生物统计学 第四版 李春喜课后习题答案

合集下载

生物统计第三章 习题及答案

生物统计第三章 习题及答案

第三章 习题及答案(来源:《生物统计学学习指导》李春喜等,科学出版社,2008:p14-15)一、 填空1. 反映变量集中性的特征数是 ,反映变量离散性的特征数是 。

二、 判断1. 离均差平方和为最小。

( )2.将资料内所有观测值从小到大依次排列,位于中间的那个观测值,称为中位数。

( )3. 当所获得的数据资料呈偏态分布时,中位数的代表性优于算术平均数。

( )4. 中位数的计算结果因资料是否分组而有所不同。

( )5. 资料中出现次数最多的那个观测值或次数最多一组的组中值,称为众数。

( )6. 变异系数是样本变量的绝对变异量。

( )7.三、 选择题(《生物统计学题解及练习》杜荣赛 高等教育出版社。

2003.p164)1. 如果对各观测值加上一个常数α,其标准差( )。

A. 扩大α倍 B. 扩大α倍 C. 扩大2α倍 D. 不变2. 比较大学生和幼儿园孩子身高的变异度,应采用的指标是( )。

A. 标准差 B. 方差 C. 变异系数 D. 平均数3. 样本数据总和除以样本含量,称为( )。

A. 中位数B. 加权平均数C. 众数D. 算术平均数 【例3.1】 某种公牛站测得10头成年公牛的体重分别为500、520、535、560、585、600、480、510、505、490(kg ),求其平均体重。

由于Σx =500+520+535+560+585+600+480+510+505+490=5285,n =10代入(3—1)式得:.5(kg)528105285∑===n x x 即10头种公牛平均体重为528.5 kg 。

【例3.2】 将100头长白母猪的仔猪一月窝重(单位:kg )资料整理成次数分布表如下,求其加权数平均数。

表3—1 100头长白母猪仔猪一月窝重次数分布表组别 组中值(x )次数(f )f x 10— 15 3 4520— 25 6 150 30— 35 26 910 40— 45 30 1350 50— 55 24 1320 60— 65 8 520 70— 75 3 225 合计100 4520利用(3—2)式得:)(2.451004520kg f fx x ===∑∑ 即这100头长白母猪仔猪一月龄平均窝重为45.2kg 。

生物统计学课后答案

生物统计学课后答案

生物统计学课后答案【篇一:生物统计学经典习题(期末复习)个人整理】class=txt>【例5.1】母猪的怀孕期为114天,今抽测10头母猪的怀孕期分别为116、115、113、112、114、117、115、116、114、113(天),试检验所得样本的平均数与总体平均数114天有无显著差异?根据题意,本例应进行双侧t检验。

1.提出无效假设与备择假设2、计算值经计算得:=114.5,s=1.581:=114,:≠114所以==10-1=9==1.0003、查临界值,作出统计推断由|t|,p0.05,故不能否定=9,查值表(附表3)得:=2.262,因为=114,表明样本平均数与总体平均数差异不显著,可以认为该样本取自母猪怀孕期为114天的总体。

【例5.2】按饲料配方规定,每1000kg某种饲料中维生素c不得少于246g,现从工厂的产品中随机抽测12个样品,测得维生素c含量如下:255、260、262、248、244、245、250、238、246、248、258、270g/1000kg,若样品的维生素c含量服从正态分布,问此产品是否符合规定要求?按题意,此例应采用单侧检验。

1、提出无效假设与备择假设经计算得:=252,s=9.115:=246,:246、计算值所以==12-1=11==2.2813、查临界值,作出统计推断因为单侧(11),p0.05,否定:=246,接受=双侧=1.796,|t|单侧t0.05:246,表明样本平均数与总体平均数差异显著,可以认为该批饲料维生素c含量符合规定要求。

第三节两个样本平均数的差异显著性检验【例5.3】某种猪场分别测定长白后备种猪和蓝塘后备种猪90kg时的背膘厚度,测定结果如表5-3所示。

设两品种后备种猪90kg时的背膘厚度值服从正态分布,且方差相等,问该两品种后备种猪90kg 时的背膘厚度有无显著差异?表5-3长白与蓝塘后备种猪背膘厚度:=,:≠=0.0998、=0.1096,1、提出无效假设与备择假设2、计算值此例=1.817、、=12、=11,经计算得=1.202、=0.1508=0.123、分别为两样本离均差平方和。

《生物统计学》习题集答案

《生物统计学》习题集答案

《生物统计学》习题集答案一、填空题:1.统计假设测验中犯第一类错误是正确的假设被否定。

(附统计假设测验中犯第二类错误是错误的假设被肯定。

)2.有共同性质的个体所组成的集团称为总体。

从总体中抽取部分个体进行观测,用以估计总体的一般特性,这部分被观测的个体总称为样本。

3.由总体中包含的全部个体求得的能够反映总体性质的特征数称为参数;由样本的全部观察值求得的用以估计总体参数的特征数叫统计数。

4.试验误差可以分为系统(片面)误差和偶然(随机)误差两种类型。

5.一般而言,在一定范围内,增加试验小区的面积,试验误差将会降低。

6.在试验中重复的主要作用是估计试验误差和降低试验误差。

7.田间试验设计的基本原则是重复、随机排列、局部控制。

8.田间试验可按试验因素的多少分为单因素试验和多因素试验。

9.样本平均数显着性测验接受或者否定假设的根据是“小概率事件实际上不可能发生”原理。

10.从总体中抽取的样本要具有代表性,必须是随机抽取的样本。

11.从一个正态总体中随机抽取的样本平均数,理论上服从正态分布。

12.数据1、3、2、4、5、6、3、3的算术平均数是3.375,众数是3。

13.常用的变异程度(变异)指标有极差、方差、标准差、变异系数。

14.小麦品种A每穗小穗数的平均数和标准差值为18和3(厘米),品种B为30和4.5(厘米),根据CV A_(或A品种的变异系数)_大于_CV B(或B品种的变异系数),品种__A_____的该性状变异大于品种B___。

