几种膨胀映射的不动点定理

合集下载

不动点定理

不动点定理

不动点定理
(Fixed-point theorem )
举例:头皮的旋儿,指纹,地球表面无风处等,搅动杯中咖啡,两张报纸
三维空间中的情况:如果我们用一个密封的锅子煮水,那么总有一个水分子在煮开前的某一刻和煮开后的某一刻处于同样的位置。

地球绕着它的自转轴自转。

自转轴在自转过程中的不变的,也就是自转运动的不动点。

布劳威尔不动点定理
1. 区间[0,1]到[0,1]的连续映射f . 存在0[0,1]x ∈,使得00()f x x =.
2. 矩形[0,1]⨯[0,1]到自身的连续映射F . 存在00(,)x y ∈[0,1]⨯[0,1],使得0000(,)(,)F x y x y =。

3. 推广到多维情况: Brouwer 不动点定理断言:从有限维欧氏空间中的紧凸集到自身的任意连续映射具有不动点。

据调查统计90%以上的数学家都能叙述这个定理,但只有不到10%的数学家能够给出证明.
由于价格均衡原理Deberu 获得诺贝尔经济学奖(1983)
Nash 在普林斯顿的博士论文中,证明多人博弈平衡点的存在性时用的正是他重新发现的―Brouwer 不动点原理
巴拿赫压缩映像原理
先介绍压缩的含义
一维情况举例
二维情况举例,地图与真实地域关系。

三位情况举例,占满容器的海绵再压缩。

描述高维情况
庞卡莱-伯克豪夫扭转定理
(Poincare-Birkhoff Twist Theorem)
莫泽扭转定理
(Moser Twist Theorem)。

不动点定理及应用张石生

不动点定理及应用张石生

不动点定理及应用张石生不动点定理是数学分析中的一个重要定理,也是实分析的基础之一。

它是通过将函数与自身的某个值进行比较,来研究函数性质的一个方法。

在实际问题中,不动点定理具有广泛的应用,如经济学、物理学、计算机科学等领域。

不动点定理的基本概念是,对于一个给定的函数f(x),如果存在一个点c使得f(c)=c,那么c就是f的一个不动点。

换句话说,不动点是指函数f的输入和输出相等的点。

不动点定理的核心思想是通过迭代法逼近不动点。

最著名的不动点定理是Banach不动点定理(也称为完备性原理),它的形式是:在完备度量空间中,任何一个压缩映射都有唯一的不动点。

其中,完备度量空间指的是一个具有一个完整的度量的空间,而压缩映射指的是一个将空间元素映射到自身并保持距离不变的映射。

不动点定理的应用非常广泛。

以下列举一些典型的应用领域。

1. 经济学:在经济学中,不动点定理常常用于证明经济学模型中的均衡存在和稳定性。

例如,通过将供求函数模型转化为一个演化方程,可以证明在某些条件下存在一个不动点,表示市场均衡;而通过分析不动点的稳定性,可以研究市场的长期发展趋势。

2. 物理学:在物理学中,不动点定理常用于分析非线性方程的解的存在性与性质。

例如,在动力系统的研究中,可以将动力学方程表示为一个不动点问题,通过分析不动点的性质来研究系统的稳定性和演化行为。

3. 计算机科学:在计算机科学中,不动点定理常常用于程序的求解和优化。

例如,在编译器优化中,可以将程序转化为一个抽象语法树,通过对抽象语法树的变换来求解程序的不动点,以达到提高程序性能的目的。

4. 几何学:在几何学中,不动点定理常用于证明几何变换的存在性和特性。

例如,在拓扑学中,可以通过不动点定理来研究拓扑空间的连续映射和同胚映射的性质。

综上所述,不动点定理是数学分析中的一个重要定理,它通过引入不动点的概念,研究函数的性质和方程的解的存在性。

在实际应用中,不动点定理被广泛用于经济学、物理学、计算机科学等领域,为解决实际问题提供了有力的工具和方法。

数学分析 Brouwer 不动点定理

数学分析 Brouwer 不动点定理

数学分析(二):多元微积分梅加强副教授南京大学数学系内容提要:内容提要:Brouwer不动点定理;内容提要:Brouwer不动点定理; 鼓包函数与光滑化.数学中的很多问题经常转化为解方程,解方程往往又转化为求不动点.数学中的很多问题经常转化为解方程,解方程往往又转化为求不动点.在多元函数的微分学中,我们用了压缩映像原理找不动点的方法证明了反函数定理.数学中的很多问题经常转化为解方程,解方程往往又转化为求不动点.在多元函数的微分学中,我们用了压缩映像原理找不动点的方法证明了反函数定理.下面我们介绍另一种常用的证明不动点的存在性的结果,它对映射的要求没有压缩映射那么高.数学中的很多问题经常转化为解方程,解方程往往又转化为求不动点.在多元函数的微分学中,我们用了压缩映像原理找不动点的方法证明了反函数定理.下面我们介绍另一种常用的证明不动点的存在性的结果,它对映射的要求没有压缩映射那么高.这儿我们要用鼓包函数进行光滑的技巧,以及Gauss-Green公式.数学中的很多问题经常转化为解方程,解方程往往又转化为求不动点.在多元函数的微分学中,我们用了压缩映像原理找不动点的方法证明了反函数定理.下面我们介绍另一种常用的证明不动点的存在性的结果,它对映射的要求没有压缩映射那么高.这儿我们要用鼓包函数进行光滑的技巧,以及Gauss-Green公式.定理1(Brouwer不动点定理)设D为R n中的闭球,ϕ:D→D为连续映射,则ϕ必有不动点.函数的光滑化不失一般性,我们设D是以原点为中心的单位闭球.不失一般性,我们设D是以原点为中心的单位闭球.在证明定理之前先做一点准备工作.首先,为了利用微分学的手段,我们要对连续函数进行所谓的光滑化.不失一般性,我们设D是以原点为中心的单位闭球.在证明定理之前先做一点准备工作.首先,为了利用微分学的手段,我们要对连续函数进行所谓的光滑化.引理1设ψ:D→R n为连续的向量值函数,且当x∈S n−1=∂D时ψ(x)=x,则任给ε>0,存在光滑向量值函数ρ:D→R n,使得ρ(x)=x,∀x∈S n−1; ρ(x)−ψ(x) <ε,∀x∈D.不失一般性,我们设D是以原点为中心的单位闭球.在证明定理之前先做一点准备工作.首先,为了利用微分学的手段,我们要对连续函数进行所谓的光滑化.引理1设ψ:D→R n为连续的向量值函数,且当x∈S n−1=∂D时ψ(x)=x,则任给ε>0,存在光滑向量值函数ρ:D→R n,使得ρ(x)=x,∀x∈S n−1; ρ(x)−ψ(x) <ε,∀x∈D.证明.记f(x)=ψ(x)−x,则fS n−1≡0.我们先对f做光滑化.因为有界闭集上的连续函数具有一致连续性,任给ε>0,存在δ>0,使得当 x−y ≤δ时 f(x)−f(y) <ε/2.证明(续).取η=δ1+δ,令g (x )= f x 1−η , x ≤1−η,0, x >1−η,则g 连续,且当x ∈D 时 g (x )−f (x ) <ε/2.设φ是我们之前构造的一元鼓包函数,记φη(x )=c −1η−n φ(η−1 x ),其中c 是φ( x )在R n 中的积分.此时φη在R n 的积分为1,且其支集含于B η(0).令h (x )= R n g (y )φη(x −y )d y = R ng (x −y )φη(y )d y ,根据函数参变量积分的性质可知h 是光滑函数,再根据鼓包函数的性质可知h S n −1=0, h (x )−g (x ) ≤ε/2.记ρ(x )=x +h (x ),则ρ是满足要求的光滑函数.引理2设ρ:D→R n为C2的向量值函数,如果当x∈S n−1时ρ(x)=x,则ρ必有零点.引理2设ρ:D→R n为C2的向量值函数,如果当x∈S n−1时ρ(x)=x,则ρ必有零点.证明.(反证法)设ρ没有零点.在R n\{0}中记ω0=ni=1(−1)i−1 x −n x i d x1∧···∧d x i−1∧d x i+1∧···∧d x n,直接的计算表明dω0=0.同理,记ω=ρ∗ω0=ni=1(−1)i−1 ρ −nρi dρ1∧···∧dρi−1∧dρi+1∧···∧dρn其中ρi是ρ的分量,则仍有dω=0.证明(续).利用Gauss-Green公式以及ρ(x)=x(x∈S n−1)可得0=D dω=S n−1ω=S n−1ω0=S n−1ni=1(−1)i−1x i d x1∧···∧d x i−1∧d x i+1∧···∧d x n =Dn dx1···dx n=nν(D)>0,这就得出了矛盾.Brouwer不动点定理的证明.(反证法)设ϕ没有不动点.用直线段连接ϕ(x)和x,其延长线交球面于ψ(x).容易看出ψ:D→S n−1连续,且当x∈S n−1时ψ(x)=x.根据引理1,存在光滑映射ρ:D→R n,使得ρ(x)=x,∀x∈S n−1; ρ(x)−ψ(x) <1,∀x∈D.根据引理2,ρ有零点,但这与上面的不等式以及 ψ ≡1相矛盾.Brouwer不动点定理的证明.(反证法)设ϕ没有不动点.用直线段连接ϕ(x)和x,其延长线交球面于ψ(x).容易看出ψ:D→S n−1连续,且当x∈S n−1时ψ(x)=x.根据引理1,存在光滑映射ρ:D→R n,使得ρ(x)=x,∀x∈S n−1; ρ(x)−ψ(x) <1,∀x∈D.根据引理2,ρ有零点,但这与上面的不等式以及 ψ ≡1相矛盾.例1设A=a ijn×n为n阶方阵,如果它的每一元素a ij都大于零,则称A为正矩阵.证明:正矩阵必有正特征值.证明.当x=(x1,···x n)∈R n时,记|x|= ni=1|x i|.考虑n−1维单形∆n={x∈R n||x|=1,x i≥0,i=1,···,n}.显然,当x∈∆n时|Ax|>0.考虑连续映射ϕ:∆n→∆n,x→Ax/|Ax|.因为∆n同胚于n−1维单位闭球,可以应用Brouwer不动点定理得到ϕ的不动点,不动点记为ξ,则|Aξ|就是A的正特征值.。

