武汉二中2019~2020学年度下学期九年级数学统一作业(二)
2019-2020年九年级下学期第二次模拟考试数学试题(II).docx
数学试题(II)
(考试时间:120分钟;满分:120分)
真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!
本试题共有24道题.其中1—8题为选择题,9—14题为填空题,15题为作图题,
16-24题为解答题,所有题目均在答题卡上作答,在本卷上作答无效.
∵四 形ABCD是平行四 形,∴AO=CO
∴BF=AO
⋯⋯⋯⋯⋯⋯4分
(2)当∠ABC=90° ,四 形
AFBO是菱形.
⋯⋯⋯⋯⋯⋯5分
理由如下:
∵BF=AO,FB∥AO,∴四 形AFBO是平行四 形.
⋯⋯⋯⋯⋯⋯6分
在Rt△ABC中,∵∠ABC=90°,AO=CO,
∴BO=1AC=AO,
2
∴平行四 形
<6),解答下列问题:
(1)当t为何值时,QM∥BC?
(2)设四边形ANPM的面积为y(cm2),试求出y与t的函数关系式;
(3)是否存在某一时刻
t,使y的值最大?若存在,求出
t的值;若不存在,请说明理由;
(4)是否存在某一时刻
t,使点M在线段PQ的垂直平分线上?若存在,求出
t的值;若不
存在,请说明理由.
PDA
AP
AP
5
在Rt△
中,sin67°=PD
,∴24
12,∴
BP
=26(海里)
PDB
BPBP13
∵40>26,
20 15
∴船B先到达船P.
答:船B先到达船P.
⋯⋯⋯⋯8分
21.(本小 分
8分)
明:(1)∵
E
是
的中点,
∴
EO
湖北省武汉市2019-2020学年中考第二次模拟数学试题含解析
湖北省武汉市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.点A (a ,3)与点B (4,b )关于y 轴对称,则(a+b )2017的值为( ) A .0B .﹣1C .1D .720172.下列各式计算正确的是( ) A .(b+2a )(2a ﹣b )=b 2﹣4a 2 B .2a 3+a 3=3a 6 C .a 3•a=a 4D .(﹣a 2b )3=a 6b 33.如图,菱形ABCD 中,∠B =60°,AB =4,以AD 为直径的⊙O 交CD 于点E ,则»DE的长为( )A .3πB .23π C .43π D .76π 4.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径r=5,AC=5 ,则∠B的度数是( )A .30°B .45°C .50°D .60°5.二次函数y =ax 2+c 的图象如图所示,正比例函数y =ax 与反比例函数y =cx在同一坐标系中的图象可能是( )A .B .C .D .6.如图,等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数ky x=的图象与ABC △有交点,则k 的取值范围是( ).A .12k <<B .13k ≤≤C .14k ≤<D .14k ≤≤7.如图,在△ABC 中,BC=8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于( )A .8B .4C .12D .168.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A -,(2,)B b ,则正方形ABCD 的面积是( )A .13B .20C .25D .349.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .14B .12C .34D .5610.用尺现作图的方法在一个平行四边形内作菱形ABCD ,下列作法错误的是 ( )A .B .C .D .11.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.32πB.43πC.4 D.2+32π12.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为()A.100cm B.10cm C.10cm D.1010cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组2672xx-≥⎧⎨+>-⎩的解集是____________;14.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O 的切线:若⊙O的半径为2,则图中阴影部分的面积为_____.15.如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=kx(k>0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_____.16.如图,在平面直角坐标系中,正方形ABOC和正方形DOFE的顶点B,F在x轴上,顶点C,D在y轴上,且S△ADC=4,反比例函数y=kx(x>0)的图像经过点E,则k=_______ 。
2019-2020学年第二学期九年级数学期末考试试卷及答案
第1页,共8页 数学试卷 第2页, 共8页密 封 线 学校 班级 姓名 学号封 线 内 不 得 答 题2019-2020学年第二学期九年级联考数学试卷及答案题号一 二 三 四 总分人 复核人 总分 得分本试卷满分为150分,考时间为120分钟.1. 下列各数:1.414,2,-13,0,其中是无理数的为 ( ) A .1.414 B . 2 C .-13D .02. 2017年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89 000人,将89 000用科学记数法表示为 ( )A .89×103B .8.9×104C .8.9×103D .0.89×1053. 剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为 ( )A B C D4.不等式组⎩⎨⎧x ≥-1,x<2的解集在数轴上表示正确的是 ( )A BC D 5. 下列几何体中,主视图是三角形的是 ( )A B C D 6市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:筹款(元) 5 10 15 20 25 30 人数 3 7 11 11 13 5 则该班同学筹款金额的众数和中位数分别是 ( ) A .11,20 B .25,11 C .20,25 D .25,20 7BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于 ( ) A .55° B .45° C .35° D .25°( 第7题 ) ( 第8题 ) (第10题)8. 如图,A ,D 是⊙O 上的两个点,BC 是直径.若∠D=32°,则∠OAC 为 ( )A .64°B .58°C .72°D .55° 9. 某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是 ( )A .(a -10%)(a +15%)万元B .a(1-90%)(1+85%)万元C .a(1-10%)(1+15%)万元D .a(1-10%+15%)万元 10. 今年五一节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(min ).所走的路程为s(m ),s 与t 之间的函数关系如图所示,下列说法错误的是 ( ) A .小明中途休息用了20 minB .小明休息前爬山的平均速度为每分钟70 mC .小明在上述过程所走的路程为6 600 mD .小明休息前爬山的平均速度大于休息后爬山的平均速度得 分 评卷人 得分 评卷人二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中横线上的.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内.第3页,共8页数学试卷 第4页,共8页密 封 线 内 不 得 答 题11. 因式分解:x 3-4x = ___________ .12.如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,且DE ∥BC ,若△ADE 与△ABC 的周长之比为2∶3,AD =4,则DB = .13.若关于x 的一元二次方程x 2-4x -m =0有两个不相等的实数根,则实数m 的取值范围是____ .14. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.(第12题 ) (第17题) 15.分式方程2x x -1-11-x=1的解是 16.函数y =1-xx +2中,自变量x 的取值范围为 . 17. 如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=65°,则∠AED ′ .18观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,……,则81+82+83+84+……+82 015的和的个位数字是得 分 评卷人19.(6分)计算:-14+12sin 60°+-(π-5)020. (6分)先化简,再求值:(m -n)2-m(m -2n),其中m =3,n = 2.21.(8分)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1; (2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.22. (10分) 今年“五·一”节期间,某商场举行抽奖促销活动.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明,证明过程或演算步骤.第5页,共8页 数学试卷 第6页, 共8页密 封 线 学校 班级 姓名 学号封 线 内 不 得 答 题(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率23(10分)如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B ,C ,E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B ,C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)得 分 评卷人24. (本题满分8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费. 为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点). 请你根据统计图解答下列问题: (1)此次抽样调查的样本容量是__________________.(2)补全频数分布直方图,求扇形图中“15吨—20吨”部分的圆心角的度数; (3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?用户用水量频数分布直方图 用户用水量扇形统计图 户数(单位:户)吨 10-15吨 30-35 40 30 20 100 10 15 20 25 30 35 用水量(单位:吨)25.(10分)已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACB =∠DCE =90°,D 为线段AB 上一动点. (1)求证:BD =AE ;(2)当D 是线段AB 中点时,求证:四边形AECD 是正方形.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.第7页,共8页数学试卷 第8页,共8页密 封 线 内 不 得 答 题26.(10分)如图,在平面直角坐标系中,一次函数2+=nx y 的图象与反比例函数xmy = 在第一象限内的图象交于点A ,与x 轴交于点B ,线段OA =5,C 为x 轴正半轴上一点,且sin ∠AOC =45. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积.27. 如图,AB 为⊙O 直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC .过点C 作CE⊥DB,垂足为E ,直线AB 与CE 相交于F 点. (1)求证:CF 为⊙O 的切线;(2)若⊙O 的半径为52,弦BD 的长为3,求CF 的长.28. 如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC∥x 轴,点P 时直线AC 下方抛物线上的动点. (1)求抛物线的解析式; (2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由。
武汉二中2019届九年级数学中考模拟(二)(1)
武汉二中2019届九年级数学中考模拟(二)一、选择题(共10小题,每小题3分,共30分)1.有理数31的相反数是( )A .3B .-3C .31D .31-2.若二次根式x -3在实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x ≤33.绕口令:“四是四,十是十,十四是十四,四十是四十”共有16个汉字,任选一个汉字,这个字是“四”的概率是( ) A .41B .165C .83D .21 4.下列大写英文字母一定是中心对称图形的是( ) A .Z B .Y C .W D .T5.下列立体图形中,主视图与左视图不相同的是( )6.如图,用4个相同的小长方形与一个小正方形镶嵌而成一个大正方形图案,大正方形面积为25,小正方形面积为9.用x 、y 表示小长方形的长和宽(x >y ),由图可判断下列关系式中,不正确的是( ) A .x +y =5B .x -y =3C .4xy =16D .x 2-y 2=127.如图,两个转盘中指针落在每个数字的机会均等.现在同时自由转动甲、乙两个转盘,转盘停止后,指针各自指向一个数字,用所指的两个数字作乘法运算所得的积为奇数的概率为( ) A .61B .31C .21 D .32 8.如图,双曲线xky =和直线y =-x 在第二象限相交于点A ,将直线y =-x 向上平移1个单位,所得直线交xky =于点C ,交y 轴正半轴于点B ,OA =2BC ,则k 的值为( ) A .-1 B .-2C .22-D .-49.将数“1个1,2个21,3个31、…、n 个n 1(n 为正整数)”顺次排成一列,1、21、21、31、31、31、…、n 1、n1…,则从左到右的100个数之和为( )剩大量60%不剩剩少量剩一半部分同学用餐剩余情况统计图A .14513B .14913C .3114D .521410.已知抛物线y =ax 2+(a -2)x +a (a 为整数)与直线y =-4x +2至少有一个交点是整点(横、纵坐标均为整数的点叫整点),则满足条件的a 值有( )个 A .0B .1C .2D .3二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算25.0的结果是___________12则参加本次送书活动的共有___________人13.计算:11122---m m =___________ 14.如图,四边形ABCD 中,AB =AC =AD ,∠CBD =15°,BD =3AB ,则∠BDC =_______15.如图,AB 为⊙O 的直径,C 、D 为⊙O 上两点,,连AC 、BD 相交于M 点.如若AB =4CM ,则MBDM的值为___________ 16.如图,在△ABC 中,sinB =54,BC =2,D 是BC 的中点,AC =2AD ,则AB 的长为_____ 三、解答题(共8题,共72分)17.(本题8分)计算:(-2a 2)2-3a 4+2a ·(-3a 3)18.(本题8分)如图,点D 、E 、F 分别是△ABC 的边BC 、CA 、AB 上 的点,DF ∥AC ,∠1=∠2,求证:∠3=∠419.(本题8分)某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食.为了让同学们理解这次活动的重要性,校学生会童威在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图:(1) 这次被调查的同学共有______人 (2) 补全条形统计图,并在图上标明 相应的数据(3) 校学生会通过数据分析,估计 这次被调查的所有学生一餐浪费的 食物可以供50人食用一餐.据此估算,该校有16000名学生一餐浪费的食物可供多少人食用一餐20.(本题8分)如图,A(7,1)、B(4,4)(1) 直接写出S△OAB=___________(2) 作图:①在OB延长线上取点C,使OC=OA②连AC,取AC中点M,连OM(3) 在OM上取一点I,使∠OAI=∠BAI,直接写出I点坐标.21.(本题8分)△ABC内接于⊙O,∠BAC的平分线交⊙O于D,交BC于E(BE>EC),过点D作⊙O的切线DF,交AB的延长线于F(1) 求证:DF∥BC4,DF=8,求OF的长(2) 连接OF,若tan∠BAC=22,BD=322.(本题10分)某市某乡A、B两村盛产柑橘,A村有柑橘200吨,B村有柑橘300吨.现将这些柑橘运到C、D两个仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨20元和25元;从B村运往C、D两处的费用分别为每吨15元和35元,设从B村运往D仓库的柑橘重量为x吨(1)(2) 设总运费为y元,求y与x之间的函数关系式,并写出自变量的取值范围(3) 由于从B村到D仓库的路况得到了改善,缩短了运输时间,运费每吨减少a元(a>0),其余路线运费不变.若到C、D两仓库总运费的最小值不小于10160元,求a的取值范围23.(本题10分)如图,矩形ABCD 中,AD >AB ,点P 是对角线AC 上的一个动点(不包含A 、C 两点),过点P 作EF ⊥AC 分别交射线AB 、射线AD 于点E 、F (1) 求证:△AEF ∽△BCA (2) 若BP =AB ,F 为AD 中点,求PCAP的值 (3) 若EP ∶PF =4∶1,且△ABP 与△PCD 相似,则AFFD=___________24.(本题12分)如图1,抛物线C 1:y =x 2+(m -2)x -2m (m >0)与x 轴交于点A 、B (A 在B 的左侧),与y 轴交于点C ,连接AC 、BC ,S △ABC =3 (1) 求m 的值(2) 如图2,将射线BC 绕点B 顺时针方向旋转交抛物线C 1第二象限的图象于点D ,连接DC .当x 轴恰好三等分△DBC 的面积时,求此时点D 的横坐标(3) 将抛物线C 1向右平移,使新抛物线C 2经过原点,如图3,C 2的对称轴l 交抛物线C 2于E ,交直线y =4于F ,直线y =4交C 2于点G 、H (G 在H 的左侧),点M 、N 分别从点G 、H 同时出发,以1个单位长度/秒向点F 运动.设点M 运动时间为t (秒),点M 、N 到达F 时,运动停止,点W 在l 上,WF =45,连MW 、NE .当∠MWF =3∠FEN 时,求t 的值。
湖北省武汉市2019-2020学年中考数学二模试卷含解析
湖北省武汉市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.估计7+1的值在( ) A .2和3之间 B .3和4之间 C .4和5之间 D .5和6之间2.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,点CE=1,AC=4,则下列结论一定正确的个数是( )①∠CDE=∠DFB ;②BD >CE ;③BC=2CD ;④△DCE 与△BDF 的周长相等.A .1个B .2个C .3个D .4个3.九年级学生去距学校10 km 的博物馆参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是( )A .1010123x x =- B .1010202x x =- C .1010123x x =+ D .1010202x x =+ 4.若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .185.下列计算正确的是( )A .3a ﹣2a =1B .a 2+a 5=a 7C .(ab )3=ab 3D .a 2•a 4=a 66.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为( ) A .7.1×107 B .0.71×10﹣6 C .7.1×10﹣7 D .71×10﹣87.下列运算中,正确的是 ( )A .x 2+5x 2=6x 4B .x 326·x x =C .236()x x =D .33()xy xy =8.下列四个图案中,不是轴对称图案的是( )A .B .C .D .9.一辆慢车和一辆快车沿相同的路线从A 地到B 地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个10.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.215B.8 C.210D.21311.下列四个图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.12.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是()A.1m B.43m C.3m D.103m二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,BD 是矩形ABCD 的一条对角线,点E ,F 分别是BD ,DC 的中点.若AB =4,BC =3,则AE+EF 的长为_____.14.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.15.如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A 4处;A 4A 0间的距离是_____;…按此规律运动到点A 2019处,则点A 2019与点A 0间的距离是_____.16.ABC V 中,15AB =,13AC =,高12AD =,则ABC V 的周长为______。
2019-2020年九年级中考数学二模试题