15.要比较单位不同或者单位相同但平均数大小相差较大的两个样本资料的变异度宜采用变异系数。

16.试验资料按所研究的性状、特性可以分为质量性状资料和数量性状资料。

17.样本根据样本容量的多少可以分为小样本和大样本。

18.二项总体是非此即彼的两项构成的总体,此事件以变量“1”表示,彼事件以变量“0”表示,也可以称为0,1总体。

19.标准正态分布是参数?=0__,_?2_=1_的一个特定正态分布,记作N(0,1)。

最新生物统计学课后习题解答-李春喜

最新生物统计学课后习题解答-李春喜

第一章概论解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性。

第二章试验资料的整理与特征数的计算习题2.1 某地100 例30 ~40 岁健康男子血清总胆固醇(mol · L -1 ) 测定结果如下:4.77 3.37 6.14 3.95 3.56 4.23 4.31 4.715.69 4.124.56 4.375.396.30 5.217.22 5.54 3.93 5.21 6.515.18 5.77 4.79 5.12 5.20 5.10 4.70 4.74 3.50 4.694.38 4.89 6.255.32 4.50 4.63 3.61 4.44 4.43 4.254.035.85 4.09 3.35 4.08 4.79 5.30 4.97 3.18 3.975.16 5.10 5.85 4.79 5.34 4.24 4.32 4.776.36 6.384.885.55 3.04 4.55 3.35 4.87 4.17 5.85 5.16 5.094.52 4.38 4.31 4.585.726.55 4.76 4.61 4.17 4.034.47 3.40 3.91 2.70 4.60 4.095.96 5.48 4.40 4.555.38 3.89 4.60 4.47 3.64 4.34 5.186.14 3.24 4.90计算平均数、标准差和变异系数。

【答案】=4.7398, s=0.866, CV =18.27 %2.2 试计算下列两个玉米品种10 个果穗长度(cm) 的标准差和变异系数,并解释所得结果。

24 号:19 ,21 ,20 ,20 ,18 ,19 ,22 ,21 ,21 ,19 ;金皇后:16 ,21 ,24 ,15 ,26 ,18 ,20 ,19 ,22 ,19 。

【答案】 1 =20, s 1 =1.247, CV 1 =6.235% ; 2 =20, s 2 =3.400, CV 2 =17.0% 。

生物统计学课后习题答案

生物统计学课后习题答案

生物统计学课后习题答案【篇一:生物统计学第四版李春喜课后习题答案】和变异系数,并解释所得结果。

24号:19,21,20,20,18,19,22,21,21,19;金皇后:16,21,24,15,26,18,20,19,22,19。

【答案】1=20,s1=1.247,cv1=6.235%;2=20,s2=3.400,cv2=17.0%。

2.3某海水养殖场进行贻贝单养和贻贝与海带混养的对比试验,收获时各随机抽取50绳测其毛重(kg),结果分别如下:单养50绳重量数据:45,45,33,53,36,45,42,43,29,25,47,50,43,49,36,30,39,44,35,38,46,51,42,38,51,45,41,51,50,47,44,43,46,55,42,27,42,35,46,53,32,41,4,50,51,46,41,34,44,46;2.2试计算下列两个玉米品种10个果穗长度(cm)的标准差和变异系数,并解释所得结果。

24号:19,21,20,20,18,19,22,21,21,19;金皇后:16,21,24,15,26,18,20,19,22,19。

【答案】1=20,s1=1.247,cv1=6.235%;2=20,s2=3.400,cv2=17.0%。

2.3某海水养殖场进行贻贝单养和贻贝与海带混养的对比试验,收获时各随机抽取50绳测其毛重(kg),结果分别如下:单养50绳重量数据:45,45,33,53,36,45,42,43,29,25,47,50,43,49,36,30,39,44,35,38,46,51,42,38,51,45,41,51,50,47,44,43,46,55,42,27,42,35,46,53,32,41,4,50,51,46,41,34,44,46;第三章概率与概率分布3.1解释下列概念:互斥事件、对立事件、独立事件、频率、概率?频率如何转化为概率?影响?3.3已知u服从标准正态分布n(0,1),试查表计算下列各小题的概率值:(1)p(0.3<u≤1.8);(2)p(-1<u≤1);(3)p(-2<u≤2);(4)p(-1.96<u≤1.96;(5)p(-2.58<u≤2.58)。

