微专题16 立体几何中的折叠、探究问题

合集下载

几何图形的折叠问题

几何图形的折叠问题

纸艺制作
产品设计
通过折叠纸张或其他材料,制作各种纸艺 作品,如纸飞机、千纸鹤等。
在产品设计中,折叠结构可以用于节省空 间、便于携带和运输,如折叠家具、折叠 雨伞等。
建筑模型
数学教育
通过折叠纸张或其他材料,制作建筑模型 ,展示建筑的三维形态。
折叠问题在数学教育中用于培养学生的空 间想象能力和几何思维能力,帮助学生理 解平面与立体几何之间的关系。
应用拓展
探索几何图形折叠问题在建 筑、航空航天、生物医学等 领域的应用,以推动相关领 域的技术进步和创新。
感谢您的观看
THANKS
1 2
正方体折叠成三棱锥
将一个正方体的一个面朝下,然后将其顶点与正 方体的中心相连,可以得到一个三棱锥。
长方体折叠成三棱柱
将一个长方体的一个面朝下,然后将其顶点与长 方体的中心相连,可以得到一个三棱柱。
3
球体折叠成椭球体
将一个球体的赤道线何图形折叠实例
01
02
需要开发更有效的算法和软件 工具,以模拟和优化几何图形
的折叠过程。
未来发展方向
新材料与技术应用
探索新型材料和加工技术, 以提高几何图形折叠的效率 和精度。
智能化与自动化
利用人工智能和机器学习技 术,实现几何图形折叠过程 的智能化和自动化。
多学科交叉研究
加强数学、物理学、工程学 等多个学科在几何图形折叠 问题上的交叉研究,以推动 理论和实践的深入发展。
02
几何图形的折叠问题解析
平面几何图形的折叠
定义
平面几何图形的折叠问题是指将 一个平面图形沿着一条或几条折 痕进行折叠,使其从一个平面状
态变为立体状态的过程。
常见类型
如正方形、三角形、圆形等平面图 形的折叠问题,以及由这些基本图 形组合形成的复杂图形的折叠问题。

立体几何中的折叠问题含解析

立体几何中的折叠问题含解析

高考热点问题:立体几何中折叠问题一、考情分析立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等.二、经验分享(1)立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开.把一个平面图形按照某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题.把一个几何体的表面伸展为一个平面图形从而研究几何体表面上的距离问题,这就是几何体的表面展开问题.折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,展开与折叠问题就是一个由抽象到直观,由直观到抽象的过程.此类问题也是历年高考命题的一大热点. (2) 平面图形通过折叠变为立体图形,就在图形发生变化的过程中,折叠前后有些量(长度、角度等)没有发生变化,我们称其为“不变量”.求解立体几何中的折叠问题,抓住“不变量”是关键.(3)把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.三、题型分析(一) 平面图形的折叠解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.不变的线线关系,尤其是平面图形中的线线平行、线线垂直关系是证明空间平行、垂直关系的起点和重要依据;不变的数量关系是求解几何体的数字特征,如几何体的表面积、体积、空间中的角与距离等的重要依据.1. 折叠后的形状判断【例1】如下图,在下列六个图形中,每个小四边形皆为全等的正方形,那么沿其正方形相邻边折叠,能够围成正方体的是_____________(要求:把你认为正确图形的序号都填上)①②③④⑤⑥【分析】根据平面图形的特征,想象平面图形折叠后的图形进行判断.也可利用手中的纸片画出相应的图形进行折叠.【答案】①③⑥【解析】①③⑥可以.②把横着的小方形折起后,再折竖着的小方形,则最上方的小方形与正方体的一个侧面重合,导致正方体缺少一个侧面;④把下方的小方形折起后,则上方的小方形中的第1,2个重合,导致正方体的底面缺少,不能折成正方体;⑤把中间的小方形当成正方体的底面,则右下方的小方形折叠不起来,构不成正方体.【小试牛刀】下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是()A. B. C. D.【例2】将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四边形ABCD(如图2),则在空间四边形ABCD中,AD与BC的位置关系是( )图1 图2A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【答案】C【解析】在图1中的等腰直角三角形ABC 中,斜边上的中线AD 就是斜边上的高,则AD ⊥BC ,折叠后如图2,AD 与BC 变成异面直线,而原线段BC 变成两条线段BD 、CD ,这两条线段与AD 垂直,即AD ⊥BD ,AD ⊥CD ,故AD ⊥平面BCD ,所以AD ⊥BC .【小试牛刀】如图,在正方形ABCD 中,点E,F 分别为边BC,AD 的中点,将沿BF 所在直线进行翻折,将沿DE 所在直线进行翻折,在翻折过程中( )A. 点A 与点C 在某一位置可能重合B. 点A 与点C 的最大距离为C. 直线AB 与直线CD 可能垂直D. 直线AF 与直线CE 可能垂直 3.折叠后几何体的数字特征折叠后几何体的数字特征包括线段长度、几何体的表面积与体积、空间角与距离等,设计问题综合、全面,也是高考命题的重点.解决此类问题的关键是准确确定折叠后几何体的结构特征以及平面图形折叠前后的数量关系之间的对应.【例3】(体积问题)如图所示,等腰ABC △的底边66AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积.(1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?PED F B CA【解析】(1)由折起的过程可知,PE ⊥平面ABC,96ABC S ∆=,V(x)= (036x <<)(2),所以(0,6)x ∈时,'()0v x > ,V(x)单调递增;636x <<时'()0v x < ,V(x)单调递减;因此x=6时,V(x)取得最大值126.【小试牛刀】【河北省五个一名校联盟2019届高三下学期一诊】在平面四边形 中,AB=BC=2,AC=AD=2,现沿对角线AC 折起,使得平面DAC平面ABC ,则此时得到的三棱锥D-ABC外接球的表面积为( ) A .B .C .D .【例4】(空间角问题)如左图,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如右图所示),连结AP 、EF 、PF ,其中25PF =.(Ⅰ)求证:PF ⊥平面ABED ; (Ⅱ)求直线AP 与平面PEF 所成角的正弦值.【解析】(Ⅰ)由翻折不变性可知, , ,在PBF ∆中, ,所以PF BF ⊥ 在图1中,易得,在PEF ∆中, ,所以PF EF ⊥又,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .. .ACDBEF图图ABCD PEF(Ⅱ)方法一:以D 为原点,建立空间直角坐标系D xyz -如图所示,则()6,0,0A ,,()0,3,0E ,()6,8,0F ,所以, ,,设平面PEF 的法向量为(),,x y z =n ,则0FP EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,解得560x y z ⎧=-⎪⎨⎪=⎩令6y =-,得,设直线AP 与平面PEF 所成角为θ,则81281427. 所以直线AP 与平面PEF 所成角的正弦值为81281427. 方法二:过点A 作AH EF ⊥于H ,由(Ⅰ)知PF ⊥平面ABED ,而AH ⊂平面ABED 所以PF AH ⊥,又,EF ⊂平面PEF ,PF ⊂平面PEF ,所以AH ⊥平面PEF ,所以APH ∠为直线AP 与平面PEF 所成的角. 在Rt APF ∆中,在AEF ∆中,由等面积公式得4861在Rt APH ∆中,所以直线AP 与平面PEF 所成角的正弦值为81281427. 【点评】折叠问题分析求解两原则:解法二图ABCD PEFHxy z 解法一图A BC D PEF(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变.【小试牛刀】【广东省汕头市2019届高三上学期期末】如图,已知是边长为6的等边三角形,点D、E分别是边AB、AC上的点,且满足,如图,将沿DE折成四棱锥,且有平面平面BCED.求证:平面BCED;记的中点为M,求二面角的余弦值.(二) 几何体的展开几何体表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面距离的问题,解题时不妨将它展开成平面图形试一试.1.展开后形状的判断【例5】把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案判断这个正方体是()解析:这是图③模型,在右图中,把中间的四个正方形围起来做“前后左右”四个面,有“空心圆”的正方形做“上面”,显然是正方体C的展形图,故选(C).【小试牛刀】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体的______________________.2.展开后的数字特征——表面上的最短距离问题【例6】如图,已知圆柱体底面圆的半径为2π,高为2,AB CD,分别是两底面的直径,AD BC,是母线.若一只小虫从A点出发,从侧面爬行到C点,求小虫爬行的最短路线的长度.【解析】如图,将圆柱的侧面展开,其中AB为底面周长的一半,即,2AD=.则小虫爬行的最短路线为线段AC.在矩形ABCD中,.所以小虫爬行的最短路线长度为22.【点评】几何体表面上的最短距离需要将几何体的表面展开,将其转化为平面内的最短距离,利用平面内两点之间的距离最短求解.但要注意棱柱的侧面展开图可能有多种展开图,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.【小试牛刀】如图,在长方体中, ,求沿着长方体表面从A到1C的最短路线长.四、迁移运用1.【浙江省2019年高考模拟训练】已知四边形中,,,在将沿着翻折成三棱锥的过程中,直线与平面所成角的角均小于直线与平面所成的角,设二面角,的大小分别为,则()A. B. C.存在 D.的大小关系无法确定【答案】B【解析】如图,在三棱锥中,作平面于,连,则分别为与平面所成的角.∵直线与平面所成角的角均小于直线与平面所成的角,∴.过作,垂足分别为,连,则有,∴分别为二面角,的平面角,∴.在中,,设BD的中点为O,则为边上的中线,由可得点H在CO的左侧(如图所示),∴.又,∴.又为锐角, ∴.故选B .2.【四川省德阳市2018届高三二诊】以等腰直角三角形ABC 的斜边BC 上的中线AD 为折痕,将ABD ∆与ACD ∆折成互相垂直的两个平面,得到以下四个结论:①BD ⊥平面ACD ;②ABC ∆为等边三角形;③平面ADC ⊥平面ABC ;④点D 在平面ABC 内的射影为ABC ∆的外接圆圆心.