锥度量空间中扩张映射的公共不动点定理

锥度量空间中扩张映射的公共不动点定理

第15卷第2期应用泛函分析学报V01.15。

N o.2 2013年6月A C TAA N A L Y SI S FU N C T I O N A L I S A PPL I C A T A J un..2013 =================================;===========:==:=::===::D O I:10.3724/S P.J.1160.2013.00142文章编号:1009-1327(2013)02.0142—05锥度量空间中扩张映射的公共不动点定理韩艳,,许绍元21.昭通学院数学与统计学院,昭通6570002.湖北师范学院数学与统计学院,黄石435002摘要:在不要求映射的连续性和锥的正规性的条件下,我们得到扩张映射的几个公共不动点定理,所得结果改进和推广了原有的许多重要结论.关键词:锥度量空间;扩张映射;公共不动点文献标志码:A中图分类号:0177.911引言自1976年以来,有关压缩映射公共不动点理论的研究已经被很多作者探讨过了,它不仅有着重要的理论意义,还有着广泛的应用(见文献【3—7】).最近,黄龙光和张宪【1】推广了度量空间的概念,用B anach空间取代实数空间,成功获得了满足不同压缩条件的压缩映射的不动点定理.随后,许多学者在此基础上作了进一步推广和改进,得到了很多很好的结果.相比之下,对于锥度量空间中扩张映射的不动点,研究的人较少,相应的文献,也要少得多(见文献[5—6】).2011年,在文献【2】中,作者介绍了几类扩张映射的不动点定理,然而,定理中的映射必须满足连续性.在本文中,我们将去掉连续性,拓展研究两个映射的公共不动点的存在唯—性,且不要求锥的正规性,所得结果改进并推广了原有的结论,更具有一般化.首先,我们介绍锥度量空间中的一些相关定义及性质(见文献[1】).设E是实B anach空间,0是E中的零元,称P是E中的锥,若(i)。

∈P且入≥0贝ⅡA x∈P;(i i)z∈P且一z∈P,贝0z=0.设P是E中的锥,≤是由P定义的半序,即V z,Y∈E,Y~z∈P,则z≤Y.锥P称为正规锥,如果存在常数K>0,使得0≤z≤y(V x,Y∈E)蕴含忙f f≤gl l yl I,其中K为正规常数.用z《Y 表示Y—z∈i nt P.定义1.1[1]设x是一个非空集.若映射d:x×X—E满足(i)0≤d(x,Y)对一切z,Y∈x.d(x,Y)=0当且仅当。

brouwer不动点定理的证明

brouwer不动点定理的证明

brouwer不动点定理的证明Brouwer不动点定理的证明Brouwer不动点定理是数学中的一项重要定理,它由荷兰数学家L.E.J. Brouwer于1910年首次提出并证明。

该定理是拓扑学中的基本结果,它描述了连续映射在拓扑空间上的固定点存在性。

不动点是指一个映射将某个元素映射为其本身的点,而Brouwer不动点定理则告诉我们,对于某些特定条件下的连续映射,总能够找到至少一个不动点。

为了更好地理解Brouwer不动点定理的证明过程,我们首先需要了解一些相关的概念。

在拓扑学中,一个拓扑空间是由一组集合及其上的拓扑结构组成的,其中拓扑结构描述了集合中的点之间的邻近关系。

而连续映射则是保持拓扑空间中邻近关系的映射。

Brouwer不动点定理的证明思路是通过反证法来进行的。

假设存在一个连续映射f,它在拓扑空间X上没有不动点,即对于任意的x∈X,都有f(x)≠x。

我们将通过构造一个矛盾来证明这个假设是错误的。

我们定义一个闭球B,它是X中所有与中心点x相距小于等于r的点的集合,即B={y∈X∣d(x,y)≤r},其中d(x,y)表示x与y之间的距离,r是一个正数。

由于X是一个拓扑空间,我们可以将闭球B 看作一个紧致的子集,即它是有界且闭合的。

接下来,我们考虑由映射f作用在闭球B上得到的映射f(B)。

根据连续映射的定义,f(B)也是一个紧致的子集。

然而,根据我们的假设,映射f在X上没有不动点,所以f(B)中的任意一个点都不可能与原始闭球B中的点重合。

换句话说,f(B)中的每个点都与B中的点距离至少为r。

现在,我们将在X中构造一系列的闭球B1、B2、B3...,其中Bi+1是Bi的子集,且每个闭球Bi的半径为r/i,i是一个正整数。

由于每个Bi都是紧致的,所以根据Cantor定理,存在一个点x∗,它同时属于闭球B1、B2、B3...。

换句话说,x∗是X中的一个聚点。

接下来,我们考虑f(x∗)。

根据我们之前的假设,f(x∗)≠x∗,所以根据连续映射的定义,f(x∗)与x∗之间的距离至少为r。

1-5 不动点定理

1-5 不动点定理

有不动点y,则 T y= y。
推论:设 C 是 B* 空间中的紧凸子集, 映射
T:C C 连续,则 T 有不动点 x C。
不妨考虑 0 为 C 的内点的情形。 否则考虑映射 T1x=T(x+x0)-x0 考虑 C 张成的子空间 X=span{C},由 C
紧知 X 的单位球面紧,必有 dim X< 。
即 E 中任意两点 x,y 的连线仍然在 E 中。 命题:若{E : 集,则 } 是线性空间 X 中的一族凸
E 也是凸集。
凸包:包含 E 的最小凸集,记作 co(E)。
命题:co(E) 是 E 的任意凸组合的全体,即
co( E )
n i 1 i
xi |
n i 1 i
1,
i
0,xi
X
Brouwer 不动点定理:记 B 是 Rn 中的闭单位
可得
(z) 1
mi ( z )
i 1
其中
mi ( z ) z 0, yi ,
yi yi
z z
Nn为 T(C) 的有限 -网,必有 z 某 B(yi, ),
此时 mi(z)>0,可知 (z) 有意义,并且连续。 于是,这样定义的 i(z) 非负、连续、和=1, 且有 ||Inz - z|| =1/n 0, (n )
集,映射 T=T1+T2:C X ,满足
T1x+T2y C, x,y C; T1 是一个压缩映射,T2 是一个紧映射。 则 T 在 C 上有不动点。
提示:先利用压缩映射原理,再利用 Schauder
不动点定理。
应满足:(1) 连续、(2) 非负、(3) 和=1。
rn rn i i 1 rn i i 1 rn i i 1