生物统计学课后习题解答李春喜

生物统计学课后习题解答李春喜

生物统计学课后习题解答李春喜生物统计学是一门运用统计学原理和方法来处理和分析生物数据的学科,对于生物学、医学、农学等领域的研究和实践具有重要意义。

以下是针对李春喜编写的生物统计学教材课后习题的一些解答。

首先,让我们来看一道关于数据描述性统计的题目。

题目给出了一组生物样本的测量数据,要求计算均值、中位数、众数、方差和标准差。

均值是所有数据的算术平均值,通过将所有数据相加再除以数据的个数即可得到。

计算过程如下:假设这组数据为 X1, X2, X3,, Xn,均值=(X1 + X2 + X3 ++ Xn)/ n 。

中位数是将数据按照从小到大或从大到小的顺序排列后,位于中间位置的数值。

如果数据个数为奇数,中位数就是中间的那个数;如果数据个数为偶数,中位数则是中间两个数的平均值。

众数是数据中出现次数最多的数值。

方差反映了数据的离散程度,计算方法是先计算每个数据与均值的差的平方,再将这些平方差求和并除以数据个数。

标准差则是方差的平方根。

例如,给定一组数据:12, 15, 18, 15, 20, 12, 18。

首先将其从小到大排列:12, 12, 15, 15, 18, 18, 20。

数据个数 n = 7。

均值=(12 + 12 + 15 + 15 + 18 + 18 + 20)/ 7 = 1571 。

中位数是第 4 个数,即 15 。

众数是 12、15 和 18 ,因为它们都出现了两次。

接下来计算方差:先计算每个数据与均值的差:(12 1571) =-371 ,(12 1571) =-371 ,(15 1571) =-071 ,(15 1571) =-071 ,(18 1571) = 229 ,(18 1571) = 229 ,(20 1571) = 429 。

然后求差的平方:(-371)²= 137641 ,(-371)²= 137641 ,(-071)²= 05041 ,(-071)²= 05041 ,(229)²= 52441 ,(229)²= 52441 ,(429)²=184041 。

生物统计学 第四版 李春喜课后习题答案

生物统计学   第四版  李春喜课后习题答案
用符号检验法进行检验。
【答案】P(n+≠4)=0.7255,接受H0:Md=5.5g。
4.15测定两个马铃薯品种的淀粉含量(%)各5次,得A品种为:12.6,12.4,11.9,12.8,13.0;B品种为:13.4,13.1,13.5,12.7,13.6。试用秩和检验法检验两品种淀粉含量的
差异显着性。

课后答案网
(3)df1=3,df2=10时,P(F>3.71)=?P(F>6.55)=?
【答案】(1)P(t≤-2.571)=0.05,P(t>4.032)=0.99;
(2)P(2≤0.05)=0.975,P(2>5.99)=0.95,P(0.05<2<7.38==0.95;
(3)P(F>3.71)=0.95,P(F>6.55)=0.99。
【答案】t=-0.147,接受H0:1=2。
4.9用中草药青木香治疗高血压,记录了13个病例,所测定的舒张压(mmHg)数据如下:
序号13
治疗前110115
治疗后112
试检验该药是否具有降低血压的作用。
【答案】t=5.701,否定H0:1=2,接受HA:1≠2。
4.10为测定A、B两种病毒对烟草的致病力,取8株烟草,每一株皆半叶接种A病毒,另半叶接种B
【答案】1=20,s1=1.247,CV1=6.235%;2=20,s2=3.400,CV2=17.0%。
2.3某海水养殖场进行贻贝单养和贻贝与海带混养的对比试验,收获时各随机抽取50绳测其毛重
(kg),结果分别如下:
单养50绳重量数据:45,45,33,53,36,45,42,43,29,25,47,50,43,49,36,30,39,44,35,38,46,51,42,38,51,45,41,51,50,47,44,43,46,55,42,27,42,35,46,53,32,41,4,50,51,46,41,34,44,46;

