实验三 贪心法的应用

合集下载

算法实验报告

算法实验报告

实验一分治与递归算法的应用一、实验目的1.掌握分治算法的基本思想(分-治-合)、技巧和效率分析方法。

2.熟练掌握用递归设计分治算法的基本步骤(基准与递归方程)。

3.学会利用分治算法解决实际问题。

二 . 实验内容金块问题老板有一袋金块(共n块,n是2的幂(n≥2)),最优秀的雇员得到其中最重的一块,最差的雇员得到其中最轻的一块。

假设有一台比较重量的仪器,希望用最少的比较次数找出最重和最轻的金块。

并对自己的程序进行复杂性分析。

三.问题分析:一般思路:假设袋中有n 个金块。

可以用函数M a x(程序1 - 3 1)通过n-1次比较找到最重的金块。

找到最重的金块后,可以从余下的n-1个金块中用类似法通过n-2次比较找出最轻的金块。

这样,比较的总次数为2n-3。

分治法:当n很小时,比如说,n≤2,识别出最重和最轻的金块,一次比较就足够了。

当n 较大时(n>2),第一步,把这袋金块平分成两个小袋A和B。

第二步,分别找出在A和B中最重和最轻的金块。

设A中最重和最轻的金块分别为HA 与LA,以此类推,B中最重和最轻的金块分别为HB 和LB。

第三步,通过比较HA 和HB,可以找到所有金块中最重的;通过比较LA 和LB,可以找到所有金块中最轻的。

在第二步中,若n>2,则递归地应用分而治之方法程序设计据上述步骤,可以得出程序1 4 - 1的非递归代码。

该程序用于寻找到数组w [ 0 : n - 1 ]中的最小数和最大数,若n < 1,则程序返回f a l s e,否则返回t r u e。

当n≥1时,程序1 4 - 1给M i n和M a x置初值以使w [ M i n ]是最小的重量,w [ M a x ]为最大的重量。

首先处理n≤1的情况。

若n>1且为奇数,第一个重量w [ 0 ]将成为最小值和最大值的候选值,因此将有偶,数个重量值w [ 1 : n - 1 ]参与f o r循环。

当n 是偶数时,首先将两个重量值放在for 循环外进行比较,较小和较大的重量值分别置为Min和Max,因此也有偶数个重量值w[2:n-1]参与for循环。

算法设计与分析的实验报告

算法设计与分析的实验报告

实验一递归与分治策略一、实验目的1.加深学生对分治法算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。

二、实验内容1、①设a[0:n-1]是已排好序的数组。

请写二分搜索算法,使得当搜索元素x不在数组中时,返回小于x的最大元素位置i和大于x的最小元素位置j。

当搜索元素在数组中时,i和j相同,均为x在数组中的位置。

②写出三分搜索法的程序。

三、实验要求(1)用分治法求解上面两个问题;(2)再选择自己熟悉的其它方法求解本问题;(3)上机实现所设计的所有算法;四、实验过程设计(算法设计过程)1、已知a[0:n-1]是一个已排好序的数组,可以采用折半查找(二分查找)算法。

如果搜索元素在数组中,则直接返回下表即可;否则比较搜索元素x与通过二分查找所得最终元素的大小,注意边界条件,从而计算出小于x的最大元素的位置i和大于x的最小元素位置j。

2、将n个元素分成大致相同的三部分,取在数组a的左三分之一部分中继续搜索x。

如果x>a[2(n-1)/3],则只需在数组a的右三分之一部分中继续搜索x。

上述两种情况不成立时,则在数组中间的三分之一部分中继续搜索x。

五、实验结果分析二分搜索法:三分搜索法:时间复杂性:二分搜索每次把搜索区域砍掉一半,很明显时间复杂度为O(log n)。

(n代表集合中元素的个数)三分搜索法:O(3log3n)空间复杂度:O(1)。

六、实验体会本次试验解决了二分查找和三分查找的问题,加深了对分治法的理解,收获很大,同时我也理解到学习算法是一个渐进的过程,算法可能一开始不是很好理解,但是只要多看几遍,只看是不够的还要动手分析一下,这样才能学好算法。

七、附录:(源代码)二分搜索法:#include<iostream.h>#include<stdio.h>int binarySearch(int a[],int x,int n){int left=0;int right=n-1;int i,j;while(left<=right){int middle=(left+right)/2;if(x==a[middle]){i=j=middle;return 1;}if(x>a[middle])left=middle+1;else right=middle-1;}i=right;j=left;return 0;}int main(){ int a[10]={0,1,2,3,4,5,6,7,8,9};int n=10;int x=9;if(binarySearch(a,x,n))cout<<"找到"<<endl;elsecout<<"找不到"<<endl;return 0;}实验二动态规划——求解最优问题一、实验目的1.加深学生对动态规划算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。