泛函分析中的不动点定理及应用

泛函分析中的不动点定理及应用

泛函分析中的不动点定理及应用泛函分析是数学中的一个重要分支,研究的是函数的空间以及变换等概念。

在泛函分析中,不动点定理是一项极为重要的结果,它在许多领域都具有广泛的应用。

本文将介绍不动点定理的概念、证明以及在泛函分析中的应用实例。

一、不动点定理概述不动点定理是泛函分析的基础定理之一,它指出在一定条件下,对于某个变换,总存在至少一个点在变换之后保持不变。

换句话说,就是存在一个点,该点在经过变换后仍然等于它自身。

不动点定理有多种形式,其中最著名的定理之一是巴拿赫不动点定理(Banach Fixed-Point Theorem),该定理也被称为压缩映像原理(Contraction Mapping Principle)。

二、巴拿赫不动点定理及其证明巴拿赫不动点定理是泛函分析中最为经典的不动点定理之一,它具体表述为:若给定一个完备的度量空间,并且在该度量空间上定义了一个压缩映像,那么该压缩映像至少存在一个不动点。

压缩映像的定义如下:对于给定的度量空间(X, d),若存在一个常数0 < k < 1,对于任意的 x, y ∈ X,满足d(f(x), f(y)) ≤ kd(x, y),则称映像 f 是一个压缩映像。

巴拿赫不动点定理的证明基于完备性和收敛性的概念。

具体的证明过程略显复杂,在此不展开叙述,但是通过巴拿赫不动点定理的证明,我们可以得出一个重要结论:在完备的度量空间上,压缩映像的不动点是唯一的。

三、不动点定理的应用实例不动点定理在许多领域中都有着广泛的应用,以下是其中两个典型的应用实例:1. 应用于微分方程不动点定理在微分方程的研究中扮演着重要角色。

许多微分方程可以转化为积分方程,然后利用不动点定理证明解的存在性和唯一性。

例如,在实数轴上关于初始值问题的微分方程中,可以通过构造合适的算子和空间,将微分方程转化为一个算子方程,然后运用不动点定理证明方程存在解。

2. 应用于经济学模型在经济学领域中,不动点定理也有着广泛的应用。

不动点定理和Banach压缩映像定理的应用

不动点定理和Banach压缩映像定理的应用

不动点定理和Banach压缩映像定理的应用一、引言在数学中,不动点定理和Banach压缩映像定理是两个非常重要的定理。

不动点定理是一个基本定理,它能够帮助我们证明很多问题。

而Banach压缩映像定理则是一个实用定理,它能够帮助我们求解很多实际问题。

本文将重点讨论这两个定理的应用。

二、不动点定理不动点定理(Fixed point theorem)是数学中一种基本的定理,也是一个非常重要的定理。

它的实质是给定一个运算,能够保证这个运算至少有一个不变点。

例如,在一维空间中,一条直线与 x 轴的交点就是一个不动点。

不动点定理的常用形式有 Banach定理,Brouwer定理和Kakutani定理等。

这三种定理都是确保在一定条件下,给定一个映射,必定存在一个不动点。

其中,Banach定理是应用最广泛的一种不动点定理。

三、Banach压缩映像定理Banach压缩映像定理(Banach contraction mapping theorem)是应用最广泛的不动点定理之一。

它是一种强化的不动点定理,能够给出一个更加精确的结论。

该定理的实质是,给定一个映射,如果它能够将任意两个点映射到更靠近一起的两个点,那么这个映射一定存在不动点。

具体来说,设 (X,d) 是一个非空完备度量空间,f:X → X是一个压缩映像,即存在常数0≤s<1,使得对于任意x,y∈ X,有:$d(f(x),f(y))≤s\times d(x,y)$则 f 存在唯一的不动点 z,即 f(z)=z。