2019-2020年九年级中考数学二模试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.实数a的相反数是()A.a B.﹣a C. D.|a|2.计算a3•()2的结果是()A.a B.a5C.a6D.a83.体积为90的正方体的棱长在()A.3与4之间B.4与5之间C.5与6之间D.6与7之间4.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A.平均数B.中位数C.众数 D.方差5.如图,以O为圆心,任意长为半径画弧,与射线OA交于点B,再以B为圆心,BO长为半径画弧,两弧交于点C,画射线OC,则sin∠AOC的值为()A. B. C. D.6.小明乘坐摩天轮转一圈,他距离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经侧试得部分数据如下表:x/分… 2.66 3.23 3.46 …y/米…69.16 69.62 68.46 …下列选项中,最接近摩天轮转一圈的时间的是()A.7分B.6.5分C.6分D.5.5分二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.在函数中,自变量x的取值范围是.8.已知是方程3x+ay=5的解,则a= .9.据统计,江苏省参加高考学生人数持续减少,今年再创历史新低,xx年江苏省高考报名人数约360 400人.将360 400用科学记数法表示为.10.已知扇形的圆心角为120°,弧长为2π,则它的半径为.11.如图,一束平行太阳光照射到等边三角形上,若∠α=28°,则∠β=°.12.如图,在平面直角坐标系中,点A(0,1)、B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴于点C、D,则CD的长是.13.若关于x的方程x2﹣2x+1=0的一个根为x1=+2,则另一个根x2= .14.在平面直角坐标系xOy中,A(1,2),B(3,2),连接AB.写出一个函数y=(k≠0),使它的图象与线段AB有公共点,那么这个函数的表达式为.15.如图,AB=5,P是线段AB上的动点,分别以AP、BP为边,在线段AB的同侧作正方形APCD和正方形BPEF,连接CF,则CF的最小值是.16.如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD外的两点,且AE=FC=3,BE=DF=4,则EF的长为.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.解不等式组并把它的解集在数轴上表示出来.18.先化简,再求值:÷(a+2﹣),其中a=xx.19.某校有A、B两个食堂,甲、乙、丙三位同学各自随机选择其中的一个食堂就餐,求三位同学在相同食堂就餐的概率.(2)甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点A、B、C、D处,每个人都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,那么甲、乙、丙、丁四位同学互不相遇的概率是.20.“慈母手中线,游子身上衣”,为了解某校1000名学生在5月8日“母亲节”期间对母亲表达感谢的方式,某班兴趣小组随机抽取了部分学生进行问卷调查,并将问某校抽取学生“母亲节”期间对母亲表达感谢的方式的统计表卷调查的结果绘制成如下不完整的统计表:方式频数百分比送母亲礼物23 46%帮母亲做家务给母亲一个爱的拥抱8%其他15合计100%(1)本次问卷调查抽取的学生共有人,其中通过给母亲一个爱的拥抱表达感谢的学生有人;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;(3)根据抽样的结果,估计该校学生通过帮母亲做家务表达感谢的约有多少人?21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?22.如图,矩形ABCD的对角线AC、BD相交于点O,过点B作BE∥AC,交DC的延长线于点E.(1)求证:△BDC≌△BEC;(2)若BE=10,CE=6,连接OE,求OE的值.23.如图,在△ABC中,∠C=90°,∠A=α,D是边AC上一点,且∠BDC=β,AD=a,求BC 的长.(用含a、α、β的式子表示)24.小明从家骑车出发,沿一条直路到相距2400m的书店买书,同时,小明的爸爸以80m/min 速度从书店沿同一条路步行回家,小明在书店停留3分钟后沿原路以原速返回.设他们出发x min后,小明与爸爸分别到达离家y1m、y2m的地方,图中的折线OABC、线段DE分别表示y1、y2与x之间的函数关系.(1)求点P的坐标,并解释点P的实际意义;(2)求线段BC所在直线的函数表达式;(3)小明从书店返回,从开始到追上爸爸需要多长时间?这时他与爸爸离家还有多远?25.已知二次函数y=x2+(m﹣3)x+1﹣2m.求证:(1)此二次函数的图象与x轴有两个交点;(2)当m取不同的值时,这些二次函数的图象都会经过一个定点,求此定点的坐标.26.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,交CA的延长线于点F.(1)求证:DF是⊙O的切线;(2)若∠C=30°,EF=,求EB的长.27.定义:如图①,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知点M、N是线段AB的勾股分割点,若AB=12,AM=3,求BN的长.(2)如图②,在菱形ABCD中,点E、F分别在BC、CD上,BE=BC,DF=CD,AE、AF分别交BD于点M、N.求证:M、N是线段BD的勾股分割点.(3)如图3,点M、N是线段AB的勾股分割点,MN>AM≥BN,△ABC、△MN分别是以AB、MN为斜边的等腰直角三角形,且点C与点D在AB的同侧,若MN=4,连接CD,则CD= .xx年江苏省南京市新城教育集团中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.实数a的相反数是()A.a B.﹣a C. D.|a|【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:a的相反数是﹣a,故选:B.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2.计算a3•()2的结果是()A.a B.a5C.a6D.a8【考点】分式的乘除法.【专题】计算题.【分析】原式先计算乘方运算,再计算乘法运算即可得到结果.【解答】解:原式=a3•=a,故选A【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.3.体积为90的正方体的棱长在()A.3与4之间B.4与5之间C.5与6之间D.6与7之间【考点】估算无理数的大小;立方根.【分析】根据估算无理数的大小,即可解答.【解答】解:∵,∴4<<5,故选:B.【点评】本题考查了估算无理数的大小,解决本题的关键是熟记公式无理数的大小.4.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A.平均数B.中位数C.众数 D.方差【考点】统计量的选择.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选B.【点评】本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.5.如图,以O为圆心,任意长为半径画弧,与射线OA交于点B,再以B为圆心,BO长为半径画弧,两弧交于点C,画射线OC,则sin∠AOC的值为()A. B. C. D.【考点】特殊角的三角函数值.【分析】根据作图的方法得出△OBC是等边三角形,进而利用特殊角的三角函数值求出答案.【解答】解:连接BC,由题意可得:OB=OC=BC,则△OBC是等边三角形,故sin∠AOC=sin60°=.故选:D.【点评】此题主要考查了特殊角的三角函数值以及基本作图方法,正确得出△OBC是等边三角形是解题关键.6.小明乘坐摩天轮转一圈,他距离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经侧试得部分数据如下表:x/分… 2.66 3.23 3.46 …y/米…69.16 69.62 68.46 …下列选项中,最接近摩天轮转一圈的时间的是()A.7分B.6.5分C.6分D.5.5分【考点】二次函数的应用.【分析】由题意,最值在自变量大于2.945小于3.06之间,由此不难找到答案.【解答】解:最值在自变量大于2.945小于3.06之间,所以最接近摩天轮转一圈的时间的是6分钟.故选C.【点评】此题考查二次函数的实际运用,利用表格得出函数的性质,找出最大值解决问题.二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.在函数中,自变量x的取值范围是x≠1 .【考点】函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,就可以求解.【解答】解:根据题意得:1﹣x≠0,解得x≠1.故答案为:x≠1.【点评】本题考查的知识点为:分式有意义,分母不为0;8.已知是方程3x+ay=5的解,则a= ﹣1 .【考点】二元一次方程的解.【分析】根据方程的解的概念,可将x、y的值代入方程,得到一个含有未知数a的一元一次方程,从而可以求出a的值.【解答】解:把代入方程3x+ay=5,得:6+a=5,解得:a=﹣1,故答案为:﹣1.【点评】此题考查二元一次方程的解,解题关键是把方程的解代入原方程,使原方程转化为以系数a为未知数的方程,一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.9.据统计,江苏省参加高考学生人数持续减少,今年再创历史新低,xx年江苏省高考报名人数约360 400人.将360 400用科学记数法表示为 3.604×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:360 400=3.604×105.故答案为:3.604×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.已知扇形的圆心角为120°,弧长为2π,则它的半径为 3 .【考点】弧长的计算.【分析】根据弧长公式代入求解即可.【解答】解:∵l=,∴R==3.故答案为:3.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.11.如图,一束平行太阳光照射到等边三角形上,若∠α=28°,则∠β=32 °.【考点】等边三角形的性质;平行线的性质.【分析】直接利用等边三角形的性质得出∠1=∠4=60°,再结合平行线的性质以及三角形外角的性质、三角形内角和定理得出答案.【解答】解:∵已知三角形是等边三角形,∴∠1=∠4=60°,由题意可得:∵∠α=28°,∴∠2=∠3=88°,∴∠β=180°﹣88°﹣60°=32°.故答案为:32.【点评】此题主要考查了等边三角形的性质和平行线的性质、三角形外角的性质、三角形内角和定理等知识,正确应用等边三角形的性质是解题关键.12.如图,在平面直角坐标系中,点A(0,1)、B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴于点C、D,则CD的长是 2 .【考点】垂径定理;坐标与图形性质;勾股定理.【分析】根据同圆的半径相等得到AC=AD=AB=2,AO=1,由AB⊥CD,根据垂径定理得到OC=OD,由勾股定理求得OC即可求得结论.【解答】解:∵点A(0,1)、B(0,﹣1),∴AC=AD=AB=2,AO=1,∵AB⊥CD,∴OC=OD,OC===2,故答案为:2.【点评】本题主要考查了圆的半径相等,垂径定理,勾股定理,熟练掌握垂径定理是解题的关键.13.若关于x的方程x2﹣2x+1=0的一个根为x1=+2,则另一个根x2= ﹣2 .【考点】根与系数的关系.【专题】计算题.【分析】根据根与系数的关系得到x1+x2=2,然后把x1=+2代入可计算出x2的值.【解答】解:根据题意得x1+x2=2,∵x1=+2,∴x2=﹣2.故答案为﹣2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.14.在平面直角坐标系xOy中,A(1,2),B(3,2),连接AB.写出一个函数y=(k≠0),使它的图象与线段AB有公共点,那么这个函数的表达式为y= .【考点】反比例函数图象上点的坐标特征.【分析】把线段AB上的任意一点的坐标代入y=可求出k,从而得到满足条件的反比例函数解析式.【解答】解:把A(1,2)代入y=得k=1×2,所以经过点A的反比例函数解析式为y=.故答案为y=.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15.如图,AB=5,P是线段AB上的动点,分别以AP、BP为边,在线段AB的同侧作正方形APCD和正方形BPEF,连接CF,则CF的最小值是.【考点】正方形的性质;二次函数的最值;勾股定理.【分析】设CF=y,EC=x,根据正方形的性质和勾股定理列出y2关于x的二次函数关系式,求二次函数的最值即可.【解答】解:FM=y,EC=x,则y2=(5﹣x)2+(5﹣2x)2=5(x﹣3)2+5.∵0≤x≤5,∴当x=3式,y2最小值=5,∴y最小值=.故答案是:【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.16.如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD外的两点,且AE=FC=3,BE=DF=4,则EF的长为7 .【考点】正方形的性质.【分析】延长EA交FD的延长线于点M,可证明△EMF是等腰直角三角形,而EM=MF=AE+DF=7,所以利用勾股定理即可求出EF的长.【解答】解:延长EA交FD的延长线于点M,∵四边形ABCD是正方形,∴AB=BC=DC=AD=5,∵AE=3,BE=4,∴AE2+BE2=AB2=25,∴△AEB是直角三角形,同理可证△CDF是直角三角形,∴∠EAB=∠DCF,∠EBA=∠CDF,∠EAB+∠EBA=90°,∠CDF+∠FDC=90°,∴∠EAB+∠CDF=90°又∵∠EAB+∠MAD=90°,∠MDA+∠CDF=90°,∴∠MAD+∠MDA=90°,∴∠M=90°∴△EMF是直角三角形,∵∠EAB+∠MAD=90°,∴∠EAB=∠MDA,在△AEB和△DMA中,,∴△AEB≌△DMA,∴AM=BE=4,MD=AE=3,∴EM=MF=7,∴EF==7.故答案为:7.【点评】本题考查了正方形的性质、全等三角形的判定和性质以及勾股定理的运用,题目的综合性较强,难度中等,是一道非常不错的中考题目,证明出三角形△EMF是等腰直角三角形是解题的关键.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.解不等式组并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【专题】计算题.【分析】分别解两个不等式得到x>﹣2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.【解答】解:解不等式①得x>﹣2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是﹣2<x≤3.【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.先化简,再求值:÷(a+2﹣),其中a=xx.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把a=xx代入进行计算即可.【解答】解:原式=÷=•=.当a=xx时,原式==.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.19.(1)某校有A、B两个食堂,甲、乙、丙三位同学各自随机选择其中的一个食堂就餐,求三位同学在相同食堂就餐的概率.(2)甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点A、B、C、D处,每个人都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,那么甲、乙、丙、丁四位同学互不相遇的概率是.【考点】列表法与树状图法.【分析】(1)此题需要三步完成;因为有三名学生选择餐厅,可以看做需三次完成的事件,所以需要采用树状图法,再根据概率公式计算可得;(2)由乘法公式可得共有2×2×2×2=16(种)等可能的结果,其中甲、乙、丙、丁四位同学互不相遇的有2种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图可知共有8种等可能结果,其中甲、乙、丙三名学生在同一个餐厅用餐有2种结果,∴甲、乙、丙三名学生在同一个餐厅用餐的概率为=;(2)∵甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点A、B、C、D处,每个人都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,共有2×2×2×2=16(种)等可能的结果,其中甲、乙、丙、丁四位同学互不相遇的有2种情况,∴甲、乙、丙、丁四位同学互不相遇的概率是=,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率,树状图法适用于两步或两步以上完成的事件,用到的知识点为:概率=所求情况数与总情况数之比.20.“慈母手中线,游子身上衣”,为了解某校1000名学生在5月8日“母亲节”期间对母亲表达感谢的方式,某班兴趣小组随机抽取了部分学生进行问卷调查,并将问某校抽取学生“母亲节”期间对母亲表达感谢的方式的统计表卷调查的结果绘制成如下不完整的统计表:方式频数百分比送母亲礼物23 46%帮母亲做家务给母亲一个爱的拥抱8%其他15合计100%(1)本次问卷调查抽取的学生共有50 人,其中通过给母亲一个爱的拥抱表达感谢的学生有 4 人;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;(3)根据抽样的结果,估计该校学生通过帮母亲做家务表达感谢的约有多少人?【考点】统计图的选择;用样本估计总体;频数(率)分布表.【专题】常规题型.【分析】(1)由问卷调查的学生总人数=送母亲礼物的人数÷该项人数所占的百分比;给母亲一个爱的拥抱的人数=问卷调查的学生总人数×该项人数所占的百分比.(2)可选择条形图或者扇形图;(3)该校学生帮母亲做家务的人数=该校学生数×该项所占的百分数.【解答】解:(1)23÷46%=50(人),50×8%=4(人)故答案为50,4.(2)选择条形图或扇形统计图,如下图,条形图.(3)∵15÷50=30%,∴1﹣30%﹣8%﹣46%=16%.∴1 000×16%=160(人).答:估计该校1 000名学生中通过帮母亲做家务表达感谢的约有160人.【点评】(1)本题考查了频数、频率及总数间的关系,统计图的选择和用样本估计总数.(2)频率=,频数=频率×总数,总数=.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?【考点】分式方程的应用.【分析】设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据数量关系消耗能量千卡数=行走步数÷每消耗1千卡能量需要行走步数结合小明步行12 000步与小红步行9 000步消耗的能量相同,即可得出关于x的分式方程,解之后经检验即可得出结论.【解答】解:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据题意,得=,解得x=30.经检验:x=30是原方程的解.答:小红每消耗1千卡能量需要行走30步.【点评】本题考查了分式方程的应用,根据数量关系消耗能量千卡数=行走步数÷每消耗1千卡能量需要行走步数列出关于x的分式方程是解题的关键.22.如图,矩形ABCD的对角线AC、BD相交于点O,过点B作BE∥AC,交DC的延长线于点E.(1)求证:△BDC≌△BEC;(2)若BE=10,CE=6,连接OE,求OE的值.【考点】矩形的性质;全等三角形的判定与性质.【分析】(1)根据矩形的性质得出AB=CD,AB∥DC,∠BCD=∠BCE=90°,求出四边形ABEC 为平行四边形,求出DC=EC,根据SAS推出全等即可;(2)过点O作OF⊥CD于点F,根据平行四边形的性质得出AC=BE,求出OF和EF的长,最后根据勾股定理求出EF即可.【解答】(1)证明:∵四边形ABCD为矩形,∴AB=CD,AB∥DC,∠BCD=∠BCE=90°,∵AC∥BE,∴四边形ABEC为平行四边形,∴AB=CE,∴DC=EC,在△BCD和△BCE中,∴△BCD≌△BCE;(2)解:过点O作OF⊥CD于点F,∵由(1)知:四边形ABEC为平行四边形,∴AC=BE,∴BE=BD=10,∵△BCD≌△BCE,∴CD=CE=6,∵四边形ABCD是矩形,∴DO=OB,∠BCD=90°,∵OF⊥CD,∴OF∥BC,∴CF=DF=CD=3,∴EF=6+3=9,在Rt△BCE中,由勾股定理可得BC=8,∵OB=OD,∴OF为△BCD的中位线,∴OF=BC=4.∴在Rt△OEF中,由勾股定理可得OE===.【点评】本题考查了勾股定理,全等三角形的性质和判定,矩形的性质,平行四边形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键,题目综合性比较强,难度偏大.23.如图,在△ABC中,∠C=90°,∠A=α,D是边AC上一点,且∠BDC=β,AD=a,求BC 的长.(用含a、α、β的式子表示)【考点】解直角三角形.【分析】直接利用锐角三角函数关系表示出AC,DC的长,进而得出答案.【解答】解:在Rt△ABC中,由tanα=,得AC=,在Rt△DBC中,由tanβ=,得DC=,∵AD=a,∴﹣=a,∵BC=.【点评】此题主要考查了解直角三角形,正确表示出AC,DC的长是解题关键.24.小明从家骑车出发,沿一条直路到相距2400m的书店买书,同时,小明的爸爸以80m/min 速度从书店沿同一条路步行回家,小明在书店停留3分钟后沿原路以原速返回.设他们出发x min后,小明与爸爸分别到达离家y1m、y2m的地方,图中的折线OABC、线段DE分别表示y1、y2与x之间的函数关系.(1)求点P的坐标,并解释点P的实际意义;(2)求线段BC所在直线的函数表达式;(3)小明从书店返回,从开始到追上爸爸需要多长时间?这时他与爸爸离家还有多远?【考点】一次函数的应用.【专题】一次函数及其应用.【分析】(1)点P的横坐标代表了爸爸出发的时间,用书店距家的距离减去爸爸出发后走过的距离就能求出点P的纵坐标了;(2)小明返回的速度没有改变,则所用的时间也为12分钟,从而得出点C坐标为(27,0),将B、C的坐标代入直线BC解析式就可以求出;(3)小明追上爸爸的时间点即为线段BC与线段DE的交点,利用两条线段解析式可以求出点坐标.【解答】解:(1)∵2400﹣80×12=2400﹣960=1440,∴点P的坐标为(12,1440),P的实际意义:小明的爸爸从书店出发12分钟后,离家1440米;(2)∵小明骑车去书店和从书店返回的速度相同,∴小明从书店返回的时间也为12分钟,∴C点坐标为(27,0),设线段BC所在直线的函数表达式为y=kx+b,把点B(15,2400)、点C(27,0)代入得∴解得∴线段BC所在直线的函数表达式为y=﹣200x+5400(15≤x≤27);(3)设线段DE所在直线的函数表达式为y=kx+b,把点D(0,2400)、P(12,1440)代入得∴解得∴线段DE所在直线的函数表达式为y﹣80x+2400(0≤x≤30),∵小明追上爸爸时两人距家距离相等∴解得∴25﹣15=10.答:小明从书店返回,从开始到追上爸爸需要10分钟.这时他与爸爸离家还有400米.【点评】本题考查了一次函数的应用及一次函数解析式的求法,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息.25.已知二次函数y=x2+(m﹣3)x+1﹣2m.求证:(1)此二次函数的图象与x轴有两个交点;(2)当m取不同的值时,这些二次函数的图象都会经过一个定点,求此定点的坐标.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)利用根的判别式,可得结论;(2)首先分离出m,令m的系数为0,求出x,再求出y,也就是说这个定点与m的值无关.【解答】证明:(1)b2﹣4ac=(m﹣3)2﹣4(1﹣2m)=m2+2m+5=(m+1)2+4,∵(m+1)2≥0,∴(m+1)2+4>0,∴二次函数图象与x轴有两个交点;(2)y=x2+(m﹣3)x+1﹣2m=x2+(x﹣2)m﹣3x+1,∵当m取不同的值时,这些二次函数的图象都会经过一个定点,∴这个定点与m的值无关,∴x﹣2=0,解得:x=2,∴y=22﹣3×2+1=﹣1,∴当m取不同的值时,这些二次函数的图象都会经过(2,﹣1).【点评】此题主要考查了抛物线与x轴的交点,熟记二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系,△=b2﹣4ac决定抛物线与x轴的交点个数;△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点是解答此题的关键.26.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,交CA的延长线于点F.(1)求证:DF是⊙O的切线;(2)若∠C=30°,EF=,求EB的长.【考点】切线的判定.【专题】证明题.【分析】(1)连接OD,如图,先证明OD∥AB,再利用DE⊥AB得到OD⊥DF,然后根据切线的判定定理得到结论;(2)由∠C=30°得到∠AOD=60°,在Rt△ODF中利用含30°的直角三角形三边的关系得到OD=OF,则AF=OA=OD,再在Rt△AEF中计算出AE=EF=1,AF=2AE=2,于是得到BC=AC=2OA=4,然后计算AB﹣AE即可.【解答】(1)证明:连接OD,如图,∵AC为⊙O的直径,∴∠ADC=90°,又∵AB=AC,∴∠B=∠C,∵CO=OD,∴∠C=∠CDO,∴∠CDO=∠B,∴OD∥AB,∵DE⊥AB,∴OD⊥DF,又∵OD为⊙O的半径,∴DF是⊙O的切线;(2)解:∵∠C=30°,∴∠AOD=60°,在Rt△ODF中,∠ODF=90°,∴∠F=30°,∴OD=OF,∴AF=OA=OD,在Rt△AEF中,∠AEF=90°,∵EF=,∴AE=EF=1,∴AF=2AE=2,∴AC=2OA=4,∴AB=AC=4,∴BE=AB﹣AE=4﹣1=3.。
2019-2020学年第二学期九年级数学期末考试试卷及答案