实验项目三 用蛮力法、动态规划法和贪心法求解背包问题

实验项目三  用蛮力法、动态规划法和贪心法求解背包问题

实验项目三 用蛮力法、动态规划法和贪心法求解0/1背包问题实验目的1、学会背包的数据结构的设计,针对不同的问题涉及到的对象的数据结构的设计也不同;2、对0-1背包问题的算法设计策略对比与分析。

实验内容:0/1背包问题是给定n 个重量为{w 1, w 2, … ,wn }、价值为{v 1, v 2, … ,vn }的物品和一个容量为C 的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中。

在0/1背包问题中,物品i 或者被装入背包,或者不被装入背包,设xi 表示物品i 装入背包的情况,则当xi =0时,表示物品i 没有被装入背包,xi =1时,表示物品i 被装入背包。

根据问题的要求,有如下约束条件和目标函数:于是,问题归结为寻找一个满足约束条件式1,并使目标函数式2达到最大的解向量X =(x 1, x 2, …, xn )。

背包的数据结构的设计:typedef struct object{int n;//物品的编号int w;//物品的重量int v;//物品的价值}wup;wup wp[N];//物品的数组,N 为物品的个数int c;//背包的总重量1、蛮力法蛮力法是一种简单直接的解决问题的方法,常常直接基于问题的描述和所涉及的概念定义。

蛮力法的关键是依次处理所有的元素。

用蛮力法解决0/1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。

所以蛮力法解0/1背包问题的关键是如何求n 个物品集合的所有子集,n 个物品的子集有2的n 次方个,用一个2的n 次方行n 列的数组保存生成的子集,以下是生成子集的算法:⎪⎩⎪⎨⎧≤≤∈≤∑=)1(}1,0{1n i x C x w i n i i i (式1)∑=ni i i x v 1max (式2)void force(int a[16][4])//蛮力法产生4个物品的子集{int i,j;int n=16;int m,t;for(i=0;i<16;i++){ t=i;for(j=3;j>=0;j--){m=t%2;a[i][j]=m;t=t/2;}}for(i=0;i<16;i++)//输出保存子集的二维数组{for(j=0;j<4;j++){printf("%d ",a[i][j]);}printf("\n");}}以下要依次判断每个子集的可行性,找出可行解:void panduan(int a[][4],int cw[])////判断每个子集的可行性,如果可行则计算其价值存入数组cw,不可行则存入0{int i,j;int n=16;int sw,sv;for(i=0;i<16;i++){sw=0;sv=0;for(j=0;j<4;j++){sw=sw+wp[j].w*a[i][j];sv=sv+wp[j].v*a[i][j];}if(sw<=c)cw[i]=sv;elsecw[i]=0;}在可行解中找出最优解,即找出可行解中满足目标函数的最优解。

算法实验报告贪心

算法实验报告贪心

一、实验背景贪心算法是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法策略。

贪心算法并不保证能获得最优解,但往往能获得较好的近似解。

在许多实际应用中,贪心算法因其简单、高效的特点而被广泛应用。

本实验旨在通过编写贪心算法程序,解决经典的最小生成树问题,并分析贪心算法的优缺点。

二、实验目的1. 理解贪心算法的基本原理和应用场景;2. 掌握贪心算法的编程实现方法;3. 分析贪心算法的优缺点,并尝试改进;4. 比较贪心算法与其他算法在解决最小生成树问题上的性能。

三、实验内容1. 最小生成树问题最小生成树问题是指:给定一个加权无向图,找到一棵树,使得这棵树包含所有顶点,且树的总权值最小。

2. 贪心算法求解最小生成树贪心算法求解最小生成树的方法是:从任意一个顶点开始,每次选择与当前已选顶点距离最近的顶点,将其加入生成树中,直到所有顶点都被包含在生成树中。

3. 算法实现(1)数据结构- 图的表示:邻接矩阵- 顶点集合:V- 边集合:E- 已选顶点集合:selected- 最小生成树集合:mst(2)贪心算法实现```def greedy_mst(graph):V = set(graph.keys()) # 顶点集合selected = set() # 已选顶点集合mst = set() # 最小生成树集合for i in V:selected.add(i)mst.add((i, graph[i]))while len(selected) < len(V):min_edge = Nonefor edge in mst:u, v = edgeif v not in selected and (min_edge is None or graph[u][v] < graph[min_edge[0]][min_edge[1]]):min_edge = edgeselected.add(min_edge[1])mst.add(min_edge)return mst```4. 性能分析为了比较贪心算法与其他算法在解决最小生成树问题上的性能,我们可以采用以下两种算法:(1)Prim算法:从任意一个顶点开始,逐步添加边,直到所有顶点都被包含在生成树中。