在实际中,Banach压缩映像定理被广泛应用于求解非线性方程组的根。

例如,对于一个形如 f(x)=0 的方程组,可以通过适当的转化,将它表示成 g(x)=x 的形式,然后应用Banach压缩映像定理求解。

此外,Banach压缩映像定理还在优化算法、控制论等领域得到广泛应用。

四、应用举例下面我们通过两个具体的例子来说明不动点定理和Banach压缩映像定理的应用。

不动点定理及其应用

不动点定理及其应用

不动点定理及其应用1 引言大家都知道,在微分方程、积分方程以及其它各类方程的理论中,解的存在性、唯一性以及近似解的收敛性等都是相当重要的课题,为了讨论这些方程解的存在性,我们可以将它们转化成求某一映射的不动点问题.本文就这一问题作一下详细阐述.2 背景介绍把一些方程的求解问题化归到求映射的不动点,并用逐次逼近法求出不动点,这是分析中和代数中常用的一种方法.这种方法的基本思想可以追溯到牛顿求代数方程的根时所用的切线法,19世纪Picard 运用逐次逼近法解常微分方程.后来,1922年,波兰数学家巴拿赫(Banach )将这个方法加以抽象,得到了著名的压缩映射原理,也称为巴拿赫不动点定理.3 基本的定义及定理定义1[1](P4) 设X 为一非空集合,如果对于X 中的任何两个元素x ,y ,均有一确定的实数,记为),,(y x ρ与它们对应且满足下面三个条件:①非负性:0),(≥y x ρ,而且0),(=y x ρ的充分必要条件是x =y ; ②对称性:),(y x ρ=),(x y ρ;③三角不等式:),(y x ρ),(),(y z z x ρρ+≤,这里z 也是X 中任意一个元素. 则称ρ是X 上的一个距离,而称X 是以ρ为距离的距离空间,记为()ρ,X .注 距离概念是欧氏空间中两点间距离的抽象,事实上,如果对任意的,),,,(),,,,(2121n n n R y y y y x x x x ∈==ΛΛ2/12211])()[(),(n n y x y x y x -++-=Λρ容易看到①、②、③都满足.定义2[1](P23) 距离空间X 中的点列}{n x 叫做柯西点列或基本点列,是指对任给的,0>ε存在,0>N 使得当N n m >,时,ερ<),(n m x x .如果X 中的任一基本点列必收敛于X 中的某一点,则称X 为完备的距离空间.定义3[2](P16) 设X 是距离空间,T 是X 到X 中的映射.如果存在一数,10,<≤a a 使得对所有的X y x ∈,,不等式),(),(y x a y x ρρ≤T T (1)成立,则称T 是压缩映射.压缩映射必是连续映射,因为当x x n →时,有0),(),(→≤x x a Tx Tx n n ρρ.例 设[]10,X =,Tx 是[]10,上的一个可微函数,满足条件:()[][]()1,01,0∈∀∈x x T ,以及 ()[]()1,01∈∀<≤'x a x T ,则映射X X T →:是一个压缩映射.证()()[]()()y x a y x a y x y x T Ty Tx Ty Tx ,1,ρθθρ=-≤--+'=-=()10,,<<X ∈∀θy x ,得证.定义4 设X 为一集合,X X T →:为X 到自身的映射(称为自映射),如果存在,0X x ∈使得00x Tx =,则称0x 为映射T 的一个不动点.例如平面上的旋转有一个不动点,即其旋转中心,空间中绕一轴的旋转则有无穷多个不动点,即其旋转轴上的点均是不动点,而平移映射a x Tx +=没有不动点.如果要解方程(),0=x f 其中f 为线性空间X 到自身的映射(一般为非线性的),令,I f T +=其中I 为恒等映射:,x Ix =则方程()0=x f 的解恰好是映射T 的一个不动点.因此可以把解方程的问题转化为求不动点的问题.下面就来介绍关于不动点的定理中最简单而又应用广泛的压缩映射原理:定理1[3](P36) 设X 是完备的距离空间,T 是X 上的压缩映射,那么T 有且只有一个不动点. 证 任取,0X x ∈并令ΛΛ,,,,11201n n Tx x Tx x Tx x ===+ (2)下证()2的迭代序列是收敛的,因T 是压缩映射,所以存在,10<≤a 使得()()y x a Ty Tx ,,ρρ≤,因此 ()()()();,,,,00101021Tx x a x x a Tx Tx x x ρρρρ=≤=()()()();,,,,002212132Tx x a x x a Tx Tx x x ρρρρ=≤=…………一般地,可以证明()()()();,,,,00111Tx x a x x a Tx Tx x x nn n n n n n ρρρρ≤≤≤=--+Λ于是对任意自然数p n ,,有()()()+++≤++++Λ211,,,n n n n p n n x x x x x x ρρρ()p n p n x x +-+,1ρ≤()0011,)(Tx x a a a p n n n ρ-++++Λ()()()0000,1,11Tx x aa Tx x a a a n p n ρρ-≤--= (3)由于10<≤a ,因此,当n 充分大时,(),,ερ<+p n n x x 故}{n x 是X 中的基本点列,而X 是完备的,所以存在_0_0,x x X x n →∈使得成立.再证_0x 是T 的不动点.易证,若T 是压缩映射,则T 是连续映射,而,lim _0x x n n =∞→因此,lim _0x T Tx n n =∞→所以_0_0_0,x x x T 即=是T 的一个不动点.最后,我们证明不动点的唯一性,若存在X x ∈*,使得,**x Tx =则,,,,*_0*_0*_0⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛x x a Tx x T x x ρρρ 而_0*_0*,0,,1x x x x a ==⎪⎭⎫ ⎝⎛<即所以ρ.证毕.注 (i )由(2)定义的序列收敛,且收敛到T 的唯一不动点,且迭代与初始值0x 的取法无关.(ii )误差估计式 方程x Tx =的不动点*x 在大多数情况下不易求得,用迭代程序,1n n Tx x =+即得到不动点*x 的近似解,在(3)式中令()()00*,1,,Tx x aa x x p nn ρρ-≤∞→得 (4) 此即误差的先验估计,它指出近似解n x 与精确解*x 之间的误差.如果事先要求精确度为(),,*ερ≤x x n 则由()ερ≤-00,1x Tx aa n,可计算出选代次数n ,在(4)式中取01,1Tx x n ==代入得()()0*0,1,x Tx aa xTx ρρ-≤.上式对任意初始值均成立,取10-=n x x ,即得()()1*,1,--≤n n n x x aax x ρρ, 此式称为后验估计,可从n x 与其前一步迭代结果1-n x 的距离来估计近似解与精确解*x 之间的误差.所以,压缩映射原理,不仅给出了不动点的存在性,而且给出求解方法,同时还指明了收敛速度及误差.(iii )a 值越小迭代收敛的速度越快.(iv )在T 满足()()()y x y x Ty Tx ≠<,,ρρ (5) 的条件下,T 在X 上不一定存在不动点.如令[)[)()+∞∈++=+∞=,011,,0x xx Tx X ,我们容易证明对一切[)y x y x ≠+∞∈,,0,时,有()()[)∞+<,但0,,,T y x Ty Tx ρρ中没有不动点.又如,若令x arctgx Tx R X +-==2π,,则T 满足条件(5),因任取,,,y x R y x ≠∈则由中值公式()()y x T y x Ty Tx ,,'在ξξ-=-之间,由于(),故得11'22<+=ξξξT ()()y x Ty Tx y x Ty Tx ,,,ρρ<-<-即, Tx 但没有不动点,因任何一个使x Tx =的x 须满足,2π=arctgx 在R 内这样的x 不存在.(v )压缩映射的完备性不能少. 如设(]1,0=X ,定义T 如下:2xTx =,则T 是压缩映射,但T 没有不动点.这是由于(]1,0空间的不完备性导致的.(vi )压缩映射条件是充分非必要条件. 如()[]b a x f ,映为自身,且 ()()y x y f x f -≤- , (6)任取[],,1b a x ∈令()[]n n n x f x x +=+211 , (7) 该数列有极限**,x x 满足方程()**xxf =,但由(6),(7)可得11-+-≤-n n n n x x a x x ,相当于,1=a 不是10<<a ,即不满足压缩映射的条件.定理 1从应用观点上看还有一个缺点,因为映射T 常常不是定义在整个空间X 上的,而仅定义在X 的子集E 上,而其像可能不在E ,因此要对初值加以限制,有以下结果:定理2 [4](P193-194)设T 在Banach 空间的闭球()(){}r x x X x r x B B ≤∈==00_,:,ρ上有定义,在X 中取值,即T :()X r x B →,0_又设[),1,0∈∃a 使得()()(),,,,,0_y x a Ty Tx r x B y x ρρ≤∈∀有()(),1,00r a Tx x -≤ρ且则迭代序列(2)收敛于T 在B 中的唯一不动点.证 只需证明(),,B x B B T ∈∀⊂ ()Tx x ,0ρ()()Tx Tx Tx x ,,000ρρ+≤()r a -≤1()x x a ,0ρ+()r ar r a =+-≤1,因此()B ,B T B Tx ⊂∈所以,由定理1B 在知T 中有唯一的不动点,证毕.有时T 不是压缩映射,但T 的n 次复合映射nT 是压缩映射,为了讨论更多方程解的存在性、唯一性问题,又对定理1进行了推广.定理3[5](P21)设T 是由完备距离空间X 到自身的映射,如果存在常数10,<≤a a 以及自然0n ,使得()()()X y x y x y T x Tn n ∈≤,,,00ρρ, (8)那么T 在X 中存在唯一的不动点.证 由不等式(8),0n T 满足定理1的条件,故0n T存在唯一的不动点,我们证明0x 也是映射T唯一的不动点.其实,由()()()000100Tx x T T x T Tx Tnn n ===+,可知0Tx 是映射0n T 的不动点.由0n T 不动点的唯一性,可得00x Tx =,故0x 是映射T 的不动点,若T 另有不动点1x ,则由,1111100x Tx Tx T x T n n ====-Λ可知1x 也是0n T 的不动点,再由0n T 的不动点的之唯一性,得到,01x x =证毕.4 不动点定理的应用4.1 不动点定理在数学分析中的应用该定理在数学分析中主要用于证明数列的收敛性、方程解的存在性和唯一性及求数列极限. 定理4.1.1 ① 对任一数列{}n x 而言,若存在常数r ,使得10,,11<<-≤-∈∀-+r x x r x x N n n n n n 恒有 ()A ,则数列{}n x 收敛.② 特别,若数列{}n x 利用递推公式给出:()n n x f x =+1 (),,2,1Λ=n 其中f 为某一可微函数,且()()(),1',B R x r x f R r ∈∀<≤∈∃使得则{}n x 收敛.证 ①此时rr x x r r r x x x x rx xx x np n n pn n k k pn n k k kn p n --≤---=-≤-≤-+++=-++=-+∑∑11.0101011111应用Cauchy 准则,知{}n x 收敛,或利用D ,Alenber 判别法,可知级数()1--∑n n x x 绝对收敛,从而数列()()ΛΛ,2,1011=+-=∑=-n x x xx nk k kn 收敛.