其中正确的有( ) A. ①②③ B. ②③④ C. ①②④ D. ①③④ 【答案】C【解析】由于三角形ABC 为等腰直角三角形,故,所以BD ⊥平面ACD ,故①正确,排除B 选项.由于AD BD ⊥,且平面ABD ⊥平面ACD ,故AD ⊥平面BCD ,所以AD CD ⊥,由此可知,三角形为等比三角形,故②正确,排除D 选项.由于,且ABC ∆为等边三角形,故点D 在平面ABC 内的射影为ABC ∆的外接圆圆心, ④正确,故选C .3.已知梯形如下图所示,其中,,为线段的中点,四边形为正方形,现沿进行折叠,使得平面平面,得到如图所示的几何体.已知当点满足时,平面平面,则的值为( )A. B. C. D.【答案】C 【解析】因为四边形为正方形,且平面平面,所以两两垂直,且,所以建立空间直角坐标系(如图所示),又因为,,所以,则,,设平面的法向量为,则由得,取,平面的法向量为,则由得,取,因为平面平面,所以,解得.故选C.4.如图是棱长为1的正方体的平面展开图,则在这个正方体中,以下结论错误的是( )A .点M 到AB 的距离为22B .AB 与EF 所成角是90︒C .三棱锥C DNE -的体积是16D .EF 与MC 是异面直线 【答案】D【解析】根据正方体的平面展开图,画出它的立体图形如图所示,A 中M 到AB 的距离为222MC =,A 正确;AB 与EF 所成角是90︒,B 正确;三棱锥C DNE -的体积是,C 正确;//EF MC ,D 错误.5.把正方形ABCD 沿对角线AC 折起,当以四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )度A .90B .60C .45D .30 【答案】C【解析】折叠后所得的三棱锥中易知当平面ACD 垂直平面ABC 时三棱锥的体积最大.设AC 的中点为O ,则DBO ∠即为所求,而DOB ∆是等腰直角三角形,所以,故选C .6.【辽宁省辽阳市2018学届高三第一次模拟】如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O , E , F , G , H 为圆O 上的点, ABE , BCF , CDG , ADH 分别以AB , BC , CD , DA 为底边的等腰三角形,沿虚线剪开后,分别以AB , BC , CD , DA 为折痕折起ABE , BCF , CDG , ADH ,使得E , F , G , H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.【答案】500327π3cm【解析】如图:连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x ()0x >,则OI=2x , IE 62x =-. 因为该四棱锥的侧面积是底面积的2倍,所以,解得4x =,设该四棱锥的外接球的球心为Q ,半径为R ,则,,解得5R 3=,外接球的体积3cm7.【山东省济南市2019届高三上学期期末】在正方形中,点,分别为,的中点,将四边形沿翻折,使得平面平面,则异面直线与所成角的余弦值为__________.【答案】【解析】连接FC ,与DE 交于O 点,取BE 中点为N , 连接ON ,CN ,易得ON ∥BD ∴∠CON 就是异面直线与所成角设正方形的边长为2, OC=,ON=,CN=∴cos ∠CON==故答案为:8.如图所示,在四边形ABCD 中,,将四边形ABCD 沿对角线BD 折成四面体BCD A -',使平面⊥BD A /平面BCD ,则下列结论正确的是 .(1)BD C A ⊥'; (2);(3)A C '与平面BD A '所成的角为︒30; (4)四面体BCD A -'的体积为61. 【答案】(2)(4)【解析】平面⊥BD A /平面BCD CD ∴⊥平面'A BD ,/CA 与平面BD A /所成的角为'CA D ∠,四面体BCDA -/的体积为,,综上(2)(4)成立.9.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1AC 的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是 (填写所有的正确选项)(1)||BM 是定值 (2)点M 在某个球面上运动(3)存在某个位置,使1DE A C ⊥ (4)存在某个位置,使//MB 平面1A DE 【答案】(1)(2)(4).【解析】取CD 中点F ,连接MF ,BF ,则1//MF DA ,//BF DE ,∴平面//MBF 平面1A DE , ∴//MB 平面1A DE ,故(4)正确;由,为定值,FB DE =为定值,由余弦定理可得,∴MB 是定值,故(1)正确;∵B 是定点,∴M 是在以B 为圆心,MB 为半径的圆上,故(2)正确;∵1AC 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,∴存在某个位置,使1DE A C ⊥错误,故(3)错误.10.【四川省广元市高2018届第二次高考适应性统考】如图,在矩形ABCD 中, 4AB =, 2AD =, E 是CD 的中点,以AE 为折痕将DAE ∆向上折起, D 变为'D ,且平面'D AE ⊥平面ABCE .(Ⅰ)求证: 'AD EB ⊥; (Ⅱ)求二面角'A BD E --的大小. 【答案】(Ⅰ)证明见解析;(Ⅱ) 90. 【解析】(Ⅰ)证明:∵, AB 4=,∴,∴AE EB ⊥,取AE 的中点M ,连结MD ',则,∵ 平面D AE '⊥平面ABCE ,∴MD '⊥平面ABCE ,∴MD '⊥ BE , 从而EB ⊥平面AD E ',∴AD EB '⊥ (Ⅱ)如图建立空间直角坐标系,则()A 4,2,0、()C 0,0,0、()B 0,2,0、()D 3,1,2',()E 2,0,0,从而BA =(4,0,0),,.设为平面ABD '的法向量,则可以取设为平面BD E '的法向量,则可以取因此, 12n n 0⋅=,有12n n ⊥,即平面ABD ' ⊥平面BD E ', 故二面角的大小为90.11.【福建省龙岩市2019届高三下学期教学质量检查】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面平面;(Ⅱ)求三棱锥的体积.【解析】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,, 又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.12.【湖南省长沙市长郡中学2019届高三上学期第一次适应性考试(一模】如图,在多边形中(图1),为长方形,为正三角形,现以为折痕将折起,使点在平面内的射影恰好在上(图2).(Ⅰ)证明:平面;(Ⅱ)若点在线段上,且,当点在线段上运动时,求三棱锥的体积. 【解析】(Ⅰ)过点作,垂足为.由于点在平面内的射影恰好在上,∴平面.∴.∵四边形为矩形,∴.又,∴平面,∴.又由,,可得,同理.又,∴,∴,且,∴平面.(Ⅱ)设点到底面的距离为,则.由,可知,∴.又,∴.13.【江西省上饶市重点中学2019届高三六校第一次联考】如图所示,在边长为2的菱形中,,现将沿边折到的位置.(1)求证:;(2)求三棱锥体积的最大值.【解析】(1)如图所示,取的中点为,连接,易得,,又面(2)由(1)知,= ,当时,的最大值为1.14.【云南师范大学附属中学2019届高三上学期第一次月考】如图所示甲,在四边形ABCD中,,,是边长为8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如图所示乙所示,点O,M,N分别为棱AC,PA,AD的中点.求证:平面PON;求三棱锥的体积.【解析】如图所示,为正三角形,O为AC的中点,,平面平面ACD,平面平面,平面ACD,平面ACD,.,,,,即.,N分别为棱AC,AD的中点,,,又,平面PON;解:由,,,可得,点O、N分别是AC、AD的中点,,是边长为8的等边三角形,,又为PA的中点,点M到平面ANO的距离,.又,.15.【湖北省荆门市2019届高三元月调研】如图,梯形中,,过分别作,,垂足分别,,已知,将梯形沿同侧折起,得空间几何体,如图.1若,证明:平面;2若,,线段上存在一点,满足与平面所成角的正弦值为,求的长.【解析】1由已知得四边形ABFE是正方形,且边长为2,在图2中,,由已知得,,平面又平面BDE,,又,,平面2在图2中,,,,即面DEFC,在梯形DEFC中,过点D作交CF于点M,连接CE,由题意得,,由勾股定理可得,则,,过E作交DC于点G,可知GE,EA,EF两两垂直,以E为坐标原点,以分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则,.设平面ACD的一个法向量为,由得,取得,设,则m,,,得设CP与平面ACD所成的角为,.所以16.【山西省吕梁市2019届高三上学期第一次模拟】已知如图(1)直角梯形,,,,,为的中点,沿将梯形折起(如图2),使.(1)证明:平面;(2)求点到平面的距离.【解析】(1)由已知可得为直角三角形,所以.又,所以,所以平面.(2)因为平面,平面,所以,又因为,平面,平面,,所以,平面,又因为,所以平面,又因为平面,所以.在直角中,,设点到平面的距离为,由,则,所以.16.正△ABC的边长为4,CD是AB边上的高,,E F分别是AC和BC边的中点,现将△ABC沿CD翻折--.成直二面角A DC B(1)试判断直线AB与平面DEF的位置关系,并说明理由;--的余弦值;(2)求二面角E DF C(3)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.【分析】(1)问可利用翻折之后的几何体侧面ABC ∆的中位线得到//AB EF ,便可由线面平行的判定定理证得;(2)先根据直二面角A DC B --将条件转化为AD ⊥面BCD ,然后做出过点E 且与面BCD 垂直的直线EM ,再在平面BCD 内过M 作DF 的垂线即可得所求二面角的平面角;(3)把AP DE ⊥作为已知条件利用,利用ADC ∆中过A 与DE 垂直的直线确定点P 的位置.【解析】(1)如图:在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF//AB,又AB ⊄平面DEF,EF ⊂平面DEF .∴AB ∥平面DEF .(2)∵AD ⊥CD,BD ⊥CD∴∠ADB 是二面角A —CD —B 的平面角∴AD ⊥BD ∴AD ⊥平面BCD取CD 的中点M,这时EM ∥AD ∴EM ⊥平面BCD过M 作MN ⊥DF 于点N,连结EN,则EN ⊥DF∴∠MNE 是二面角E —DF —C 的平面角,在Rt △EMN 中,EM=1,MN=23 ∴tan ∠MNE=233,cos ∠MNE=721(3)在线段BC 上存在点P,使AP ⊥DE. 证明如下:在线段BC 上取点P,使BC BP 31 ,过P 作PQ ⊥CD 与点Q, ∴PQ ⊥平面ACD∵, 在等边△ADE 中,∠DAQ=30°,∴AQ ⊥DE ∴AP ⊥DE.。