算法设计与分析实验报告

算法设计与分析实验报告

实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。

2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。

三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。

递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。

否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。

2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。

在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。

五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

KTV最优点歌策略问题算法分析与研究

KTV最优点歌策略问题算法分析与研究

KTV最优点歌策略问题算法分析与研究一、引言KTV作为一种受欢迎的娱乐方式,吸引了大量的消费者。

在KTV中点歌是人们最常进行的活动之一。

而在众多的歌曲选择中,如何合理地选择歌曲顺序成为了一个问题。

本文将从算法的角度对KTV最优点歌策略问题进行分析与研究,提出一种可行的算法方案。

二、问题描述在KTV中,有许多组客户在不同的包房内点歌,每组客户都根据个人的喜好点歌。

而KTV的歌曲列表往往非常庞大,不同客户点歌的数量与时间点也会有所不同。

因此,如何在给定一定时间内,最大程度地满足客户的点歌需求,成为了一个有挑战性的问题。

三、问题建模1. 假设每首歌的点唱时间是固定的,不因客户点歌而改变。

2. 将每组客户点歌的时间抽象为一个时间段,记为t[i] = (s[i], e[i]),其中s[i]表示客户开始点歌的时间,e[i]表示客户结束点歌的时间。

每个时间段使用一个整数表示。

3. 考虑到优化问题的复杂性,本文将问题简化为最小化等待时间的问题。

等待时间定义为某个客户结束点歌时间和下一个客户开始点歌时间的间隔。

四、算法分析与研究1. 贪心算法贪心算法是一种自底向上的算法思想,每一步都做出当前情况下的最优选择。

在KTV的最优点歌策略问题中,我们可以使用贪心算法来尝试解决。

具体步骤如下:1)对所有时间段按照客户点歌结束的时间从小到大进行排序。

2)按照排序后的时间段顺序,依次安排客户点唱的歌曲。

3)判断下一个客户点歌的时间是否与当前客户点歌的时间有冲突,若有冲突则将该客户放入等待队列,直到可以安排该客户点歌的时间段。

4)重复步骤2和步骤3,直到所有客户点歌结束。

2. 动态规划算法动态规划算法是一种将问题分解成子问题并逐步求解的方法。

在KTV的最优点歌策略问题中,我们可以使用动态规划算法来解决。

具体步骤如下:1)将每个时间段看作是一个状态,假设有N个时间段。

2)在每个状态处,记录到达该状态的最小等待时间。

3)在每个状态处,通过递推方程计算出到达下一个状态的最小等待时间。

非完美算法初探——任一恒

非完美算法初探——任一恒

非完美算法的应用——河北唐山一中任一恒在平时的练习和考试中,我们都是尽量设计出完全正确的算法来解决问题。

可是,实际中很多问题都是不能完美解决的,还有很多问题完美解决所需要的时间&空间是根本无法接受的,所以,非完美的算法在实际中有着很广的应用。

随着竞赛的题目越来越接近时际,以按优劣计分的题目为代表的考察非完美算法的题目越来越多,本文将讨论一些常用的非完美算法,希望给读者一些启发。

1、贪心算法贪心算法的基本思路是从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。

当达到某算法中的某一步不能再继续前进时,算法停止。

这样我们就得到了一个解,但是我们无法保证解是最优的。

下面我们来看看贪心算法的表现。

例题1 NOI2007 追捕盗贼某国家要追捕一个大盗,该国家的城市网络是一棵树,现在要你通过在某城市空降警察,让警察从某城市移动到有道路连接的城市,收回某警察来达到捕捉到盗贼的目的。

用到的警察越少越好。

这道题的标准算法用到了很多高等知识,而且实现也是相当复杂的,在限定的时间内完美的解决这道题可以说是不能完成的任务,那么我们贪心算法在这道题上的表现如何呢?我们不妨将原树想象为一棵有根的树,先在根结点空降一个警察,然后再次在根结点空降一个警察,让这个警察走向某棵子树,对这棵子树重复上面的过程,这样一棵子树一棵子树的排除,直到整棵树被排除。

这里可以采取一个十分有效的优化就是在只剩一棵子树的时候,不用再安排新的警察,直接让一直守在根结点的那个警察走过去即可。

所以不妨安排需要警察最多的那颗子树最后走,这样可以使结果得到很大优化。

由于结点数不超过1000,所以我们可以枚举每个结点为根结点,找出其中需要警察最少的那个。

这个算法虽然存在着反例,但是由于那个十分有用的优化,可以使结果十分接近标准结果。

通过数据试验的结果,有90%的结果和标准算法产生的结果一致,10%不一致的相差也是十分的小。

可以说贪心算法在这道题目上发挥的很好。

最优装载问题(贪心)

最优装载问题(贪心)