生物统计学课后习题解答 李春喜

生物统计学课后习题解答 李春喜

生物统计学课后习题解答李春喜生物统计学课后习题解答生物统计学是一门研究生物学数据分析和统计推断的学科,它在现代生物学研究中发挥着重要作用。

作为生物统计学的学习者,我们不仅需要掌握基本的统计概念和方法,还需要通过课后习题进行巩固和实践。

本文将对一些典型的生物统计学习题进行解答,帮助您更好地理解和应用生物统计学知识。

一、描述性统计解答1. 样本均值、中位数和众数有何区别?样本均值是指一组数据各个观测值之和除以观测值的个数,它代表了数据的集中趋势。

中位数是将数据按照大小排列后的中间值,它反映了数据的中间位置。

众数是指在一组数据中出现次数最多的数值,它表示数据的主要模式。

2. 什么是标准差?如何计算?标准差是衡量数据离散程度的一种统计量,它表示各个观测值与均值之间的差异程度。

标准差越大,表示数据的离散程度越大。

计算标准差的方法如下:a) 计算每个观测值与均值的差值;b) 将每个差值平方;c) 求平方和;d) 将平方和除以观测值的个数,再开平方。

二、参数估计解答1. 什么是参数估计?请举例说明。

参数估计是根据样本数据对总体参数进行估计的方法。

总体参数是指总体的均值、方差、比例等。

例如,我们想要估计某种药物的治疗成功率,可以通过从总体中取得一部分样本,计算样本中治愈的比例,然后以样本中的比例作为总体治愈成功率的估计值。

2. 什么是置信区间?如何计算?置信区间是用来估计总体参数真实值的范围。

置信区间由一个下限和一个上限组成,表示了总体参数估计值的可能范围。

计算置信区间的方法依赖于参数类型和样本大小,常用的方法有正态分布的置信区间和t分布的置信区间。

三、假设检验解答1. 什么是假设检验?请举例说明。

假设检验是一种统计方法,用于判断样本数据是否支持某个关于总体的假设。

假设检验首先假设一个原始假设(即零假设)和一个备择假设,然后通过计算样本数据得到的统计量和理论分布进行比较,判断是否拒绝原始假设。

例如,我们可以通过假设检验来判断某个新药物的疗效是否显著,原始假设可以是该药物无疗效,备择假设可以是该药物有疗效。

生物统计学课后习题解答_李春喜

生物统计学课后习题解答_李春喜

第一章概论解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性。

第二章试验资料的整理与特征数的计算习题2.1 某地100 例30 ~40 岁健康男子血清总胆固醇(mol · L -1 ) 测定结果如下:4.77 3.37 6.14 3.95 3.56 4.23 4.31 4.715.69 4.124.56 4.375.396.30 5.217.22 5.54 3.93 5.21 6.515.18 5.77 4.79 5.12 5.20 5.10 4.70 4.74 3.50 4.694.38 4.89 6.255.32 4.50 4.63 3.61 4.44 4.43 4.254.035.85 4.09 3.35 4.08 4.79 5.30 4.97 3.18 3.975.16 5.10 5.85 4.79 5.34 4.24 4.32 4.776.36 6.384.885.55 3.04 4.55 3.35 4.87 4.17 5.85 5.16 5.094.52 4.38 4.31 4.585.726.55 4.76 4.61 4.17 4.034.47 3.40 3.91 2.70 4.60 4.095.96 5.48 4.40 4.555.38 3.89 4.60 4.47 3.64 4.34 5.186.14 3.24 4.90计算平均数、标准差和变异系数。

【答案】=4.7398, s=0.866, CV =18.27 %2.2 试计算下列两个玉米品种10 个果穗长度(cm) 的标准差和变异系数,并解释所得结果。

24 号:19 ,21 ,20 ,20 ,18 ,19 ,22 ,21 ,21 ,19 ;金皇后:16 ,21 ,24 ,15 ,26 ,18 ,20 ,19 ,22 ,19 。

【答案】 1 =20, s 1 =1.247, CV 1 =6.235% ; 2 =20, s 2 =3.400, CV 2 =17.0% 。

生物统计学课后习题解答

生物统计学课后习题解答

第一章概论解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性。

第二章试验资料的整理与特征数的计算习题2.1 某地 100 例 30 ~ 40 岁健康男子血清总胆固醇(mol · L -1 ) 测定结果如下:4.77 3.37 6.14 3.95 3.56 4.23 4.31 4.715.69 4.124.56 4.375.396.30 5.217.22 5.54 3.93 5.21 6.515.18 5.77 4.79 5.12 5.20 5.10 4.70 4.74 3.50 4.694.38 4.89 6.255.32 4.50 4.63 3.61 4.44 4.43 4.254.035.85 4.09 3.35 4.08 4.79 5.30 4.97 3.18 3.975.16 5.10 5.85 4.79 5.34 4.24 4.32 4.776.36 6.384.885.55 3.04 4.55 3.35 4.87 4.17 5.85 5.16 5.094.52 4.38 4.31 4.585.726.55 4.76 4.61 4.17 4.034.47 3.40 3.91 2.70 4.60 4.095.96 5.48 4.40 4.555.38 3.89 4.60 4.47 3.64 4.34 5.186.14 3.24 4.90计算平均数、标准差和变异系数。

【答案】=4.7398, s=0.866, CV =18.27 %2.2 试计算下列两个玉米品种 10 个果穗长度 (cm) 的标准差和变异系数,并解释所得结果。

24 号: 19 , 21 , 20 , 20 , 18 , 19 , 22 , 21 , 21 , 19 ;金皇后: 16 , 21 , 24 , 15 , 26 , 18 , 20 , 19 , 22 , 19 。

生物统计学课后答案

生物统计学课后答案

第一章绪论1、什么是生物统计?它有何作用?(1)生物统计是数理统计的原理和方法来分析和解释生物界的各种数量资料变化规律和生物界各种现象的学科。

(2)作用主要体现在两个方面:一是提供试验或调查设计的方法,二是提供整理、分析资料的方法。

2、什么是总体、个体、样本、样本总量、随机样本?统计分析的两个特点是什么?总体:根据研究目的确定的研究对象的全体称为总体。

(具有相同性质的个体组成的集合)个体:总体中的一个研究单位称为个体。

(组成总体的每个成员)样本:总体的一部分称为样本。

(研究总体时抽出的若干个体组成的集合)样本含量:样本中所包含的个体数目称为样本含量(容量)或大小。

随机样本:从总体中随机抽取的样本称为随机样本,而随机抽取是指总体中的每一个个体都有同等的机会被抽取组成样本。

统计分析的两个特点是:①通过样本来推断总体。

②有很大的可靠性但也有一定的错误率。

3、什么是参数、统计数?二者有何关系?参数:由总体计算的用于描述总体特征的数值叫参数。

统计数:由样本计算的特征数叫统计数。

总体参数偶相应的统计数来估计。

4、什么是实验的精确性和准确性?如何提高试验的准确性与精确性?准确性:也叫准确度,指在调查或试验中某一试验指标或性状的观测值与真值接近的程度。

精确性:也叫精确度,指调查或试验研究中同一试验指标或性状的重复观测值彼此接近的程度。

在调查或试验中应严格按照调查或试验计划进行,准确地进行观察记载,力求避免认为差错,特别要注意试验条件的一致性,即除所研究的各个处理外,供试畜禽的初始条件如品种、性别、年龄、健康状况、饲养条件、管理措施等尽量控制一致,并通过合理的调查或试验设计,努力提高试验的准确性和精确性。

5、什么是随机误差与系统误差?如何控制、降低随机误差,避免系统误差?随机误差:也叫抽样误差,是由于许多无法控制的内在和外在的偶然因素所引起的统计量与参数间的偏差,它是客观存在的、不可避免的。