第1页,共8页 数学试卷 第2页, 共8页密 封 线 学校 班级 姓名 学号封 线 内 不 得 答 题2019-2020学年第二学期九年级联考数学试卷及答案题号一 二 三 四 总分人 复核人 总分 得分本试卷满分为150分,考时间为120分钟.1. 下列各数:1.414,2,-13,0,其中是无理数的为 ( ) A .1.414 B . 2 C .-13D .02. 2017年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89 000人,将89 000用科学记数法表示为 ( )A .89×103B .8.9×104C .8.9×103D .0.89×1053. 剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为 ( )A B C D4.不等式组⎩⎨⎧x ≥-1,x<2的解集在数轴上表示正确的是 ( )A BC D 5. 下列几何体中,主视图是三角形的是 ( )A B C D 6市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:筹款(元) 5 10 15 20 25 30 人数 3 7 11 11 13 5 则该班同学筹款金额的众数和中位数分别是 ( ) A .11,20 B .25,11 C .20,25 D .25,20 7BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于 ( ) A .55° B .45° C .35° D .25°( 第7题 ) ( 第8题 ) (第10题)8. 如图,A ,D 是⊙O 上的两个点,BC 是直径.若∠D=32°,则∠OAC 为 ( )A .64°B .58°C .72°D .55° 9. 某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是 ( )A .(a -10%)(a +15%)万元B .a(1-90%)(1+85%)万元C .a(1-10%)(1+15%)万元D .a(1-10%+15%)万元 10. 今年五一节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(min ).所走的路程为s(m ),s 与t 之间的函数关系如图所示,下列说法错误的是 ( ) A .小明中途休息用了20 minB .小明休息前爬山的平均速度为每分钟70 mC .小明在上述过程所走的路程为6 600 mD .小明休息前爬山的平均速度大于休息后爬山的平均速度得 分 评卷人 得分 评卷人二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中横线上的.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内.第3页,共8页数学试卷 第4页,共8页密 封 线 内 不 得 答 题11. 因式分解:x 3-4x = ___________ .12.如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,且DE ∥BC ,若△ADE 与△ABC 的周长之比为2∶3,AD =4,则DB = .13.若关于x 的一元二次方程x 2-4x -m =0有两个不相等的实数根,则实数m 的取值范围是____ .14. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.(第12题 ) (第17题) 15.分式方程2x x -1-11-x=1的解是 16.函数y =1-xx +2中,自变量x 的取值范围为 . 17. 如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=65°,则∠AED ′ .18观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,……,则81+82+83+84+……+82 015的和的个位数字是得 分 评卷人19.(6分)计算:-14+12sin 60°+-(π-5)020. (6分)先化简,再求值:(m -n)2-m(m -2n),其中m =3,n = 2.21.(8分)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1; (2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.22. (10分) 今年“五·一”节期间,某商场举行抽奖促销活动.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明,证明过程或演算步骤.第5页,共8页 数学试卷 第6页, 共8页密 封 线 学校 班级 姓名 学号封 线 内 不 得 答 题(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率23(10分)如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B ,C ,E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B ,C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)得 分 评卷人24. (本题满分8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费. 为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点). 请你根据统计图解答下列问题: (1)此次抽样调查的样本容量是__________________.(2)补全频数分布直方图,求扇形图中“15吨—20吨”部分的圆心角的度数; (3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?用户用水量频数分布直方图 用户用水量扇形统计图 户数(单位:户)吨 10-15吨 30-35 40 30 20 100 10 15 20 25 30 35 用水量(单位:吨)25.(10分)已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACB =∠DCE =90°,D 为线段AB 上一动点. (1)求证:BD =AE ;(2)当D 是线段AB 中点时,求证:四边形AECD 是正方形.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.第7页,共8页数学试卷 第8页,共8页密 封 线 内 不 得 答 题26.(10分)如图,在平面直角坐标系中,一次函数2+=nx y 的图象与反比例函数xmy = 在第一象限内的图象交于点A ,与x 轴交于点B ,线段OA =5,C 为x 轴正半轴上一点,且sin ∠AOC =45. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积.27. 如图,AB 为⊙O 直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC .过点C 作CE⊥DB,垂足为E ,直线AB 与CE 相交于F 点. (1)求证:CF 为⊙O 的切线;(2)若⊙O 的半径为52,弦BD 的长为3,求CF 的长.28. 如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC∥x 轴,点P 时直线AC 下方抛物线上的动点. (1)求抛物线的解析式; (2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由。
湖北省武汉市2019-2020学年中考第二次质量检测数学试题含解析
湖北省武汉市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则()A.m<﹣1 B.m>1 C.m>﹣1 D.m<12.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的()A.中位数相等B.平均数不同C.A组数据方差更大D.B组数据方差更大3.关于▱ABCD的叙述,不正确的是()A.若AB⊥BC,则▱ABCD是矩形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是菱形4.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为()A.7⨯D.5⨯1.81018100.1810⨯B.51.810⨯C.65.青藏高原是世界上海拔最高的高原,它的面积是2500000 平方千米.将2500000 用科学记数法表示应为()A.72.510⨯C.6⨯D.52.5100.2510⨯B.7⨯25106.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.2 9.3 9.1 0.3A.中位数B.众数C.平均数D.方差7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A .B .C .D .9.把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是( )A .y =﹣2x 2+1B .y =﹣2x 2﹣1C .y =﹣2(x+1)2D .y =﹣2(x ﹣1)2 10.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论:①ac>0;②a-b+c<0; ③当x 0<时,y 0<;2a b 0+=④,其中错误的结论有( )A .②③B .②④C .①③D .①④11.如图,△ABC 是⊙O 的内接三角形,∠BOC =120°,则∠A 等于( )A .50°B .60°C .55°D .65°12.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=70°,AO ∥DC ,则∠B 的度数为( )A .40°B .45°C .50°D .55°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.反比例函数y=1kx与正比例函数y=k 2x 的图象的一个交点为(2,m ),则12k k =____. 14.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=_____.15.计算20180(1)(32)---=_____.16.如图,已知CD 是Rt △ABC 的斜边上的高,其中AD=9cm ,BD=4cm ,那么CD 等于_______cm.17.如图,直线y 1=kx+n (k≠0)与抛物线y 2=ax 2+bx+c (a≠0)分别交于A (﹣1,0),B (2,﹣3)两点,那么当y 1>y 2时,x 的取值范围是_____.18.长城的总长大约为6700000m ,将数6700000用科学记数法表示为______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 为⊙O 的直径,直线BM ⊥AB 于点B ,点C 在⊙O 上,分别连接BC ,AC ,且AC 的延长线交BM 于点D ,CF 为⊙O 的切线交BM 于点F .(1)求证:CF =DF ;(2)连接OF ,若AB =10,BC =6,求线段OF 的长.20.(6分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.21.(6分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?22.(8分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO 绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.23.(8分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边AB 上的高CD.如图①,以等边三角形ABC 的边AB 为直径的圆,与另两边BC、AC 分别交于点E、F.如图②,以钝角三角形ABC 的一短边AB 为直径的圆,与最长的边AC 相交于点E.24.(10分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.25.(10分)如图,一次函数y=2x﹣4的图象与反比例函数y=kx的图象交于A、B两点,且点A的横坐标为1.(1)求反比例函数的解析式;(2)点P是x轴上一动点,△ABP的面积为8,求P点坐标.26.(12分)已如:⊙O与⊙O上的一点A(1)求作:⊙O的内接正六边形ABCDEF;(要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由.27.(12分)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是边长为bm的正方形.列式表示每个B区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a=20,b=10,求整个长方形运动场的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】将关于x 的一元二次方程化成标准形式,然后利用Δ>0,即得m 的取值范围.【详解】因为方程是关于x 的一元二次方程方程,所以可得220x x m -=,Δ=4+4m > 0,解得m>﹣1,故选D.【点睛】本题熟练掌握一元二次方程的基本概念是本题的解题关键.2.D【解析】【分析】分别求出两组数据的中位数、平均数、方差,比较即可得出答案.【详解】A 组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷5=2; B 组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷5=12; ∴两组数据的中位数不相等,平均数相等,B 组方差更大.故选D.【点睛】本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键. 3.B【解析】【分析】由矩形和菱形的判定方法得出A 、C 、D 正确,B 不正确;即可得出结论.【详解】解:A 、若AB ⊥BC ,则ABCD Y 是矩形,正确;B 、若AC BD ⊥,则ABCD Y 是正方形,不正确;C 、若AC BD =,则ABCD Y 是矩形,正确;D 、若AB AD =,则ABCD Y 是菱形,正确;故选B .【点睛】本题考查了正方形的判定、矩形的判定、菱形的判定;熟练掌握正方形的判定、矩形的判定、菱形的判定是解题的关键.4.C【解析】分析:一个绝对值大于10的数可以表示为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,整数位数减去1即可.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1800000这个数用科学记数法可以表示为61.810⨯,故选C .点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.5.C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.解答:解:根据题意:2500000=2.5×1. 故选C .6.A【解析】【分析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选A .点睛:本题主要考查了中位数,关键是掌握中位数定义.7.D【解析】试题分析:,由①得:x≥1,由②得:x <2,在数轴上表示不等式的解集是:,故选D . 考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.8.A【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.故选A .考点:三视图 视频9.A【解析】【分析】根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是:y =﹣2x 2+1. 故选A .【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.10.C【解析】【分析】①根据图象的开口方向,可得a 的范围,根据图象与y 轴的交点,可得c 的范围,根据有理数的乘法,可得答案;②根据自变量为-1时函数值,可得答案;③根据观察函数图象的纵坐标,可得答案;④根据对称轴,整理可得答案.【详解】图象开口向下,得a <0,图象与y 轴的交点在x 轴的上方,得c >0,ac <,故①错误;②由图象,得x=-1时,y <0,即a-b+c <0,故②正确;③由图象,得图象与y 轴的交点在x 轴的上方,即当x <0时,y 有大于零的部分,故③错误;④由对称轴,得x=-2b a=1,解得b=-2a ,2a+b=0故④正确;故选D.【点睛】考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b 同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.11.B【解析】【分析】由圆周角定理即可解答.【详解】∵△ABC是⊙O的内接三角形,∴∠A=12∠BOC,而∠BOC=120°,∴∠A=60°.故选B.【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键. 12.D【解析】试题分析:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°. 故选D .考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4【解析】【分析】利用交点(2,m)同时满足在正比例函数和反比例函数上,分别得出m 和1k 、2k 的关系.【详解】把点(2,m)代入反比例函数和正比例函数中得,12k m =,22m k =,则124k k =. 【点睛】本题主要考查了函数的交点问题和待定系数法,熟练掌握待定系数法是本题的解题关键. 14.31- 【解析】【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF ,即可得出结论.【详解】如图,过点A 作AF ⊥BC 于F ,在Rt △ABC 中,∠B=45°,∴2AB=2,BF=AF=22AB=1, ∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt △ADF 中,根据勾股定理得,22AD AF -3 ∴33,-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.15.0【解析】分析:先计算乘方、零指数幂,再计算加减可得结果.详解:())0201812--=1-1=0故答案为0.点睛:零指数幂成立的条件是底数不为0.16.1【解析】【分析】利用△ACD ∽△CBD ,对应线段成比例就可以求出.【详解】∵CD ⊥AB ,∠ACB=90°,∴△ACD ∽△CBD , ∴CDBDAD CD =, ∴49CDCD =,∴CD=1.【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.17.﹣1<x <2【解析】【分析】根据图象得出取值范围即可.【详解】解:因为直线y 1=kx+n (k≠0)与抛物线y 2=ax 2+bx+c (a≠0)分别交于A (﹣1,0),B (2,﹣3)两点,所以当y 1>y 2时,﹣1<x <2,故答案为﹣1<x <2【点睛】此题考查二次函数与不等式,关键是根据图象得出取值范围.18.6.7×106【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6700000用科学记数法表示应记为6.7×106,故选6.7×106.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为ax10n的形式,其中1≤|a|<10,n为整数;表示时关键要正确确定a的值以及n的值.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)OF=254.【解析】【分析】(1)连接OC,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=252,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.【详解】(1)证明:连接OC,如图,∵CF为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)在Rt△ABC中,AC=8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴AB ACAD AB=,即10810AD=,∴AD=25 2,∵∠3=∠4,∴FC=FB,而FC=FD,∴FD=FB,而BO=AO,∴OF为△ABD的中位线,∴OF=12AD=254.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.20.(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升.【解析】试题分析:(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)100800×100%=12.5%.答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.21.(1)见解析(2)A-国学诵读(3)360人【解析】【分析】(1)根据统计图中C的人数和所占百分比可求出被调查的总人数,进而求出活动B和D人数,故可补全条形统计图;(2)由条形统计图知众数为“A-国学诵读”(3)先求出参加活动A的占比,再乘以全校人数即可.【详解】(1)由题意可得,被调查的总人数为12÷20%=60,希望参加活动B的人数为60×15%=9,希望参加活动D的人数为60-27-9-12=12,故补全条形统计图如下:(2)由条形统计图知众数为“A-国学诵读”;(3)由题意得全校学生希望参加活动A的人数为800×2760=360(人)【点睛】此题主要考查统计图的应用,解题的关键是根据题意求出调查的总人数再进行求解. 22.(1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【解析】【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【详解】(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.23.(1)详见解析;(2)详见解析.【解析】【分析】(1)连接AE、BF,找到△ABC的高线的交点,据此可得CD;(2)延长CB交圆于点F,延长AF、EB交于点G,连接CG,延长AB交CG于点D,据此可得.【详解】(1)如图所示,CD 即为所求;(2)如图,CD 即为所求.【点睛】本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质.24.(1)见解析;(2)△ADF的面积是108 25.【解析】试题分析:(1)连接OD,CD,求出∠BDC=90°,根据OE∥AB和OA=OC求出BE=CE,推出DE=CE,根据SSS证△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;(2)过O作OM⊥AB于M,过F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根据sin∠BAC=810BC OMAB OA==,求出OM,根据cos∠BAC=35AC AMAB OA==,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可.试题解析:(1)证明:连接OD,CD,∵AC 是⊙O 的直径,∴∠CDA=90°=∠BDC ,∵OE ∥AB ,CO=AO ,∴BE=CE ,∴DE=CE ,∵在△ECO 和△EDO 中DE CE EO EOOC OD ⎧⎪⎨⎪⎩=== ,∴△ECO ≌△EDO ,∴∠EDO=∠ACB=90°,即OD ⊥DE ,OD 过圆心O ,∴ED 为⊙O 的切线.(2)过O 作OM ⊥AB 于M ,过F 作FN ⊥AB 于N ,则OM ∥FN ,∠OMN=90°,∵OE ∥AB ,∴四边形OMFN 是矩形,∴FN=OM ,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE ∥AB ,∴△OEC ∽△ABC ,∴OC OE AC AB=,∴356AB =,∴AB=10,在Rt△BCA中,由勾股定理得:BC=22106+=8,sin∠BAC=810 BC OMAB OA==,即435 OM=,OM=125=FN,∵cos∠BAC=35 AC AMAB OA==,∴AM=9 5由垂径定理得:AD=2AM=185,即△ADF的面积是12AD×FN=12×185×125=10825.答:△ADF的面积是108 25.【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力.25.(1)y=6x;(2)(4,0)或(0,0)【解析】【分析】(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用△ABP的面积为8,可求P点坐标.【详解】解:(1)把x=1代入y=2x﹣4,可得y=2×1﹣4=2,∴A(1,2),把(1,2)代入y=kx,可得k=1×2=6,∴反比例函数的解析式为y=6x;(2)根据题意可得:2x﹣4=,解得x1=1,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴点B的坐标为(﹣1,﹣6).设直线AB与x轴交于点C,y=2x﹣4中,令y=0,则x=2,即C(2,0),设P点坐标为(x,0),则×|x﹣2|×(2+6)=8,解得x=4或0,∴点P的坐标为(4,0)或(0,0).【点睛】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。