最优装载问题(贪⼼)⼀、实验内容运⽤贪⼼算法解决活动安排问题(或最优装载问题)使⽤贪⼼算法解决最优装载问题。

⼆、所⽤算法基本思想及复杂度分析1.算法基本思想贪⼼算法是指在对问题求解时,总是做出在当前看来是最好的选择。

也就是说,不从整体最优上加以考虑,它所做出的仅是在某种意义上的局部最优解。

⽤局部解构造全局解,即从问题的某⼀个初始解逐步逼近给定的⽬标,以尽可能快的求得更好的解。

当某个算法中的某⼀步不能再继续前进时,算法停⽌。

2.问题分析及算法设计问题分析:(1)给定n个古董,要把它们装到装载量为c的装载船上。

(2)⾸先需要对这n个古董进⾏质量从⼩到⼤的排序。

(3)然后每次都选择最轻的,接着再从剩下的n-1件物品中选择最轻的。

(4)重复第(3)步骤,直到当前载重量⼤于装载船的最⼤装载量,停⽌装载。

(5)此时得到最优的贪⼼⽅案,记录下装载的最⼤古董数。

算法设计:(1)算法策略:把n件物品从⼩到⼤排序,然后根据贪⼼策略尽可能多的选出前i个物品,直到不能装为⽌。

(2)特例:算法复杂度分析由最优装载问题的贪⼼选择性质和最优⼦结构性质,可知将这些古董按照其重量从⼩到⼤排序,所以算法所需的计算时间为O(nlogn)。

三、源程序核⼼代码及注释(截图)四、运⾏结果五、调试和运⾏程序过程中产⽣的问题及解决⽅法,实验总结(5⾏以上)这⾥的调试,没有什么⼤问题,单纯的依次⽐较,判断,从⽽得到结果。

这次实验让我对贪⼼算法有了更深刻的认识,其主要是从问题的初始解出发,按照当前最佳的选择,把问题归纳为更⼩的相似的⼦问题,并使⼦问题最优,再由⼦问题来推导出全局最优解。

贪⼼算法虽然求的是局部最优解,但往往许多问题的整体最优解都是通过⼀系列的局部最优解的选择来达到的,所以贪⼼算法不⼀定可以得到能推导出问题的最优解,但其解法是最优解的近似解。

懂得算法的原理,还需要多去练习才能更好的掌握其⽤法。

源码:#include<iostream>#include<algorithm>#define MAXN 1000005using namespace std;int w[MAXN];//每件古董的重量int main(){int c,n;//c:载重量,n古董数int sum = 0;//装⼊古董的数量int tmp = 0;//装⼊古董的重量cin >> c >> n;for(int i= 1; i <= n; ++i)cin >> w[i];sort(w+1,w+1+n);for(int i = 1; i <= n; ++i){tmp += w[i];if(tmp <= c)++sum;elsebreak;}cout << sum << endl;return 0;}。

计算机算法设计与分析实验指导书

计算机算法设计与分析实验指导书

计算机算法设计与分析实验指导书本书是为配合《算法分析与设计实验教学大纲》而编写的上机指导,其目的是使学生消化理论知识,加深对讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。

上机实验一般应包括以下几个步骤:(1)准备好上机所需的程序。

手编程序应书写整齐,并经人工检查无误后才能上机。

(2)上机输入和调试自己所编的程序。

一人一组,独立上机调试,上机时出现的问题,最好独立解决。

(3)上机结束后,整理出实验报告。

实验报告应包括:题目、程序清单、运行结果、对运行情况所作的分析。

本书共分阶段6个实验,其具体要求和步骤如下:实验一分治算法(2学时)一、实验目的与要求1、熟悉二分搜索算法;2、初步掌握分治算法;二、实验题设a[0:n-1]是一个已排好序的数组。

请改写二分搜索算法,使得当搜索元素x不在数组中时,返回小于x的最大元素的位置i和大于x的最小元素位置j。

当搜索元素在数组中时,i和j相同,均为x在数组中的位置。

三、实验提示用i,j做参数,且采用传递引用或指针的形式带回值。

bool BinarySearch(int a[],int n,int x,int& i,int& j){int left=0;int right=n-1;while(left<right){int mid=(left+right)/2;if(x==a[mid]){i=j=mid;return true;}if(x>a[mid])left=mid+1;elseright=mid-1;}i=right;j=left;return false;}实验二动态规划算法(2学时)一、实验目的与要求1、熟悉最长公共子序列问题的算法;2、初步掌握动态规划算法;二、实验题若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (7)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (10)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (12)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (15)4、装载问题 (17)5、N皇后问题(非递归) (19)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。

二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。

如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n, 而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。

那末,这类问题可以用分治法求解。

分治法的核心技术1)子问题的划分技术.2)递归技术。

反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。

3)合并技术.(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。

贪心算法实现背包问题算法设计与分析实验报告

贪心算法实现背包问题算法设计与分析实验报告

算法设计与分析实验报告实验名称贪心算法实现背包问题评分实验日期年月日指导教师姓名专业班级学号一.实验要求1. 优化问题有n个输入,而它的解就由这n个输入满足某些事先给定的约束条件的某个子集组成,而把满足约束条件的子集称为该问题的可行解。