系统误差:由于实验处理以外的其他条件明显不一致产生的有倾向性的偏差,可控制。

生物统计学课后答案

生物统计学课后答案

生物统计学课后答案【篇一:生物统计学经典习题(期末复习)个人整理】class=txt>【例5.1】母猪的怀孕期为114天,今抽测10头母猪的怀孕期分别为116、115、113、112、114、117、115、116、114、113(天),试检验所得样本的平均数与总体平均数114天有无显著差异?根据题意,本例应进行双侧t检验。

1.提出无效假设与备择假设2、计算值经计算得:=114.5,s=1.581:=114,:≠114所以==10-1=9==1.0003、查临界值,作出统计推断由|t|,p0.05,故不能否定=9,查值表(附表3)得:=2.262,因为=114,表明样本平均数与总体平均数差异不显著,可以认为该样本取自母猪怀孕期为114天的总体。

【例5.2】按饲料配方规定,每1000kg某种饲料中维生素c不得少于246g,现从工厂的产品中随机抽测12个样品,测得维生素c含量如下:255、260、262、248、244、245、250、238、246、248、258、270g/1000kg,若样品的维生素c含量服从正态分布,问此产品是否符合规定要求?按题意,此例应采用单侧检验。

1、提出无效假设与备择假设经计算得:=252,s=9.115:=246,:246、计算值所以==12-1=11==2.2813、查临界值,作出统计推断因为单侧(11),p0.05,否定:=246,接受=双侧=1.796,|t|单侧t0.05:246,表明样本平均数与总体平均数差异显著,可以认为该批饲料维生素c含量符合规定要求。

第三节两个样本平均数的差异显著性检验【例5.3】某种猪场分别测定长白后备种猪和蓝塘后备种猪90kg时的背膘厚度,测定结果如表5-3所示。

设两品种后备种猪90kg时的背膘厚度值服从正态分布,且方差相等,问该两品种后备种猪90kg 时的背膘厚度有无显著差异?表5-3长白与蓝塘后备种猪背膘厚度:=,:≠=0.0998、=0.1096,1、提出无效假设与备择假设2、计算值此例=1.817、、=12、=11,经计算得=1.202、=0.1508=0.123、分别为两样本离均差平方和。

生物统计学习题3_李春喜

生物统计学习题3_李春喜

第一章概论解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性。

第二章试验资料的整理与特征数的计算习题2.1 某地 100 例 30 ~ 40 岁健康男子血清总胆固醇(mol · L -1 ) 测定结果如下:4.77 3.37 6.14 3.95 3.56 4.23 4.31 4.715.69 4.124.56 4.375.396.30 5.217.22 5.54 3.93 5.21 6.515.18 5.77 4.79 5.12 5.20 5.10 4.70 4.74 3.50 4.694.38 4.89 6.255.32 4.50 4.63 3.61 4.44 4.43 4.254.035.85 4.09 3.35 4.08 4.79 5.30 4.97 3.18 3.975.16 5.10 5.85 4.79 5.34 4.24 4.32 4.776.36 6.384.885.55 3.04 4.55 3.35 4.87 4.17 5.85 5.16 5.094.52 4.38 4.31 4.585.726.55 4.76 4.61 4.17 4.034.47 3.40 3.91 2.70 4.60 4.095.96 5.48 4.40 4.555.38 3.89 4.60 4.47 3.64 4.34 5.186.14 3.24 4.90计算平均数、标准差和变异系数。

【答案】=4.7398, s=0.866, CV =18.27 %2.2 试计算下列两个玉米品种 10 个果穗长度 (cm) 的标准差和变异系数,并解释所得结果。

24 号: 19 , 21 , 20 , 20 , 18 , 19 , 22 , 21 , 21 , 19 ;金皇后: 16 , 21 , 24 , 15 , 26 , 18 , 20 , 19 , 22 , 19 。

生物统计补充习题及答案

生物统计补充习题及答案

第一章习题及答案(来源:《生物统计学学习指导》李春喜等,科学出版社,2008:p5)
一、填空
1. 变量按其性质可以分为变量和变量。

2. 样本统计数是总体的估计值。

3. 生物统计学是研究生命过程中以样品来推断的一门学科。

4. 生物统计学研究中,一般将样本容量称为大样本。

二、判断
1. 对于有限总体不必采用统计推断方法。

()
2. 资料的精确度高,其准确度也一定高。

()
3. 在实验设计中,随机误差只能减小,不可能完全消除。

()
4. 统计学上的试验误差,通常指随机误差。

()
三、选择题(《生物统计学题解及练习》杜荣赛高等教育出版社。

2003.p164)
1. 由于造成我们所遇到的各种统计数据的不齐性。

()
(a) 研究对象本身性质(b) 度量标准不规范
(c) 人为误差(d) 记录不完整
2. 研究某一品种小麦高,因为该品种小麦是个极大的群体,其数量甚至是一个天文数字,该总体属于。

()
(a) 有限总体(b) 大总体
(c) 小总体(d) 无限总体
3. 从总体中一部分个体称为样本。

()
(a) 人为挑选出(b) 取出
(c) 随机抽取(d) 分割出
4. 用随机抽样方法从总体中获得一个样本的过程称为。

()
(a) 选择(b) 抽提
(c) 抽取(d) 抽样
答案:
填空
1.连续变量、离散型变量
2.参数
3.总体
4.n>30
判断
××√√
选择题
adcd。