2019-2020年九年级第二学期数学学科二模试卷
2019-2020年九年级第二学期数学学科二模试卷注意事项:1.本试卷共29题,满分130分,考试用时120分钟;2.答题前,考生务必将自己的娃名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符合;3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题全部答在答题卡上,答在考试卷和草稿纸上无效。
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题意.1.9的平方根是( )A.3 B.±3 C.-3 D.812.小马虎在下面的计算中只做对了一道题,他做对的题目是( )A.(a-b)2=a2-b2 B.(-2a3)2=4a6C.a3+a2=2a5 D.-(a-1)=-a-13.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,下面所列方程正确的是( )A.x+5(12-x)=48 B.x+5(x-12)=48C.x+12(x-5)=48 D.5x+(12-x)=484.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:则这10双运动鞋尺码的众数和中位数分别为( )A.25.5厘米,26厘米B.26厘米,25.5厘米C.25.5厘米,25.5厘米D.26厘米,26厘米5.如图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是( )6.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D'、C'的位置,若∠EFB =65°,则∠AED'等于( )A.50°B.55°C.60°D.65°7.(2010年无锡)已知圆锥的底面半径为2 cm,母线长为5 cm,则圆锥的侧面积是( ) A.20 cm2B.20 πcm2C.10πcm2D.5πcm28.(2010年包头)已知x1、x2是关于x的一元二次方程x2-(2m+3)x+m2=0的两个不相等的实数根,且满足x1+x2=m2,则m的值是( )A.-1 B.3 C.3或-1 D.-3或19.如图,在300m高的峭壁上测得一塔的塔顶与塔基的俯角分别为30°和60°,则塔高CD为( )A.200m B.180m C.150m D.100m10.Windows2000下有一个有趣的“扫雷”游戏,如图是扫雷游戏的一部分.说明:图中数字2表示在以该数字为中心的周边8个方格中有2个地雷,小旗表示该方格已被探明有地雷,现在还剩下A、B、C三个方格未被探明,其它地方为安全区(包括有数字的方格).则A、B、C三个方格中有地雷的概率最大的方格是( )A.A B.B C.C D.无法确定二、填空题:本大题共8小题,每小题3分,共24分.把答案填在题中横线上.11.若a与2互为相反数,则2a+=________.12.上海世博会“中国馆”的展馆面积为15800m2.这个数据用科学记数法可表示为________m2.13.若一个分式含有字母m,且当m=5时,它的值为12,则这个分式可以是________.(写出一个即可)14.已知⊙O1和⊙O2的半径分别为3cm和5cm,且它们内切,则圆心距O1O2等于________ cm.15.如图,已知DE是△ABC的中位线,S△ADE=4,则S△ABC=________.16.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果23 BEBC=,那么BFFD=________.17.在同一坐标平面内,下列4个函数①y=2(x+1)2-1,②y=2x2+3,③y=-2x2-1,④y=12x2-1的图象不可能由函数y=2x2+1的图象通过平移变换、轴对称变换得到的函数是________(填序号).18.某水电站的蓄水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图(1)所示,出水口出水量与时间的关系如图(2)所示,已知某天0点到6点,进行机组试运行,试机时至少打开一个水口,且该水池的蓄水量与时间的关系如图(3)所示.给出以下3个判断:①0点到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点打开一个进水口,一个出水口,④4点到6点同时打开了三个水口.则上述判断中一定正确的是________.(请将正确判断前的序号填上)三、解答题:本大题共11小题,共76分,解答应写出必要的计算过程、推演步骤或文字说明.19.(本题5分)计算:()1 21312-⎛⎫---+ ⎪⎝⎭.20.(本题5分)先化简,后求值:22212212x x xxx x x--+÷-+-,其中x=12.21.(本题5分)已知x=3是方程1012kx x+=+的一个根,求k的值和方程其余的根.22.(本题6分)解不等式组()5122433112x xx⎧-≤-⎪⎨-<⎪⎩,并把它的解集在数轴上表示出来.23.(本题6分)已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB =OC.(1)如图(1),若点O在边BC上,求证:AB=AC;(2)如图(2),若点O在△ABC的内部,求证:AB=AC.24.(本题6分)学校为了给初三年级教师预约购粉笔,特对该年级教师某一天粉笔使用情况进行统计.(1)该天初三年级教师使用粉笔的众数、中位数、平均数分别是多少?(2)按每学期上20周课,每周上5天,每盒粉笔40支,每箱粉笔25盒,则学校在开学初应给该年级教师准备几箱粉笔才够用?25.(本题8分)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y =a t(a 为常数).如图所示,据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?26.(本题8分)已知:如图,Rt △ABC 中,∠ACB =90°,点O 在AC 上,以O 为圆心、OC 为半径的圆与AB 相切于点D ,交AC 于点E .(1)求证:DE ∥OB ;(2)若⊙O 的半径为2,BC =4,求CD 的长.27.(本题9分)如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BFQ =60°,EF=1 km.(1)判断AB、AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果精确到0.1 km).(≈1.73,sin74°≈0.96,cos74°≈0.28,t a n74°≈3.49,sin76°≈0.97,cos76°≈0.24)28.(本题9分)已知二次函数y=2x2-(m+1)x+m-1.(1)求证:无论m为何值,函数y的图象与x轴总有交点.并指出当m为何值时,函数y的图象与x轴只有一个交点?(2)当m为何值时,函数y的图象过原点?并求出此时图象与x轴的另一交点的坐标;(3)如果函数y的图象的顶点在第四象限,求m的取值范围.29.(本题9分)操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点,图(1)、(2)、(3)是旋转三角板得到的图形中的其中三种.探究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么大小关系?它们的关系为________,不必写出证明过程.(2)三角板绕点P旋转,△PBE能否成为等腰三角形?若能,指出所有情况(即求出△PBE为等腰三角形时线段CE的长);若不能,请说明理由.(3)若将三角板顶点放在斜边上的M处,且AM:MB=1:n(n为大于1的整数),和前面一样操作,试问线段MD和ME之间又有什么大小关系?仿照图(1)、图(2)、图(3)的情况,请选择一种,写出证明过程.(图(4)供操作、实验用)(2)解:(3)结论为:_______________________________.证明:参考答案1~10.B B A D C A C B A A11.0 12.1.58×10413.60m(答案不唯一)14.2 15.16 16.2317.④18.①④19.10 20.原式=21xx-原式=-2 21.x=2 22.-2≤x<123.略24.(1)众数:4;中位数:4;平均数:3.72 (2)应给该年级教师准备10箱粉笔.25.(1)2332y t t⎛⎫=≤≤⎪⎝⎭(2) 至少需要经过6小时后,学生才能进入教室26.(1)略(2)CD=27.AB=AE (2) 两个岛屿A和B之间的距离约为3.6km528.(1) 当m=3时函数y的图象与x轴总有交点(2) 当m=1时函数y的图象过原点,图象与x轴的另一交点的坐标为(1,0) (3) m的取值范围为m>-1且m≠329.(1)相等(2) (2)共有四种情况:①当点C与点E重合,即CE =0时,PE=PB.②当CE=2PB=BE.③当CE=1时,此时PE=BE.④当E在CB的延长线上,且CE=2时,此时PB=EB.(3) MD:ME=1:n 证明略。
武汉市第二初级中学2019-2020学年中考数学模拟试卷
武汉市第二初级中学2019-2020学年中考数学模拟试卷一、选择题1.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.两条对角线垂直且平分的四边形是正方形D.四条边都相等的四边形是菱形2.如图,AB是☉O的直径,点C在☉O上,过点C的切线与AB的延长线交于点P,连接AC,过点O作OD⊥AC交☉O于点D,连接CD.若∠A=30°,PC=6,则CD的长为()A B C.3 D.3.如图,该几何体的俯视图是( )A.B.C.D.4.我们探究得方程x+y=2的正整数解只有1组,方程x+y=3的正整数解只有2组,方程x+y=4的正整数解只有3组,……,那么方程x+y+z=10的正整数解得组数是()A.34 B.35 C.36 D.375.如图,平行四边形ABCD的对角线BD=6cm,若将平行四边形ABCD绕其对称中心O旋转180°,则点D在旋转过程中所经过的路径长为()A.3πcmB.6πcmC.πcmD.2πcm6.统计局信息显示,2018年嘉兴市农家乐旅游营业收入达到27.49亿元,若2020年全市农家乐旅游营业收入要达到38亿元,设平均每年比上一年增长的百分率是x,则下列方程正确的是()A.27.49+27.49x2=38 B.27.49(1+2x)=38C.38(1﹣x)2=27.49 D.27.49(1+x)2=387.已知甲、乙、丙、丁四位射击运动员在一次比赛中的平均成绩是90环(总环为100环),而乙、丙、丁三位射击运动员的平均成绩是92环,则下列说法不正确的是()A.甲的成绩为84环B.四位射击运动员的成绩可能都不相同C.四位射击运动员的成绩一定有中位数D.甲的成绩比其他三位运动员的成绩都要差8.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图:根据该折线图,下列结论错误的是( )A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳9.2018年舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )A .4.995×1010B .49.95×1010C .0.4995×1011D .4.995×1011 10.在平面直角坐标系中,点A (a ,0),点B (2﹣a ,0),且A 在B 的左边,点C (1,﹣1),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a≤0B .0≤a<1C .﹣1<a <1D .﹣2<a <211.下面是一个几何体的俯视图,那么这个几何体是( )A .B .C .D .12.下列运算正确的是( )A .a 3•a 4=a 12B .a 5÷a ﹣3=a 2C .(3a 4)2=6a 8D .(﹣a )5•a=﹣a 6 二、填空题13.不等式1102x -+>的正整数解是____________; 14.同时抛掷两枚质地均匀的硬币,出现“一正一反”的概率是 .15.如图,已知△ABC 为等边三角形,点E 为△ABC 内部一点,△ABE 绕点B 顺时针旋转60°得到△CBD ,且A 、D 、E 三点在同一直线上,AD 与BC 交于点F ,则以下结论中:①△BED 为等边三角形;②△BED 与△ABC 的相似比始终不变;③△BDE ∽△AD B ;④当∠BAE =45°时,2CD DF =其中正确的有_____(填写序号即可).16.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.17.分解因式:=______.18.将y=2x2的图象沿y轴向下平移3个单位,则得到的新图象所对应的函数表达式为_____.三、解答题19.由山脚下的一点A测得山顶D的仰角是45°,从A沿倾斜角为30°的山坡前进1500米到B,再次测得山顶D的仰角为60°,求山高CD.20.某工厂计划招聘A、B两个工种的工人共120人,已知A、B两个工种的工人的月工费分别为2400元和3000元.(1)若工厂每月付A、B两个工种的总工费为330000元,那么两个工种的工人各招聘多少人.(2)若生产需要,要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的人数为多少时,可使每月支付的A、B两个工种的总工资最少.21.为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)22.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,∠ABC的平分线BF交AD于点F,交BC 于点D.(1)求证:BE =EF ;(2)若DE =4,DF =3,求AF 的长.23.2018年,广州国际龙舟邀请赛于6月23日在中山大学北门广场至广州大桥之间的珠江河段举行.上午8时,参赛龙舟同时出发,甲、乙两队在比赛中,路程y (千米)与时间x (小时)的函数关系如图所示,甲队在上午11时30分到达终点.(1)在比赛过程中,乙队何时追上甲队?(2)在比赛过程中,甲、乙两队何时相距最远?24.在平面直角坐标系xOy 中,一次函数y=-x+k 的图象与反比例函数y=-4x的图象交于点A (-4,n )和点B .(1)求k 的值和点B 的坐标;(2)若P 是x 轴上一点,且AP=AB ,直接写出点P 的坐标.25.(10(3)tan 45π︒--.(2)化简:2(2)(1)x x x ---.【参考答案】***一、选择题13.x=114..15.①16.63017.x(x+2)(x﹣2).18.y=2x2﹣3.三、解答题19.山高CD为米.【解析】【分析】首先根据题意分析图形;过点B作CD,AC的垂线,垂足分别为E,F,构造两个直角三角形△ABF与△DAC,分别求解可得AF与FC的值,再利用图形关系,进而可求出答案【详解】解:过点B作CD,AC的垂线,垂足分别为E,F,∵∠BAC=30°,AB=1500米,∴BF=EC=750米.AF=AB•cos∠BAC设FC=x米,∵∠DBE=60°,∴DE米.又∵∠DAC=45°,∴AC=CD.即:=米,解得x=750.∴CD=)米.答:山高CD为米.【点睛】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.20.(1)A工种的工人招聘了50人,B工种的工人招聘70人(2)每月支付的A、B两个工种的总工资最少336000元【解析】【分析】(1)设A 工种的工人为x 人,则B 工种的工人为(120-x )人,根据题意建立方程求出x 的值就可以求出结论;(2)设A 工种的工人为a 人,则B 工种的工人为(120-a )人,根据题意建立不等式组,然后求出其解就可以得出结论.【详解】解:(1)设A 工种的工人为x 人,则B 工种的工人为(120﹣x )人,由题意,得2400x+3000(120﹣x )=330000,解得:x =50,120﹣x =70.答:A 工种的工人招聘了50人,B 工种的工人招聘70人;(2)设A 工种的工人为a 人,则B 工种的工人为(120﹣a )人,由题意,得120﹣a≥2a,解得:a≤40,∵a 为整数,∴a =40,39,38,……,2,1.∴招聘工种工人的方案有:①、A 工种工人40人,B 工种工人80人,每月支付的A 、B 两个工种的总工资为:2400×40+3000×80=336000(元);②、A 工种工人39人,B 工种工人81人,每月支付的A 、B 两个工种的总工资为:2400×39+3000×81=336600(元);③、A 工种工人38人,B 工种工人82人,每月支付的A 、B 两个工种的总工资为:2400×38+3000×82=337200(元);……由上可得,每月支付的A 、B 两个工种的总工资最少336000元.【点睛】本题考查了列一元一次方程组解决实际问题的运用及一元一次方程组的解法和列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用.21.(1)开通隧道前,汽车从A 地到B 地要走)千米;(2)汽车从A 地到B 地比原来少走的路程为千米.【解析】【分析】(1)过点C 作AB 的垂线CD ,垂足为D ,在直角△ACD 中,解直角三角形求出CD ,进而解答即可;(2)在直角△CBD 中,解直角三角形求出BD ,再求出AD ,进而求出汽车从A 地到B 地比原来少走多少路程.【详解】(1)过点C 作AB 的垂线CD ,垂足为D ,∵AB ⊥CD ,sin30°=CD BC,BC =80千米, ∴CD =BC•sin30°=80×12=40(千米),AC =CD sin 45︒=千米), AC+BC =80+1-8(千米),答:开通隧道前,汽车从A 地到B 地要走(80+1-8)千米; (2)∵cos30°=BD BC,BC =80(千米),∴BD =BC•cos30°=80×2千米), ∵tan45°=CD AD ,CD =40(千米), ∴AD =CD 40tan 45︒=(千米),∴AB =AD+BD =40+千米),∴汽车从A 地到B 地比原来少走多少路程为:AC+BC ﹣AB =80+1-8﹣40﹣40+40(千米).答:汽车从A 地到B 地比原来少走的路程为 [40+40]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(1)见解析;(2)AF =214. 【解析】【分析】(1)通过证明∠6=∠EBF 得到EB=EF ;(2)先证明△EBD ∽△EAB ,再利用相似比求出AE ,然后计算AE-EF 即可得到AF 的长.【详解】(1)证明:∵AE 平分∠BAC ,∴∠1=∠4,∵∠1=∠5,∴∠4=∠5,∵BF 平分∠ABC ,∴∠2=∠3,∵∠6=∠3+∠4=∠2+∠5,即∠6=∠EBF ,∴EB =EF ;(2)解:∵DE =4,DF =3,∴BE =EF =DE+DF =7,∵∠5=∠4,∠BED =∠AEB ,∴△EBD ∽△EAB ,BE DE EA BE ∴=,即74EA 7=, ∴EA =494, ∴AF =AE ﹣EF =4921744-=.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.23.(1)出发1小时40分(或者说上午10点40分)时,乙队追上甲队(2)在比赛过程中,甲、乙两队在出发后1小时(或者上午9时)相距最远.【解析】【分析】(1)从图象看,甲队是OA 和AB 段,乙队是OC 段,分别通过相关点的坐标,求出它们的解析式,联立OC 与AB 解析式即可解出交点,交点横坐标即为乙队追上甲队的时间;(2)从图象看,一小时的时候两者相距较远,再将其与乙队到达终点时的距离比较即可.【详解】解:(1)对于乙队,x =1时,y =16x ,∴OC 解析式为:y =16x .对于甲队,当0≤x≤1时,令y =k 1x ,将(1,20)代入得:k 1=20,∴y =20x ;当x >1时,设AB 解析式为:y =k 2x+b ,将(1,20)和(2.5,35)分别代入得2220k b 35 2.5k b =+⎧⎨=+⎩,解得210k b 10=⎧⎨=⎩, ∴y =10x+10.联立OC 与AB 解析式得161010y x y x =⎧⎨=+⎩,解得x =53 ∴出发1小时40分(或者说上午10点40分)时,乙队追上甲队.(2)1小时内,两队相距最远为20﹣16=4米,之后到相遇,距离在变小;乙队追上甲队后,两队的距离为:16x ﹣(10x+10)=6x ﹣10,当x 值取最大,即当16x =35,x =3516时,6x ﹣10=6×3516﹣10=3.125<4. ∴在比赛过程中,甲、乙两队在出发后1小时(或者上午9时)相距最远.【点睛】本题为一次函数的应用综合题,需要分别求出相关线段的函数解析式,以及通过解析式联立求交点,数形结合等进行分析,难度略大.24.(1)点B 的坐标是(1,-4).(2)点P 的是坐标(3,0)或(-11,0).【解析】【分析】(1)将点A 的坐标带入反比例函数解析式中,求出n 值,再将A 点的坐标带入一次函数解析式中即可求出k 值,联立一次函数解析式与反比例函数解析式成方程组,解方程组即可得出结论;(2)设出点P 的坐标为(m ,0).根据两点间的距离公式表示出线段AP 和AB 的长度,根据AP=AB 得出关于m 的一元二次方程,解方程即可得出结论.【详解】解:(1)把A (-4,n )代入4y x =-中, 得:n=-44-=1, 把A (-4,1)代入y=-x+k 中,得:1=-(-4)+k ,解得:k=-3. 解方程组34.y x y x =--⎧⎪⎨=-⎪⎩,得{41.x y =-=或{14.x y ==-. ∴点B 的坐标是(1,-4).(2)设点P 的坐标为(m ,0).则:∵AP=AB,∴m 2+8m-33=0,解得:m 1=-11,m 2=3.答:点P 的是坐标(3,0)或(-11,0).【点睛】本题考查了反比例函数与一次函数交点的问题、待定系数法求函数解析式以及解一元二次方程,解题的关键是:(1)联立两函数解析式成方程组;(2)找出关于m 的一元二次方程.本题属于基础题,难道不大,解决该题型题目时,结合数量关系找出方程(或方程组)是关键.25.(1)5;(2)-3x+4【解析】【分析】(1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算.(2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.【详解】(1)解:原式5115=+-=(2)解:原式224434x x x x x =-+-+=-+【点睛】本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值.。
湖北省武汉市2019-2020学年中考数学二月模拟试卷含解析