② 若()B 式成立,利用微分中值定理:()()()()Λ,3,2,1111=-≤-'≤-=----+n x x r x x f x f x f x x n n n n n n n n ξ即此时()A 式亦成立,故由①知{}n x 收敛.注 若()B 式只在某区间I 上成立,则必须验证,{}n x 是否保持在区间I 中.例1 设数列{}n x 满足压缩性条件,,,3,2,10,11Λ=<<-≤--+n k x x k x x n n n n 则{}n x 收敛. 证 只要证明{}n x 是基本点列即可,首先对一切n ,我们有11-+-≤-n n n n x x k x x ,121212x x k x x k n n n -<<-<---Λn m >设,则 n n m m m m n m x x x x x x x x -++-+-≤-+---1211Λ123122x x k x x k m m -+-<--121x x k n -++-Λ()01121∞→→--<-n x x kk n ,证毕.注 该题体现了不动点定理证明数列的收敛性.例2 证明若()x f 在区间[]r a r a I +-≡,上可微,()1<≤'αx f ,且()()r a a f α-≤-1 , (9)任取()()(),,,,,,112010ΛΛ-===∈n n x f x x f x x f x I x 令则**,lim x x x n n =∞-为方程()x f x =的根(即*x 为f 的不动点)证 已知I x ∈0,今设I x n ∈,则()()()a a f a f x f a x n n -+-=-+1()()a a f a x f n -+-'≤ξ ()之间与在a x n ξ[由(9)](),1r r r =-+≤ααI x n ∈+1即这就证明了:一切I x n ∈应用微分中值定理,1,+∃n n x x 在ξ之间(从而I ∈ξ)()()()()111--+-'=-=-n n n n n n x x f x f x f x x ξ 1--≤n n x x α ()10<<α,这表明()1-=n n x f x 是压缩映射,所以{}n x 收敛.因f 连续,在()1-=n n x f x 里取极限知{}n x 的极限为()x f x =的根. 注 该题体现了不动点定理证明方程解的存在性. 例 3 ()x f 满足()()(),10<<-≤-k y x k y f x f (),,10n n x f x R x =∈∀+令取则{}n x 收敛,且此极限为方程()x x f =的唯一解.证 ① 因为()()01212111x x k x x k x x k x f x f x x nn n n n n n n n -≤≤-≤-≤-=-----+Λ所以 n n p n p n p n p n n p n x x x x x x x x -++-+-≤-+-+-+-+++1211Λ()01121x x k k k k n n p n p n -++++≤+-+-+Λ()10101<<--<k x x kk n因为01lim01=--∞→x x k k n n ,所以εε<--<->∀∀∃>∀+011,,,,0x x kk x x N n p N nn p n 有,由Cauchy 准则,知{}n x 收敛.② 设,lim *x x n n =∞→已知()n n x f x =+1,所以()()**lim x f f x f x n n 连续∞→=,所以()x f x x =是*的解.若另有解*y 是()x f x =的解,即()**yf y =,而()()()10******<<-≤-=-k x y k x f y f x y .所以**x y =,所以()x f x x =是*的唯一解.注 该题既体现了不动点定理证明数列的收敛性又体现了方程解的存在唯一性.定理4.1.2 已知数列{}n x 在区间I 上由()()Λ,2,11==+n x f x n n 给出,f 是I 上连续函数,若f 在I 上有不动点()()***xf x x =即满足()()()()*0*111≥--x x x f x,则此时数列{}n x 必收敛,且极限A 满足()A f A =,若()*式"""">≥改为对任意I ∈1x 成立,则意味着*x 是唯一不动点,并且,*x A =特别,若f 可导,且()(),10I x x f ∈<'<当则f 严增,且不等式()()""""*>≥可该为会自动满足()I x ∈∀1,这时f 的不动点存在必唯一从而*x A =,证 (分三种情况进行讨论):① 若*1x x >,则()()**12x x f x f x =≥=,一般地,若已证到*x x n ≥,则()()**1x x f x f x n n =≥=+.根据数学归纳法,这就证明了,一切*:x x n n ≥(即*x 是n x 之下界)另一方面,由()*式条件,已有()112x x f x ≤=,由f 单调增,知()()2123x x f x f x =≤=,….一般地若已证到1-≤n n x x ,由f 单调增,知()()n n n n x x f x f x =≤=-+11,这就证明了n x 单调减,再由单调有界原理,知{}n x 收敛.在()n n x f x =+1里取极限,因()x f 连续,可知{}n x 的极限A 适合方程()A f A =. ② *1x x <的情况,类似可证.③ *1x x =若,则一切n ,*x x n =结论自明.最后,假若()(),10I x x f ∈∀<'<由压缩映射原理可知{}n x 收敛.事实上,这时也不难验证()*条件成立,如:对函数()()x f x x F -≡应用微分中值定理,(注意到()()0,0*>'=x F x F ),知*x在ξ∃与x 之间,使得()()()()()()(),***x x F x x F xF x F x f x -'=-'+=≡-ξξ可见()()(),0*>--xx x f x 即条件()*严格成立,故*lim x xnn =∞→.例4 设()nn n x c x c x x ++=>+1,011(1>c 为常数),求n n x ∞→lim .解 法一(利用压缩映射)因0>n x ,且0>x 时,0))(()1()1()('2'>-=⎥⎦⎤⎢⎣⎡++=x f c c x c x c x f x ,又由1>c 知111)1()()1()('022<-=-≤+-=<c c c c x c c c x f )0(>∀x ,故)(1n n x f x =+为压缩映射,{}n x 收敛,在nn n x c x c x ++=+)1(1中取极限,可得c x n n =∞→lim .法二(利用不动点)显然一切0>n x ,令()()x xc x c x f =++=1,知不动点c x =*,而f 单调增加且0)()()()1(22>-++=-+---=-⎥⎦⎤⎢⎣⎡++-c x x c c x c x x c cx c x cx c x x c x c x .表明()()()0*111≥--xx x f x 成立,根据不动点方法原理c xnn =∞→lim .注 该题体现了不动点定理用于求数列极限.定理4.1.3 (不动点方法的推广)设),(y x f z =为二元函数,我们约定,将),(x x f z =的不动点,称为f 的不动点(或二元不动点),已知),(y x f z =为0,0>>y x 上定义的正连续函数,z 分别对x ,对y 单调递增,假若:(1)存在点b 是),(x x f 的不动点;(2)当且仅当b x >时有()x x f x ,>,令()()()()()ΛΛ,4,3,,0,,,21121==>==--n a a f a a a a f a a a f a n n n , (10)则{}n a 单调有界有极限,且其极限A 是f 的不动点.证 只需证明{}n a 收敛,因为这样就可在(10)式中取极限,知A 是f 的不动点,下面分两种情况进行讨论:① 若1a a ≤,由f 对x ,对y 的单增性知112),(),(a a a f a a f a =≥=,进而2111123),(),(),(a a a f a a f a a f a =≥≥=,类似:若已推得121,---≥≥n n n n a a a a ,则),4,3(),(),(2111Λ==≥=---+n a a a f a a f a n n n n n n ,如此得{}n a 单调递增.又因a a a f a ≥=),(1,按已知条件这时只能b a ≤(否则b a >按已知条件(2),应有1),(a a a f a =>,产生矛盾),进而),(),(,),(),(121a b f a a f a b b b f a a f a ≤==≤= Λ,),(b b b f =≤,用数学归纳法可得一切b a n ≤,总之n a 单调递增有上界,故{}n a 收敛. ② 若a a ≤1,类似可证{}n a 单调递减有下界b ,故{}n a 收敛.注 按b 的条件可知b 是f 的最大不动点,b x >时不可能再有不动点,情况②时极限b A ≥是不动点,表明此时b A =.例5 若ΛΛ,)(,,)(,)(,031312131311231311--+=+=+=>n n n a a a a a a a a a a ,试证 (1)数列{}n a 为单调有界数列;(2)数列{}n a 收敛于方程313x x x +=的一个正根.证 (利用定理 4.1.3)设3131)(),(y x y x f z +==,显然f 当0,0>>y x 是正值连续函数,对y x ,单增,只需证明 ①b ∃使得),(b b f b =;②),(x x f x >当且仅当b x >① 注意到 f 的不动点,亦即是方程0313=--x x x 的根,分析函数313)(x x x x g --=,因0926)(",3113)('35322>+=--=xx x g xx x g (0>x 时),0)1(',)00('>-∞=+g g ,可知g 在(0,1)内有唯一极小点c x c >,时g x g ,0)('>严增,0)2(,0)1(><g g ,故g 在(0,1)内有唯一零点b (即f 的不动点).② b x >时0)()(=>b g x g ,即),(x x f x >;事实上,在0>x 的范围也只有在b x >时才有),(x x f x >,因为0)(,0)0(==b g g ,在),0(c 上)(x g 严减,),(b c 上)(x g 严增,所以),0(b 上0)(<x g ,即),(x x f x <.证毕.4.2 不动点定理在积分方程中的应用该定理在积分方程用于证明方程解的存在性、唯一性及连续性. 例6 第二类Fredholm 积分方程的解,设有线性积分方程τττμϕd x t k t t x b a )(),()()(⎰+=,(11)其中[]b a L ,2∈ϕ为一给定的函数,λ为参数,),(τt k 是定义在矩形区域b a b t a ≤≤≤≤τ,内的可测函数,满足+∞<⎰⎰ττdtd t k ba b a 2),(.那么当参数λ的绝对值充分小时,方程(11)有唯一的解[]b a L x ,2∈.证 令τττμϕd x t k t t Tx ba )(),()()(⎰+=.