生物统计第二章 补充习题及答案

生物统计第二章 补充习题及答案

第二章习题及答案(来源:《生物统计学学习指导》李春喜等,科学出版社,2008:p14-15)一、填空1.变量的分布有两个明显的基本特征,即和。

二、判断1.计数资料也称为连续性变异资料。

计量资料也称为不连续性变异资料或间断性变异资料。

()三、选择题(《生物统计学题解及练习》杜荣赛高等教育出版社。

2003.p164)1.下面的变量属于非连续性变量的是( )。

A. 身高B. 体重C. 血型D. 血压2.身高、体重、年龄这一类数据属于()。

A. 离散性数据B. 计数数据C. 连续性数据D. 质量性状资料3.身高、体重、年龄这一类数据属于()。

A. 离散性数据B. 计数数据C. 计量资料D. 质量性状资料4.每十人中男性人数,每一万人中得H1N1流感人数,每亩麦田中杂草株数等,这一类数据属于()。

A. 离散性数据B. 连续性数据C. 计量资料D. 质量性状资料5.每十人中男性人数,每一万人中得H1N1流感人数,每亩麦田中杂草株数等,这一类数据属于()。

A. 计数数据B. 连续性数据C. 计量资料D. 质量性状资料6.频数按其组值的次序排列起来,称为()。

A. 频数排列B. 频数分布C. 组值排列D. 二项分布四、计算题1. 现以50枚受精种蛋孵化出雏鸡的天数为例,说明计数资料的整理。

21 20 20 21 23 22 22 22 21 22 20 23 22 23 22 19 22 2324 22 19 22 21 21 21 22 22 24 22 21 21 22 22 23 22 22小鸡出壳天数在19─24天范围内变动,有6个不同的观察值。

用各个不同观察值进行分组,共分为6组,可得表2-3形式的次数分布表。

表2-3 50枚受精种蛋出雏天数的次数分布表孵化天数划线计数次数(f)19 ║ 220 ║│ 321 ╫╫╫╫1022 ╫╫╫╫╫╫╫╫║║2423 ╫╫║║924 ║ 2合计50从表2-3可以看出:种蛋孵化出雏天数大多集中在21−23天,以22 天的最多,孵化天数较短(19−20天)和较长(24天)的都较少。

【精品】生物统计学习题3李春喜

【精品】生物统计学习题3李春喜

第一章概论解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性.第二章试验资料的整理与特征数的计算习题2。

1某地100例30~40岁健康男子血清总胆固醇(mol·L-1)测定结果如下:4。

773。

376。

143。

953.564.234.314。

715。

694。

124.564。

375.396.305。

217.225。

543.935.216。

515.185.774。

795。

125.205。

104.704。

743。

504.694。

384.896。

255.324.504。

633。

614。

444。

434.254。

035。

854。

093.354。

084.795。

304。

973。

183.975.165。

105。

854.795.344。

244。

324。

776。

366.384.885.553。

044。

553。

354.874.175。

855。

165。

094.524。

384。

314.585。

726。

554.764。

614。

174.034。

473。

403。

912。

704。

604。

095.965。

484.404.555.383.894。

604。

473。

644。

345.186。

143.244.90计算平均数、标准差和变异系数.【答案】=4.7398,s=0。

866,CV=18.27%2。

2试计算下列两个玉米品种10个果穗长度(cm)的标准差和变异系数,并解释所得结果.24号:19,21,20,20,18,19,22,21,21,19;金皇后:16,21,24,15,26,18,20,19,22,19。

【答案】1=20,s1=1。

247,CV1=6.235%;2=20,s2=3。

400,CV2=17.0%.2.3某海水养殖场进行贻贝单养和贻贝与海带混养的对比试验,收获时各随机抽取50绳测其毛重(kg),结果分别如下:单养50绳重量数据:45,45,33,53,36,45,42,43,29,25,47,50,43,49,36,30,39,44,35,38,46,51,42,38,51,45,41,51,50,47,44,43,46,55,42,27,42,35,46,53,32,41,48,50,51,46,41,34,44,46;混养50绳重量数据:51,48,58,42,55,48,48,54,39,58,50,54,53,44,45,50,51,57,43,67,48,44,58,57,46,57,50,48,41,62,51,58,48,53,47,57,51,53,48,64,52,59,55,57,48,69,52,54,53,50.试从平均数、极差、标准差、变异系数几个指标来评估单养与混养的效果,并给出分析结论。

生物统计第四版课后答案综合修改版

生物统计第四版课后答案综合修改版
习题 3.4 答:正态分布是一种连续型随机变量的概率分布,它的分布特征是大多数变量围绕在平均数 左右,由平均数到分布的两侧,变量数减小,即中间多,两头少,两侧对称。 U=0,σ²=1 的正态分布为标准正态分布。 正态分布具有以下特点:标准正态分布具有以下特点:①、正态分布曲线是以平均数μ为峰
1 值的曲线,当 x=μ时,f(x)取最大值 2 ;②、正态分布是以μ为中心向左右两侧对称的
习题 1.2 总体:总体是具有相同性质的个体所组成的集合,是研究对象的全体。 样本:是从总体中抽出来的若干个体所组成的集合。 样本容量:样本中所含个体总数。 变量:相同性质的事物间表现的差异性的某些特征。 参数:是描述总体特征的数量。 统计数:是描述样本特征的数量。 效应:是由因素而引起的实验差异的作用。 互作:是指两个或两个处理因素间的相互作用产生的效应。 实验误差:实验中不可控因素所引起的观测值和真实值之间的差异。
(5)P(-2.58 < u ≤ 2.58) 。
【答案】1 =20, s 1 =1.247, CV 1 =6.235% ; 2 =20, s 2 =3.400, CV 2 =17.0% 。
2.3 某海水养殖场进行贻贝单养和贻贝与海带混养的对比试验,收获时各随机抽 取 50 绳测其毛重 (kg) ,结果分别如下:
单养 50 绳重量数据: 45 , 45 , 33 , 53 , 36 , 45 , 42 , 43 , 29 , 25 , 47 , 50 , 43 , 49 , 36 , 30 , 39 , 44 , 35 , 38 , 46 , 51 , 42 , 38 , 51 , 45 , 41 , 51 , 50 , 47 , 44 , 43 , 46 , 55 , 42 , 27 , 42 , 35 , 46 , 53 , 32 , 41 , 48 , 50 , 51 , 46 , 41 , 34 , 44 , 46 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2试计算下列两个玉米品种10个果穗长度(cm)的标准差和变异系数,并解释所得结果。