湖北省武汉市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,﹣1),C (﹣2,﹣1),D (﹣1,1).以A 为对称中心作点P (0,2)的对称点P 1,以B 为对称中心作点P 1的对称点P 2,以C 为对称中心作点P 2的对称点P 3,以D 为对称中心作点P 3的对称点P 4,…,重复操作依次得到点P 1,P 2,…,则点P 2010的坐标是( )A .(2010,2)B .(2010,﹣2)C .(2012,﹣2)D .(0,2)2.下列各数中最小的是( )A .0B .1C .﹣3D .﹣π3.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是( )A .B .C .D . 4.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =5.如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC=6,则DE 的长为( )A .2B .3C .4D .66.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=()A.40°B.110°C.70°D.140°7.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A.12B.13C.14D.168.下列说法:①平分弦的直径垂直于弦;②在n次随机实验中,事件A出现m次,则事件A发生的频率mn,就是事件A的概率;③各角相等的圆外切多边形一定是正多边形;④各角相等的圆内接多边形一定是正多边形;⑤若一个事件可能发生的结果共有n种,则每一种结果发生的可能性是1n.其中正确的个数()A.1 B.2 C.3 D.49.如图是一个空心圆柱体,其俯视图是( )A.B.C.D.10.下列各数中,相反数等于本身的数是()A.–1 B.0 C.1 D.211.一元二次方程(x+3)(x-7)=0的两个根是A.x1=3,x2=-7 B.x1=3,x2=7C.x1=-3,x2=7 D.x1=-3,x2=-712.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤二、填空题:(本大题共6个小题,每小题4分,共24分.)13.我们知道方程组345456x yx y+=⎧⎨+=⎩的解是12xy=-⎧⎨=⎩,现给出另一个方程组3(23)4(2)54(23)5(2)6x yx y++-=⎧⎨++-=⎩,它的解是____.14.如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l1分别通过A、B、C三点,且l1∥l2∥l1.若l1与l2的距离为5,l2与l1的距离为7,则Rt△ABC的面积为___________15.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.16.如图,点A 是反比例函数y=﹣4x(x<0)图象上的点,分别过点A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.17.计算232)的结果等于______________________.1812+3.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.20.(6分)在边长为1的5×5的方格中,有一个四边形OABC ,以O 点为位似中心,作一个四边形,使得所作四边形与四边形OABC 位似,且该四边形的各个顶点都在格点上;求出你所作的四边形的面积.21.(6分)如图,在平行四边形ABCD 中,BD 是对角线,∠ADB=90°,E 、F 分别为边AB 、CD 的中点. (1)求证:四边形DEBF 是菱形;(2)若BE=4,∠DEB=120°,点M 为BF 的中点,当点P 在BD 边上运动时,则PF+PM 的最小值为 ,并在图上标出此时点P 的位置.22.(8分)已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图1,连接BC .(1)填空:OBC ∠= ︒;(2)如图1,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3)如图2,点M ,N 同时从点O 出发,在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?23.(8分)如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =10t ﹣5t 1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t 在什么范围时,飞行高度不低于15m?24.(10分)一次函数y=x的图象如图所示,它与二次函数y=ax2-4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.25.(10分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.26.(12分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB 求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.27.(12分)为支持农村经济建设,某玉米种子公司对某种种子的销售价格规定如下:每千克的价格为a 元,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某农户对购买量和付款金额这两个变量的对应关系用列表做了分析,并绘制出了函数图象,如图所示,其中函数图象中A点的左边为(2,10),请你结合表格和图象,回答问题:购买量x(千克) 1 1.5 2 2.5 3付款金额y(元) a 7.5 10 12 b(1)由表格得:a= ;b= ;(2)求y关于x的函数解析式;(3)已知甲农户将8元钱全部用于购买该玉米种子,乙农户购买4千克该玉米种子,如果他们两人合起来购买,可以比分开购买节约多少钱?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,又∵A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(1,0);同理P1的坐标是(1,﹣1),记P1(a1,b1),其中a1=1,b1=﹣1.根据对称关系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴点P1010的坐标是(1010,﹣1),故选:B.点睛:本题考查了对称的性质,坐标与图形的变化---旋转,根据条件求出前边几个点的坐标,得到规律是解题关键.2.D【解析】【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.【详解】﹣π0<1.则最小的数是﹣π.故选:D.【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.3.C【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x;故D选项错误.故选C.考点:动点问题的函数图象.4.D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.5.B【解析】【分析】根据三角形的中位线等于第三边的一半进行计算即可.【详解】∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=6,∴DE=BC=1.故选B.【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.6.B【解析】【分析】先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.【详解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=12∠BAC=12×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故选B.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.7.D【解析】【分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.A【解析】【分析】根据垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义逐一判断可得.【详解】①平分弦(不是直径)的直径垂直于弦,故此结论错误;②在n次随机实验中,事件A出现m次,则事件A发生的频率mn,试验次数足够大时可近似地看做事件A的概率,故此结论错误;③各角相等的圆外切多边形是正多边形,此结论正确;④各角相等的圆内接多边形不一定是正多边形,如圆内接矩形,各角相等,但不是正多边形,故此结论错误;⑤若一个事件可能发生的结果共有n种,再每种结果发生的可能性相同是,每一种结果发生的可能性是1.故此结论错误;n故选:A.【点睛】本题主要考查命题的真假,解题的关键是掌握垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义.9.D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】该空心圆柱体的俯视图是圆环,如图所示:故选D.【点睛】本题考查了三视图,明确俯视图是从物体上方看得到的图形是解题的关键.10.B【解析】【分析】根据相反数的意义,只有符号不同的数为相反数.【详解】解:相反数等于本身的数是1.故选B.【点睛】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,1的相反数是1.11.C【解析】【分析】根据因式分解法直接求解即可得.【详解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故选C.【点睛】本题考查了解一元二次方程——因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键. 12.B【解析】试题分析:①、MN=12AB,所以MN的长度不变;②、周长C△PAB=12(AB+PA+PB),变化;③、面积S△PMN=14S△PAB=14×12AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线二、填空题:(本大题共6个小题,每小题4分,共24分.)13.24 xy=-⎧⎨=⎩【解析】【分析】观察两个方程组的形式与联系,可得第二个方程组中23122xy+=-⎧⎨-=⎩,解之即可.【详解】解:由题意得23122xy+=-⎧⎨-=⎩,解得24xy=-⎧⎨=⎩.故答案为:24xy=-⎧⎨=⎩.【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便. 14.17【解析】过点B 作EF ⊥l 2,交l 1于E ,交l 1于F ,如 图, ∵EF ⊥l 2,l 1∥l 2∥l 1, ∴EF ⊥l 1⊥l 1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°, 又∵∠ABC=90°, ∴∠ABE+∠FBC=90°, ∴∠EAB=∠FBC , 在△ABE 和△BCF 中,{AEB BFC EAB FCB AB BC∠=∠∠=∠=, ∴△ABE ≌△BCF , ∴BE=CF=5,AE=BF=7, 在Rt △ABE 中,AB 2=BE 2+AE 2, ∴AB 2=74, ∴S △ABC=12AB ⋅BC=12AB 2=17. 故答案是17.点睛:本题考查了全等三角形的判定和性质、勾股定理、平行线间的距离,三角形的面积公式,解题的关键是做辅助线,构造全等三角形,通过证明三角形全等对应边相等,再利用三角形的面积公式即可得解. 15.3.1或4.32或4.2 【解析】【分析】在Rt △ABC 中,通过解直角三角形可得出AC=5、S △ABC =1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt △ABC 中,∠ACB=90°,AB=3,BC=4,∴22AB BC +,S △ABC =12AB•BC=1. 沿过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,有三种情况: ①当AB=AP=3时,如图1所示, S 等腰△ABP =AP AC •S △ABC =35×1=3.1; ②当AB=BP=3,且P 在AC 上时,如图2所示,作△ABC 的高BD ,则BD=·342.45AB BC AC ⨯==, ∴AD=DP=223 2.4-=1.2, ∴AP=2AD=3.1, ∴S 等腰△ABP =AP AC •S △ABC =3.65×1=4.32; ③当CB=CP=4时,如图3所示, S 等腰△BCP =CP AC •S △ABC =45×1=4.2; 综上所述:等腰三角形的面积可能为3.1或4.32或4.2, 故答案为:3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.16.4﹣π 【解析】 【分析】由题意可以假设A (-m ,m ),则-m 2=-4,求出点A 坐标即可解决问题. 【详解】由题意可以假设A (-m ,m ), 则-m 2=-4, ∴m=≠±2, ∴m=2,∴S 阴=S 正方形-S 圆=4-π, 故答案为4-π. 【点睛】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题 17.743+ 【解析】 【分析】根据完全平方式可求解,完全平方式为()2222a b a ab b ±=±+【详解】22222227)=++=+【点睛】此题主要考查二次根式的运算,完全平方式的正确运用是解题关键18.【解析】【分析】化成.【详解】原式故答案为【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)13;(2)59.【解析】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120360︒︒=13;(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为1,所有可能性如下表所示:由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为9.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.20.(1)如图所示,见解析;四边形OA′B′C′即为所求;(2)S四边形OA′B′C′=1.【解析】【分析】(1)结合网格特点,分别作出点A、B、C关于点O成位似变换的对应点,再顺次连接即可得;(2)根据S四边形OA′B′C′=S△OA′B′+S△OB′C′计算可得.【详解】(1)如图所示,四边形OA′B′C′即为所求.(2)S四边形OA′B′C′=S△OA′B′+S△OB′C′=×4×4+×2×2=8+2=1.【点睛】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.21.(1)详见解析;(2)3【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,以及平行四边形的对边相等证明四边形DEBF的四边相等即可证得;(2)连接EM,EM与BD的交点就是P,FF+PM的最小值就是EM的长,证明△BEF是等边三角形,利用三角函数求解.【详解】(1)∵平行四边形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.∵△ABD中,∠ADB=90°,E时AB的中点,∴DE=12AB=AE=BE.同理,BF=DF.∵平行四边形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四边形DEBF是菱形;(2)连接BF.∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等边三角形.∵M是BF的中点,∴EM⊥BF.则EM=BE•sin60°=4×3=23.即PF+PM的最小值是23.故答案为:23.【点睛】本题考查了菱形的判定与性质以及图形的对称,根据菱形的对称性,理解PF+PM的最小值就是EM的长是关键.22.(1)1;(2221(3)x83=时,y有最大值,最大值83=.【解析】【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x83≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当83<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【详解】(1)由旋转性质可知:OB=OC,∠BOC=1°,∴△OBC是等边三角形,∴∠OBC=1°.故答案为1.(2)如图1中.∵OB=4,∠ABO=30°,∴OA12=OB=2,AB3=OA=23,∴S△AOC12=•OA•AB12=⨯2×2323=.∵△BOC是等边三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC2227AB BC=+=,∴OP24322127AOCSAC===V.(3)①当0<x83≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin1°32 =,∴S△OMN12=•OM•NE12=⨯1.5x32x,∴y33=x2,∴x83=时,y有最大值,最大值83=.②当83<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin1°3 2=(8﹣1.5x),∴y12=⨯ON×MH33=-x2+23x.当x83=时,y取最大值,y83<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=3∴y12=•MN•OG=533x,当x=4时,y有最大值,最大值=3综上所述:y 83.【点睛】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.23.(1)小球飞行时间是1s时,小球最高为10m;(1) 1≤t≤3.【解析】【分析】(1)将函数解析式配方成顶点式可得最值;(1)画图象可得t的取值.【详解】(1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,∴当t=1时,h取得最大值10米;答:小球飞行时间是1s时,小球最高为10m;(1)如图,由题意得:15=10t﹣5t1,解得:t1=1,t1=3,由图象得:当1≤t≤3时,h≥15,则小球飞行时间1≤t≤3时,飞行高度不低于15m.【点睛】本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.24.(1)点C(1,);(1)①y=x1-x;②y=-x1+1x+.【解析】试题分析:(1)求得二次函数y=ax1-4ax+c对称轴为直线x=1,把x=1代入y=x求得y=,即可得点C的坐标;(1)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m),根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax1-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,m)(m<1),过点A作AE⊥CD于E,则AE=1-m,CE=-m,根据勾股定理用m表示出AC的长,根据△ACD的面积等于10可求得m的值,即可得A点的坐标,分两种情况:第一种情况,若a>0,则点D在点C下方,求点D的坐标;第二种情况,若a<0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入y=ax1-4ax+c即可求得函数表达式. 试题解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函数图像的对称轴为直线x=1.当x=1时,y=x=,∴C(1,).(1)①∵点D与点C关于x轴对称,∴D(1,-),∴CD=3.设A(m,m)(m<1),由S△ACD=3,得×3×(1-m)=3,解得m=0,∴A(0,0).由A(0,0)、D(1,-)得解得a=,c=0.∴y=x1-x.②设A(m,m)(m<1),过点A作AE⊥CD于E,则AE=1-m,CE=-m,AC==(1-m),∵CD=AC,∴CD=(1-m).由S△ACD=10得×(1-m)1=10,解得m=-1或m=6(舍去),∴m=-1.∴A(-1,-),CD=5.若a>0,则点D在点C下方,∴D(1,-),由A(-1,-)、D(1,-)得解得∴y=x1-x-3.若a<0,则点D在点C上方,∴D(1,),由A(-1,-)、D(1,)得解得∴y=-x1+1x+.考点:二次函数与一次函数的综合题.25.不公平【解析】【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得. 【详解】根据题意列表如下:1 2 3 11 (1,1)(2,1)(3,1)(1,1)2 (1,2)(2,2)(3,2)(1,2)3 (1,3)(2,3)(3,3)(1,3)1 (1,1)(2,1)(3,1)(1,1)所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,∴P(甲获胜)=516,P(乙获胜)=1﹣516=1116,则该游戏不公平.【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.26.(1)见解析;(2)5【解析】分析:(1)如下图,连接OD,由OA=OD可得∠DAO=∠ADO,结合∠CAD=∠DAB,可得∠CAD=∠ADO,从而可得OD∥AC,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD是⊙O的切线;(2)如下图,连接BD,由AB是⊙O的直径可得∠ADB=90°=∠C,结合∠CAD=∠DAB可得△ACD∽△ADB,由此可得AD ABCD BD,在Rt△ABD中由AD=6,AB=9易得BD=35,由此即可解得CD的长了.(1)如下图,连接OD.∵OA=OD,∴∠DAB=∠ODA,∵∠CAD=∠DAB,∴∠ODA=∠CAD∴AC∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD⊥CD,∴CD是⊙O的切线.(2)如下图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=9,AD=6,∴BD=2296-=45=35,∵∠CAD=∠BAD,∠C=∠ADB=90°,∴△ACD∽△ADB,∴AD AB CD BD=,∴635 CD=,∴CD=185=25.点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.27.(1)5,1 (2)当0<x≤2时,y=5x,当x>2时,y关于x的函数解析式为y=4x+2 (3)1.6元.【分析】(1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出a 值,结合超过2千克部分的种子价格打8折可得出b 值;(2)分段函数,当0≤x≤2时,设线段OA 的解析式为y =kx ;当x >2时,设关系式为y =k1x +b ,然后将(2,10),且x =3时,y =1,代入关系式即可求出k ,b 的值,从而确定关系式;(3)代入(2)的解析式即可解答.【详解】解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x ,∵10÷2=5,∴a =5,b =2×5+5×0.8=1.故答案为a =5,b =1.(2)当0≤x≤2时,设线段OA 的解析式为y =kx ,∵y =kx 的图象经过(2,10),∴2k =10,解得k =5,∴y =5x ;当x >2时,设y 与x 的函数关系式为:y =1k x +b∵y =kx+b 的图象经过点(2,10),且x =3时,y =1,11210314k b k b +⎧⎨+⎩== ,解得142k b =⎧⎨=⎩, ∴当x >2时,y 与x 的函数关系式为:y =4x +2.∴y 关于x 的函数解析式为:()50242(2)x x y x x ⎧≤≤=⎨+>⎩ ;(3)甲农户将8元钱全部用于购买该玉米种子,即5x =8,解得x =1.6,即甲农户购买玉米种子1.6千克;如果他们两人合起来购买,共购买玉米种子(1.6+4)=5.6千克,这时总费用为:y =4×5.6+2=24.4元. (8+4×4+2)−24.4=1.6(元).答:如果他们两人合起来购买,可以比分开购买节约1.6元.【点睛】本题主要考查了一次函数的应用和待定系数法求一次函数解析式,根据已知得出图表中点的坐标是解题的关键.注意:求正比例函数,只要一对x ,y 的值就可以;而求一次函数y =kx +b ,则需要两组x ,y 的值.。