由 []d t d x d t k d x t k ba b a b a ba b a τττττττ222)(),()(),(⎰⎰⎰≤⎰⎰ττττd x dt d t k ba ba b a 22)(),(⎰⎰⎰=及T 的定义可知,T 是由[]b a L ,2到其自身的映射,取μ充分小,使[]1),(2/12<⎰⎰=dtd t k a ba b a ττμ,于是 2/12))()()(,(),(⎪⎭⎫ ⎝⎛-⎰⎰=dt ds s y s x t k Ty Tx b a b a τμρ()()2/122/12)()(),(ds s y s x dtd t k b a b ab a -⎰⎰⎰≤ττμ()),(),(2/12y x dtd t k b a b aρττμ⎰⎰=),(y x a ρ=故T 为压缩映射,由定理1可知,方程(11)在[]b a L ,2内存在唯一的解. 注 该题体现了不动点定理证明第二类Fredholm 积分方程解的存在唯一性.例7 设),(τt k 是定义在三角形区域t a b t a ≤≤≤≤τ,上的连续函数,则沃尔泰拉积分方程)()(),()(t d x t k t x t a ϕτττμ+⎰= (12)对任何[]b a C ,∈ϕ以及任何常数μ存在唯一的解[]b a C x ,0∈.证 作[]b a C ,到自身的映射()()()()(),,:t f d x t k t Tx T ta+=⎰τττμ则对任意的[],,,21b a C x x ∈有 ()()()()()()()[]⎰-=-tad x x t k t Tx t Tx ττττμ2121,()()()t x t x a t M bt a 21max --≤≤≤μ()(),,21x x a t M ρμ-=其中M 表示),(τt k 在t a b t a ≤≤≤≤τ,上的最大值,ρ表示[]b a C ,中的距离,今用归纳法证明),()!/)(()()(21221x x n a t M t x T t x T nnnnρλ-≤- (13)当1=n 时,不等式(13)已经证明,现设当k n =时,不等式(13)成立,则当1+=k n 时,有[]ττττμd x T x T t k t x T t x T k k t a k k )()(),()()(212111-⎰=-++[]),()(!/2111x x ds a s k M k t a k k ρμ-⎰≤++[]),()!1/()(21111x x k a t M k k k ρμ+-=+++,故不等式(13)对1+=k n 也成立,从而对一切自然数n 成立.由(13)()!/)()()(m ax ),(2121n a b M t x T t x T x T x T n n nn n bt a n n -≤-=≤≤μρ ),(21x x ρ对任何给定的参数μ,总可以选取足够大的n ,使得1!/)(<-n a b M n n nμ,因此n T 满足定理3的条件,故方程在[]b a C ,中存在唯一的解.注 该题体现了不动点定理证明沃尔泰拉积分方程在三角形区域上解的存在唯一性. 例8 设),(τt k 是[][]b a b a ,,⨯上的连续函数,()[]b a C t f ,∈,λ是参数,方程)()(),()(t f d x t k t x b a +⎰=τττλ, (14)当λ充分小时对每一个取定的)(t f 有唯一解.证 在[]b a C ,内规定距离)()(max ),(t y t x y x bt a -=≤≤ρ.考虑映射())(),())((t f d x t k t Tx b a +⎰=τττλ (15) 当λ充分小时T 是[][]b a C b a C ,,→的压缩映射.因为()()()()()()()()()⎰-=-=≤≤≤≤ba bt a bt a d y x t k t Ty t Tx Ty Tx ττττλρ,max max ,τττλd t y x t k b a bt a )()(),(max -⋅⎰⋅≤≤≤),(y x M ρλ⋅≤此处ττd t k M ba bt a ),(max ⎰=≤≤.故当λ1<M 时,T 是压缩映射,此时根据定理1,方程对任一[]b a C t f ,)(∈解存在唯一,任取初始值逼近,令()()()()t f d x t k t x b a+=⎰τττλ01,,则),(1)*,(01x x MM x x nnn ρλλρ⋅-≤,)(t x n 是第n 次的近似,)(*t x 是精确解.注 该题体现了不动点定理证明沃尔泰拉积分方程在矩形区域上解的存在唯一性.例9 设[]1,0C f ∈,求出积分方程ds s x t f t x to )()()(⎰+=λ []()1,0∈t 的连续解.解 法一 据例7方程对一切λ存在唯一解[]1,0)(∈t x ,改写方程))(()(),()()(10t kx ds s x s t k t f t x =⎰+=λ,其中⎩⎨⎧≥<=.,1,,0),(s t s t s t k 由逐次逼近法,取0)(0=t x ,得002201,,,x k x x k x kx x nn ===Λ,则)(lim )(t x t x n n ∞→=在[]1,0C 中收敛,即为原方程之解,容易看出,,)(),()()(),()(1021Λds s f s t k t f t x t f t x ⎰+==λ)(1t x n +()()()∑⎰=+=nk k k ds s f s t k t f 11,λ,其中),,(),(1s t k s t k =du s u k u t k s t k n t n ),(),(),(10-⎰= )2(≥n ,从而 ⎪⎩⎪⎨⎧≥--<=-,,)()!1(10),(1s t s t n s t s t k n n ()()()()()()()ds s f n s t s t s t t f t x tn n n ⎰⎥⎦⎤⎢⎣⎡--++-+-++=--+011221!1!21λλλλΛ, 故.)()()(lim )()(01ds s f et f t x t x s t t n n -+∞→⎰+==λλ法二 令ds s x t y t)()(0⎰=,则)()('t x t y =,如果)(t x 满足原方程,则)(t y 必满足方程⎩⎨⎧=+=0)0()()()('y t y t f t y λ (16) 易知方程(16)的解为 ds s f e t y s t t )()()(0-⎰=λ再令 ()()()()()()⎰-+=+=ts t ds s f et f t y t f t x 0λλλ (17)下面证明)(t x 为原方程之解,事实上,因为()t y 满足(16),则)()()()('t x t y t f t y =+=λ 所以ds s x t y t )()(0⎰=,由(17)知ds s x t f t x t )()()(0⎰+=λ,故ds s f e t f t x s t t )()()()(0-⎰+=λλ为原方程的连续解.4.3 不动点定理在线性代数方程组中的应用该定理在线性代数方程组用于证明方程解的存在性、唯一性. 例10 设有线性方程组()n i b x ax i nj j iji ,2,11Λ==-∑=, (18)如对每个1,1<≤∑=a ai nj ij(19)则该方程组有唯一解.证 在空间n R 中定义距离()i i ni y x y x -=≤≤11max ,ρ (其中i x 与i y 分别是x 与y 的第i 分量),则n R 按照1ρ是一个距离空间,且是完备的.在这个空间中,定义Tx y R R T nn =→,:由下式确定()∑==+=nj i j iji n i b x ay 1,,2,1Λ ,如令 ()()()()2211,y Tx y Tx==,则有()()()()()()()()()()()21112112121max max ,,j j nj ij ni iini x x a y yyyTxTx -=-==∑=≤≤≤≤ρρ()()2111max jj nj ij ni x x a -≤∑=≤≤()()∑-≤=≤≤≤≤nj ij n i j j nj a x x 11211max max由条件(19)可得()()()()()()2121,,x x a TxTx ρρ≤,即T 是压缩映射,从而它有唯一的不动点,即方程有唯一解且可用迭代法求得.上述结果可用于方程组(),,,,,21n n R x x x x b Ax ∈==Λ()()'21,,,n nn ijb b b b a A Λ==⨯ (20) 可知,当n i a aii nji j ij,2,1,,1Λ=<∑≠=时(19)存在唯一的解x ,且用如下的Jacobi 法求出x ,将(20)改写成 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+----=+--+-=+---=nn n n nn n nn n nnn n n a b a a a a a b a a a a a b a a a a ξξξξξξξξξξξξ000221122222221222121111112111211ΛΛΛΛΛΛΛ记 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------=nn n nnn nnn n n a b ab a b b a a a a a a aa a a a a A ΛΛΛΛΛΛΛΛ2221112122222211111112000 即为b x A x +=,任取()()()(),,,,002010nnRx ∈'=ξξξΛ用迭代法,令n n b x A x n n ,,2,1,1Λ=+=-,则x x n n =∞→lim .4.4 不动点定理在微分方程中的应用该定理在微分方程用于证明方程解的存在性、唯一性. 例11 考察微分方程()y x f dxdy,=,00y y x =, (21)其中()y x f ,在整个平面上连续,此外还设()y x f ,关于y 满足利普希茨(R .Lipschtz )条件:()(),,,,,,2'''R y y x y y k y x f y x f ∈-≤-其中0>k 为常数,那么通过点()00,y x ,微分方程(21)有一条且只有一条积分曲线. 证 微分方程(21)加上初值条件00y yx =,等价于下面的积分方程()()()dt t y t f y x y xx ,00⎰+=.我们取0>δ,使1<δk ,在连续函数空间[]δδ+-00,x x C 内定义映射:T()()()()[]()δδ+-∈+=⎰000,,0x x x dt t y t f y x Ty xx ,则有()()(()()[]⎰-=≤-xx x x dt t y t f t y t f Ty Ty 002121,,max,δρ()()⎰-≤≤-xx x x dt t y t y k 0021max δ()()().,m ax 21210y y k t y t y k x t δρδδ=-≤≤-因,1<δk 由定理1,存在唯一的连续函数()[]()δδ+-∈000,x x x x y 使()()()dt t y t f y x y xx ⎰+=0000,,由这个等式可以看出,()x y 0是连续可微函数,且()x y y 0=就是微分方程(21)通过点()00,y x 的积分曲线,但只定义在[]δδ+-00,x x 上,考虑初值条件(),000δδ±=±x y yx 并再次应用定理1,使可将解延拓到[]δδ2,200+-x x 上,依次类推,于是可将解延拓到整个直线上.通过上文的论述,我们加深了对不动点定理的理解,了解了求不动点的方法以及相应例题的证明技巧,知道了此定理应用的广泛性,而随着理论和实践的蓬勃发展对不动点定理的研究也将不断深化,所以我们研究的脚步不能停下.。