可行解一般来说是不唯一的。

那些使目标函数取极值(极大或极小)的可行解,称为最优解。

2.贪心法求优化问题算法思想:在贪心算法中采用逐步构造最优解的方法。

在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。

决策一旦作出,就不可再更改。

作出贪心决策的依据称为贪心准则(greedy criterion)。

3.一般方法1)根据题意,选取一种量度标准。

2)按这种量度标准对这n个输入排序3)依次选择输入量加入部分解中。

如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。

procedure GREEDY(A,n) /*贪心法一般控制流程*///A(1:n)包含n个输入//solutions←φ //将解向量solution初始化为空/for i←1 to n dox←SELECT(A)if FEASIBLE(solution,x)then solutions←UNION(solution,x)endifrepeatreturn(solution)end GREEDY4. 实现典型的贪心算法的编程与上机实验,验证算法的时间复杂性函数。

二.实验内容1. 编程实现背包问题贪心算法。

通过具体算法理解如何通过局部最优实现全局最优,并验证算法的时间复杂性。

2.输入5个的图的邻接矩阵,程序加入统计prim算法访问图的节点数和边数的语句。

3.将统计数与复杂性函数所计算比较次数比较,用表格列出比较结果,给出文字分析。

三.程序算法1.背包问题的贪心算法procedure KNAPSACK(P,W,M,X,n)//P(1:n)和W(1;n)分别含有按P(i)/W(i)≥P(i+1)/W(i+1)排序的n件物品的效益值和重量。

算法设计及实验报告

算法设计及实验报告

算法设计及实验报告实验报告1 递归算法一、实验目的掌握递归算法的基本思想;掌握该算法的时间复杂度分析;二、实验环境电脑一台,Turbo C 运行环境三、实验内容、步骤和结果分析以下是四个递归算法的应用例子:用C语言实现1.阶乘:main(){int i,k;scanf("%d\n",&i);k= factorial(i);printf("%d\n",k);}int factorial(int n){ int s;if(n==0) s=1;else s=n*factorial(n-1); //执行n-1次return s;}阶乘的递归式很快,是个线性时间,因此在最坏情况下时间复杂度为O(n)。

2.Fibonacci 数列:main(){int i,m;scanf("%d\n",&i);m=fb(i);printf("%d",m);}int fb(int n){int s;if(n<=1)return 1;else s=fb(n-1)+fb(n-2);return s;}Fibonacci数列则是T(n)=T(n-1)+T(n-2)+O(1)的操作,也就是T(n)=2T(n)+O(1),由递归方程式可以知道他的时间复杂度T(n)是O(2n),该数列的规律就是不停的赋值,使用的内存空间也随着函数调用栈的增长而增长。

3.二分查找(分治法)#include<stdio.h>#define const 8main(){int a[]={0,1,2,3,4,5,6,7,8,9};int n=sizeof(a);int s;s=BinSearch(a,const,n);printf("suo cha de shu shi di %d ge",s);}BinSearch(int a[],int x,int n){int left,right,middle=0;left=0;right=n-1;whlie(left<=right){middle=(left+right)/2;if(x==a[middle]) return middle;if(x>a[middle]) left=middle+1;else right=middle-1;}return -1;}二分搜索算法利用了元素间的次序关系,采用分治策略,由上程序可知,每执行一次while循环,数组大小减少一半,因此在最坏情况下,while循环被执行了O(logn)次。

tsp实验报告

tsp实验报告

tsp实验报告TSP实验报告一、引言旅行推销员问题(Traveling Salesman Problem,TSP)是一类经典的组合优化问题,它在现实生活中有着广泛的应用。