湖北省武汉市2019-2020学年中考第二次大联考数学试卷含解析
湖北省武汉市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列运算正确的是( ) A .5a+2b=5(a+b ) B .a+a 2=a 3 C .2a 3•3a 2=6a 5D .(a 3)2=a 52.一元二次方程x 2﹣5x ﹣6=0的根是( ) A .x 1=1,x 2=6B .x 1=2,x 2=3C .x 1=1,x 2=﹣6D .x 1=﹣1,x 2=63.已知二次函数 2y ax bx c =++图象上部分点的坐标对应值列表如下: x … -3 -2 -1 0 1 2 … y…2-1-2-127…则该函数图象的对称轴是( ) A .x=-3B .x=-2C .x=-1D .x=04.不等式组73357x x x -+<+⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .5.下列运算正确的是( ) A .32()x =x 5B .55()x x -=-C .3x ·2x =6xD .32x +2 35x 5x =6.二次函数y =ax 2+c 的图象如图所示,正比例函数y =ax 与反比例函数y =cx在同一坐标系中的图象可能是( )A .B .C .D .7.对于有理数x 、y 定义一种运算“”:,其中a 、b 、c 为常数,等式右边是通常的加法与乘法运算,已知,,则的值为()A.-1 B.-11 C.1 D.118.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于()A.90°B.120°C.60°D.30°9.下列命题是真命题的个数有()①菱形的对角线互相垂直;②平分弦的直径垂直于弦;③若点(5,﹣5)是反比例函数y=kx图象上的一点,则k=﹣25;④方程2x﹣1=3x﹣2的解,可看作直线y=2x﹣1与直线y=3x﹣2交点的横坐标.A.1个B.2个C.3个D.4个10.下列调查中适宜采用抽样方式的是()A.了解某班每个学生家庭用电数量B.调查你所在学校数学教师的年龄状况C.调查神舟飞船各零件的质量D.调查一批显像管的使用寿命11.在3,0,-2,-四个数中,最小的数是()A.3 B.0 C.-2 D.-12.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12CF B.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,一次函数y1=kx+b的图象与反比例函数y2=mx(x<0)的图象相交于点A和点B.当y1>y2>0时,x 的取值范围是_____.14.阅读以下作图过程:第一步:在数轴上,点O 表示数0,点A 表示数1,点B 表示数5,以AB 为直径作半圆(如图); 第二步:以B 点为圆心,1为半径作弧交半圆于点C(如图); 第三步:以A 点为圆心,AC 为半径作弧交数轴的正半轴于点M .请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M 表示的数为______.15.图中圆心角∠AOB=30°,弦CA ∥OB ,延长CO 与圆交于点D ,则∠BOD= .16.抛物线y =2x 2+4向左平移2个单位长度,得到新抛物线的表达式为_____. 17.分解因式:x 2y ﹣y =_____.18.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶6千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C .小明发现古镇C 恰好在A 地的正北方向,则B 、C 两地的距离是_____千米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在四边形ABCD 中,BD 为一条对角线,AD BC ∥,2AD BC =,90ABD ∠=︒.E 为AD 的中点,连结BE .(1)求证:四边形BCDE 为菱形;(2)连结AC ,若AC 平分BAD ∠,1BC =,求AC 的长.20.(6分) “C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB ∥CD ,AM ∥BN ∥ED ,AE ⊥DE ,请根据图中数据,求出线段BE 和CD 的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)21.(6分)如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE=0.4m ,EF=0.2m ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,求树高.22.(8分)我们来定义一种新运算:对于任意实数 x 、y ,“※”为 a ※b =(a+1)(b+1)﹣1. (1)计算(﹣3)※9(2)嘉琪研究运算“※”之后认为它满足交换律,你认为她的判断 ( 正确、错误) (3)请你帮助嘉琪完成她对运算“※”是否满足结合律的证明.23.(8分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W (L )与滴水时间t (h )的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W 与t 之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图 ① 图②24.(10分)如图所示,一艘轮船位于灯塔P 的北偏东60︒方向与灯塔Р的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45︒方向上的B 处.求此时轮船所在的B 处与灯塔Р的距离.(结果保留根号)25.(10分)如图,ABC △是等腰三角形,AB AC =,36A ∠=o .(1)尺规作图:作B Ð的角平分线BD ,交AC 于点D (保留作图痕迹,不写作法); (2)判断BCD V 是否为等腰三角形,并说明理由.26.(12分)(感知)如图①,四边形ABCD 、CEFG 均为正方形.可知BE=DG . (拓展)如图②,四边形ABCD 、CEFG 均为菱形,且∠A=∠F .求证:BE=DG .(应用)如图③,四边形ABCD 、CEFG 均为菱形,点E 在边AD 上,点G 在AD 延长线上.若AE=2ED ,∠A=∠F ,△EBC 的面积为8,菱形CEFG 的面积是_______.(只填结果)27.(12分)现有A、B两种手机上网计费方式,收费标准如下表所示:设上网时间为x分钟,(1)若按方式A和方式B的收费金额相等,求x的值;(2)若上网时间x超过320分钟,选择哪一种方式更省钱?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a3•3a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误.故选C.【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.2.D【解析】【分析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.【详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.3.C【解析】【分析】由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.【详解】解:∵x=-2和x=0时,y的值相等,∴二次函数的对称轴为2012x-+==-,故答案为:C.【点睛】本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.4.C【解析】【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.【详解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式组的解集为:2<x≤4,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【解析】【分析】根据幂的运算法则及整式的加减运算即可判断. 【详解】 A. ()23x =x 6,故错误;B. ()55x x -=-,正确; C. 3x ·2x =5x ,故错误; D. 32x +2 3x 不能合并,故错误, 故选B. 【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则. 6.C 【解析】 【分析】根据二次函数图像位置确定a <0,c >0,即可确定正比例函数和反比例函数图像位置. 【详解】解:由二次函数的图像可知a <0,c >0,∴正比例函数过二四象限,反比例函数过一三象限. 故选C. 【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键. 7.B 【解析】 【分析】先由运算的定义,写出3△5=25,4△7=28,得到关于a 、b 、c 的方程组,用含c 的代数式表示出a 、b .代入2△2求出值. 【详解】由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28 所以解这个方程组,得所以2△2=a+b+c=-35-2c+24+c+c=-2.故选B.【点睛】本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.8.C【解析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC=OAAC=12,∴∠BAC=60°.故选C.点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.9.C【解析】【分析】根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可.【详解】解:①菱形的对角线互相垂直是真命题;②平分弦(非直径)的直径垂直于弦,是假命题;③若点(5,-5)是反比例函数y=kx图象上的一点,则k=-25,是真命题;④方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;故选C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.一些命题的正确性是用推理证实的,这样的真命题叫做定理.10.D【解析】【分析】根据全面调查与抽样调查的特点对各选项进行判断.【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.故选:D.【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.11.C【解析】【分析】根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以,所以最小的数是,故选C.【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.12.D【解析】【分析】由1122AE AD BC==,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【详解】A.∵AD∥BC,∴△AEF∽△CBF,∴12 AE AFBC FC==,∵1122AE AD BC ==, ∴12AF FC =,故A 正确,不符合题意; B. 过D 作DM ∥BE 交AC 于N ,∵DE ∥BM,BE ∥DM ,∴四边形BMDE 是平行四边形, ∴12BM DE BC ==, ∴BM=CM ,∴CN=NF ,∵BE ⊥AC 于点F,DM ∥BE ,∴DN ⊥CF ,∴DF=DC ,∴∠DCF=∠DFC ,故B 正确,不符合题意;C. 图中与△AEF 相似的三角形有△ACD ,△BAF ,△CBF ,△CAB ,△ABE 共有5个,故C 正确,不符合题意;D. 设AD=a,AB=b,由△BAE ∽△ADC,有2.ab a b= ∵tan ∠CAD ,2CD b AD a === 故D 错误,符合题意. 故选:D.【点睛】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-2<x<-0.5【解析】【分析】根据图象可直接得到y 1>y 2>0时x 的取值范围.【详解】根据图象得:当y 1>y 2>0时,x 的取值范围是﹣2<x <﹣0.5,故答案为﹣2<x <﹣0.5.【点睛】本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.14.作图见解析,151+ 【解析】解:如图,点M 即为所求.连接AC 、BC .由题意知:AB=4,BC=1.∵AB 为圆的直径,∴∠ACB=90°,则AM=AC=22AB BC -=2241-=15,∴点M 表示的数为151+.故答案为151+.点睛:本题主要考查作图﹣尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理. 15.30°【解析】试题分析:∵CA ∥OB ,∠AOB=30°,∴∠CAO=∠AOB=30°.∵OA=OC ,∴∠C=∠OAC=30°.∵∠C 和∠AOD 是同弧所对的圆周角和圆心角,∴∠AOD=2∠C=60°.∴∠BOD=60°-30°=30°.16.y=2(x+2)2+1【解析】试题解析:∵二次函数解析式为y=2x 2+1,∴顶点坐标(0,1)向左平移2个单位得到的点是(-2,1),可设新函数的解析式为y=2(x-h )2+k ,代入顶点坐标得y=2(x+2)2+1,故答案为y=2(x+2)2+1.点睛:函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.17.y (x+1)(x ﹣1)【解析】【分析】观察原式x 2y ﹣y ,找到公因式y 后,提出公因式后发现x 2-1符合平方差公式,利用平方差公式继续分解可得.【详解】解:x 2y ﹣y=y(x2﹣1)=y(x+1)(x﹣1).故答案为:y(x+1)(x﹣1).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.36【解析】【分析】作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.【详解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=BE AB,∴BE=AB•sin∠BAC=3633=由题意得,∠C=45°,∴BC=BEsin C=23362=,故答案为6.【点睛】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)3【解析】【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)只要证明△ACD是直角三角形,∠ADC=60°,AD=2即可解决问题;【详解】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形.(2)连接AC,如图所示:∵∠ADB=30°,∠ABD=90°,∴AD=2AB,∵AD=2BC,∴AB=BC,∴∠BAC=∠BCA,∵AD∥BC,∴∠DAC=∠BCA,∴∠CAB=∠CAD=30°∴AB=BC=DC=1,AD=2BC=2,∵∠DAC=30°,∠ADC=60°,在Rt△ACD中,223AD CD-=【点睛】考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法.20.线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.【解析】试题分析:在Rt△BED中可先求得BE的长,过C作CF⊥AE于点F,则可求得AF的长,从而可求得EF的长,即可求得CD的长.试题解析:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE-AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.【点睛】本题考查了解直角三角形的应用,正确地添加辅助线构造直角三角形是解题的关键. 21.树高为5.5 米【解析】【分析】根据两角相等的两个三角形相似,可得△DEF∽△DCB ,利用相似三角形的对边成比例,可得DE EFDC CB=,代入数据计算即得BC的长,由AB=AC+BC ,即可求出树高.【详解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴DE EF DC CB=,∵DE=0.4m,EF=0.2m,CD=8m,∴0.40.28CB=,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.22.(1)-21;(2)正确;(3)运算“※”满足结合律【解析】【分析】(1)根据新定义运算法则即可求出答案.(2)只需根据整式的运算证明法则a ※b=b ※a 即可判断.(3)只需根据整式的运算法则证明(a ※b )※c=a ※(b ※c )即可判断.【详解】(1)(-3)※9=(-3+1)(9+1)-1=-21(2)a ※b=(a+1)(b+1)-1b ※a=(b+1)(a+1)-1,∴a ※b=b ※a ,故满足交换律,故她判断正确;(3)由已知把原式化简得a ※b=(a+1)(b+1)-1=ab+a+b∵(a ※b )※c=(ab+a+b )※c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+c∵a ※(b ※c )=a (bcv+b+c )+(bc+b+c )+a=abc+ac+ab+bc+a+b+c∴(a ※b )※c=a ※(b ※c )∴运算“※”满足结合律【点睛】本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型.23.(1)0.3 L ;(2)在这种滴水状态下一天的滴水量为9.6 L.【解析】【分析】(1)根据点()0,0.3的实际意义可得;(2)设W 与t 之间的函数关系式为W kt b =+,待定系数法求解可得,计算出24t =时W 的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W 与t 之间的函数图象经过点(0,0.3),故设函数关系式为W =kt +0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k +0.3=0.9,解得k =0.4.故W 与t 之间的函数关系式为W =0.4t +0.3.当t =24时,W =0.4×24+0.3=9.9(L ),9.9-0.3=9.6(L ),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.24.406海里【解析】【分析】过点P 作PC AB ⊥,则在Rt △APC 中易得PC 的长,再在直角△BPC 中求出PB .【详解】解:如图,过点P 作PC AB ⊥,垂足为点C.∴30APC ︒∠=,45BPC ︒∠=,80AP =海里.在Rt APC ∆中,cos PC APC AP∠=, ∴3cos 80403PC AP APC =⋅∠≡=. 在Rt PCB ∆中,cos PC BPC PB∠=, ∴4036cos PC PB BPC ===∠. ∴此时轮船所在的B 处与灯塔P 的距离是406【点睛】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.25.(1)作图见解析 (2)BCD V 为等腰三角形【解析】【分析】(1)作角平分线,以B 点为圆心,任意长为半径,画圆弧;交直线AB 于1点,直线BC 于2点,再以2点为圆心,任意长为半径,画圆弧,再以1点为圆心,任意长为半径,画圆弧,相交于3点,连接3点和O 点,直线3O 即是已知角AOB 的对称中心线.(2)分别求出BCD V 的三个角,看是否有两个角相等,进而判断是否为等腰三角形.【详解】(1)具体如下:(2)在等腰ABC △中,36A ∠=o ,BD 为∠ABC 的平分线,故72ABC C ∠=∠=︒,36DBC ∠=︒,那么在DBC △中,72BDC ∠=︒∵72BDC C ∠=∠=︒∴BCD V 是否为等腰三角形.【点睛】本题考查角平分线的作法,以及判定等腰三角形的方法.熟悉了解角平分线的定义以及等腰三角形的判定方法是解题的关键所在.26.见解析【解析】试题分析:探究:由四边形ABCD 、四边形CEFG 均为菱形,利用SAS 易证得△BCE ≌△DCG ,则可得BE=DG ;应用:由AD ∥BC ,BE=DG ,可得S △ABE +S △CDE =S △BEC =S △CDG =8,又由AE=3ED ,可求得△CDE 的面积,继而求得答案.试题解析:探究:∵四边形ABCD 、四边形CEFG 均为菱形,∴BC=CD ,CE=CG ,∠BCD=∠A ,∠ECG=∠F .∵∠A=∠F ,∴∠BCD=∠ECG .∴∠BCD-∠ECD=∠ECG-∠ECD ,即∠BCE=∠DCG .在△BCE 和△DCG 中,BC CD BCE DCG CE CG ⎧⎪∠∠⎨⎪⎩===∴△BCE ≌△DCG (SAS ),∴BE=DG .应用:∵四边形ABCD 为菱形,∴AD ∥BC ,∵BE=DG ,∴S △ABE +S △CDE =S △BEC =S △CDG =8,∵AE=3ED ,∴S △CDE =1824⨯= , ∴S △ECG =S △CDE +S △CDG =10∴S 菱形CEFG =2S △ECG =20.27.(1)x=270或x=520;(2)当320<x<520时,选择方式B 更省钱;当x=520时,两种方式花钱一样多;当x >520时选择方式A 更省钱.【解析】【分析】(1)根据收取费用=月使用费+超时单价×超过时间,可找出y A 、y B 关于x 的函数关系式;根据方式A 和方式B 的收费金额相等,分类讨论,列出方程,求解即可.(2)列不等式,求解即可得出结论.【详解】(1)当时,与x 之间的函数关系式为: 当时,与x 之间的函数关系式为: 即当时,与x 之间的函数关系式为: 当时, 与x 之间的函数关系式为:即 方式A 和方式B 的收费金额相等,当时,当时,解得:当时,解得:即x=270或x=520时,方式A和方式B的收费金额相等.(2) 若上网时间x超过320分钟,解得320<x<520,当320<x<520时,选择方式B更省钱;解得x=520,当x=520时,两种方式花钱一样多;解得x>520,当x>520时选择方式A更省钱.【点睛】考查一次函数的应用,列出函数关系式是解题的关键.注意分类讨论,不要漏解.。
武汉市第二初级中学2019-2020学年中考数学模拟试卷