不动点定理及其应用

不动点定理及其应用

不动点定理及其应用一、不动点定理不动点定理fixed —point theorem :如果f 是1n +维实心球1{,11}n B x R n x +=∈+≤ 到自身的连续映射(1,2,3)n =⋅⋅⋅,则f 存在一个不动点1n x B +∈(即满足(0)0f x x =)。

(一)、压缩算子:1、定义: 设(1)X距离空间;(2)算子:T X X →的映射。

若(01),..,s t x y X θθ∃≤<∀∈,恒有(,)(,)Tx Ty x y ρθρ≤, 则称T 是X 上的压缩算子.θ为压缩系数.2、性质:压缩算子T 是连续的 证 :若nx x →,即(,)0n x x ρ→,则(,)(,)0n n Tx Tx x x ρθρ≤→例:11:T R R →,则 ①12Tx x =是压缩算子因为1111(,)(,),2222Tx Ty Tx Ty x y x y ρρθ=-=-==②0Tx x =是压缩算子(0θ= ) ③Tx x =不是压缩算子(1θ= )(二)、不动点定理1、定义:设(1)X --—— 是完备的距离空间;(2):T X X →的压缩算子.则T 在X 上存在唯一的不动点*x ,即***,..x X s t x Tx ∃∈=2、注意(1)定理的证明过程就是求不动点的方法,称为构造性的证明. (2)定理的条件是结论成立的充分非必要条件。

(3)迭代的收敛性和极限点与初始点无关。

但T 的选取及初始点0x 的选取对迭代速度有影响。

初始点离极限点越近,其收敛速度越快,而不影响精确度。

(4)误差估计①事前(或先验)误差:根据预先给出的精确度,确定计算步数。

此方法有时理论上分析困难。

设迭代到第n 步,将*n xx ≈,则误差估计式为*0010(,)(,)(,)11n nn x x Tx x x x θθρρρθθ≤=--②事后(或后验)误差:计算到第n 步后,估计相邻两次迭代结果的偏差1(,)n n x x ρ-,若该值小于预定的精度要求,则取*n x x ≈。

几类不动点定理的推广及证明

几类不动点定理的推广及证明

几类不动点定理的推广及证明引言:不动点定理是数学中一个重要的定理,它在浩繁领域都有广泛的应用。

不动点,顾名思义,是指函数中某一点在映射后仍保持不变的点。

不动点定理从不动点的角度给出了函数存在或唯一性的条件。

本文将介绍几类不动点定理的推广,并给出证明。

一、Banach不动点定理的推广及证明:Banach不动点定理是最经典的不动点定理之一。

它适用于完整器量空间中的压缩映射,并保证了该映射存在唯一的不动点。

然而,在非完整器量空间中的压缩映射是否存在不动点呢?为了解决这个问题,可以引入相似性映射的观点。

相似性映射是指满足$d(f(x),f(y))\leq k\cdot d(x,y)$的映射,其中$k\in(0,1)$,$d$表示器量空间中的距离函数。

依据较弱的条件,我们可以推广Banach不动点定理到非完整器量空间中的相似性映射,并得到存在不动点的结论。

证明:设$X$为一个非完整器量空间,$f:X\rightarrow X$为一个相似性映射,即存在$k\in(0,1)$,使得$d(f(x),f(y))\leqk\cdot d(x,y)$对任意$x,y\in X$成立。

我们需要证明$f$存在一个不动点。

起首选取$X$中的任意点$x_0$,定义序列$\{x_n\}$如下:$$x_n=f(x_{n-1}),\ n=1,2,3,\cdots$$接下来,我们证明$\{x_n\}$是一个Cauchy序列。

由相似性映射的性质可知:$$d(x_{n+1},x_n)=d(f(x_n),f(x_{n-1}))\leq k\cdotd(x_n,x_{n-1})$$不妨设$m>n$,则有:$$d(x_m,x_n)\leq\sum_{i=n}^{m-1}d(x_{i+1},x_i)\leq\sum_{i=n}^{m-1}k^{i-n}d(x_1,x_0)$$利用等比数列求和公式,可以得到:$$d(x_m,x_n)\leq\frac{k^n}{1-k}\cdot d(x_1,x_0)$$ 由于$k\in(0,1)$,故$\frac{k^n}{1-k}$是一个有界数列。

《几类经典的不动点定理与Edelstein不动点定理的统一》范文

《几类经典的不动点定理与Edelstein不动点定理的统一》范文

《几类经典的不动点定理与Edelstein不动点定理的统一》篇一一、引言不动点定理在数学分析、微分方程以及泛函分析等多个领域都有广泛应用,它是关于自映射或非自映射在一定条件下的存在性定理。