立体几何折叠问题

立体几何折叠问题

立体几何折叠问题
嘿,朋友们!今天咱们就来讲讲立体几何折叠问题那些事儿。

什么是立体几何折叠问题呢?比如说,咱们有张纸,把它折起来变成个立体形状,这中间就有好多有趣的问题啦!
那会有哪些问题呢?就像是纸折成了个三棱锥,那原来纸上的线折起来后长度变不变呀?这就好像你把一根橡皮筋拉长再缩短,它还是原来的长度吗?还有哦,折起来后角度会怎么变化呢?这就好比你搭积木,不同的角度搭起来样子可不一样呢!
再想想,折叠后这个立体图形的体积又会怎么变呢?哎呀呀,这就如同你吹气球,气吹进去多了体积就大了嘛。

而且啊,不同的折叠方法会得到不一样的立体图形,这多神奇呀!这不就跟变魔术一样,一张纸能变出好多花样来。

立体几何折叠问题真的很奇妙,大家可别小瞧它哟,自己也去好好琢磨琢磨吧!。

高考数学复习专题训练—立体几何中的翻折问题及探索性问题(含解析)

高考数学复习专题训练—立体几何中的翻折问题及探索性问题(含解析)

高考数学复习专题训练—立体几何中的翻折问题及探索性问题1.(2021·山东聊城三模)如图,在平面四边形ABCD中,BC=CD,BC⊥CD,AD⊥BD,沿BD将△ABD折起,使点A到达点P的位置,且PC⊥BC.(1)求证:PD⊥CD;(2)若M为PB的中点,二面角P-BC-D的大小为60°,求直线PC与平面MCD所成角的正弦值.2.(2021·湖南师大附中二模)如图,在四棱锥P-ABCD中,AB∥CD,∠ABC=90°,AB=BC=1,△PDC是边长为2的等边三角形,平面PDC⊥平面ABCD,E为线段PC上一点.(1)设平面PAB∩平面PDC=l,求证:l∥平面ABCD.(2)是否存在点E,使平面ADE与平面ABCD的夹角为60°?若存在,求CE的值;若不存在,请说明理由.CP3.(2021·山东泰安三模)在三棱柱ABC-A1B1C1中,AB=AC=2,BC=2√2,BB1=2,M为CC1的中点.(1)试确定线段AB1上一点N,使AC∥平面BMN;(2)在(1)的条件下,若平面ABC⊥平面BB1C1C,∠ABB1=60°,求平面BMN与平面BB1C1C的夹角的余弦值.4.(2021·福建泉州二模)如图①,在等腰直角三角形ABC中,CD是斜边AB上的高,沿CD将△ACD折起,使点A到达点P的位置,如图②,∠PBD=60°,E,F,H分别为PB,BC,PD的中点,G为CF的中点.图①图②(1)求证:GH∥平面DEF;(2)求直线GH与平面PBC所成角的正弦值.5.(2021·天津二模)如图,在四棱锥E-ABCD中,平面ABCD⊥平面ABE,AB∥CD,AB⊥BC,AB=2BC=2CD=2,AE=BE=√3,M为BE的中点.(1)求证:CM∥平面ADE.(2)求二面角E-BD-C的正弦值.?若存在,求出AN的(3)在线段AD上是否存在一点N,使直线MD与平面BEN所成角的正弦值为4√621长;若不存在,说明理由.6.(2021·湖南长沙长郡中学一模)如图①,在等边三角形ABC中,D,E分别为边AB,AC上的动点,且满足DE∥BC,记DE=λ.将△ADE沿DE翻折到△MDE的位置,使得平面MDE⊥平面DECB,连接MB,MC,如BC图②所示,N为MC的中点.图①图②(1)当EN∥平面MBD时,求λ的值.(2)随着λ值的变化,二面角B-MD-E的大小是否改变?若是,请说明理由;若不是,请求出二面角B-MD-E的正弦值.答案及解析1.(1)证明 因为BC ⊥CD ,BC ⊥PC ,PC ∩CD=C ,所以BC ⊥平面PCD.又PD ⊂平面PCD ,所以BC ⊥PD.由翻折可知PD ⊥BD ,BD ∩BC=B ,所以PD ⊥平面BCD.又CD ⊂平面BCD ,所以PD ⊥CD.(2)解 因为PC ⊥BC ,CD ⊥BC ,所以∠PCD 为二面角P-BC-D 的平面角,即∠PCD=60°.在Rt △PCD 中,PD=CD tan 60°=√3CD.取BD 的中点O ,连接OM ,OC ,则OM ∥PD ,OM=12PD. 因为BC=CD ,所以OC ⊥BD.由(1)知PD ⊥平面BCD ,所以OM ⊥平面BCD ,所以OM ,OC ,OD 两两互相垂直.以O 为原点,OC ,OD ,OM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示.设OB=1,则P (0,1,√6),C (1,0,0),D (0,1,0),M (0,0,√62),CP ⃗⃗⃗⃗⃗ =(-1,1,√6),CD ⃗⃗⃗⃗⃗ =(-1,1,0),CM⃗⃗⃗⃗⃗⃗ =(-1,0,√62).设平面MCD 的法向量为n =(x ,y ,z ), 则{n ·CD ⃗⃗⃗⃗⃗ =0,n ·CM ⃗⃗⃗⃗⃗⃗ =0,即{-x +y =0,-x +√62z =0, 令z=√2,则x=√3,y=√3,所以n =(√3,√3,√2)为平面MCD 的一个法向量. 设直线PC 与平面MCD 所成的角为θ,则sin θ=|cos <CP ⃗⃗⃗⃗⃗ ,n >|=|CP ⃗⃗⃗⃗⃗⃗·n ||CP ⃗⃗⃗⃗⃗⃗ ||n |=√34,所以直线PC 与平面MCD 所成角的正弦值为√34.2.(1)证明 ∵AB ∥CD ,AB ⊄平面PDC ,DC ⊂平面PDC , ∴AB ∥平面PDC.又平面PAB ∩平面PDC=l ,AB ⊂平面PAB ,∴AB ∥l. 又l ⊄平面ABCD ,AB ⊂平面ABCD ,∴l ∥平面ABCD. (2)解 设DC 的中点为O ,连接OP ,OA ,则PO ⊥DC.又平面PDC ⊥平面ABCD ,PO ⊂平面PDC ,平面PDC ∩平面ABCD=DC ,∴PO ⊥平面ABCD.∵AB ∥CD ,AB=OC=1,∴四边形ABCO 为平行四边形, ∴OA ∥BC.由题意可知BC ⊥CD ,∴OA ⊥CD. ∴OA ,OC ,OP 两两互相垂直.以O 为原点,OA ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示.则A (1,0,0),D (0,-1,0),C (0,1,0),P (0,0,√3).由PO ⊥平面ABCD ,可知m =(0,0,1)为平面ABCD 的一个法向量.假设存在点E ,使平面ADE 与平面ABCD 的夹角为60°,设CE ⃗⃗⃗⃗⃗ =λCP ⃗⃗⃗⃗⃗ (0≤λ≤1),则E (0,1-λ,√3λ),∴DE ⃗⃗⃗⃗⃗ =(0,2-λ,√3λ).设平面ADE 的法向量为n =(x ,y ,z ),DA ⃗⃗⃗⃗⃗ =(1,1,0),则{n ·DA ⃗⃗⃗⃗⃗ =0,n ·DE ⃗⃗⃗⃗⃗ =0,即{x +y =0,(2-λ)y +√3λz =0,取x=1,则y=-1,z=√3λ,∴n =(1,-1√3λ)为平面ADE 的一个法向量.由题意可知|cos <m ,n >|=|m ·n ||m ||n |=2-λ√3λ√12+12+(2-λ√3λ)=12,整理得λ2+4λ-4=0,解得λ=2(√2-1),故存在点E ,使平面ADE 与平面ABCD 的夹角为60°,此时CECP =2(√2-1). 3.解 (1)当AN=13AB 1时,AC ∥平面BMN.证明:如图,设BM ∩B 1C=E ,连接EN ,则CEB 1E =CMBB 1=12.由AN=13AB 1,得ANB 1N =12,∴AC ∥NE.又AC ⊄平面BMN ,NE ⊂平面BMN ,∴AC ∥平面BMN.(2)取BC 的中点O ,连接AO ,B 1O.∵AC=AB=2,∴AO ⊥BC.又BC=2√2,∴AO=BO=√2.∵平面ABC ⊥平面BB 1C 1C ,平面ABC ∩平面BB 1C 1C=BC ,AO ⊂平面ABC ,∴AO ⊥平面BB 1C 1C.∵AB=BB 1=2,∠ABB 1=60°,∴AB 1=2,O B 12=A B 12-AO 2=2,∴OB 1=√2,O B 12+OB 2=B B 12,∴OB 1⊥OB.以O 为原点,OB ,OB 1,OA 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示,则A (0,0,√2),B (√2,0,0),C (-√2,0,0),C 1(-2√2,√2,0),B 1(0,√2,0),M (-3√22,√22,0),∴BA ⃗⃗⃗⃗⃗ =(-√2,0,√2),AB 1⃗⃗⃗⃗⃗⃗⃗ =(0,√2,-√2),BM ⃗⃗⃗⃗⃗⃗ =(-5√22,√22,0),AN ⃗⃗⃗⃗⃗⃗ =13AB 1⃗⃗⃗⃗⃗⃗⃗ =(0,√23,-√23),BN ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AN⃗⃗⃗⃗⃗⃗ =(-√2,√23,2√23). 设平面BMN 的法向量为n =(x ,y ,z ),则{BN⃗⃗⃗⃗⃗⃗ ·n =0,BM ⃗⃗⃗⃗⃗⃗ ·n =0,即{-√2x +√23y +2√23z =0,-5√22x +√22y =0,解得{y =5x ,z =-x ,令x=1,则y=5,z=-1,∴n =(1,5,-1)为平面BMN 的一个法向量. 由题意可知m =(0,0,1)为平面BB 1C 1C 的一个法向量.设平面BMN 与平面BB 1C 1C 的夹角为θ,则cos θ=|cos <m ,n >|=|m ·n ||m ||n |=√39, 故平面BMN 与平面BB 1C 1C 的夹角的余弦值为√39.4.(1)证明 如图,连接BH ,交DE 于点M ,连接MF.因为△ABC 是等腰直角三角形,CD 是斜边AB 上的高,所以AD=DB ,即PD=DB. 因为∠PBD=60°,所以△PBD 是等边三角形.因为E ,H 分别为PB ,PD 的中点,所以M 是等边三角形PBD 的中心,所以BM=23BH.因为F 为BC 的中点,G 为CF 的中点,所以BF=23BG. 所以MF ∥GH.又MF ⊂平面DEF ,GH ⊄平面DEF ,所以GH ∥平面DEF.(2)解 如图,建立空间直角坐标系,设PD=DB=DC=2,则C (0,2,0),B (2,0,0),P (1,0,√3),H (12,0,√32),G (12,32,0),所以BC ⃗⃗⃗⃗⃗ =(-2,2,0),BP ⃗⃗⃗⃗⃗ =(-1,0,√3),HG⃗⃗⃗⃗⃗⃗ =(0,32,-√32). 设平面PBC 的法向量为n =(x ,y ,z ),则{n ·BC ⃗⃗⃗⃗⃗ =0,n ·BP ⃗⃗⃗⃗⃗ =0,即{-2x +2y =0,-x +√3z =0,令x=√3,则y=√3,z=1,所以n =(√3,√3,1)为平面PBC 的一个法向量. 设直线GH 与平面PBC 所成的角为θ, 则sin θ=|cos <n ,HG ⃗⃗⃗⃗⃗⃗ >|=|n ·HG ⃗⃗⃗⃗⃗⃗⃗||n ||HG ⃗⃗⃗⃗⃗⃗⃗ |=√3√3×√7=√77, 故直线GH 与平面PBC 所成角的正弦值为√77. 5.(1)证明 取AE 的中点P ,连接MP ,PD (图略).∵P ,M 分别为AE ,BE 的中点,∴PM ∥AB ,PM=12AB. 又CD ∥AB ,CD=12AB ,∴PM ∥CD ,PM=CD ,∴四边形PMCD 为平行四边形,∴CM ∥PD.又CM ⊄平面ADE ,PD ⊂平面ADE ,∴CM ∥平面ADE. (2)解 取AB 的中点O ,连接OD ,OE.又CD ∥AB ,CD=12AB ,∴CD ∥OB ,CD=OB ,∴四边形BCDO 为平行四边形,∴OD ∥BC. 又AB ⊥BC ,∴OD ⊥AB.又平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE=AB ,OD ⊂平面ABCD ,∴OD ⊥平面ABE.∵AE=BE ,O 为AB 的中点,∴OE ⊥AB.以O 为坐标原点,OE ,OB ,OD 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示,则E (√2,0,0),B (0,1,0),C (0,1,1),D (0,0,1).设平面BDE 的法向量为m =(x ,y ,z ),BE ⃗⃗⃗⃗⃗ =(√2,-1,0),BD ⃗⃗⃗⃗⃗⃗ =(0,-1,1), 由{m ·BE ⃗⃗⃗⃗⃗ =0,m ·BD⃗⃗⃗⃗⃗⃗ =0,得{√2x -y =0,-y +z =0,取y=√2,则x=1,z=√2,∴m =(1,√2,√2)为平面BDE 的一个法向量. 易知n =(1,0,0)为平面BCD 的一个法向量. 设二面角E-BD-C 的平面角为θ, 则|cos θ|=|cos <m ,n >|=|m ·n ||m ||n |=√55,∴sin θ=√1-cos 2θ=2√55. 故二面角E-BD-C 的正弦值为2√55.(3)解 假设在线段AD 上存在一点N ,使得直线MD 与平面BEN 所成角的正弦值为4√621.由(2)知M (√22,12,0),A (0,-1,0),D (0,0,1),BE⃗⃗⃗⃗⃗ =(√2,-1,0),则MD ⃗⃗⃗⃗⃗⃗ =(-√22,-12,1),AD ⃗⃗⃗⃗⃗ =(0,1,1),BA ⃗⃗⃗⃗⃗ =(0,-2,0). 设AN⃗⃗⃗⃗⃗⃗ =λAD ⃗⃗⃗⃗⃗ =(0,λ,λ),其中0≤λ≤1, ∴BN ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AN ⃗⃗⃗⃗⃗⃗ =(0,λ-2,λ). 设平面BEN 的法向量为u =(x 1,y 1,z 1),由{u ·BE ⃗⃗⃗⃗⃗ =0,u ·BN⃗⃗⃗⃗⃗⃗ =0,得{√2x 1-y 1=0,(λ-2)y 1+λz 1=0,取y 1=√2λ,则x 1=λ,z 1=2√2−√2λ,∴u =(λ,√2λ,2√2−√2λ)为平面BEN 的一个法向量.由题意可知|cos <MD ⃗⃗⃗⃗⃗⃗ ,u >|=|MD⃗⃗⃗⃗⃗⃗⃗⃗ ·u ||MD ⃗⃗⃗⃗⃗⃗⃗⃗||u |=√2-√2λ√72×5λ2-8λ+8=4√621.整理得16λ2-34λ+13=0,解得λ=12或λ=138(舍去).∴AN=√22.故在线段AD 上存在一点N ,使直线MD 与平面BEN 所成角的正弦值为4√621,此时AN=√22.6.(1)证明 如图,取MB 的中点P ,连接DP ,PN ,又N 为MC 的中点,所以NP ∥BC ,NP=12BC. 又DE ∥BC ,所以NP ∥DE ,即N ,E ,D ,P 四点共面.又EN ∥平面MBD ,EN ⊂平面NEDP ,平面NEDP ∩平面MBD=DP ,所以EN ∥PD ,即四边形NEDP 为平行四边形,所以NP=DE ,即DE=12BC ,即λ=12.(2)解 取DE 的中点O ,连接MO ,则MO ⊥DE.又平面MDE ⊥平面DECB ,平面MDE ∩平面DECB=DE ,MO ⊂平面MDE ,所以MO ⊥平面DECB.如图,建立空间直角坐标系,不妨设BC=2,则M (0,0,√3λ),D (λ,0,0),B (1,√3(1-λ),0),所以MD ⃗⃗⃗⃗⃗⃗ =(λ,0,-√3λ),DB ⃗⃗⃗⃗⃗⃗ =(1-λ,√3(1-λ),0). 设平面MBD 的法向量为m =(x ,y ,z ),则{MD ⃗⃗⃗⃗⃗⃗ ·m =λx -√3λz =0,DB ⃗⃗⃗⃗⃗⃗ ·m =(1-λ)x +√3(1-λ)y =0,即{x =√3z ,x =-√3y ,令x=√3,则y=-1,z=1,所以m =(√3,-1,1)为平面MBD 的一个法向量.由题意可知n =(0,1,0)为平面MDE 的一个法向量. 设二面角B-MD-E 的平面角为θ,则|cos θ|=|cos <m ,n >|=|m ·n ||m ||n |=√55,易知θ为钝角,所以二面角B-MD-E 的大小不变.sin θ=√1-cos 2θ=2√55,所以二面角B-MD-E 的正弦值为2√55.。