武汉市第二初级中学2019-2020学年中考数学模拟试卷一、选择题1.如图,AB 是半圆O 的直径,D 为半圆上的点,在BA 延长线上取点C ,使得DC =DO ,连结CD 并延长交圆O 于点E ,连结AE ,若∠C =18°,则∠EAB 的度数为( )A .18°B .21°C .27°D .36°2.2018年12月27日,国家发展改革委发布《关于全力做好2019年春运工作的意见》显示预测,2019年春运全国民航旅客发送量将达到7300万人次,比上一年增长12%.其中7300万用科学记数法表示为( ) A .77310⨯B .77.310⨯C .87.310⨯D .80.7310⨯3.如图,在平面直角坐标系中,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,△A 7A 8A 9,…,都是等腰直角三角形,且点A 1,A 3,A 5,A 7,A 9的坐标分别为A 1 (3,0),A 3 (1,0),A 5 (4,0),A 7 (0,0),A 9 (5,0),依据图形所反映的规律,则A 102的坐标为( )A .(2,25)B .(2,26)C .(52,﹣532) D .(52,﹣552)4.已知:如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧上不同于点C 的任意一点,则∠BPC的度数是( )A .45°B .60°C .75°D .90°5.某公司招聘考试分笔试和面试,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小红笔试成绩为90分,面试成绩为80分,那么小红的总成绩为( ) A .80分B .85分C .86分D .90分6.将函数y =x 2﹣2x (x≥0)的图象沿y 轴翻折得到一个新的图象,前后两个图象其实就是函数y =x 2﹣2|x|的图象,关于x 的方程x 2﹣2|x|=a ,在﹣2<x <2的范围内恰有两个实数根时,a 的值为( ) A.1B.0C.D.﹣17.现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别是2S 甲、2S 乙,如果22>S S 乙甲,那么两个队中队员的身高较整齐的是( ) A .甲队B .乙队C .两队一样整齐D .不能确定8.如图,矩形OABC 的边AB 与x 轴交于点D ,与反比例函数y=kx(k >0)在第一象限的图象交于点E ,∠AOD=30°,点E 的纵坐标为1,△ODE 的面积是3,则k 的值是( )A B C .D .39.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( ) A .中位数 B .众数 C .平均数D .方差10.已知x=2﹣,则代数式(7+4)x 2+(2+)x+的值是( )A.0B.C.2+D.2﹣11.已知抛物线()()y x a x a 1=+--(a 为常数,a 0≠).有下列结论:①抛物线的对称轴为1x 2=;②方程()()x a x a 11+--=有两个不相等的实数根;③抛物线上有两点P(x 0,m),Q(1,n),若m n <,则00x 1<<;其中,正确结论的个数为( )A .0B .1C .2D .312.要组织一次羽毛球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排6天,每天安排6场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .()1x x 1362+= B .()1x x 1362-= C .()x x 136+= D .()x x 136-=二、填空题13.如图,半径为13的等圆⊙O 1和⊙O 2相交与A ,B 两点,延长O 1O 2与⊙O 1交于点D ,连接BD 并延长与⊙O 2交于点C ,若AB =24,则CD =_____.14.如图,将ABC ∆沿BC 所在的直线平移得到DEF ∆,如果7AB =,2GC =,5DF =,那么GE =______.15.不等式组的解集是 .16.用一组的值说明命题“若,则”是错误的,这组值可以是a=___.17.已知174a 2+10b 2+19c 2﹣4ab =13a ﹣2bc ﹣19,则a ﹣2b+c =_____.18.当三角形中的一个内角α是另一个内角β的一半时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为直角三角形,则这个“特征角”的度数为______. 三、解答题19﹣1)2+(π0﹣2|. 20.已知2222x 4x 4x 11T x 2xx x x ⎛⎫-+-=+÷ ⎪-+⎝⎭ (1)化简T ;(2)若x 为△ABC 的面积,其中∠C =90°,∠A =30°,BC =2,求T 的值.21.为了解学生参加户外活动的情况,某中学对学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求户外活动时间为1.5小时的学生有多少人?并补全条形统计图 (2)每天户外活动时间的中位数是小时?(3)该校共有1800名学生,请估计该校每天户外活动超过1小时的学生人数有多少人?22.先化简,再求值:211(1)224m m m -+÷-- ,其中m 2. 23.在△ABC 中,AB =AC =5,BC =8,点M 是△ABC 的中线AD 上一点,以M 为圆心作⊙M .设半径为r(1)如图1,当点M 与点A 重合时,分别过点B ,C 作⊙M 的切线,切点为E ,F .求证:BE =CF ; (2)如图2,若点M 与点D 重合,且半圆M 恰好落在△ABC 的内部,求r 的取值范围; (3)当M 为△ABC 的内心时,求AM 的长.24.(13)2+14×(﹣4); (2)化简:(a+1)2﹣2(a+12)25.先化简,再求值:(x﹣1+ 331xx-+)÷21x xx-+,其中x的值是从-2<x<3的整数值中选取.【参考答案】*** 一、选择题13.14.14 515..16.-1,-2(答案不唯一)17.-14.18.45°或30°三、解答题19.﹣【解析】【分析】根据负整数指数幂的性质、乘方的定义、零指数幂的性质、二次根式的性质及绝对值的性质依次计算后,,再合并即可求解.【详解】3+1﹣.【点睛】本题考查了实数的混合运算,熟知实数的运算法则及运算顺序是解决问题的关键.20.(1)2x﹣3;(2)3.【解析】【分析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)根据直角三角形的性质求出x的值,代入计算可得.【详解】解(1)222244112x x xTx x x x x⎛⎫-+-=+÷⎪-+⎝⎭=2(2)(1)(1)(2)(1)x x xxx x x x⎛⎫-+-+⋅⎪-+⎝⎭,=12x xx x x--⎛⎫+⎪⎝⎭=2x﹣3;(2)∵∠C=90°,∠A=30°,BC=2,∴tan 3BC A AC ==,∴AC =∴122x =⨯⨯=当x =23233T x =-=⨯=. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及直角三角形的性质.21.(1)户外活动时间为1.5小时的人数有120人,补全的条形统计图如下图所示,见解析;(2)中位数是1小时;(3)该校每天户外活动时间超过1小时的学生有720人. 【解析】 【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1800名学生,该校每天户外活动时间超过1小时的学生有多少人. 【详解】(1)∵0.5小时的有100人占被调查总人数的20%, ∴被调查的人数有:100÷20%=500,1,5小时的人数有:500﹣100﹣200﹣80=120, 补全的条形统计图如下图所示,故答案为:500;(2)由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时, 故答案为:1; (3)由题意可得,该校每天户外活动时间超过1小时的学生数为:12080500+×1800=720人,即该校每天户外活动时间超过1小时的学生有720人. 【点睛】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.221. 【解析】 【分析】先根据分式的运算法则对原式进行化简,再把2m =代入化简结果即可.【详解】原式=21(1)(1)222(2)m m m m m m -+-⎛⎫+÷ ⎪---⎝⎭= 12(2)·2(1)(1)m m m m m ---+-= 21m +当2m =时,原式1===【点睛】此题考查分式的化简求值,掌握分式的混合运算的法则和运算顺序是解答此题的关键. 23.(1)见解析;(2)1205r;(3)AM =53. 【解析】 【分析】(1)连接AE ,AF ,利用“HL”证Rt △BAE ≌Rt △ACF 即可得;(2)作DG ⊥AB ,由AB =AC =5,AD 是中线知AD ⊥BC 且AD 3,依据12BD×AD=12AB×DG 可得DG =125,从而得出答案;(3)作MH ⊥AB ,MP ⊥AC ,有MH =MP =MD ,连接BM 、CM ,根据12AB•MH+12BC•MD+12AC•MP=12AD•BC 求出圆M 的半径,从而得出答案. 【详解】解:(1)如图1,连接AE ,AF ,∵BE 和CF 分别是⊙O 的切线, ∴∠BEA =∠CFA =90°, ∵AB =AC ,AE =AF ,∴Rt △BAE ≌Rt △ACF (HL ), ∴BE =CF ;(2)如图2,过点D 作DG ⊥AB 于点G ,∵AB =AC =5,AD 是中线, ∴AD ⊥BC ,∴AD 3,∴12BD×AD=12AB×DG,∴DG=125,∴当0<r<125时,半圆M恰好落在△ABC内部;(3)当M为△ABC的内心时,如图3,过M作MH⊥AB于H,作MP⊥AC于P,则有MH=MP=MD,连接BM、CM,∴12AB•MH+12BC•MD+12AC•MP=12AD•BC,∴r=8345583 AD BCAB AC BC⋅⨯==++++,∴AM=AD﹣DM=53.【点睛】本题是圆的综合问题,解题的关键是掌握等腰三角形的判定与性质、全等三角形的判定与性质、圆的切线的判定与性质等知识点.24.(1)10;(2)a2【解析】【分析】(1)先化简各个根式,然后合并同类项;(2)先去括号,然后合并同类项.【详解】(1)原式=9﹣1=10;(2)原式=a2+2a+1﹣2a﹣1=a2.【点睛】本题考查了二次根式化简和整式的混合运算,熟练掌握二次根式的混合运算是解题的关键.25.x2x-, x=2时,原式=0.【解析】【分析】先算括号里的,然后算除法化简分式,最后将中不等式-1≤x<2.5的整数解代入求值.【详解】(x﹣1+ 331xx-+)÷21x xx-+=23211(1) x x xx x x-++⨯+-=(1)(2)11(1) x x xx x x--+⨯+-=2 xx --1≤x<2.5的整数解为-1,0,1,2,∵分母x≠0,x+1≠0,x-1≠0,∴x≠0且x≠1,且x≠-1,∴x=2当x=2时,原式=220 2-=.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.。
2019届湖北武汉市中考模拟数学试卷(二)【含答案及解析】
2019届湖北武汉市中考模拟数学试卷(二)【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 计算│-4+1│的结果是()A. -5B. -3C. 3D. 52. 计算(a-2)2的结果是()A. a2-4B. a2-2a+4C. a2-4a+4D. a2+43. 与最接近的整数为()A. 2B. 3C. 4D. 54. 不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A. 摸出的3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球D. 摸出的是2个黑球、1个白球5. 某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()A. 中位数是4,平均数是3.75B. 众数是4,平均数是3.75C. 中位数是4,平均数是3.8D. 众数是4,平均数是3.86. 如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,则△ABC 的面积为()A. 48B. 50C. 54D. 60二、填空题7. 计算:5-(-6)=___________8. 计算:=___________9. 如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6、、、-2、.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是___________10. 分解因式x3+6x2+9x的结果是__________.11. 如图,△ABC内接于⊙O,BC=12,∠A=60°,点D为弧BC上一动点,BE⊥直线OD 于点E.当点D从点B沿弧BC运动到点C时,点E经过的路径长为___________12. 已知关于x的方程x2-3x+m=0的一个根是2,则它的另一个根是____,m的值是____.13. 如图,∠A=∠C,只需补充一个条件_________,就可得△ABD≌△CDB.14. 如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为___________15. 已知点A(-1,-2)在反比例函数y=的图像上,则当x>1时,y的取值范围是 .16. 如图,在半径为2的⊙O中,弦AB=2,⊙O上存在点C,使得弦AC=2,则∠BOC=____°.三、解答题17. 解不等式组,并写出它的整数解.18. 化简:(-)÷.19. 某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如图两幅尚不完整的统计图.请根据以上信息解答下列问题:(1) 课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为____________(2) 请补全条形统计图(3) 该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数20. 某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元(1) 求购买一个A种品牌、一个B种品牌的足球各需多少元(2) 学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3) 请你求出学校在第二次购买活动中最多需要多少资金?21. 如图,将矩形ABCD绕点C旋转得到矩形FECG,点E在AD上,延长ED交FG于点H.(1)求证:△EDC≌△HFE;(2)连接BE、CH.①四边形BEHC是怎样的特殊四边形?证明你的结论.②当AB与BC的比值为时,四边形BEHC为菱形.22. 已知点I为△ABC的内心(1) 如图1,AI交BC于点D,若AB=AC=6,BC=4,求AI的长(2) 如图2,过点I作直线交AB于点M,交AC于点N① 若MN⊥AI,求证:MI2=BM·CN② 如图3,AI交BC于点D.若∠BAC=60°,AI=4,请直接写出的值23. 如图,小明要测量河内小岛B到河边公路AD的距离,在点A处测得∠BAD=37°,沿AD方向前进150米到达点C,测得∠BCD=45°. 求小岛B到河边公路AD的距离.(参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)24. 已知二次函数y=x2-2m x+m2+m+1的图像与x轴交于A、B两点,点C为顶点.(1)求m的取值范围;(2)若将二次函数的图像关于x轴翻折,所得图像的顶点为D,若CD=8.求四边形ACBD 的面积。
湖北省武汉市2019-2020学年中考数学第二次调研试卷含解析
湖北省武汉市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.52.定义运算“※”为:a※b=()()22ab bab b⎧>⎪⎨-≤⎪⎩,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是()A.B.C.D.3.已知常数k<0,b>0,则函数y=kx+b,kyx=的图象大致是下图中的()A.B.C.D.4.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A .225B .9220C .324D .4255.一副直角三角板如图放置,其中C DFE 90∠=∠=o ,45A ∠=︒,60E ∠=︒,点F 在CB 的延长线上若//DE CF ,则BDF ∠等于( )A .35°B .25°C .30°D .15°6.(2011•雅安)点P 关于x 轴对称点为P 1(3,4),则点P 的坐标为( )A .(3,﹣4)B .(﹣3,﹣4)C .(﹣4,﹣3)D .(﹣3,4)7.下列代数运算正确的是( )A .(x+1)2=x 2+1B .(x 3)2=x 5C .(2x )2=2x 2D .x 3•x 2=x 58.已知关于x 的方程x 2﹣4x+c+1=0有两个相等的实数根,则常数c 的值为( )A .﹣1B .0C .1D .39.一元二次方程x 2﹣5x ﹣6=0的根是( )A .x 1=1,x 2=6B .x 1=2,x 2=3C .x 1=1,x 2=﹣6D .x 1=﹣1,x 2=610.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±311.如图,在已知的△ ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 、N ;②作直线MN 交AB 于点D ,连接CD ,则下列结论正确的是( )A .CD+DB=AB B .CD+AD=ABC .CD+AC=ABD .AD+AC=AB12.光年天文学中的距离单位,1光年大约是9500000000000km ,用科学记数法表示为( )A .1095010km ⨯B .129510km ⨯C .129.510km ⨯D .130.9510km ⨯二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,Rt △ABC 中,若∠C=90°,BC=4,tanA=43,则AB=___.14.如果分式4x x +的值是0,那么x 的值是______. 15.分式方程231x x =+的解为x=_____. 16.如果a 2﹣a ﹣1=0,那么代数式(a ﹣21a a -)2•1a a -的值是 . 17.某个“清涼小屋”自动售货机出售A 、B 、C 三种饮料.A 、B 、C 三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A 饮科的数量(单位:瓶)是B 饮料数量的2倍,B 饮料的数量(单位:瓶)是C 饮料数量的2倍.某个周六,A 、B 、C 三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug ,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元. 18.已知α是锐角1sin 2α=,那么cos α=_________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)化简:()()2a b a 2b a -+-.20.(6分)矩形ABCD 一条边AD=8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图1,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .①求证:△OCP ∽△PDA ;②若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图2,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(不与点P 、A 重合),动点N 在线段AB 的延长线上,且BN=PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M 、N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,说明理由.21.(6分)已知关于x 的一元二次方程()2()20(x m x m m ---=为常数). ()1求证:不论m 为何值,该方程总有两个不相等的实数根;()2若该方程一个根为5,求m 的值.22.(8分)如图,抛物线212y x bx c =-++经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式;(2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO=2OF ,求m 的值.23.(8分)如图,AM 是△ABC 的中线,D 是线段AM 上一点(不与点A 重合).DE ∥AB 交AC 于点F ,CE ∥AM ,连结AE .(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形;(2)如图2,当点D 不与M 重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD 交AC 于点H ,若BH ⊥AC ,且BH=AM .①求∠CAM 的度数;②当FH=3,DM=4时,求DH 的长.24.(10分)已知,四边形ABCD 中,E 是对角线AC 上一点,DE =EC ,以AE 为直径的⊙O 与边CD 相切于点D ,点B 在⊙O 上,连接OB .求证:DE =OE ;若CD ∥AB ,求证:BC 是⊙O 的切线;在(2)的条件下,求证:四边形ABCD 是菱形.25.(10分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为,最大值为.26.(12分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.27.(12分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.求每台A型电脑和B型电脑的销售利润;该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C .2.C【解析】【分析】根据定义运算“※” 为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩,可得y=2※x 的函数解析式,根据函数解析式,可得函数图象. 【详解】解:y=2※x=()()222020x x x x ⎧>⎪⎨-≤⎪⎩, 当x>0时,图象是y=22x 对称轴右侧的部分;当x <0时,图象是y=22x -对称轴左侧的部分,所以C 选项是正确的.【点睛】本题考查了二次函数的图象,利用定义运算“※”为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩得出分段函数是解题关键.3.D【解析】【分析】当k <0,b >0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.【详解】解:∵当k <0,b >0时,直线与y 轴交于正半轴,且y 随x 的增大而减小,∴直线经过一、二、四象限,双曲线在二、四象限.故选D .【点睛】本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.4.B【解析】【分析】过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到=OH=13AE=13,由相似三角形的性质得到153AM AEFM FO===35,求得AM=38,根据相似三角形的性质得到AN ADFN BF==32,求得AN=35,即可得到结论.【详解】过F作FH⊥AD于H,交ED于O,则FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,FC=HD=1,∴=∵OH∥AE,∴HO DHAE AD==13,∴OH=13AE=13,∴OF=FH﹣OH=1﹣13=53,∵AE∥FO,∴△AME∽△FMO,∴153AM AEFM FO===35,∴AM=38,∵AD∥BF,∴△AND∽△FNB,∴AN ADFN BF==32,∴AN=35AF=5,∴MN=AN﹣AM=5﹣4=20,故选B.【点睛】构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线5.D【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.【详解】解:由题意可得:∠EDF=30°,∠ABC=45°,∵DE∥CB,∴∠BDE=∠ABC=45°,∴∠BDF=45°-30°=15°.故选D.【点睛】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.6.A【解析】∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴点P的坐标为(3,﹣4).故选A.7.D【解析】【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可.【详解】解:A. (x+1)2=x2+2x+1,故A错误;B. (x3)2=x6,故B错误;C. (2x)2=4x2,故C错误.D. x3•x2=x5,故D正确.故本题选D.本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键. 8.D【解析】分析:由于方程x2﹣4x+c+1=0有两个相等的实数根,所以∆ =b2﹣4ac=0,可得关于c的一元一次方程,然后解方程求出c的值.详解:由题意得,(-4)2-4(c+1)=0,c=3.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆ =b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.9.D【解析】【分析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.