TSP的目标是寻找一条最短路径,使得旅行推销员能够经过所有城市并回到出发点。

本实验旨在通过使用不同的算法和策略,探索解决TSP问题的方法,并比较它们的效果。

二、实验方法1. 数据集选择本实验选取了某个地区的城市坐标作为数据集,其中包含了20个城市的经纬度信息。

这些城市的位置分布较为均匀,有助于测试算法在不同城市分布情况下的表现。

2. 算法实现本实验采用了两种常见的算法来解决TSP问题:贪心算法和遗传算法。

贪心算法:该算法的基本思想是每次选择距离当前位置最近的未访问城市作为下一个目的地,直到所有城市都被访问过。

贪心算法简单直观,但不能保证获得最优解。

遗传算法:该算法通过模拟生物进化过程来解决问题。

它通过随机生成初始种群,然后通过选择、交叉和变异等操作,逐步优化种群中的个体,直到找到最优解。

遗传算法适用于求解复杂问题,但计算量较大。

3. 实验步骤首先,使用贪心算法计算出一条初始路径。

然后,利用遗传算法对该路径进行优化,得到更短的路径。

实验中,设置了合适的参数,如种群大小、交叉概率和变异概率,以获得较好的结果。

三、实验结果与分析经过多次实验,得到了贪心算法和遗传算法的结果,并与最优解进行了比较。

1. 贪心算法结果使用贪心算法,得到了一条初始路径,总长度为X。

该路径并不是最优解,但它提供了一个起点,可以作为遗传算法的输入。

2. 遗传算法结果经过遗传算法的优化,得到了一条更短的路径,总长度为Y。

与贪心算法相比,遗传算法能够通过不断迭代优化路径,找到更接近最优解的结果。

3. 与最优解的比较通过与最优解进行比较,可以评估算法的性能。

实验结果显示,贪心算法得到的路径长度为Z,遗传算法得到的路径长度为W,分别与最优解相差了A%和B%。

可以看出,遗传算法在寻找最优解方面表现更好,但仍存在一定的误差。

分治与贪心

分治与贪心

实验三分治与贪心一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对分治法、贪心算法的理解。

软件环境:操作系统:windows7 旗舰版集成开发环境:visual studio 2010 旗舰版硬件环境:处理器:因特尔Core i3 M 380内存:2GB二、实验内容:掌握分治法、贪心算法的概念和基本思想,并结合具体的问题学习如何用相应策略进行求解的方法。

三、实验题1. 【循环赛日程安排问题】计算机学院准备举办一次男生羽毛球单打比赛,现在总共有16名选手报名,首轮比赛准备采取循环赛的形式进行角逐,要求必须在15天内比完,且每个选手每天只能安排一场比赛,请你帮助学生会安排首轮循环赛的比赛日程表。

2.【找零钱问题】一个小孩买了价值为33美分的糖,并将1美元的钱交给售货员。

售货员希望用数目最少的硬币找给小孩。

假设提供了数目有限的面值为25美分、10美分、5美分、及1美分的硬币。

给出一种找零钱的贪心算法。

四、实验步骤理解算法思想和问题要求;编程实现题目要求;上机输入和调试自己所编的程序;验证分析实验结果;整理出实验报告。

五、实验程序实验1:#include<iostream>using namespace std;void dump(int *arr, int len);//输出比赛安排详情void game(int *team, int len, int id);//分治法安排比赛void game(int *team, int len, int id){//id为第id轮的安排int base = 2;while (id > len/base){id -= len/base;base <<= 1;}for (int i=0; i<base/2; ++i){int start = i+base/2+(id-1)*base;for (int j=0; j<len/base; ++j){team[i*2*len/base+2*j] = base*j+i;team[i*2*len/base+2*j+1] = (start+base*j)%len;}}}//显示分组情况void dump(int *arr, int len){for(int i=0;i<len;i+=2)//i+2则是对偶数号选手固定,奇数号选手配对 printf("%02d-%02d ", arr[i], arr[i+1]);cout<<endl;}int main(){const int len = 16; //设置参赛人数为16人int team[len]; //每一轮安排好的选手组合for (int i=1; i<len; ++i){game(team, len, i); //分治法安排比赛printf("[%02d] ", i);//显示比赛时间天dump(team, len); //输出比赛安排详情}system("pause");return 0;}实验2:#include<iostream>using namespace std;int main(){int allmoney=100; //顾客付的钱int needmoney=33; //收银需要的钱int backmoney=0; //要找回给顾客的钱int money[100]={0}; //找钱的组合方式int i=0; //循环控制数组下表变换backmoney=allmoney-needmoney;while(backmoney) //当要找的钱为0时循环结束{ if(backmoney>=25)//优先考虑找25元是否大于0{money[i]=25; //向找钱组合添加一个25backmoney-=25;//要找回顾客的钱扣除25元}else if(backmoney>=10){money[i]=10;backmoney-=10;}else if(backmoney>=5){money[i]=5;backmoney-=5;}else if(backmoney>=1){money[i]=1;backmoney-=1;}i++;}cout<<"贪心法求的要找回钱组合为:"<<endl;for(int j=0;money[j]!=0;j++)cout<<money[j]<<" ";cout<<endl;system("pause");return 0;}六、实验结果实验1:实验2:七、实验分析实验一的核心就是每次把组内奇数和偶数号码的选手分开成两组,再把本次分组分开的小组又编号奇数和偶数,再把奇数号码合并一组,偶数号码合并一组,一步步往下分,直到最后只有两个选手为止。

《算法设计与分析》实验教学大纲

《算法设计与分析》实验教学大纲

《算法设计与分析》实验教学大纲
一、实验课的任务、性质与目的:
本课程实验目的是验证、巩固和补充课堂讲授的理论知识。

培养学生初步具备独立设计算法和对给定算法进行复杂性分析的能力,为实际工作打下基础。

实验的安排和要求是:用程序实现经典算法,学习算法设计的主要策略方法、原理并根据实例加以调试,培养动手设计、分析和综合实验结果以及撰写实验报告的能力。

在实验中养成严肃认真的治学态度和踏实细致、实事求是的作风。

二、主要仪器设备及环境:
仪器设备:任何计算机及网络终端。

环境:windows操作系统、任一种编程语言
四、教材、实验教材(指导书):
1. 教材
[1] 郑宗汉等著,算法设计与分析,清华大学出版社,2005年
2. 实验指导书
[1] 王晓东,算法设计与实验题解,电子工业出版社,2006年
[2] 王晓东,计算机算法设计与分析(第三版),电子工业出版社,2007年
五、考核方式与评分办法:
本课程的考核分为平时成绩及期末考试成绩两部分,其中平时成绩包括考勤、实验成绩等,期末考试以闭卷笔试为主。

