“复制”的概念及相关的应用问题,能建立较典型问题的数学模型。
2.了解序列极限的概念,掌握极限的四种算法,能够找到某个序列的极限。
3.理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
三串通1.零存整取和按揭贷款问题(见例题选讲)2.序列极限的概念3.常用的极限4.序列极限算法:5.无穷递缩等比数列的各项和{an}是一个等距序列,如果Q<1,{an}是一个无限递归等距序列。
6.求数列极限的常用① 求分子和分母都包含关于n的代数公式或指数公式的数列的极限。
将分子和分母除以分母的最高幂(即无穷小除法),然后求极限。
②利用有理化因子变形;③ 求和的极限时,一般先求和,再求极限;⑤求含有参数的式子的极限时,注意对参数的值进行分类讨论,分别确定极限是否存在,若存在求出值。
7.数学归纳法数学归纳法是一种证明与自然数n有关的数学命题的证明方法。
(1)数学归纳的步骤:(三步)①验证n取第一个值n0时命题f(n0)正确。
(是递推基础);② 假设命题f(k)在n=k(k)时是正确的∈ n、K≥ 证明了当n=K+1时命题f(K+1)也是正确的。
(这是递归的基础);③由①、②可知对任意n≥n0命题f(n)都正确。
(结论)。
(2)当用数学归纳法证明命题f(n)时,困难在于第二步。
也就是说,假设n=k,f(k)为真。
当n=K+1时,f(K+1)也是真的。
推导中必须使用“归纳假设”,这一步证明“结构相同”。
如:用数学归纳法证明这个等式成立。
则n=k+1时(与K的结构相同)∴当n=k+1时,等式也成立。
解决方案:前几项通过递归公式计算再用数学归纳法证明:…[典型示例]例1.零存整取和按揭贷款问题(1)利息计算:①单利:每期都按初始本金计算利息,当期利息不计入下期本金。
数列的极限数学归纳法
数列的极限、数学归纳法一、知识要点 (一) 数列的极限1.定义:对于无穷数列{a n },若存在一个常数A ,无论预选指定多么小的正数ε,都能在数列中找到一项a N ,使得当n>N 时,|an-A|<ε恒成立,则称常数A 为数列{a n }的极限,记作A a n n =∞→lim .2.运算法则:若lim n n a →∞、lim n n b →∞存在,则有lim()lim lim n n n n n n n a b a b →∞→∞→∞±=±;lim()lim lim n n n n n n n a b a b →∞→∞→∞⋅=⋅)0lim (lim lim lim ≠=∞→∞→∞→∞→n n n n nn nn n b b a b a 3.两种基本类型的极限:<1> S=⎪⎩⎪⎨⎧-=>=<=∞→)11()1(1)1(0lim a a a a a n n 或不存在 <2>设()f n 、()g n 分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为p a 、p b 且)(0)(N n n g ∈≠,则⎪⎪⎩⎪⎪⎨⎧>=<=∞→)()()(0)()(lim q p q p b a q p n g n f qpn 不存在4.无穷递缩等比数列的所有项和公式:11a S q=- (|q|<1) 无穷数列{a n }的所有项和:lim n n S S →∞= (当lim n n S →∞存在时)(二)数学归纳法数学归纳法是证明与自然数n 有关命题的一种常用方法,其证题步骤为: ①验证命题对于第一个自然数0n n = 成立。
②假设命题对n=k(k ≥0n )时成立,证明n=k+1时命题也成立. 则由①②,对于一切n ≥ 0n 的自然数,命题都成立。
二、例题(数学的极限)例1.(1)∞→n lim 112322+++n n n = ;(2)数列{a n }和{b n }都是公差不为0的等差数列,且n n n b a ∞→lim=3,则122lim nn na a a nb →∞+++=(3)∞→n lim nn a a +-+211(a>1)= ;(4)2221321lim()111n n n n n →∞-++++++= ;(5))2(lim 2n n n n -+∞→= ;(6)等比数列{a n }的公比为q =─1/3,则nnn a a a a a a 24221lim++++++∞→ = ;例2.将无限循环小数••21.0;1.32••21化为分数.例3.已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值; 例4.数列{a n },{b n }满足∞→n lim (2a n +b n )=1, ∞→n lim (a n ─2b n )=1,试判断数列{a n },{b n }的极限是否存在,说明理由并求∞→n lim (a n b n )的值.