【详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.10.B【解析】解:由题意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,则y x=9,9的算术平方根是1.故选B.11.B【解析】【分析】作弧后可知MN⊥CB,且CD=DB.由题意性质可知MN 是BC 的垂直平分线,则MN ⊥CB ,且CD=DB ,则CD+AD=AB.【点睛】了解中垂线的作图规则是解题的关键.12.C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将9500000000000km 用科学记数法表示为129.510⨯.故选C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【分析】在Rt △ABC 中,已知tanA ,BC 的值,根据tanA=BC AC ,可将AC 的值求出,再由勾股定理可将斜边AB 的长求出.【详解】解:Rt △ABC 中,∵BC=4,tanA=4,3BC AC = ∴3tan BC AC A ==,则 5.AB =故答案为1.【点睛】考查解直角三角形以及勾股定理,熟练掌握锐角三角函数是解题的关键.14.1.【解析】【分析】根据分式为1的条件得到方程,解方程得到答案.【详解】由题意得,x=1,故答案是:1.【点睛】本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.15.2【解析】根据分式方程的解法,先去分母化为整式方程为2(x+1)=3x,解得x=2,检验可知x=2是原分式方程的解.故答案为2.16.1【解析】分析:先由a2﹣a﹣1=0可得a2﹣a=1,再把(a﹣21aa-)2)1aa⋅-(的第一个括号内通分,并把分子分解因式后约分化简,然后把a2﹣a=1代入即可. 详解:∵a2﹣a﹣1=0,即a2﹣a=1,∴原式=22211 a a aa a-+⋅-=()2211 a aa a-⋅-=a(a﹣1)=a2﹣a=1,故答案为1点睛:本题考查了分式的化简求值,解题的关键是正确掌握分式混合运算的顺序:先算乘除,后算加减,有括号的先算括号里,整体代入法是求代数式的值常用的一种方法.17.950【解析】【分析】设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,得到工作日期间一天的销售收入为:8x+6x+5x=19x元,和周六销售销售收入为:12x+9.6x+7.5x=29.1x元,再结合题意得到10.1x ﹣(5﹣3)=503,计算即可得到答案.【详解】解:设工作日期间C 饮料数量为x 瓶,则B 饮料数量为2x 瓶,A 饮料数量为4x 瓶,工作日期间一天的销售收入为:8x+6x+5x =19x 元,周六C 饮料数量为1.5x 瓶,则B 饮料数量为3.2x 瓶,A 饮料数量为6x 瓶,周六销售销售收入为:12x+9.6x+7.5x =29.1x 元,周六销售收入与工作日期间一天销售收入的差为:29.1x ﹣19x =10.1x 元,由于发生一起错单,收入的差为503元,因此,503加减一瓶饮料的差价一定是10.1的整数倍, 所以这起错单发生在B 、C 饮料上(B 、C 一瓶的差价为2元),且是消费者付B 饮料的钱,取走的是C 饮料;于是有:10.1x ﹣(5﹣3)=503解得:x =50工作日期间一天的销售收入为:19×50=950元, 故答案为:950.【点睛】本题考查一元一次方程的实际应用,解题的关键是由题意得到等量关系.18【解析】【分析】根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,由三角函数的定义直接解答即可.【详解】由sinα=a c =12知,如果设a=x ,则c=2x ,结合a 2+b 2=c 2得∴cos =bc =2.【点睛】 本题考查的知识点是同角三角函数的关系,解题的关键是熟练的掌握同角三角函数的关系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.2b【解析】【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.【详解】解:原式2222a 2ab b 2ab a b =-++-=.20.(1)①证明见解析;②10;(2)线段EF 的长度不变,它的长度为2. .【解析】试题分析:(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP ∽△PDA ;根据△OCP 与△PDA 的面积比为1:4,得出CP=AD=4,设OP=x ,则CO=8﹣x ,由勾股定理得列方程,求出x ,最后根据CD=AB=2OP 即可求出边CD 的长;(2)作MQ ∥AN ,交PB 于点Q ,求出MP=MQ ,BN=QM ,得出MP=MQ ,根据ME ⊥PQ ,得出EQ=PQ ,根据∠QMF=∠BNF ,证出△MFQ ≌△NFB ,得出QF=QB ,再求出EF=PB ,由(1)中的结论求出PB 的长,最后代入EF=PB 即可得出线段EF 的长度不变.试题解析:(1)如图1,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C ,∴△OCP ∽△PDA ;∵△OCP 与△PDA 的面积比为1:4,∴=,∴CP=AD=4,设OP=x ,则CO=8﹣x ,在Rt △PCO 中,∠C=90°,由勾股定理得 :,解得:x=5,∴CD=AB=AP=2OP=10,∴边CD 的长为10;(2)作MQ ∥AN ,交PB 于点Q ,如图2,∵AP=AB ,MQ ∥AN ,∴∠APB=∠ABP=∠MQP ,∴MP=MQ ,∵BN=PM ,∴BN=QM .∵MP=MQ ,ME ⊥PQ ,∴EQ=PQ .∵MQ ∥AN ,∴∠QMF=∠BNF ,在△MFQ 和△NFB 中,∵∠QFM=∠NFB ,∠QMF=∠BNF ,MQ=BN ,∴△MFQ ≌△NFB (AAS ),∴QF=QB ,∴EF=EQ+QF=PQ+QB=PB ,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB==,∴EF=PB=,∴在(1)的条件下,当点M 、N 在移动过程中,线段EF 的长度不变,它的长度为.考点:翻折变换(折叠问题);矩形的性质;相似形综合题.21.(1)详见解析;(2)的值为3或1.【解析】【分析】(1)将原方程整理成一般形式,令0V >即可求解,(2)将x=1代入,求得m 的值,再重新解方程即可. 【详解】()1证明:原方程可化为()222220x m x m m -+++=,1a Q =,()22b m =-+,22c m m =+,()()2224[22]4240b ac m m m ∴=-=-+-+=>V ,∴不论m 为何值,该方程总有两个不相等的实数根. ()2解:将5x =代入原方程,得:()2(5)250m m ---=,解得:13m =,25m =.m ∴的值为3或1.【点睛】本题考查了参数对一元二次方程根的影响.中等难度.关键是将根据不同情况讨论参数的取值范围. 22.(1)2142y x x =-++;(2)P (1,72); (3)3或5. 【解析】【分析】(1)将点A 、B 代入抛物线212y x bx c =-++,用待定系数法求出解析式. (2)对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G , 由∠PBO=∠BAO ,得tan ∠PBO=tan ∠BAO ,即PG BO BG AO=,可求出P 的坐标. (3)新抛物线的表达式为2142y x x m =-++-,由题意可得DE=2,过点F 作FH ⊥y 轴,垂足为H ,∵DE ∥FH ,EO=2OF ,∴2=1DE EO DO FH OF OH ==,∴FH=1.然后分情况讨论点D 在y 轴的正半轴上和在y 轴的负半轴上,可求得m 的值为3或5.【详解】解:(1)∵抛物线经过点A (﹣2,0),点B (0,4)∴2204b c c --+=⎧⎨=⎩,解得14b c =⎧⎨=⎩, ∴抛物线解析式为2142y x x =-++, (2)()2211941222y x x x =-++=--+, ∴对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G ,∵∠PBO=∠BAO ,∴tan ∠PBO=tan ∠BAO ,∴PG BO BG AO=, ∴121BG =, ∴12BG =, 72OG =, ∴P (1,72), (3)设新抛物线的表达式为2142y x x m =-++- 则()0,4D m -,()2,4E m -,DE=2过点F 作FH ⊥y 轴,垂足为H ,∵DE ∥FH ,EO=2OF∴2=1DE EO DO FH OF OH ==, ∴FH=1.点D 在y 轴的正半轴上,则51,2F m ⎛⎫-- ⎪⎝⎭, ∴52OH m =-,∴42512DO mOH m-==-,∴m=3,点D在y轴的负半轴上,则91,2F m⎛⎫-⎪⎝⎭,∴92OH m=-,∴42912DO mOH m-==-,∴m=5,∴综上所述m的值为3或5.【点睛】本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键. 23.(1)证明见解析;(2)结论:成立.理由见解析;(3)①30°,②1+5.【解析】【分析】(1)只要证明AB=ED,AB∥ED即可解决问题;(2)成立.如图2中,过点M作MG∥DE交CE于G.由四边形DMGE是平行四边形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四边形ABDE是平行四边形;(3)①如图3中,取线段HC的中点I,连接MI,只要证明MI=12AM,MI⊥AC,即可解决问题;②设DH=x,则AH=3x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DF∥AB,推出HF HDHA HB=,可得3423xxx=+,解方程即可;【详解】(1)证明:如图1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四边形ABDE是平行四边形.(2)结论:成立.理由如下:如图2中,过点M作MG∥DE交CE于G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四边形ABDE是平行四边形.(3)①如图3中,取线段HC的中点I,连接MI,∵BM=MC,∴MI是△BHC的中位线,∴MI∥BH,MI=12 BH,∵BH⊥A C,且BH=AM.∴MI=12AM,MI⊥AC,∴∠CAM=30°.②设DH=x,则AH=3x,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四边形ABDE是平行四边形,∴DF∥AB,∴HF HD HA HB=,∴3423xxx=+,解得x=1+5或1﹣5(舍弃),∴DH=1+5.【点睛】本题考查了四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键能正确添加辅助线,构造特殊四边形解决问题.24.(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD =AD即可.【详解】(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD =90°,∵DE =EC ,∴∠1=∠2,∴∠3=∠COD ,∴DE =OE ;(2)∵OD =OE ,∴OD =DE =OE ,∴∠3=∠COD =∠DEO =60°,∴∠2=∠1=30°,∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°,∴∠BOC =∠DOC =60°,在△CDO 与△CBO 中,{OD OBDOC BOC OC OC=∠=∠=,∴△CDO ≌△CBO (SAS ),∴∠CBO =∠CDO =90°,∴OB ⊥BC ,∴BC 是⊙O 的切线;(3)∵OA =OB =OE ,OE =DE =EC ,∴OA =OB =DE =EC ,∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°,∴△ABO ≌△CDE (AAS ),∴AB =CD ,∴四边形ABCD 是平行四边形,∴∠DAE =12∠DOE =30°, ∴∠1=∠DAE ,∴CD =AD ,∴▱ABCD 是菱形.【点睛】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO ≌△CDE 是解本题的关键.25.(1)BD ,CE 的关系是相等;(2)53417或203417;(3)1,1 【解析】分析:(1)依据△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA ,∠BAD=∠CAE ,DA=EA ,进而得到△ABD ≌△ACE ,可得出BD=CE ; (2)分两种情况:依据∠PDA=∠AEC ,∠PCD=∠ACE ,可得△PCD ∽△ACE ,即可得到PD AE =CD CE ,进而得到PD=53417;依据∠ABD=∠PBE ,∠BAD=∠BPE=90°,可得△BAD ∽△BPE ,即可得到PB BE AB BD =,进而得出PB=63434,PD=BD+PB=203417; (3)以A 为圆心,AC 长为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PD 的值最小;当CE 在在⊙A 右上方与⊙A 相切时,PD 的值最大.在Rt △PED 中,PD=DE•sin ∠PED ,因此锐角∠PED 的大小直接决定了PD 的大小.分两种情况进行讨论,即可得到旋转过程中线段PD 的最小值以及最大值.详解:(1)BD ,CE 的关系是相等.理由:∵△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA ,∠BAD=∠CAE ,DA=EA ,∴△ABD ≌△ACE ,∴BD=CE ;故答案为相等.(2)作出旋转后的图形,若点C 在AD 上,如图2所示:∵∠EAC=90°,∴2234AC AE +=∵∠PDA=∠AEC ,∠PCD=∠ACE ,∴△PCD ∽△ACE ,∴PD CD AE CE=, ∴53417; 若点B 在AE 上,如图2所示:∵∠BAD=90°,∴Rt△ABD中,BD=2234AD AB+=,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴PB BEAB BD=,即334PB=,解得PB=634 34,∴PD=BD+PB=34+63434=203417,故答案为53417或203417;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.如图3所示,分两种情况讨论:在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.①当小三角形旋转到图中△ACB的位置时,在Rt△ACE中,2253-,在Rt△DAE中,225552+=∵四边形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt△PDE中,2250491DE PE--=,即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=1,即旋转过程中线段PD 的最大值为1.故答案为1,1.点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.26.证明见解析.【解析】试题分析:根据等腰三角形的性质可证∠DBM=∠ECM ,可证△BDM ≌△CEM ,可得MD=ME ,即可解题.试题解析:证明:△ABC 中,∵AB=AC ,∴∠DBM=∠ECM.∵M 是BC 的中点,∴BM=CM.在△BDM 和△CEM 中,∵{BD CEDBM ECM BM CM=∠=∠=,∴△BDM ≌△CEM (SAS ).∴MD=ME .考点:1.等腰三角形的性质;2.全等三角形的判定与性质.27. (1) 每台A 型100元,每台B 150元;(2) 34台A 型和66台B 型;(3) 70台A 型电脑和30台B 型电脑的销售利润最大【解析】【分析】(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意列出方程组求解, (2)①据题意得,y=﹣50x+15000,②利用不等式求出x 的范围,又因为y=﹣50x+15000是减函数,所以x 取34,y 取最大值,(3)据题意得,y=(100+m )x ﹣150(100﹣x ),即y=(m ﹣50)x+15000,分三种情况讨论,①当0<m <50时,y 随x 的增大而减小,②m=50时,m ﹣50=0,y=15000,③当50<m <100时,m ﹣50>0,y 随x 的增大而增大,分别进行求解.【详解】解:(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意得解得100150a b =⎧⎨=⎩答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥3313,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,3313≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足3313≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉二中2019~2020学年度下学期九年级数学统一作业(二)
一、选择题(共10小题,每小题3分,共30分) 1.实数-2的相反数是( ) A .2 B .-2
C .
2
1
D .2
1-
2.若
3
1+x 在实数范围内有意义,则x 的取值范围是( )
A .x ≠-3
B .x >-3
C .x ≥-3
D .x ≤3
3.一个不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件为必然事件的是( )
A .3个球都是黑球
B .3个球都是白球
C .3个球中有黑球
D .3个球中有白球 4.下列有关医疗和倡导卫生的图标中,是轴对称图形的是( )
5.如图所示的几何体是由几个大小相同的小正方体搭成的,其主视图是( )
6.若A (x 1,y 1)、B (x 2,y 2)都在函数x
y 2020
=的图象上,且x 1<0<x 2,则( ) A .y 1>y 2
B .y 1=y 2
C .y 1<y 2
D .y 1=-y 2
7.垃圾分类的强制实施即将提上日程.根据规定,我市将垃圾分为了四类:可回收物、厨余垃圾、有害垃圾和其他垃圾.现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投入进两个不同的垃圾桶,投放正确的概率是( ) A .
6
1 B .
8
1 C .
12
1 D .
16
1 8.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s (米)与时间t (秒)之间的函数图象如图所示,则下列说法正确的个数是( ) ① 乙队率先到达终点 ① 甲队比乙队多走了126米 ① 在47.8秒时,两队所走路程相等
① 从出发到13.7秒的时间段内,甲队的速度比乙队的快 A .1
B .2
C .3
D .4
9.如图,在半径为10的⊙O 中,弦AB 与CD 交于点E ,①AEC =75°,BE =2,AE =7BE ,则CD 的长是( ) A .58
B .822
C .68
D .6382+
10.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13-(-1)3,26=33-13,2和26均为和谐数.那么,不超过2500的正整数中,所有的“和谐数”之和为( ) A .6858
B .6860
C .9260
D .9262
二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算2)2(-=__________
12得分 50 60 70 80 90 100 110 120 人数
2
3
6
14
15
5
4
1
这些学生成绩的中位数是__________
13.计算:
32
9
692
2
--
++-x x x x =___________ . 14.如图,将△ABC 绕点A 逆时针旋转80°得到△ADE ,连接CE ,延长EA 、CB 交于点F .若①CED
=16°,则①F =_________°
15.如图,抛物线y =ax 2+bx +c (a ≠0)的开口向下,对称轴为x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间,其部分图象如图所示,则下列结论:① b 2-4ac >0;① 若点(2
7
-,y 1)、(23-
,y 2)、(4
5
,y 3)是该抛物线上的点,则y 1<y 2<y 3;① 3b +2c <0;① t (at +b )≤a -b (t 为任意实数), 其中正确结论的是___________
16.如图,矩形ABCD 中,满足AB =3BC ,M 、N 为对角线BD 上的两个动点,满足MN =
3
2
BC ,点P 是BC 边上的中点,连接AN 、PM .若AB =36,则当AN +PM 的值最小时,线段AN 的长度为___________ 三、解答题(共8题,共72分)
17.(本题8分)计算:a 2·a 4+(a 3)2-32a 6
18.(本题8分)如图,在□ABCD 中,点E 在AD 上,CE 平分∠DCB ,点M 为BC 中点,且EM =MC ,求证:BE 平分∠ABC
19.(本题8分)某校九年级全体同学参加了“抗疫”捐款活动,随机抽查了部分同学捐款的情况统计如图所示
(1) 直接写出这次抽样调查的学生人数 (2) 补全条形统计图
(3) 在九年级900名学生中,捐款20元及 以上(含20元)的学生估计有多少人?
20.(本题8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,△ABC 的顶点在格点上,仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:
(1) 取线段AC 中点O ,将OC 绕点O 逆时针旋转90°得到线段OD (2) 画AC 边上的高BH
(3) 连接BD 交AC 于点E ,直接写出EH
CE
的值 (4) 在AB 上画点P ,使tan ∠ACP =
5
1
21.(本题8分)如图,AB 为⊙O 的切线,连BO 交⊙O 于D 、E 两点,以AB 、AD 为边作□ABCD ,延长DC 交⊙O 于F ,连接AO 并延长交DC 于H (1) 如图1,若
3
1
AB CH ,求证:C 为HF 中点 (2) 如图2,若BE =2,tan ∠DBC =
31,求CF
CH 的值
22.(本题10分)如图,有长为24 m 的篱笆,一面利用墙(墙的最大长度a 为10 m ),围成中间隔有一道篱笆的两个小矩形花圃.设花圃的宽AB 为x m ,面积为S m 2 (1) 求S 与x 的函数解析式
(2) 若要围成面积为45 m 2的花圃,则AB 的长是多少米?
(3) 能围成面积比45 m 2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由
23.(本题10分)如图,四边形ABCD 是矩形,E 是CD 上的一动点. (1) 如图1,AC 与BD 交于点O ,若BD ⊥AE ,垂足为点F , ① 求证:
BA AD AD DE =;② 若2
1
=AD DE ,求tan ∠1 (2) DF ⊥AE 垂足为点F ,AD =4,CD =324+.以CF 为边作正△CKF ,连接BK ,直接写出BK 的取值范围
24.(本题12分)已知抛物线C 1:y =ax 2+bx +c 的顶点坐标为C (0,-4),且过点D (3,5) (1) 求抛物线C 1的解析式
(2) 如图1,C 1与x 轴交于A 、B 两点(A 在B 左边),请你在线段AD 上取点P ,过点P 作PQ ∥y 轴交抛物线于点Q .若AP =PQ ,求P 点坐标
(3) 如图2,将抛物线C 1向上平移4个单位得到新抛物线C 2,过D 点的直线交抛物线于E 、F 两点(E 在F 左边),过E 点的另一条直线y =6x +d 与C 2的另一个交点为P ,连接PF ,直线l ∥x 轴且过点(0,13),直线l 与PE 、PF 分别交于点M 、N ,求线段MN 的长。