总成绩按以下公式计算:
总成绩=平时成绩×(30%~40%)+期末成绩×(70%~60%)
六、大纲审核人:
1 / 2。

算法分析与设计实验大纲

算法分析与设计实验大纲

算法分析与设计实验大纲一、实验目的通过实际操作与分析,掌握算法分析与设计的基本原理、基本方法,能够利用不同的算法解决实际问题,培养学生的动手能力,提高算法分析与设计的应用能力。

二、实验内容1.算法基本概念及分类a.算法的定义、特点及要求b.算法的分类及应用领域2.算法效率分析a.时间复杂度的定义与计算方法b.空间复杂度的定义与计算方法c.最坏、平均、最好情况的时间复杂度分析3.常用排序算法a.冒泡排序、插入排序、选择排序的实现与分析b.快速排序、归并排序的实现与分析c.基数排序、桶排序的实现与分析4.贪心算法a.贪心算法的概念及基本思想b.贪心算法的应用实例分析5.动态规划算法a.动态规划算法的概念及基本思想b.动态规划算法的应用实例分析6.图算法a.图的表示方法及常用的图遍历算法b.最短路径算法的实现与分析c.最小生成树算法的实现与分析三、实验要求1.能够通过编程实现常用排序算法,并进行时间复杂度的实际分析。

2.掌握贪心算法和动态规划算法的思想,并能够将其应用到实际问题中。

3.理解图算法的基本原理,并能够实现最短路径算法和最小生成树算法。

4.能够基于实际问题,选择合适的算法解决方案,并进行算法设计与分析。

四、实验步骤1.学习算法基本概念,掌握算法的定义及分类。

2.学习算法效率分析的基本方法,掌握时间复杂度与空间复杂度的计算方法。

3.实现常用排序算法,并进行时间复杂度的实际分析。

4.学习贪心算法和动态规划算法的思想,并将其应用到实际问题中。

5.实现贪心算法和动态规划算法,并进行算法分析。

6.学习图算法的基本原理,包括图的表示方法和常用的图遍历算法。

7.实现最短路径算法和最小生成树算法,并进行算法分析。

8.综合应用所学算法,选择合适的算法解决具体问题,并进行算法设计与分析。

五、实验总结和展望通过实验的学习,我对算法分析与设计有了更深入的了解,掌握了常用的排序算法、贪心算法、动态规划算法和图算法的基本原理和实现方法。

《算法设计与分析》实验目的

《算法设计与分析》实验目的

《算法设计与分析》实验指导书曹严元计算机与信息科学学院2007年5月目录实验一递归算法与非递归算法 (2)实验二分治算法 ................................................... 错误!未定义书签。

实验三贪心算法 (3)实验四动态规划 (2)实验五回溯法 (3)实验六分枝—限界算法 (4)实验七课程设计 (4)实验一递归与分治算法实验目的1.了解并掌握递归的概念,掌握递归算法的基本思想;2.掌握分治法的基本思想方法;3.了解适用于用递归与分治求解的问题类型,并能设计相应递归与分治算法;4.掌握递归与分治算法复杂性分析方法,比较同一个问题的递归算法与循环迭代算法的效率。

实验二动态规划实验目的1.掌握动态规划的基本思想方法;2.了解适用于用动态规划方法求解的问题类型,并能设计相应动态规划算法;3.掌握动态规划算法复杂性分析方法。

实验三贪心算法实验目的1.掌握贪心法的基本思想方法;2.了解适用于用贪心法求解的问题类型,并能设计相应贪心法算法;3.掌握贪心算法复杂性分析方法分析问题复杂性。

实验五回溯法实验目的1.掌握回溯法的基本思想方法;2.了解适用于用回溯法求解的问题类型,并能设计相应回溯法算法;3.掌握回溯法算法复杂性分析方法,分析问题复杂性。

实验六 分枝—限界算法实验目的1. 掌握分枝—限界的基本思想方法;2. 了解适用于用分枝—限界方法求解的问题类型,并能设计相应动态规划算法;3. 掌握分枝—限界算法复杂性分析方法,分析问题复杂性。

实验七 课程设计实验目的1. 在已学的算法基本设计方法的基础上,理解算法设计的基本思想方法;2. 掌握对写出的算法的复杂性分析的方法,理解算法效率的重要性;3. 能运用所学的基本算法设计方法对问题设计相应算法,分析其效率,并建立对算法进行改进,提高效率的思想意识。

预习与实验要求1. 预习实验指导书及教材的有关内容,回顾所学过的算法的基本思想;2. 严格按照实验内容进行实验,培养良好的算法设计和编程的习惯;3. 认真听讲,服从安排,独立思考并完成实验。