例5.设首项为a ,公差为d 的等差数列前n 项的和为A n ,又首项为a,公比为r 的等比数列前n 项和为G n ,其中a ≠0,|r|<1.令S n =G 1+G 2+…+G n ,若有lim()n n n A S n→∞-=a,求r 的值.例6.设首项为1,公比为q(q>0)的等比数列的前n 项之和为S n ,又设T n =1(1,2,)n n S n S +=,求n n T ∞→lim .例7.{a n }的相邻两项a n ,a n+1是方程x 2─c n x+n )31(=0的两根,又a 1=2,求无穷等比c 1,c 2,…c n , …的各项和.例8.在半径为R 的圆内作内接正方形,在这个正方形内作内切圆,又在圆内作内接正方形,如此无限次地作下去,试分别求所有圆的面积总和与所有正方形的面积总和。
数列的极限数学归纳法
数列的极限、数学归纳法、知识要点 (一) 数列的极限列中找到一项 aN,使得当n>N 时,|an-A|< 恒成立,则称常数 A 为数列{a n }的极限,记作lim a n A .n2.运算法则:若lim a n 、lim b n 存在,则有lim(a n b n )lim a n lim ;lim( a n b n ) lim a n lim b nnnnnn na lim a nlim —— , (lim b n 0)nb n lim b n nn(a1)3.两种基本类型的极限<1> S= lima nn1(a 1)不存在(a诚a<2>设f (n)、g(n)分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为 a p 、0 (p q)b p 且 g( n) 0(n N),则 limng(n )(二)数学归纳法①验证命题对于第一个自然数 n n 0成立。
②假设命题对 n=k(k > n o )时成立,证明n=k+1时命题也成立 则由①②,对于一切n > n o的自然数,命题都成立。
、例题(数学的极限)1.定义:对于无穷数列{a n },若存在一个常数 A,无论预选指定多么小的正数 ,都能在数 4.无穷递缩等比数列的所有项和公式:S「q E )无穷数列{a n }的所有项和: a p- (p q) b q 不存在 (p q)S lim S n (当 lim S n 存在时)nn数学归纳法是证明与自然数 n 有关命题的一种常用方法,其证题步骤为:(4) lim( J-3Lnn 1 n 1(5) lim G. n 2 2n n)=;n例2 •将无限循环小数 0.12 ; 1.32 12 化为分数.『1例3•已知lim(an b) 1,求实数a, b 的值;nn 1例 4•数列{a n },{b n }满足 lim (2a n +b n )=1,lim (a n — 2tn)=1,试判断数列{a n },{b n }的极限是否nn存在,说明理由并求lim (a n b n )的值.n例5.设首项为a ,公差为d 的等差数列前-项的和为A,又首项为a,公比为r 的等比数列S例6.设首项为1,公比为q(q>0)的等比数列的前 -项之和为S n ,又设T n =— (n 1,2,L ),S- 1求 lim T n .n21 例7. {a n }的相邻两项a n ,a n+1是方程x —c -X +(—)n =0的两根,又a 1=2,求无穷等比C 1 ,c 2, (3)C n ,…的各项和.例8在半径为R 的圆内作内接正方形, 在这个正方形内作内切圆, 又在圆内作内接正方形,如此无限次地作下去,试分别求所有圆的面积总和与所有正方形的面积总和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例题解析】例1 完成下列各选择题(1)“公差为0的等差数列是等比数列”;“公比为21的等比数列一定是递减数列”;“a,b,c 三数成等比数列的充要条件是b 2=ac ”;“a,b,c 三数成等差数列的充要条件是2b=a+c ”,以上四个命题中,正确的有( )A.1个B.2个C.3个D.4个(2)命题1:若数列{a n }的前n 项和S n =a n +b(a ≠1),则数列{a n }是等比数列;命题2:若数列{a n }的前n 项和S n =an 2+bn+c(a ≠0),则数列{a n }是等差数列;命题3:若数列{a n }的前n 项和S n =na -n ,则数列{a n }既是等差数列,又是等比数列;上述三个命题中,真命题有( )A.0个B.1个C.2个D.3个(3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A.1B.2C.4D.6解析 (1)四个命题中只有最后一个是真命题。