难点06 立体几何中的折叠问题、最值问题和探索性问题(教学案)(解析版)

难点06 立体几何中的折叠问题、最值问题和探索性问题(教学案)(解析版)

难点六 立体几何中的折叠问题、最值问题和探索性问题对立体几何中的折叠问题、最值问题和探索性问题,要求学生要有较强的空间想象力和准确的计算运算能力,才能顺利解答.从实际教学和考试来看,学生对这类题看到就头疼.分析原因,首先是学生的空间想象力较弱,其次是学生对这类问题没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段学习和考试出现这类问题加以总结的探讨.1 立体几何中的折叠问题折叠问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现.处理这类题型的关键是抓住两图的特征关系.折叠问题是立体几何的一类典型问题是实践能力与创新能力考查的好素材.解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化.这些未变化的已知条件都是我们分析问题和解决问题的依据.而表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试.例1(2020·安徽高三(理))在直角梯形ABCD (如图1),90ABC ︒∠=,//BC AD ,8AD =,4AB BC ==,M 为线段AD 中点.将ABC 沿AC 折起,使平面ABC ⊥平面ACD ,得到几何体B ACD -(如图2).(1)求证:CD ⊥平面ABC ;(2)求AB 与平面BCM 所成角θ的正弦值.思路分析:(1)通过计算结合勾股定理的逆定理可以证明CD AC ⊥,再根据面面垂直的性质定理进行证明即可;(2)法一、取AC 的中点O 连接OB ,根据B ACM A BCM V V --=,结合三棱锥的体积公式进行求解即可;法二、取AC 的中点O 连接OB ,由题设可知ABC 为等腰直角三角形,所以OB ⊥面ACM ,连接OM ,因为M O 、分别为AB 和AC 的中点,所以//OM CD ,由(1)可知OM AC ⊥,故以OM OC OB 、、所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.运用向量法求解即可.【详解】(1)由题设可知AC =CD =,8AD =∴222AD CD AC =+∴CD AC ⊥又∵平面ABC ⊥平面ACD ,平面ABC平面ACD AC = ∴CD ⊥面ABC .(2)法一、等体积法取AC 的中点O 连接OB ,由题设可知ABC 为等腰直角三角形,所以OB ⊥面ACM∵B ACM A BCM V V --=且133B ACM ACM V S BO -=⋅=而BCM S ∆=∴A 到面BCM 的距离h =所以sin 3h AB θ==.法二、向量法取AC 的中点O 连接OB ,由题设可知ABC 为等腰直角三角形,所以OB ⊥面ACM ,连接OM ,因为M O 、分别为AB 和AC 的中点,所以//OM CD ,由(1)可知OM AC ⊥,故以OM OC OB 、、所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.则(0,A -,B ,(0,C ,M∴(0,CB =-(2CM =-(0,BA =--∴面BCM 的一个法向量(1,1,1)n =∴||6sin ||||BA n BA n θ⋅== 点评:本小题主要考查空间直线与直线、直线与平面的位置关系及平面所成的角等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.以折叠问题为载体,折叠问题是考查学生空间想象能力的较好载体.如本题,不仅要求学生象解常规立几综合题一样懂得线线,线面和面面垂直的判定方法及相互转化,还要正确识别出折叠而成的空间图形,更要识得折前折后有关线线、线面位置的变化情况以及有关量(边长与角)的变化情况,否则无法正确解题.这正是折叠问题的价值之所在.在求二面角时,如果根据定义要作出二面角的平面角,并证明,然后计算,要求较高,一般是寻找图形中的两两垂直的三条直线,建立空间直角坐标系,用空间向量法来求这个角.设分别是平面的法向量,设二面角的大小为,则.用这种方法求解时要注意判断二面角的大小,即判断二面角是锐角不是钝角.2 立体几何中的最值问题解决空间图形有关的线段、角、距离、面积、体积等最值问题,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径.例2 在四棱锥中,设底面是边长为1的正方形,面.(1)求证:;(2)过且与直线垂直的平面与交于点,当三棱锥的体积最大时,求二面角的大小.思路分析:(1)要证线线垂直,可利用线面垂直的性质定理,即先证线面垂直,题中由正方形有,由已知线面垂直有,从而可证与平面垂直,从而得证题设结论;(2)求二面角,一般建立空间直角坐标系,用空间向量法求解,题中有两两垂直,以他们为坐标轴建立空间直角坐12,n n ,αβl αβ--θ121212cos ,cosn n n n n n θ⋅<>==P ABCD -ABCD PA ⊥ABCD PC BD ⊥BD PC PC E E BCD -E BD C --BD AC ⊥BD PA ⊥BD PAC ,,AB AD AP标系,由三棱锥体积最大时,求得的长,然后写出各点坐标,同时计算出点坐标,求得平面和平面的法向量,求出法向量夹角,可观察出此二面角为锐角,从而得二面角.解析:(1)∵四边形是正方形,∴,平面,由此推出,又,∴平面,而平面,所以推出.(2)设,三棱锥的底面积为定值,求得它的高,当,即时,,三棱锥的体积达到最大值为.以点为坐标原点,为轴,为轴,为轴建立空间直角坐标系,则,令,,,得,∴,设是平面的一个法向量,,,则,得.又是平面的一个法向量,∴,∴二面角为. 点评:立体几何中经常碰到求最值问题,不少学生害怕这类问题,主要原因是难以将立体几何问题转化为平面几何问题或代数问题去求解,对立体几何的最值问题,一般可以从两方面着手:一是从问题的几何特征入手,充分利用其几何性质去解决;二是找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法、二次数的配方法、公式法、有界函数界值法(如三角函数等)及高阶函数的拐点导数法等.3立体几何中的探索性问题探究性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.近几年高考中立体几何试题不断出现了一些具有探索性、开放性的试题.内容涉及异面直线所成的角,直线与平面所成的角,二面角,平行与垂直等方面,对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的.例3.(2020·天津静海一中高三月考)如图所示,直角梯形ABCD 中,AD BC ∥,AD AB ⊥,22AE AB BC AD ====,四边形EDCF 为矩形,CF =E BDC -PA E EBD CBD ABCD BD AC ⊥PA ⊥ABCD PA BD ⊥AC PA A =BD ⊥PAC PC⊂PAC PC BD ⊥PA x =E BCD -22x h x =+2x x =x =h E BCD-111132⨯⨯⨯=A AB x AD y PA z (1,0,0),(1,1,0),(0,1,0),B C D P (,,)E x y z PE PC λ=BE PC ⊥34λ=33(,,444E -'''(,,)n x y z =EBD (1,1,0)BD =-13(,,444BE =--00n BD n BE ⎧•=⎪⎨•=⎪⎩(1,1,2)n =AP =BCD 2cos ,2n AP <>=E BD C --4π(1)求证:平面ECF ⊥平面ABCD ;(2)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 若存在,求出线段BP 的长,若不存在,请说明理由.思路分析:(1)先证CF ⊥面ABCD ,又因为CF ⊂面BCF ,所以平面ECF ⊥平面ABCD .(2)根据题意建立空间直角坐标系. 列出各点的坐标表示,设DP DF λ=,则可得出向量()1,2BP λλ=---,求出平面ABE 的法向量为(),,n x y z =,利用直线与平面所成角的正弦公式sin cos ,BP nBP n BP n θ⋅==⨯列方程求出0λ=或34λ=,从而求出线段BP 的长. 【详解】(1)证明:因为四边形EDCF 为矩形,∴DE CF ==∵222AD DE AE +=∴DE AD ⊥∴DE CD ⊥∴DE ⊥面ABCD∴CF ⊥面ABCD又∵CF ⊂面BCF∴平面ECF ⊥平面ABCD(2)取D 为原点,DA 所在直线为x 轴,DE 所在直线为z 轴建立空间直角坐标系.如图所示:则()1,0,0A ,()1,2,0B ,()1,2,0C -,(E ,(F -,设(DP DF λλ==-(),2λλ=-,[]0,1λ∈;∴(),2P λλ-,()1,2BP λλ=---, 设平面ABE 的法向量为(),,n x y z =,∴2020x y y ⎧--+=⎪⎨=⎪⎩,不防设()3,0,1n =. ∴sin cos ,BP n θ==BP nBP n ⋅=⨯10=, 化简得2860λλ-=,解得0λ=或34λ=; 当0λ=时,()1,2,0BP =--,∴5BP =;当34λ=时,71,,424BP ⎛=-- ⎝⎭,∴5BP = 综上存在这样的P 点,线段BP点评:本题考查直线与平面所成角的求法,空间向量的数量积的应用,直线与平面平行的判断定理的应用,考查空间想象能力以及逻辑推理能力.训练了存在性问题的求解方法,建系利用空间向量求解降低了问题的难度,属中档题.把线面的关系转化为向量之间的关系,直线与平面所成的角的正弦值即直线的方向向量与平面的法向量所成角的余弦值的绝对值;线平行于面即线的方向向量与面的法向量垂直,等价于其数量积为.探索性题型通常是找命题成立的一个充分条件,所以解这类题采用下列二种方法:⑴通过各种探索尝试给出条件;⑵找出命题成立的必要条件,也证明了充分性.综合以上三类问题,折叠与展开问题、最大值和最小值问题和探究性问题都是高考中的热点问题,在高考试题的新颖性越来越明显,能力要求也越来越高,并且也越来越广泛.折叠与展开问题是立体几何的一对问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,处理这类题型的关键是抓住两图的特征关系;求最值的途径很多,其中运用公理与定义法、利用代数知识建立函数法、由常用不等式解不等式法等都是常用的一些求最值的方法;对于立体几何的探索性问题一般都是条件开放性的探究问题,采用的方法一般是执果索因的方法,假设求解的结果存在,寻找使这个结论成立的充分条件,运用方程的思想或向量的方法转化为代数的问题解决.如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在.另外对于立体几何中的上述三种问题有时运用空间向量的方法也是一种行之有效的方法,能使问题简单、有效地解决.解答这些问题,需要主观的意志力,不要见到此类问题先发怵,进行消极的自我暗示,要通过一些必要的练习,加强解题信心的培养,确定解题的一般规律,积极的深入分析问题的特征,进而实现顺利解答.。

立体几何翻折问题解题技巧

立体几何翻折问题解题技巧

立体几何翻折问题解题技巧
立体几何翻折问题是指将一个平面图形通过折叠变成一个立体
图形的问题。

这种问题在数学竞赛和考试中经常出现,需要掌握一些解题技巧。

1. 观察图形
首先需要认真观察给定的图形,理解其形状和结构。

可以通过画出各个面的展开图或者模型来加深对图形的理解。

2. 寻找对称性
考虑到翻折后的立体图形具有一定的对称性,可以通过寻找对称轴来简化问题。

对称轴可以是图形的中心线、对角线或者其他线段。

3. 利用平行四边形法则
平行四边形法则指如果一个图形经过翻折后,两个相邻的侧面是平行四边形,则它们的对边相等。

这个定理对解决立体几何翻折问题非常有用。

4. 利用角度关系
如果一个图形经过翻折后,两个相邻的侧面是由同一直线切割而成,则它们的夹角相等。

这个关系可以用于计算角度,解决一些复杂的立体几何问题。

5. 练习和实践
最后,需要进行大量的练习和实践,提高解题能力和技巧。

可以尝试解决不同形状和难度级别的立体几何翻折问题,不断挑战自己。

总之,掌握立体几何翻折问题的解题技巧需要综合运用几何知识
和逻辑思维能力。

通过多练习和实践,可以提高解题水平,取得更好的成绩。

(完整版)立体几何中的折叠问题

(完整版)立体几何中的折叠问题

立体几何中的折叠问题1.概念:将平面图形沿某直线翻折成立体图形,再对折叠后的立体图形的线面位置关系和某几何量进行论证和计算,就是折叠问题.2.折叠问题分析求解原则:(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变。