西电算法导论上机实验报告

西电算法导论上机实验报告

算法导论上机实验报告册班级:xxxxxx学号:xxxxxxx 姓名:xxxx 教师:xxxxxx目录实验一排序算法 (1)题目一: (1)1、题目描述: (1)2、所用算法: (1)3、算法分析: (1)4、结果截图: (1)5、总结: (2)题目二: (3)1、题目描述: (3)2、所用算法: (3)3、算法分析: (3)4、结果截图: (3)5、总结: (4)题目三: (4)1、题目描述: (4)2、所用算法: (4)3、算法分析: (5)4、结果截图: (5)5、总结: (5)题目四: (6)1、题目描述: (6)3、算法分析: (6)4、结果截图: (6)5、总结: (7)实验二动态规划 (7)题目一: (7)1、题目描述: (7)2、所用策略: (7)3、算法分析: (7)4、结果截图: (8)5、总结: (8)题目二: (9)1、题目描述: (9)2、所用策略: (9)3、算法分析: (9)4、结果截图: (9)5、总结: (10)题目三: (10)1、题目描述: (10)2、所用策略: (10)3、算法分析: (10)4、结果截图: (11)题目四: (12)1、题目描述: (12)2、所用策略: (12)3、算法分析: (12)4、结果截图: (12)5、总结: (13)题目五: (13)1、题目描述: (13)2、所用策略: (13)3、算法分析: (13)4、结果截图: (14)5、总结: (14)实验三贪心算法 (14)题目一: (14)1、题目描述: (14)2、所用策略: (14)3、算法分析: (14)4、结果截图: (15)5、总结: (16)题目二: (16)1、题目描述: (16)3、算法分析: (16)4、结果截图: (17)5、总结: (17)题目三: (17)1、题目描述: (17)2、所用算法: (18)3、算法分析: (18)4、结果截图: (18)5、总结: (19)题目四: (19)1、题目描述: (19)2、所用算法: (19)3、算法分析: (19)实验四回溯法 (19)题目一: (19)1、题目描述: (20)2、所用策略: (20)3、算法分析: (20)题目二: (21)1、题目描述: (21)2、所用策略: (21)实验一排序算法题目一:1、题目描述:描述一个运行时间为θ(nlgn)的算法,给定n个整数的集合S和另一个整数x,该算法能确定S中是否存在两个其和刚好为x的元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其中集装箱i的重量为Wi.最优装载问题要求确定在装载 体积不受限制的情况下,将尽可能多的集装箱装上轮船.
课本P134,17.
3,活动安排问题:
注:以上1,2,3题可任选一题

活动安排问题:
实验三 贪心法的应用
设有n个活动的集合E={1,2,…,n},其中每个活动都要求使用同一资源,
如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个 活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且si <fi .如果选择了活动i,则它在半开时间区间[si, fi)内占用资源.若区间 [si, fi)与区间[sj,fj)不相交,则称活动i与活动j是相容的.也就是说,当 si≥fj或sj≥fi时,活动i与活动j相容。活动安排问题就是要在所给的活动 集合中选出最大的相容活动子集合.
提示: 各活动的起始时间和结束时间存储于数组s和f中. 按结束时间的非减序排列,每次总是选择具有最早完成时间的相
容活动加入集合A中.按这种方法选择相容活动为未安排活动留下 尽可能多的时间。也就是说,这样可使剩余的可安排时间段极大 化,以便安排尽可能多的相容活动。 若被检查的活动i的开始时间Si小于最近选择的活动j的结束时间fi, 则不选择活动i,否则选择活动i加入集合A中。
(一)问题分析(包含:问题的已知、所求、求解问题的过程,算法的基 本思想等) (二)算法及有关说明(包括:输入、输出、采用的关键技巧等) (三)实验环境、实验数据、结果及分析(可以图、表形式给出) (四)实验过程中遇到的问题及解决方法 (五)总结收获及心得体会、建议等 (六)附录:程序源码
实验三 贪心法的应用
一个实例

例:设待安排的11 个活动的开始时间 和结束时间按结束 时间的非减序排列 如下:
i S[i] f[i]
1 1 4
2 3 5
3 0 6
4 5 7
5 3 8
6 5 9
7 6 10
8 8 11
9 8 12
10 2 13
ห้องสมุดไป่ตู้
11 12 14
实验三 贪心法的应用
实验要求: 1. 提交源程序和可执行程序。要求:操作界面友好;数据 能手工输 入。 2. 提交实验报告。实验报告采用如下格式: 实验题目: 班级: 姓名: 学号: 完成日期:
实验三 贪心法的应用

实验目的:
掌握贪心法的基本要素及求解问题的过程.

实验内容:
1,一般背包问题:给定n种物品和一个背包.物品i的重量
是Wi,其价值为Pi,背包的容量为C.应如何选择装入背包 的物品,使得装入背包中物品的总价值最大?
2, 最优装载:有一批集装箱要装上一艘载重量为c的轮船.
相关文档
最新文档