本文旨在探讨几类经典的不动点定理以及Edelstein不动点定理的统一性,分析其内在联系与异同,以期为相关研究提供参考。

二、经典不动点定理简介(一)巴拿赫不动点定理巴拿赫不动点定理是一种重要且基本的泛函分析不动点定理,是现代数学理论中一个重要的工具。

该定理指出,在完备的度量空间中,一个压缩映射必存在唯一的不动点。

(二)斯宾格勒不动点定理斯宾格勒不动点定理则是针对多值压缩映射提出的。

在特定条件下,斯宾格勒不动点定理也证明了该类映射的不动点的存在性。

(三)查特利斯—怀特-戈利雅-尼尔森(Chatterjea-Whitney-Gorias-Nielsen)定理查特利斯—怀特-戈利雅-尼尔森定理关注的是具有收缩性的非自映射。

在适当的条件下,该定理保证了这类非自映射存在一个不动点。

三、Edelstein不动点定理Edelstein不动点定理是一种广义的不动点定理,它适用于更广泛的自映射和拓扑空间。

Edelstein定理描述了在具有特殊性质的空间中,即使不满足其他不动点定理的条件,仍有可能存在不动点。

这一理论的引入进一步扩展了不动点理论的应用范围。

四、几类经典的不动点定理与Edelstein不动点定理的统一性分析虽然几类经典的不动点定理和Edelstein不动点定理在形式和适用条件上有所不同,但它们在本质上都探讨了自映射或非自映射的不动点的存在性。

这些定理的共同点是它们都要求映射具有某种形式的“压缩”或“收缩”性质,从而保证不动点的存在性。

此外,这些定理的证明方法也具有一定的相似性,都依赖于特定的拓扑性质和空间结构。

五、结论通过对几类经典的不动点定理与Edelstein不动点定理的统一性分析,我们可以看出这些定理在形式和实质上具有内在联系。

不动点定理文献综述

不动点定理文献综述

不动点定理文献综述
不动点定理是数学分支之一,它是研究映射的定点问题的方法。

最早的不动点定理可以追溯到古希腊时期,但是这个问题一直是数学家们深入研究的领域之一。

本文将综述不动点定理的发展历程和应用领域。

不动点定理最早的形式是欧几里得的“完美定点定理”,它指出任何封闭和有限的区域都至少存在一个不动点。

这个定理在现代数学中被称为“欧几里得不动点定理”,它是不动点定理的最基本形式之一。

在随后的几个世纪中,数学家们发展了许多不动点定理,其中最著名的是邓肯定理、波尔卡-贝努利定理、邦德定理和布劳威尔不动点定理等。

不动点定理有着广泛的应用领域,其中最重要的是在微积分学中的应用。

例如,微积分中的牛顿-拉夫森方法和二分法等算法都是基于不动点定理的,它们在求解非线性方程和优化问题中都有着重要的应用。

此外,不动点定理还应用于拓扑学、动力学、概率论和计算机科学等领域。

总之,不动点定理是数学分支中的一个基本理论,它不仅在纯数学中有着重要的应用,而且在应用数学中也有着广泛的应用。

这个定理的不断发展和完善将为更多的数学问题提供解决思路和方法。

- 1 -。

高数不动点定理的证明

高数不动点定理的证明

高数不动点定理的证明好嘞,咱们今天就聊聊高数里的不动点定理,听上去好像很高深,但其实也没那么复杂,咱们轻松点儿说。

想象一下,一个人在沙滩上走,走着走着突然发现,哎,我怎么又回到这儿了?这就像是个不动点,明白了吧?不动点定理就说,有些函数会有这么一个点,输入这个点,输出也还是这个点,反正就是没动,稳稳当当地待在那儿。

是不是很神奇?就好像你老是在同一家餐馆里点同样的菜,哪怕菜单上有千百种选择,你心里想着的就是那道菜,简直是根深蒂固的习惯啊。

咱们得先了解一下什么是函数。

简单来说,函数就像一个机器,你把一个数字放进去,它就给你一个新数字。

有些函数就像特定的机器,做着固定的事儿,总是把某个数字变成另一个特定的数字。

现在,有些函数是很聪明的,它们居然能把某个数字变成自己。

你可以想象,这个数字就像一个小孩子,明明想去玩,但最后却乖乖地留在了家里。

这种情况下,这个孩子就成了不动点,明白了吗?咱们来说说这个定理是怎么证明的。

这里面有个非常有趣的过程,像是侦探破案一样,慢慢推理。

假设我们有一个连续函数,它把一个闭区间映射到自己,也就是说,你从这个区间的某个数字出发,无论怎么变,最终的结果还是在这个区间里。

简单得就像把一个弹球放进一个封闭的箱子,不管你怎么弹,它总是能在箱子里来回反弹,最终不会跑出去。

这时候,我们就需要用到一种叫做“压缩映射”的东西。

你可以想象,压缩映射就像是个大力士,能把每个输入的数字压缩到更小的范围里。

比如说,咱们有个函数,它把1变成0.5,把0.5又变成0.25,结果这小球一直在缩小,最后只剩下一个小点儿。

这时候,随着这个压缩过程的不断进行,咱们可以看到,最终它一定会到达那个不动点,稳稳当当地停在那儿,就像一个好孩子。

然后啊,不动点定理的证明其实也有个神秘的“迭代”过程。

想象一下你在打游戏,咱们用一个简单的循环,反复试探,直到找到那个最完美的答案。

你可以一直将初始值放入函数,直到你发现,哎,结果和你输入的一样了,恭喜你,这就是不动点。

brouwer不动点定理

brouwer不动点定理

brouwer不动点定理什么是不动点定理?当用户程序处于某个位置时,系统就会开始和停止执行。

如果用户不动,那么系统的运行状态也会发生改变;或者用户想要删除这个程序。

这就是不动点定理的真正含义。

当你的程序启动,因为某个地方没有启动,而返回了之前运行的时候的状态时,这个代码也属于这一类。

而在 brouwer函数中定义了一个不动点,定义如下:通过公式可以看出,这种方法是由一个函数定义了一个状态值不动点而不变的情形。

当然这只是在我们使用过程中出现的一些情况,但是这个定理本身也说明了如果它是在多个地方同时发生变化的话,那它们就不再成立了。

一、当用户处于某个位置时,系统就会开始和停止执行。

这个定理最早由 TheNumber. StatisticServices ()函数给出。

它是一个面向对象程序中执行时间窗口的函数,用于指示程序是否停止执行。

在 Brouwer中定义了一个函数名为RuleName和它所处位置。

在这个函数中,用户就是我们程序中处于位置的人的地址,这个地址是系统上给出给用户执行时间的集合(如果需要),同时执行不同对象执行期间不发生任何变动为该集合中其他所有对象提供服务时不变该集合中所有用户所执行操作所需的状态,包括任何状态变量。

这个函数返回一个 RUN函数执行。

我们可以把 RuleName和 Services两个函数在同一个内存中工作;其中 JavaScript用于控制多线程并发; Dockers用于模拟内存环境; JavaScript用于代码展示工具。

它还具有其它作用。

下面我们来看一下:代码如下:我们从上面不动点定理可以看出这一类程序在不定期会发生变化,比如用户离开原来的位置运行时状态值会发生改变,但是最终会返回到初始位置(如图);而用户离开原有当前位置时没有任何变化。

因此我们认为其是不动点定理:当用户处于当前位置时,系统就会自动开始和停止执行自己状态变化而不断变化的变量运行在系统指定位置中是这个意思是如果程序突然没有响应或者暂时停止了就会有很大影响;但我们可以从后面看到它不动点不变或者是直接被删除;但是仍然可以继续运行这个程序;然后再回来开始下一步执行!这个过程需要用到它自己!所以这里我们来看一个实例:假设我们有一个正在运行的软件,但他突然停止了所有工作状态。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档