24号:19,21,20,20,18,19,22,21,21,19;金皇后:16,21,24,15,26,18,20,19,22,19。

【答案】1=20,s1=1.247,CV1=6.235%;2=20,s2=3.400,CV2=17.0%。

2.3某海水养殖场进行贻贝单养和贻贝与海带混养的对比试验,收获时各随机抽取50绳测其毛重(kg),结果分别如下:单养50绳重量数据:45,45,33,53,36,45,42,43,29,25,47,50,43,49,36,30,39,44,35,38,46,51,42,38,51,45,41,51,50,47,44,43,46,55,42,27,42,35,46,53,32,41,4,50,51,46,41,34,44,46;若侵犯了您的版权利益,敬请来信通知我们!℡课后答案网=4.7398,s=0.866,CV=18.27%2.2试计算下列两个玉米品种10个果穗长度(cm)的标准差和变异系数,并解释所得结果。

24号:19,21,20,20,18,19,22,21,21,19;金皇后:16,21,24,15,26,18,20,19,22,19。

【答案】1=20,s1=1.247,CV1=6.235%;2=20,s2=3.400,CV2=17.0%。

2.3某海水养殖场进行贻贝单养和贻贝与海带混养的对比试验,收获时各随机抽取50绳测其毛重(kg),结果分别如下:单养50绳重量数据:45,45,33,53,36,45,42,43,29,25,47,50,43,49,36,30,39,44,35,38,46,51,42,38,51,45,41,51,50,47,44,43,46,55,42,27,42,35,46,53,32,41,4,50,51,46,41,34,44,46;若侵犯了您的版权利益,敬请来信通知我们!℡课后答案网1=42.7,R=30,s1=7.078,CV1=16.58%;2=52.1,R=30,s2=6.335,CV2=12.16%。

第三章概率与概率分布3.1解释下列概念:互斥事件、对立事件、独立事件、频率、概率?频率如何转化为概率? 3.2什么是正态分布?什么是标准正态分布?正态分布曲线有什么特点?μ和σ对正态分布曲线有何影响?3.3已知u服从标准正态分布N(0,1),试查表计算下列各小题的概率值:(1)P(0.3<u≤1.8);(2)P(-1<u≤1);(3)P(-2<u≤2);(4)P(-1.96<u≤1.96;(5)P(-2.58<u≤2.58)。

【答案】(1)0.34617;(2)0.6826;(3)0.9545;(4)0.95;(5)0.9901。

3.4设x服从正态分布N(4,16),试通过标准化变换后查表计算下列各题的概率值:(1)P(-3<x≤4);(2)P(x<2.44);(3)P(x>-1.5);(4)P(x≥-1)。

【答案】(1)0.4599;(2)0.3483;(3)0.9162;(4)0.8944。

3.5水稻糯和非糯为一对等位基因控制,糯稻纯合体为ww,非糯纯合体为WW,两个纯合亲本杂交后,其F1为非糯杂合体Ww。

(1)现以F1回交于糯稻亲本,在后代200株中试问预期有多少株为糯稻,多少株为非糯稻?试列出糯稻和非糯稻的概率;(2)当F1代自交,F2代性状分离,其中3/4为非糯,1/4为糯稻。

假定F2代播种了2000株,试问糯稻株有多少?非糯株有多少?若侵犯了您的版权利益,敬请来信通知我们!℡课后答案网1=42.7,R=30,s1=7.078,CV1=16.58%;2=52.1,R=30,s2=6.335,CV2=12.16%。

第三章概率与概率分布3.1解释下列概念:互斥事件、对立事件、独立事件、频率、概率?频率如何转化为概率? 3.2什么是正态分布?什么是标准正态分布?正态分布曲线有什么特点?μ和σ对正态分布曲线有何影响?3.3已知u服从标准正态分布N(0,1),试查表计算下列各小题的概率值:(1)P(0.3<u≤1.8);(2)P(-1<u≤1);(3)P(-2<u≤2);(4)P(-1.96<u≤1.96;(5)P(-2.58<u≤2.58)。

【答案】(1)0.34617;(2)0.6826;(3)0.9545;(4)0.95;(5)0.9901。

3.4设x服从正态分布N(4,16),试通过标准化变换后查表计算下列各题的概率值:(1)P(-3<x≤4);(2)P(x<2.44);(3)P(x>-1.5);(4)P(x≥-1)。

【答案】(1)0.4599;(2)0.3483;(3)0.9162;(4)0.8944。

3.5水稻糯和非糯为一对等位基因控制,糯稻纯合体为ww,非糯纯合体为WW,两个纯合亲本杂交后,其F1为非糯杂合体Ww。

(1)现以F1回交于糯稻亲本,在后代200株中试问预期有多少株为糯稻,多少株为非糯稻?试列出糯稻和非糯稻的概率;(2)当F1代自交,F2代性状分离,其中3/4为非糯,1/4为糯稻。