(最值问题)1、把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为_______.(两点间距离,全品83页)2、把长宽分别为2的长方形ABCD 沿对角线AC 折成60o 的二面角,求顶点B 和D 的距离。

3、(全品70页)给出一边长为2的正三角形纸片,把它折成一个侧棱长与底面边长都相等的三棱锥,并使它的全面积与原三角形面积相等,设计一种折叠方法,并用虚线标在图中,并求该三棱锥的体积。

4、(2005江西文)矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B —AC —D ,则四面体ABCD 的外接球的体积为 ( ) A .π12125B .π9125C .π6125D .π3125A BCEMN解决折叠问题的关键是弄清折叠前后哪些量没有变化,折叠后位置关系怎样变化,通过空间想象折叠成的几何体的形状来分析已知和待求,是培养空间想象能力的很好的题型。

高考题中的折叠问题1、在正方形SG 1G 2G 3中E 、F 分别是G 1G 2及G 2G 3的中点,D 是EF 的中点,现在沿SE 、SF 及EF 把这个正方形折成一个四面体,使G 1、G2、G 3三点重合,重合后的点记为G.那么,在四面体S —EFG 中必有(A)SG ⊥△EFG 所在平面 (B)SD ⊥△EFG 所在平面 (C)GF ⊥△SEF 所在平面 (D)GD ⊥△SEF 所在平面 2、如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点, G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点.将△ABC 沿DE , EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为( ) A .90° B .60° C .45° D .0°3、(2005浙江理科)12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如下图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_____.4、(2006山东)如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P -DCE 三棱锥的外接球的体积为(A)2734π (B)26π (C)86π (D)246π5、(2009浙江)如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .6.(2010上海)在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O,剪去AOB V ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以A 、(B )、C 、D 、O 为顶点的四面体的体积为 。

2022年高三总复习数学课件 立体几何中的翻折、探究及距离问题

2022年高三总复习数学课件 立体几何中的翻折、探究及距离问题

m ·―B→D =-3x+2y- 3z=0,
则 m
·―BM→=6λ-1y-
3z=0,
取 y= 3,得平面
BMD 的一个法向量为 m =( 3-2 3λ, 3,6λ-1).
易知平面 EMD 的一个法向量为 n =(0,0,1).
|m ·n | 设二面角 B-MD-E 的平面角为 θ,则|cos θ|=
[解] (1)证明:取 PB 的中点 N,连接 MN,AN, 因为 M 是 PC 的中点,N 是 PB 的中点, ∴MN∥BC,MN=12BC=2, 又 BC∥AD,∴MN∥AD,MN=AD, ∴四边形 ADMN 为平行四边形, ∵AP⊥AD,AB⊥AD,AP∩AB=A, ∴AD⊥平面 PAB, ∴AD⊥AN,∴AN⊥MN, ∵AP=AB,∴AN⊥PB,MN∩PB=N,∴AN⊥平面 PBC,
设 DP 与平面 BCP 所成的角为 θ,
则 sin θ=|cos〈n ,―D→P 〉|=||nn|·|――DD→P→P ||=
2×3a2a=
6 4.
所以直线
DP
与平面
BCP
所成角的正弦值为
6 4.
探索性问题
[师生共研过关] [例 2] 如图,在四棱锥 P-ABCD 中, PA⊥平面 ABCD,PA=AB=AD=2,四 边形 ABCD 满足 AB⊥AD,BC∥AD 且 BC=4,点 M 为 PC 的中点,点 E 为 BC 边上的动点,且BEEC=λ. (1)求证:平面 ADM⊥平面 PBC; (2)是否存在实数 λ,使得二面角 P-DE-B 的余弦值为 22? 若存在,试求出实数 λ 的值;若不存在,说明理由.
解:(1)证明:在题图①中,因为 AB=2BC=2CD, 且 D 为 AB 的中点, 所以由平面几何知识,得∠ACB=90°.

高中数学立体几何中的折叠问题

高中数学立体几何中的折叠问题

高中数学立体几何中的折叠问题在高中数学的立体几何领域,折叠问题是一个相当重要且具有一定难度的知识点。

它不仅考验我们对空间想象力的运用,还要求我们具备扎实的几何基础知识和逻辑推理能力。

首先,我们来了解一下什么是折叠问题。

简单来说,折叠问题就是将一个平面图形按照某种规则折叠成一个立体图形,然后让我们去研究这个立体图形中的各种几何关系,比如线线关系、线面关系、面面关系以及相关的角度、长度、面积、体积等的计算。

折叠问题的关键在于理解折叠前后图形的不变量和变化量。

不变量通常包括线段的长度、角度的大小等。

比如,在一个矩形沿着某条边折叠的过程中,矩形相邻两边的长度是不变的。

而变化量则包括位置关系、角度关系等。

例如,原本在平面上相互平行的两条线,在折叠后可能不再平行。

那么,解决折叠问题有哪些常见的思路和方法呢?第一步,我们要仔细观察题目中给出的折叠过程和条件,明确折叠前后的图形特征。

这就像是在拼图游戏中,先看清每一块拼图的样子。

第二步,根据不变量和变化量,找出折叠前后图形中的关键元素和关系。

比如,找到折叠后形成的直角、等腰三角形等特殊图形,这些往往是解题的突破口。

第三步,运用我们所学的立体几何知识,如线面垂直的判定定理、面面垂直的判定定理、勾股定理等,进行推理和计算。

接下来,通过一些具体的例子来感受一下折叠问题的魅力。

例 1:有一个边长为 2 的正方形 ABCD,将其沿着对角线 AC 折叠成一个三棱锥,求三棱锥的体积。

在这个例子中,我们先分析折叠前后的不变量。

正方形的边长不变,对角线 AC 的长度也不变。

折叠后,三角形 ABC 和三角形 ADC 都是等腰直角三角形,且 AC 是三棱锥的高。

然后,我们可以根据三棱锥体积的公式 V = 1/3×底面积×高,计算出体积。

例 2:一个直角梯形 ABCD,其中 AD 平行 BC,AD 垂直 AB,AB = BC = 2AD = 2。

将直角梯形沿着 AB 边折叠成一个直二面角,求异面直线 CD 与 AB 所成角的余弦值。

立体几何中的折叠与展开问题

立体几何中的折叠与展开问题

立体几何中的折叠与展开问题魏文 张亮 徐婷 江涛 张忠强 马吉 戴尚超一、折叠与展开中的垂直问题例1. 将矩形ABCD 沿对角线BD 折起来,使点C 的新位置C '在面ABC 上的射影E 恰在AB 上.求证:C B C A '⊥'分析:欲证C B C A '⊥',只须证C B '与C A '所在平面D C A '垂直;而要证C B '⊥平面D C A ',只须证C B '⊥D C '且C B '⊥AD .因此,如何利用三垂线定理证明线线垂直就成为关键步骤了.证明:由题意,C B '⊥D C ',又斜线C B '在平面ABCD 上的射影是BA , ∵ BA ⊥AD ,由三垂线定理,得AD B C ⊥',D DA D C =' .∴ C B '⊥平面AD C ',而A C '⊂平面AD C '∴ C B '⊥C A '例2.如图在ΔABC 中, AD ⊥BC , ED=2AE , 过E 作FG ∥BC , 且将ΔAFG 沿FG 折起,使∠A 'ED=60°,求证:A 'E ⊥平面A 'BC解析:弄清折叠前后,图形中各元素之间的数量关系和位置关系。

解: ∵FG ∥BC ,AD ⊥BC∴A 'E ⊥FG∴A 'E ⊥BC设A 'E=a ,则ED=2a由余弦定理得:A 'D 2=A 'E 2+ED 2-2•A 'E •EDcos60°=3a2 A B C D F E G A'∴ED 2=A 'D 2+A 'E2∴A 'D ⊥A 'E ∴A 'E ⊥平面A 'BC例3. 如图:D 、E 是是等腰直角三角形ABC 中斜边BC 的两个三等分点,沿AD 和AE 将△ABD 和△ACE 折起,使AB 和AC 重合,求证:平面ABD ⊥平面ABE.解析:过D 作DF ⊥AB 交AB 于F ,连结EF ,计算DF 、EF 的长,又DE 为已知,三边长满足勾股定理,∴∠DFE =090;二、折叠与展开中的空间角问题例4. 矩形ABCD ,AB=3,BC=4,沿对角线BD 把△ABD 折起,使点A 在平面BCD 上的射影A′落在BC 上,求二面角A —BC-—C 的大小。