命题1中未考虑各项都为0的等差数列不是等比数列;命题2中可知a n+1=a n ×21,a n+1<a n 未必成立,当首项a 1<0时,a n <0,则21a n >a n ,即a n+1>a n ,此时该数列为递增数列;命题3中,若a=b=0,c ∈R ,此时有ac b =2,但数列a,b,c 不是等比数列,所以应是必要而不充分条件,若将条件改为b=ac ,则成为不必要也不充分条件。
(2)上述三个命题均涉及到S n 与a n 的关系,它们是a n =⎩⎨⎧--,11n nS S a 时当时当21≥=n n 正确判断数列{a n }是等差数列或等比数列,都必须用上述关系式,尤其注意首项与其他各项的关系。
上述三个命题都不是真命题,选择A 。
由命题1得,a 1=a+b ,当n ≥2时,a n =S n -S n -1=(a -1)·a n -1。
若{a n }是等比数列,则12a a =a ,即ba a a +-)1(=a ,所以只有当b=-1且a ≠0时,此数列才是等比数列。
由命题2得,a 1=a+b+c ,当n ≥2时,a n =S n -S n -1=2na+b -a ,若{a n }是等差数列,则a 2-a 1=2a ,即2a -c=2a ,所以只有当c=0时,数列{a n }才是等差数列。
由命题3得,a 1=a -1,当n ≥2时,a n =S n -S n -1=a -1,显然{a n }是一个常数列,即公差为0的等差数列,因此只有当a -1≠0;即a ≠1时数列{a n }才又是等比数列。
(3)方程法:设{a n }的首项为a 1,公差为d 。
则⎩⎨⎧=++=+48)2)((12331111d a d a a d a 解之得⎩⎨⎧==221a d 或⎩⎨⎧=-=621a d 又∵{a n }是递增数列,∴d>0故a 1=2。
习惯上可设前三项分别为4-d,4,4+d 由4(4-d)(4+d)=48解得。
估值法:由2+4+6=12,48=2×4×6,{a n }为递增数列可知a 1=2。
例2在数列{a n }中,a 1=b(b ≠0),前n 项和S n 构成公比为q 的等比数列。
(1)求证:数列{a n }不是等比数列;(2)设b n =a 1S 1+a 2S 2+…+a n S n ,|q|<1,求∞→n lim b n 。
解 (1)证明:由已知S 1=a 1=b∵{S n }成等比数列,且公比为q 。
∴S n =bq n -1,∴S n -1=b ·q n -2(n ≥2)。
当n ≥2时,a n =S n -S n -1=bq n -1-bq n -2=b ·(q -1)·q n-2故当q ≠1时,n n a a 1+=2)1()1()1(--⋅-⋅⋅-n n q q b q q b =q , 而12a a =b q b )1(-⋅=q -1≠q ,∴{a n }不是等比数列。
当q=1,n ≥2时,a n =0,所以{a n }也不是等比数列。
综上所述,{a n }不是等比数列。
(2)∵|q|<1,由(1)知n ≥2,a 2,a 3,a 4,…,a n 构成公比为q 的等比数列,∴a 2S 2,a 3S 3,…,a n S n 是公比为q 2的等比数列。
∴b n =b 2+a 2S 2·(1+q 2+q 4+…+q 2n -4)∵S 2=bq,a 2=S 2-S 1=bq -b∴a 2S 2=b 2q(q -1)∴b n =b 2+b 2q(q -1)·22211q q n --- ∵|q|<1∴∞→n lim q 2n -2=0 ∴∞→n lim b n =b 2+b 2q(q -1)·211q -=q b +12注 1+q 2+q 4+…+q 2n -4的最后一项及这个式子的项数很容易求错,故解此类题时要细心检验。
数列的极限与数列前n 项和以及其他任何有限多个项无关,它取决于n →∞时,数列变化的趋势。
例3 已知数列{x n }的各项为不等于1的正数,其前n 项和为S n ,点P n 的坐标为(x n ,S n ),若所有这样的点P n (n=1,2,…)都在斜率为k 的同一直线(常数k ≠0,1)上。
(1)求证:数列{x n }是等比数列;(2)设y n =log n x (2a 2-3a+1)满足y s =121+t ,y t =121+s (s,t ∈N ,且s ≠t ) 共中a 为常数,且1<a<23,试判断,是否存在自然数M ,使当n>M 时,x n >1恒成立?若存在,求出相应的M ;若不存在,请说明理由。