假定F2代播种了2000株,试问糯稻株有多少?非糯株有多少?若侵犯了您的版权利益,敬请来信通知我们!℡课后答案网2≤0.05)=?P(2>5.99)=?P(0.05<2<7.38==?(3)df1=3,df2=10时,P(F>3.71)=?P(F>6.55)=?【答案】(1)P(t≤-2.571)=0.05,P(t>4.032)=0.99;(2)P(2≤0.05)=0.975,P(2>5.99)=0.95,P(0.05<2<7.38==0.95;(3)P(F>3.71)=0.95,P(F>6.55)=0.99。

第四章统计推断4.1什么是统计推断?统计推断有哪两种?4.2什么是小概率原理?它在假设检验中有何作用?4.3假设检验中的两类错误是什么?如何才能少犯两类错误?4.4什么叫区间估计?什么叫点估计?置信度与区间估计有什么关系?若侵犯了您的版权利益,敬请来信通知我们!℡ 课后答案网2≤0.05)=?P(2>5.99)=?P(0.05<2<7.38==?(3)df1=3,df2=10时,P(F>3.71)=?P(F>6.55)=?【答案】(1)P(t≤-2.571)=0.05,P(t>4.032)=0.99;(2)P(2≤0.05)=0.975,P(2>5.99)=0.95,P(0.05<2<7.38==0.95;(3)P(F>3.71)=0.95,P(F>6.55)=0.99。

第四章统计推断4.1什么是统计推断?统计推断有哪两种?4.2什么是小概率原理?它在假设检验中有何作用?4.3假设检验中的两类错误是什么?如何才能少犯两类错误?4.4什么叫区间估计?什么叫点估计?置信度与区间估计有什么关系?若侵犯了您的版权利益,敬请来信通知我们!℡ 课后答案网=0=21g,接受HA:≠0;95%置信区间:(19.7648,20.2352)。

4.6核桃树枝条的常规含氮量为2.40%,现对一桃树新品种枝条的含氮量进行了10次测定,其结果为:2.38%、2.38%、2.41%、2.50%、2.47%、2.41%、2.38%、2.26%、2.32%、2.41%,试问该测定结果与常规枝条含氮量有无差别。

【答案】t=-0.371,接受H0:=0=2.40%。

4.7检查三化螟各世代每卵块的卵数,检查第一代128个卵块,其平均数为47.3粒,标准差为25.4粒;检查第二代69个卵块,其平均数为74.9粒,标准差为46.8粒。

试检验两代每卵块的卵数有无显著差异。

【答案】u=-4.551,否定H0:1=2,接受HA:1≠2。

4.8假说:“北方动物比南方动物具有较短的附肢。

”为验证这一假说,调查了如下鸟翅长(mm)资料:北方的:120,113,125,118,116,114,119;南方的:116,117,121,114,116,118,123,120。

试检验这一假说。

【答案】t=-0.147,接受H0:1=2。

4.9用中草药青木香治疗高血压,记录了13个病例,所测定的舒张压(mmHg)数据如下:序号12345678910111213治疗前110115133133126108110110140104160120120治疗后9011610110311088921041268611488112试检验该药是否具有降低血压的作用。

【答案】t=5.701,否定H0:1=2,接受HA:1≠2。

4.10为测定A、B两种病毒对烟草的致病力,取8株烟草,每一株皆半叶接种A病毒,另半叶接种B病毒,以叶面出现枯斑病的多少作为致病力强弱的指标,得结果如下:试检验两种病毒的致病能力是否有显著差异。

【答案】t=2.625,否定H0:1=2,接受HA:1≠2。

若侵犯了您的版权利益,敬请来信通知我们!℡序号12345678病毒A9173118782010病毒B1011181467175课后答案网=0=21g,接受HA:≠0;95%置信区间:(19.7648,20.2352)。

4.6核桃树枝条的常规含氮量为2.40%,现对一桃树新品种枝条的含氮量进行了10次测定,其结果为:2.38%、2.38%、2.41%、2.50%、2.47%、2.41%、2.38%、2.26%、2.32%、2.41%,试问该测定结果与常规枝条含氮量有无差别。

【答案】t=-0.371,接受H0:=0=2.40%。

4.7检查三化螟各世代每卵块的卵数,检查第一代128个卵块,其平均数为47.3粒,标准差为25.4粒;检查第二代69个卵块,其平均数为74.9粒,标准差为46.8粒。

试检验两代每卵块的卵数有无显著差异。

【答案】u=-4.551,否定H0:1=2,接受HA:1≠2。

4.8假说:“北方动物比南方动物具有较短的附肢。

”为验证这一假说,调查了如下鸟翅长(mm)资料:北方的:120,113,125,118,116,114,119;南方的:116,117,121,114,116,118,123,120。

试检验这一假说。

【答案】t=-0.147,接受H0:1=2。

4.9用中草药青木香治疗高血压,记录了13个病例,所测定的舒张压(mmHg)数据如下:序号12345678910111213治疗前110115133133126108110110140104160120120治疗后9011610110311088921041268611488112试检验该药是否具有降低血压的作用。

【答案】t=5.701,否定H0:1=2,接受HA:1≠2。

4.10为测定A、B两种病毒对烟草的致病力,取8株烟草,每一株皆半叶接种A病毒,另半叶接种B病毒,以叶面出现枯斑病的多少作为致病力强弱的指标,得结果如下:试检验两种病毒的致病能力是否有显著差异。

相关文档
最新文档