立体几何中的折叠与展开问题

立体几何中的折叠与展开问题

立体几何中的折叠与展开问题知识点梳理:1.解决折叠问题最重要的就是对比折叠前后的图形,找到哪些线、面的位置关系和数学量没有发生变化,哪些发生了变化,在证明和求解的过程中恰当地加以利用.解决此类问题的步骤:考向导航2.展开问题是折叠问题的逆向思维、逆过程,是将空间问题转化为平面问题来处理.一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试.目录类型一折叠问题 (1)类型二展开问题 (3)类型一折叠问题【例1】如图甲,在四边形ABCD中,23AD=2∆是边长为4的正三角形,CD=,ABC把ABC∆的位置,使得平面PAC⊥平面ACD;如图乙所示,点O、M、∆沿AC折起到PACN分别为棱AC、PA、AD的中点.(1)求证:平面PAD⊥平面PON;(2)求三棱锥M ANO-的体积.【例2】如图,在平面图形PABCD 中,ABCD 为菱形,60DAB ∠=︒,2PA PD ==,M 为CD 的中点,将PAD ∆沿直线AD 向上折起,使BD PM ⊥.(1)求证:平面PAD ⊥平面ABCD ;(2)若直线PM 与平面ABCD 所成的角为30︒,求四棱锥P ABCD -的体积.【变式1-1】如图甲的平面五边形PABCD 中,PD PA =,5AC CD BD ===,1AB =,2AD =,PD PA ⊥,现将图甲中的三角形PAD 沿AD 边折起,使平面PAD ⊥平面ABCD 得图乙的四棱锥P ABCD -.在图乙中(1)求证:PD ⊥平面PAB ;(2)求二面角A PB C --的大小;(3)在棱PA 上是否存在点M 使得BM 与平面PCB 所成的角的正弦值为13?并说明理由.类型二展开问题【例1】如图,已知正三棱柱111ABC A B C -的底面边长为2cm ,高为5cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点1A 的最短路线的长为()A .5cm B .12cm C .13cm D .25cm【例2】如图,正三棱锥S ABC -中,40BSC ∠=︒,2SB =,一质点自点B 出发,沿着三棱锥的侧面绕行一周回到点B 的最短路线的长为()A .2B .3C .3D .33【变式2-1】如图,在直三棱柱111ABC A B C -中,1AB =,2BC =,13BB =,90ABC ∠=︒,点D 为侧棱1BB 上的动点.(1)求此直三棱柱111ABC A B C -的表面积;(2)当1AD DC +最小时,三棱锥1D ABC -的体积.巩固训练1.把如图的平面图形分别沿AB 、BC 、AC 翻折,已知1D 、2D 、3D 三点始终可以重合于点D 得到三棱锥D ABC -,那么当该三棱锥体积最大时,其外接球的表面积为.2、如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且1PO OB ==,(Ⅰ)若D 为线段AC 的中点,求证:AC ⊥平面PDO ;(Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若2BC =E 在线段PB 上,求CE OE +的最小值.3.请从下面三个条件中任选一个,补充在下面的横线上,并作答.①()0BA PA PD ⋅+= ;②7PC =;③点P 在平面ABCD 的射影在直线AD 上.如图,平面五边形PABCD 中,PAD ∆是边长为2的等边三角形,//AD BC ,22AB BC ==,AB BC ⊥,将PAD ∆沿AD 翻折成四棱锥P ABCD -,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且____.(1)求证://FM 平面PAD ;(2)当EF 与平面PAD 所成角最大时,求平面ACE 与平面ABCD 所成的锐二面角的余弦值.4.如图,在矩形ABCD 中,2,23AB AD ==,ABPCDFEE ,F 分别为AD ,BC 的中点,以DF 为折痕把CDF ∆折起,点C 到达点P 的位置,使1PE =.(1)证明:平面PEF ⊥平面ABFD ;(2)求二面角P DF E --的正弦值.参考答案类型一折叠问题【例1】【分析】(1)证明PO ⊥平面ACD 可得PO AD ⊥,根据中位线定理和勾股定理可证AD ON ⊥,故而AD ⊥平面PON ,于是平面PAD ⊥平面PON ;(2)分别计算AON ∆的面积和M 到平面ACD 的距离,代入体积公式计算.【解答】(1)证明:PA PC = ,O 是AC 的中点,PO AC ∴⊥,又平面PAC ⊥平面ACD ,平面PAC ⋂平面ACD AC =,PO ∴⊥平面ACD ,又AD ⊂平面ACD ,PO AD ∴⊥,23AD = ,2CD =,4AC =,222AD CD AC ∴+=,AD CD ∴⊥,ON 是ACD ∆的中位线,//ON CD ∴,AD ON ∴⊥,又ON PO O = ,AD ∴⊥平面PON ,又AD ⊂平面PAD ,∴平面PAD ⊥平面PON .(2)PAC ∆ 是边长为4的等边三角形,3PO ∴=M ∴到平面ACD 的距离132d PO ==,ON 是ACD ∆的中位线,1113324422AON ACD S S ∆∆∴==⨯=,11131332322M ANO AON V S PO -∆∴==⨯⨯ .【点评】本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.【例2】【分析】(1)取AD 中点E ,连接PE ,EM ,AC ,可得PE AD ⊥,然后证明BD PE ⊥,可得PE ⊥平面ABCD ,进一步得到平面PAD ⊥平面ABCD ;(2)由(1)知,PE ⊥平面ABCD ,连接EM ,可得30PME ∠=︒,求解三角形可得1PE =,再求出四边形ABCD 的面积,代入棱锥体积公式求解.【解答】(1)证明:取AD 中点E ,连接PE ,EM ,AC ,PA PD = ,得PE AD ⊥,由底面ABCD 为菱形,得BD AC ⊥,E ,M 分别为AD ,CD 的中点,//EM AC ∴,则BD EM ⊥,又BD PM ⊥,BD ∴⊥平面PEM ,则BD PE ⊥,PE ∴⊥平面ABCD ,而PE ⊂平面PAD ,∴平面PAD ⊥平面ABCD ;(2)解:由(1)知,PE ⊥平面ABCD ,连接EM ,可得30PME ∠=︒,设AB a =,则224a PE =-,322AC EM ==,故tan tan 30PE PME EM ∠=︒=,即2234332a a -=,解得2a =.故1PE =,3ABCD S =四边形.故23133P ABCD ABCD V S PE -=⋅⋅=四边形.【点评】本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.【变式1-1】【分析】(1)推导出AB AD ⊥,AB ⊥平面PAD ,AB PD ⊥,PD PA ⊥,由此能证明PD ⊥平面PAB .(2)取AD 的中点O ,连结OP ,OC ,由AC CD =知OC OA ⊥,以O 为坐标原点,OC 所在的直线为x 轴,OA 所在的直线为y 轴建立空间直角坐标系,利用向量法能求出二面角A PB C --的大小.(3)假设点M 存在,其坐标为(x ,y ,)z ,BM 与平面PBC 所成的角为α,则存在(0,1)λ∈,有AM AP λ= ,利用向量法能求出在棱PA 上满足题意的点M 存在.【解答】证明:(1)1AB = ,2AD =,5BD =222AB AD BD ∴+=,AB AD ∴⊥,平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,AB ∴⊥平面PAD ,又PD ⊂ 平面PAD ,AB PD ∴⊥,又PD PA ⊥ ,PA AB A= PD ∴⊥平面PAB .解:(2)取AD 的中点O ,连结OP ,OC ,由平面PAD ⊥平面ABCD 知PO ⊥平面ABCD ,由AC CD =知OC OA ⊥,以O 为坐标原点,OC 所在的直线为x 轴,OA 所在的直线为y 轴建立空间直角坐标系如图示,则(2C ,0,0),(0P ,0,1),(0D ,1-,0),(0A ,1,0),(1B ,1,0)∴(1,1,1)PB =- ,(2,0,1)PC =- ,(0,1,1)PD =-- ,设平面PBC 的法向量为(,,)m a b c = ,由00m PB m PC ⎧⋅=⎪⎨⋅=⎪⎩ ,得020a b c a c +-=⎧⎨-=⎩,令1a =得1b =,2c =,∴(1,1,2)m = ,PD ⊥ 平面PAB ,∴(0DP = ,1,1)是平面PAB 的法向量,设二面角A PB C --大小为θ,则123cos 2||||62m DP m DP θ⋅==⋅⋅ ,0θπ ,∴二面角A PB C --的大小6πθ=.(3)假设点M 存在,其坐标为(x ,y ,)z ,BM 与平面PBC 所成的角为α,则存在(0,1)λ∈,有AM AP λ= ,即(x ,1y -,)(0z λ=,1-,1),(0M ,1λ-,)λ,则(1,,)BM λλ=-- ,从而211sin ||3||||612m BM m BM αλ⋅==⋅⋅+ ,[0λ∈ ,1],103λ∴=-,∴在棱PA 上满足题意的点M 存在.【点评】本题考查线面垂直的证明,考查二面角的求法,考查满足线面角的正弦值点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.类型二展开问题【例1】【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱111ABC A B C -沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6212⨯=,宽等于5,由勾股定理2212513d =+=.故选:C .【点评】本题考查棱柱的结构特征,考查空间想象能力和思维能力,考查数学转化思想方法,是中档题.【例2】【分析】画出解答几何体的部分侧面展开图,利用三角形的边的关系容易解得边长的值,从而得出其中的最小值.【解答】解:将三棱锥S ABC -沿侧棱SB 展开,其侧面展开图如图所示,由图中红色路线可得结论.根据余弦定理得,沿着三棱锥的侧面绕行一周回到点B 的最短路线的长为:14422232++⨯⨯⨯=故选:C .【点评】本题考查多面体和旋转体表面上的最短距离问题,空间想象能力,几何体的展开与折叠,是基础题.【变式2-1】【分析】(1)直三棱柱111ABC A B C -的表面积:1111112ABC ABB A BCC B ACC A S S S S S ∆=+++矩形矩形矩形.(2)将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,当1AD DC +最小时,1BD =,此时三棱锥1D ABC -的体积:11D ABC C ABD V V --=,由此能求出结果.【解答】解:(1) 在直三棱柱111ABC A B C -中,1AB =,2BC =,13BB =,90ABC ∠=︒,∴此直三棱柱111ABC A B C -的表面积:1111112ABC ABB A BCC B ACC A S S S S S ∆=+++矩形矩形矩形121213231432=⨯⨯⨯+⨯+⨯++1135=+(2)将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,1AB = ,2BC =,13BB =,90ABC ∠=︒,点D 为侧棱1BB 上的动点,∴当1AD DC +最小时,1BD =,此时三棱锥1D ABC -的体积:11D ABC C ABDV V --=1113ABD S B C ∆=⨯111132AB BD B C =⨯⨯⨯⨯1111232=⨯⨯⨯⨯13=.∴当1AD DC +最小时,三棱锥1D ABC -的体积为13.【点评】本题考查几何体的表面积、体积的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间思维能力,考查数数结合思想、函数与方程思想、化归与转化思想,是中档题.巩固练习1.【分析】在三棱锥D ABC -中,当且仅当DA ⊥平面ABC 时,三棱锥的体积达到最大,然后根据三棱锥的性质求出外接球的半径,进而可以求解.【解答】解:在三棱锥D ABC -中,当且仅当DA ⊥平面ABC 时,三棱锥的体积达到最大,此时,设外接球的半径为R ,球心为O ,球心O 到平面ABC 的投影点为F ,则有2222R OA OF AF ==+,又1522OF AD ==,1522AF AC ==,所以2225525()()222R =+=,所以球的表面积为22544502S R πππ==⨯=,故答案为:50π.【点评】本题考查了三棱锥的外接球的表面积问题,考查了学生的空间想象能力以及运算能力,属于中档题.2、【分析】(Ⅰ)由题意可证AC DO ⊥,又PO AC ⊥,即可证明AC ⊥平面PDO .(Ⅱ)当CO AB ⊥时,C 到AB 的距离最大且最大值为1,又2AB =,即可求ABC ∆面积的最大值,又三棱锥P ABC -的高1PO =,即可求得三棱锥P ABC -体积的最大值.(Ⅲ)可求22112PB PC +==,即有PB PC BC ==,由OP OB =,C P C B '=',可证E 为PB 中点,从而可求2626OC OE EC +'=+'=,从而得解.【解答】解:(Ⅰ)在AOC ∆中,因为OA OC =,D 为AC 的中点,所以AC DO ⊥,又PO 垂直于圆O 所在的平面,所以PO AC ⊥,因为DO PO O = ,所以AC ⊥平面PDO .(Ⅱ)因为点C 在圆O 上,所以当CO AB ⊥时,C 到AB 的距离最大,且最大值为1,又2AB =,所以ABC ∆面积的最大值为12112⨯⨯=,又因为三棱锥P ABC -的高1PO =,故三棱锥P ABC -体积的最大值为:111133⨯⨯=.(Ⅲ)在POB ∆中,1PO OB ==,90POB ∠=︒,所以22112PB =+=同理2PC =,所以PB PC BC ==,在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ',使之与平面ABP 共面,如图所示,当O ,E ,C '共线时,CE OE +取得最小值,又因为OP OB =,C P C B '=',所以OC '垂直平分PB ,即E 为PB 中点.从而2626222OC OE EC '=+'=+=.亦即CE OE +的最小值为:262.【点评】本题主要考查了直线与直线、直线与平面的位置关系、锥体的体积的求法等基础知识,考查了空间想象能力、推理论证能力、运算求解能力,考查了数形结合思想、化归与转化思想,属于中档题.3.【分析】(1)取CD 中点为G ,连接MG ,FG ,//GM PD ,//FG AD ,进而可证平面//MFG 平面PAD ,可证//FM 平面PAD ;(2)根据条件选择①:由已知可证BA ⊥平面PAD ,PO ⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,利用向量法平面ACE 与平面PAD 所成的锐二面角的余弦值.同理选择②,③可求平面ACE 与平面ABCD 所成的锐二面角的余弦值.【解答】(1)证明:取CD 中点为G ,连接MG ,FG ,则MG ,FG 分别为三角形CDE ,梯形ABCD 的中位线,//GM PD ∴,//FG AD ,MG FG G = ,∴平面//MFG 平面PAD ,FM ⊂ 平面MGF ,//FM ∴平面PAD ,(2)解:取AD 为O ,连接PO ,FG ,EG .选择①:因为()0BA PA PD ⋅+= ,2PA PD PO += ,所以0BA PO ⋅= ,即BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 的中点,AE 最小.下面求二面角余弦值法一:BA ⊂ 平面ABCD ,∴平面ABCD ⊥平面PAD ,平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,则(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z =,则111130,220y x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||17m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD 所成的锐二面角的余弦值为25117.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得2ER =,RK =,则EK =所以251cos 17RK EKR EK ∠==,所以平面ACE 与平面PAD.选择②:连接OC ,则2OC AB ==,OP =,因为PC =,222PC OP OC =+,所以BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 的中点,AE 最小.下面求二面角余弦值,法一:BA ⊂ 平面ABCD ,∴平面ABCD ⊥平面PAD ,平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,于是(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z = ,则111130,220y x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得ER =RK =,则EK =所以cos 17RK EKR EK ∠==,选择③:因为点P 在平面ABCD 的射影在直线AD 上,所以平面PAD ⊥平面ABCD .因为平面PAD ⋂平面ABCD CD =,OP ⊂平面PAD ,AD PO ⊥,所以OP ⊥平面ABCD ,所以BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 中点,AE 最小.下面求二面角余弦值,法一:BA ⊂ 平面ABCD ⊥,∴平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,于是(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z = ,则1111330,2220y z x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD所成的锐二面角的余弦值为17.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得ER =RK =,则EK =所以cos 17RK EKR EK ∠==,【点评】本题考查线面平行的证明,以及面面角的求法,属中档题.4.【分析】(1)推导出//EF AB 且3DE =,AD EF ⊥,DE PE ⊥,AD PE ⊥,由此能证明AD ⊥平面PEF ,从而平面PEF ⊥平面ABFD .(2)过点P 作PH EF ⊥交EF 于H ,由平面垂直性质定理得PH ⊥平面ABFD ,过点P 作PO DF ⊥交DF 于O ,连结OH ,则OH DF ⊥,从而POH ∠为二面角P DF E --的平面角,由此能求出二面角P DF E --的正弦值.【解答】证明:(1)E 、F 分别为AD ,BC 的中点,//EF AB ∴且3DE =,在矩形ABCD 中,AD AB ⊥,AD EF ∴⊥,由翻折的不变性,2,3PD PF CF DE ===,7DF =又1PE =,有222PD PE DE =+,DE PE ∴⊥,即AD PE ⊥,又PE EF E = ,PE ,EF ⊂平面PEF ,AD ∴⊥平面PEF ,AD ⊂ 平面ABFD ,∴平面PEF ⊥平面ABFD .解:(2)过点P 作PH EF ⊥交EF 于H ,由平面垂直性质定理得PH ⊥平面ABFD ,过点P 作PO DF ⊥交DF 于O ,连结OH ,则OH DF ⊥,POH ∴∠为二面角P DF E --的平面角.222PE PF EF += ,90EPF ∴∠=︒,由等面积法求得322127PH PO ==.在直角POH ∆中,7sin 4PH POH PO ∠==,即二面角P DF E --的正弦值为74.【点评】本题考查面面垂直的证明,考查二面角的正弦值的求法,考查运算求解能力,考查函数与方程思想,考查化归与转化思想,是中档题.。