证明 (1)∵点P n 、P n+1都在斜率为k 的直线上 ∴n n n n x x S S --++11=k ,即nn n x x x -++11=k 故 (k -1)x n+1=kx n∵k ≠0,x n+1≠1,x n ≠1 ∴n n x x 1+=1-k k =常数 ∴{x n }是公比为1-k k 的等比数列。
(2)答案是肯定的,即存在自然数M ,使当n>M 时,x n >1恒成立。
事实上,由1<a<23,得0<2a 2-3a+1<1 ∵y n =log n x (2a 2-3a+1) ∴ny 1= log )132(2+-a a x n 由(1)得{x n }是等比数列,设公比为q>0首项为x 1,则x n =x 1·q n -1(n ∈N) ∴ny 1=(n -1) log )132(2+-a a q+log )132(2+-a a x 1 令d=log )132(2+-a a q ,故得{n y 1}是以d 为公差的等差数列。
又∵s y 1=2t+1, ty 1=2s+1 ∴s y 1-ty 1=2(t -s) 即(s -1)d -(t -1)d=2(t -s)∴d=-2 故n y 1=sy 1+(n -s )·(-2)=2(t+s )-2n+1,(n ∈N )又∵x n =(2a 2-3a+1) n y 1 (n ∈N )∴要使x n >1恒成立,即须ny 1<0 ∴2(t+s)-2n+1<0,∴n>(t+s)+21,当M=t+s,n>M 时,我们有 ny 1<0恒成立, ∴当n>M=(t+s )时,x n =(2a 2-3a+1) n y 1>1恒成立。
(∵0<2a 2-3a+1<1)注 (1)点(x n ,S n )在一直线上是{x n }成等比数列的充要条件(其中公比q ≠1,斜率k ≠0,1)。
(2)如果数列{x n }各项是正数且成等比数列,则数列{log a x n }(a>0,a ≠1)成等差数列。
例4 在数列{a n }中a 1=1,当n ≥2时,a n ,S n ,S n -21成等比数列。
(1)求a 2,a 3,a 4并推出a n 的表达式;(2)用数学归纳法证明所得的结论;(3)求数列{a n }所有项的和。
解∵a n ,S n ,S n -21成等比数列 ∴S n 2=a n ·(S n -21)(n ≥2) (*) (1)把a 1=1,S 2=a 1+a 2=1+a 2代入(*)式得:a 2=-32 把a 1=1,a 2=-32,S 3=31+a 3代入(*)得:a 3=-152。
同理可得:a 4=-352 由此可以推出:a n =⎪⎩⎪⎨⎧>---=)1()12)(32(2)1(1n n n n (2)(i )当n=1,2,3,4时,由(*)知猜想成立。
(ii)假设n=k(k ≥2) 时,a k =-)12)(32(2--k k 成立。
故S k 2=-)12)(32(2--k k ·(S k -21) (2k -3)(2k -1)S k 2+2S k -1=0∴S k =121-k 或S k =321--k (舍去)由S k+12=a k+1·(S k+1-21)得 (S k +a k+1)2=a k+1·(a k+1+S k -21) ⇒2)12(1-k +a k+12+1221-+k a k =a k+12+121-+k a k -21a k+1 ⇒a k+1=〕〕〔〔1)1(23)1(22-+-+-k k 即n=k+1时,命题也成立。
由(i)(ii)可知,a n =⎪⎩⎪⎨⎧≥---=)2()12)(32(2)1(1n n n n 对一切n ∈N 成立。
(3)由(2)得数列前n 项的和S n =121-n 故所有项和S=∞→n lim S n =0 注 (1)本题综合了数列、数学归纳法、数列极限等基础知识,所采用的方法是归纳、猜想、证明,是数列中最常见的题型,也是高考热点。
(2)对于{a n }的通项还可以这样来求:∵S n 2=a n (S n -21) ∴S n 2=(S n -S n -1)(S n -21) ⇒ n S 1-11-n S =2,故{n S 1}是以{11S }为首项,21为公差的等差数列 故 n S 1=11S +2(n -1)=2n -1 S n =121-n ,a n =⎪⎩⎪⎨⎧≥---=)2()12)(32(2)1(1n n n n 对于含有a n ,S n 的关系式中,常将a n 用S n -S n -1(n ≥2)代(或S n+1-S n 用a n+1代),化成S n ,S n+1(或a n ,a n+1)的递归关系式。