立体几何中的翻折问题和探索性问题

立体几何中的翻折问题和探索性问题

(3)连接 AC,过 M 作 MP⊥AC 于 P.在正方体 ABCD- EFGH 中,AC∥EG,所以 MP⊥EG.过 P 作 PK⊥EG 于 K, 连接 KM,所以 EG⊥平面 PKM,从而 KM⊥EG.所以∠PKM 是二面角 A-EG-M 的平面角.设 AD=2,则 CM=1,PK =2,
在 Rt△CMP 中,PM=CMsin45°= 22.在 Rt△MPK 中,
解 (1)证明:按题意作出三棱锥,如图.
由题知 AD=AE,DG=GE,∴DE⊥AG,又 DF=EF, DG=GE,∴DE⊥FG.又 AG∩FG=G,∴DE⊥平面 AGF.
(2)由(1)得 DE⊥AG,DE⊥FG,所以∠AGF 为二面角 A
-DE-F 的平面角.
在△AGF 中,AF=3,AG=323,FG= 23, 所以 cos∠AGF=AG22+·AFGG·F2-GAF2
又 CE⊂平面 ABCD,以平面 PCE⊥平面 PAH.
过 A 作 AQ⊥PH 于 Q,则 AQ⊥平面 PCE.
所以∠APH 是 PA 与平面 PCE 所成的角.

Rt△AEH
中,∠AEH=45°,AE=1,所以
AH=
2 2.
在 Rt△PAH 中,PH= PA2+AH2=322,
【针对训练】 (2016·四川高考)如图,在四棱锥 P-ABCD 中,AD∥BC, ∠ADC=∠PAB=90°,BC=CD=12AD,E 为棱 AD 的中点, 异面直线 PA 与 CD 所成的角为 90°.
(1)在平面 PAB 内找一点 M,使得直线 CM∥平面 PBE, 并说明理由;
(2)若二面角 P-CD-A 的大小为 45°,求直线 PA 与平 面 PCE 所成角的正弦值.

高中 立体几何中折叠问题的求解策略

高中 立体几何中折叠问题的求解策略

立体几何中折叠问题的求解策略折叠问题,是立体几何中的热点、同时也是难点问题.该类问题难的根源在于所研究的是“动态”空间图形,折叠后的图形中点、线、面的位置关系难以确定,需要联系折叠前后图形之间的关系,因此对空间想象、识图及分析能力都提出了较高要求.在考试中此类问题得分率普遍不高,分析其原因,首先是空间想象力不足,其次是对这类问题没有形成解题的模型和方法.解决折叠问题的关键在于抓住折叠前后图形的特征关系,弄清折叠前后哪些量发生了变化、哪些量没有发生变化,以及确定动点在底面上的投影位置,这是分析和解决问题的依据,也是求解此类问题的钥匙.首先要弄清楚空间中折叠的本质含义是什么?教材中并没有明确给出空间中折叠的定义,但是不难看出空间中的折叠是平面中的翻折的推广,所以不妨从平面翻折的定义来揣测空间中折叠的含义.翻折的定义:将一个图形沿着某一条直线翻折180︒,直线两旁的部分能够相互重合.其中这条直线就是它的对称轴,翻折前图形中的任意一点与翻折后的对应点关于对称轴对称.于是可以类似的给空间中折叠下一个定义:将一个平面图形沿着一条直线翻折某个角度θ(其中0180θ︒<<︒),直线两侧的部分能够相互重合.其中这条直线就是它的折线,过翻折前图形中的任意一点及翻折后的对应点分别向折线做垂线,所构成的图形就是翻折前后所成二面角的平面角,即为θ.由上述对空间中折叠的定义,可以得到以下几个结论.如图1,将ADE ∆沿AE 折起.结论1折起的面上任意一点在底面的投影在过该点折起前的对应点垂直于折线的射线上.例如,点'D 在底面ABCE 上的投影O 一定在射线DF 上;结论2折叠前后折线同侧的量不变.如'D A DA =,'D E DE =.对于折叠问题的求解难度在于确定折起后图形中动点的位置,该类问题在具体出题时并不会直接给出动点的位置,而往往是借助动点在底面的投影大概位置、线段长度、相应的角度等来刻画.这就需要通过给出的关系来确定动点在底面中投影的具体位置来确定动点的位置,然后再进一步求解.1已知动点在底面的投影在某线段上例1如图2,四边形ABCD 是矩形,沿对角线AC 将ACD ∆折起,使得点D 在平面ABC 内的投影恰好落在边AB 上.(1)求证:平面ACD ⊥平面BCD ;(2)当2AB AD =时,求二面角D AC B --的余弦值.ABCDEFH 图1ABCD'D H OF EABCDA BCD分析第一问由结论2,折线同侧的量不变,则AD DC ⊥,BC AB ⊥.又D 与它在底面的投影的连线垂直底面,则垂直BC ,从而BC ⊥平面ABD ,得BC AD ⊥,所以AD ⊥平面BCD ,于是得证.第二问关键是确定D 在底面的投影的位置,由结论1,可知D 在底面的投影为过D 垂直于折线AC 的垂线与AB 的交点,于是利用平面几何知识求解即可.解(1)略;(2)如图3,过点D 作AC 的垂线交AB 于H ,由结论1知H 即是折起后D 在底面的投影.设1AD =,由DAH CDA ∆∆ ,所以12AH =,折叠后32DH =.方法一:如图4,以B 为原点建立空间直角坐标系.那么(0,2,0)A ,(1,0,0)C,3(0,,22D,则1(0,,)22AD =- ,(1,2,0)AC =- .设平面ACD 的法向量为(,,)n x y z =,则00n AD n AC ⎧=⎪⎨=⎪⎩ ,即1302220y z x y ⎧-+=⎪⎨⎪-=⎩,令1z =,则y =,x =n =.易得平面ABC 的一个法向量为(0,0,1)m =.1cos ,4n m n m n m <>==,所以二面角D AC B --的余弦值为14.方法二:如图3,记DH 与AC 的交点为E ,有AHE CDE ∆∆ ,则14EH AH ED CD ==.由折叠的定义知,沿对角线AC 将ACD ∆折起之后,DEH ∠为二面角D AC B --的图2ABCD HE 图3ABC Dxy z图4平面角.在Rt DHE ∆中,1cos 4EH DEH ED ∠==,即二面角D AC B --的余弦值为14.评注已知动点在底面的投影在某条线段上,由结论1可得该动点在底面的投影就是折叠前过此点垂直于折线的射线与这条线段的交点,只需在平面图形中利用平面几何知识即可确定动点在底面投影的位置.例2如图5,设正方形ABCD 的边长为3,点E ,F 分别在AB ,CD 上,且满足2AE EB =,2CF FD =.将直角梯形AFED 沿EF 折起,使得点A 在平面BEFC 的投影G 恰好在BC 上,H 为EA 的中点.(1)证明:平面ABE ∥平面CDF ;(2)求二面角H BF C --的正弦值.图5ABCD E FA BC DEFGH分析由结论1,可知A 在底面的投影在过点A 垂直于折线EF 的垂线上.又由题意,点A 在平面BEFC 的投影G 恰好在BC 上,所以A 在底面的投影是过点A 垂直于折线EF 的垂线与BC 的交点,于是利用平面几何知识求解就可以确定G 在BC 上的位置,然后建系求解即可.解(1)略.(2)由题意将直角梯形AFED 沿EF 折起,使得点A 在平面BEFC 的投影G 恰好在BC 上,如图6,过A 作EF 的垂线,与BC 的交点即为G .作MF ∥BC ,且交AB 与M ,由平面几何知识易得ABG FME ∆≅∆,所以113BG AB ==,则AG ==.如图7,以G 为原点建立空间直角坐标系,则A ,(1,1,0)E -,则11(,,)222H -,(1,0,0)B -,(2,2,0)F ,所以(3,2,0)BF = ,112(,,)222BH = .设平面BFH 的法向量为(,,)n x y z =,A BCD E FGM 图6AB CD EFGH xyz 图7由由00n BF n BH ⎧=⎪⎨=⎪⎩,即320110222x y x y z +=⎧⎪⎨++=⎪⎩,令2x =,则3y =-,22z =,所以2(2,3,)2n =- ,易得平面BCF 的一个法向量为(0,0,1)m =,所以3cos ,9n m n m n m<>==,所以二面角H BF C --的余弦值39.例3如图8,在矩形ABCD 中,已知2AB =,4AD =,点E ,F 分别在AD ,BC上,且1AE =,3BF =,将四边形AEFB 沿EF 折起,使点B 在平面CDEF 上的射影H 在直线DE 上.(1)求证:CD ⊥BE ;(2)求直线AF 与平面EFCD 所成角的正弦值.分析由结论1,可知B 在底面的投影在过点B 垂直于折线EF 的垂线上.又由题意,点B 在平面CDEF 的投影H 恰好在DE 上,所以B 在底面的投影是过点B 垂直于折线EF 的垂线与DE 的交点,于是利用平面几何知识求解就可以确定H 在DE 上的位置,然后建系求解即可.解(1)略.(2)如图9,作BC 的中点M ,AD 的中点'H ,则四边形'ABMH 为正方形,所以'BH AM ⊥.又AM ∥EF ,则'BH EF ⊥,由题意有BH EF ⊥,所以H 与'H 为同一点,故1EH =,则2BH ==.如图10,以H 为原点建立空间直角坐标系,则(0,1,0)E -,(2,1,0)F ,(0,0,2)B ,所以(2,1,2)BF =-,由13AE BF =,得252(,,)333A --,则872(,,)333AF =- .ABCDEFA BCDEFH图8A BCDE F M'H 图9A BCDEFHxyz图10易得平面EFCD 的一个法向量为(0,0,1)n =,设直线AF 与平面EFCD 所成的角为θ,则sin cos ,39AF n AF n AF nθ=<>==.2已知线段长度例4如图11,平面多边形PABCD 中,PA PD =,224AD DC BC ===,AD ∥BC ,AP ⊥PD ,AD ⊥DC ,E 为PD 的中点,现将APD ∆沿AD 折起,使得PC =(1)证明:CE ∥平面ABP ;(2)求直线AE 与平面ABP 所成角的正弦值.ABCDPEABCDEP分析此题是通过线段PC 的长度来刻画APD ∆沿AD 折起的程度的,也就是折起后折面的位置,该题求解的突破口是如何利用线段PC 的长度来确定P 在底面投影的位置.由结论1知P 在底面投影在过P 垂直于折线AD 的射线PB 上,于是有两个思路来确定投影的位置:一是利用已知条件和线段PC 的长度确定PBO ∆的边长,利用解三角形确定投影位置;二是注意到PC PD =,于是P 在底面投影一定在平面ABCD 内CD 的中垂线上,那么就是OB 与CD 中垂线的交点.解(1)略;(2)方法一:如图12,作AD 的中点O ,连接BO 、PO ,易知2BO PO ==,由结论1,P 在底面ABCD 的投影在射线OB 上.设该投影为H ,连接PH ,则PH ⊥平面ABCD ,从而PH BC ⊥,又BC BO ⊥,所以BC ⊥平面PBO ,则BC PB ⊥.所以,2PB ===,故PBO ∆是等边三角形,则H 为BO的中点.以H 为坐标原点建立空间直角坐标系.那么,(1,2,0)A --,(1,0,0)B,P ,图11ABCD EPx yz HO图12(1,2,0)D -,则13(,1,)22E -,13(,3,)22AE = ,(2,2,0)AB =,(1,AP = .设平面ABP 的法向量为(,,)n x y z = ,则0n AB n AP ⎧=⎪⎨=⎪⎩,即22020x y x y +=⎧⎪⎨++=⎪⎩,令1x =,则1y =-,33z =,则3(1,1,)3n =- .设AE 与平面ABP 所成角为θ,则210sin cos ,35n AE n AE n AEθ=<>==.方法二:注意到PC PD =,于是P 在底面投影一定在平面ABCD 内CD 的中垂线上,那么P 在底面投影就是OB 与CD 中垂线的交点,即为BO 的中点,下同方法一.评注通过线段长度刻画折起后折面的位置的题型,可以通过将该线段长度转化到要确定动点和动点在底面投影所在线段构成的三角形,利用解三角形工具确定投影的位置;也可以利用线段相等,通过中垂线与动点在底面投影所在射线的交点来确定投影的位置.3已知相应角度例4(2018全国1理)如图13,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.分析:此题是利用PF BF ⊥刻画折起面的位置,可以考虑利用PF BF ⊥找到过P 且垂直于底面ABFD 的平面,则点P 在底面的投影就在这两个平面的交线上,然后再借助结论1即可确定点P 在底面投影的位置.解(1)因为PF BF ⊥,又BF EF ⊥,且PF EF F = ,,PF EF ⊂平面PEF ,所以BF ⊥平面PEF ,又因为BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)由(1)知平面PEF ⊥平面ABFD ,且平面PEF 平面ABFD EF =,则点P 在底面ABFD 的投影在直线EF 上.如图14,过C 作折线DF 的垂线交EF 于点H ,由结论1知,点H 即为点P 在底面ABFD 的投影.由CFH DCF ∆∆ ,则ABC D E F P图13ABCD E F H图1412HF CF CF CD ==,设AB a =,则12HF a =.那么32PH a ==.因为PH ⊥底面ABFD ,如图15,连接DH ,则PDH ∠为DP 与平面ABFD 所成角,所以32sin 24a PH PDH PD a ∠===.评注已知相应角度刻画折起面的位置,需将这个角度条件进行适当转化,最好是能够找到过动点且与底面垂直的平面,然后结合结论1,即可确定P 在底面投影的位置.对刻画折起面位置的角度条件的转化是解题的突破口.总结立体几何折叠问题的难点突破关键在于利用好结论1和结论2,搞清楚在折叠过程中哪些量是不变的以及动点在底面的投影在那条射线上运动,再结合已知条件,更多的时候需要对已知条件进行适当的转化,便可以确定动点在底面中的投影的位置,顺藤摸瓜就能确定动点在空间中的位置,从而使得问题迎刃而解.参考文献【1】周建平.变化中的不变量——谈立体几何中的折叠问题【J 】.中学教研(数学),2018.7.ABC D EFPH图15。

立体几何中的折叠问题

立体几何中的折叠问题

立体几何中的折叠问题折叠问题分析求解原则:(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变。

1、把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC所成角的大小为_______.2、把长宽分别为2的长方形ABCD 沿对角线AC 折成60o的二面角,则顶点B 和D 的距离为_______. 3、设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如下图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_____.4、如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .5、如图(1),ABC ∆是等腰直角三角形,4AC BC ==,E 、F 分别为AC 、AB 的中点,将AEF ∆沿EF 折起, 使A '在平面BCEF 上的射影O 恰为EC 的中点,得到图(2). (Ⅰ)求证:EF A C '⊥;(Ⅱ)求三棱锥BC A F '-的体积.6、如图所示,等腰ABC △的底边AB =高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积. (1)求()Vx 的表达式;(2)当x 为何值时,()V x 取得最大值?(3)当()V x 取得最大值时,求异面直线AC 与PF 所成角的余弦值.小结:解决折叠问题的关键是弄清折叠前后哪些量没有变化,折叠后位置关系怎样变化,通过空间想象折叠成的几何体的形状来分析已知和待求。

立体几何中翻折问题(微专题)(解析版)

立体几何中翻折问题(微专题)(解析版)

立体几何中翻折问题(微专题)一、题型选讲题型一、展开问题1(2022·广东佛山·高三期末)长方体ABCD-A1B1C1D1中,AB=1,AD=AA1=2,E为棱AA1上的动点,平面BED1交棱CC1于F,则四边形BED1F的周长的最小值为()A.43B.213C.2(2+5)D.2+42【答案】B【分析】将几何体展开,利用两点之间直线段最短即可求得截面最短周长.【详解】解:将长方体展开,如图所示:当点E为BD1与AA1的交点,F为BD1与CC1的交点时,截面四边形BED1F的周长最小,最小值为2BD1=222+(1+2)2=213.故选:B.1.(2022·湖北武昌·高三期末)已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为22的菱形,B,C分别为AE,FD的中点,BD=22,则在该四面体中()A.BE⊥CDB.BE与平面DCE所成角的余弦值为21015D.四面体ABCD的外接球表面积为9πC.四面体ABCD的内切球半径为10530【答案】ACD【分析】几何体内各相关线段的计算即可.【解析】由题意得,展开图拼成的几何体如下图所示,AB=CD=2,AD=BD=BC=AC=22,取AB中点M,CD中点N,MN中点O,连MN、OA,过O作OH⊥CM于H,则OH是内切球的半径,OA是外接球的半径.所以AM=CN=12AB=22,CM=AN=AC2-CN2=222-222=302MN=CM2-CN2=3022-22 2=7对于A:AN⊥CD,BN⊥CD,AN∩BN=N,故CD⊥平面ABN,而BE⊂平面ABN,所以BE⊥CD,故A正确;对于B:由于CD⊂平面ACD,故平面ABN⊥平面ACD,故∠BAN是BE与平面DCE所成角,故cos∠BAN=AMAN=22×230=1515,故B错误;对于C:OH=CNCM12MN=22×230×12×7=10530,故C正确;对于D:OA2=AM2+12MN2=22 2+72 2=94所以外接球的表面积为9π,故D正确.故选:ACD2.【2020年高考全国Ⅰ卷理数】如图,在三棱锥P-ABC的平面展开图中,AC=1,AB=AD= 3,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=.【答案】-14【解析】∵AB ⊥AC ,AB =3,AC =1,由勾股定理得BC =AB 2+AC 2=2,同理得BD =6,∴BF =BD =6,在△ACE 中,AC =1,AE =AD =3,∠CAE =30°,由余弦定理得CE 2=AC 2+AE 2-2AC ⋅AE cos30°=1+3-2×1×3×32=1,∴CF =CE =1,在△BCF 中,BC =2,BF =6,CF =1,由余弦定理得cos ∠FCB =CF 2+BC 2-BF 22CF ⋅BC=1+4-62×1×2=-14.故答案为:-14.题型二、折叠问题2(2022·河北唐山·高三期末)如图,四边形ABCD 是边长为2的正方形,E 为AB 的中点,将△AED 沿DE 所在的直线翻折,使A 与A 重合,得到四棱锥A -BCDE ,则在翻折的过程中()A.DE ⊥AAB.存在某个位置,使得A E ⊥CDC.存在某个位置,使得A B ∥DED.存在某个位置,使四棱锥A -BCDE 的体积为1【答案】AB 【分析】过A 作A O ⊥DE ,垂足为O ,证得DE ⊥平面A AO ,可判定A 正确;取DC 的中点G ,连接EG ,A G ,当A 在平面ABCD 上的投影在FG 上时,可判定B 正确;连接A B ,由直线A B 与DE 是异面直线,可判定C错误;求得A O=25,结合体积公式求可判定D错误.【详解】对于A中,如图所示,过A 作A O⊥DE,垂足为O,延长AO交BC于点F,因为DE⊥AO,且AO∩A O=O,所以DE⊥平面A AO,又因为A A⊂平面A AO,所以DE⊥AA ,所以A正确;对于B中,取DC的中点G,连接EG,A G,当A 在平面ABCD上的投影在FG上时,此时DC⊥平面A EG,从而得到A E⊥CD,所以B正确;对于C中,连接A B,因为E⊂平面A BE,D⊄平面A BE,所以直线A B与DE是异面直线,所以不存在某个位置,使得A B∥DE,所以C错误;对于D中,由V A -BCDE=13×12×(1+2)×2×h=1,解得h=1,由A 作A O⊥DE,可得A O=A E⋅A DDE=1×25=25,即此时四棱锥的高h∈0,25 5,此时25<1,所以不存在某个位置,使四棱锥A -BCDE的体积为1,所以D错误.故选:AB.1.(2022·江苏宿迁·高三期末)如图,一张长、宽分别为2,1的矩形纸,A,B,C,D分别是其四条边的中点.现将其沿图中虚线折起,使得P1,P2,P3,P4四点重合为一点P,从而得到一个多面体,则()A.在该多面体中,BD=2B.该多面体是三棱锥C.在该多面体中,平面BAD⊥平面BCDD.该多面体的体积为112【答案】BCD利用图形翻折,结合勾股定理,确定该多面体是以A ,B ,C ,D 为顶点的三棱锥,利用线面垂直,判定面面垂直,以及棱锥的体积公式即可得出结论.【解析】由于长、宽分别为2,1,A ,B ,C ,D 分别是其四条边的中点,现将其沿图中虚线折起,使得P 1,P 2,P 3,P 4四点重合为一点P ,且P 为BD 的中点,从而得到一个多面体ABCD ,所以该多面体是以A ,B ,C ,D 为顶点的三棱锥,故B 正确;AB =BC =CD =DA =32,AC =BD =1,AP =CP =22,故A 不正确;由于22 2+22 2=1,所以AP ⊥CP ,BP ⊥CP ,可得BD ⊥平面ACP ,则三棱锥A -BCD 的体积为13×BD ×S △ACP =13×1×12×22×22=112,故D 正确;因为AP ⊥BP ,AP ⊥CP ,所以AP ⊥平面BCD ,又AP ⊂平面BAD ,可得平面BAD ⊥平面BCD ,故C 正确.故选:BCD2.(2022·江苏海安·高三期末)如图,ABCD 是一块直角梯形加热片,AB ∥CD ,∠DAB =60°,AB =AD =4dm .现将△BCD 沿BD 折起,成为二面角A -BD -C 是90°的加热零件,则AC 间的距离是dm ;为了安全,把该零件放进一个球形防护罩,则球形防护罩的表面积的最小值是dm 2.(所有器件厚度忽略不计)【答案】4设E 为BD 的中点,由题可得AE ⊥平面BCD ,进而可求AC ,再结合条件可得△DAB 的中心为棱锥C -ABD 的外接球的球心,即求.【解析】∵ABCD 是一块直角梯形加热片,AB ∥CD ,∠DAB =60°,AB =AD =4dm .∴△DAB 为等边三角形,BC =23dm ,DC =2dm ,设E 为BD 的中点,连接AE ,CE ,则AE ⊥BD ,又二面角A -BD -C 是90°,∴AE ⊥平面BCD ,CE ⊂平面BCD ,∴AE ⊥CE ,又CE =2dm ,AE =23dm ,∴AC =AE 2+CE 2=4dm ,设△DAB 的中心为O ,则OE ⊥平面BCD ,又E 为BD 的中点,△BCD 为直角三角形,∴OB =OC =OD =OA ,即O 为三棱锥C -ABD 的外接球的球心,又OA =23×23=433dm ,故球形防护罩的表面积的最小值为4π⋅OA 2=64π3dm 2.故答案为:4,64π3.3.(2022·河北保定·高三期末)如图,DE 是边长为4的等边三角形ABC 的中位线,将△ADE 沿DE 折起,使得点A 与P 重合,平面PDE ⊥平面BCDE ,则四棱雉P -BCDE 外接球的表面积是.【答案】52π3求出四边形BCDE 外接圆的圆半径,再设四棱锥P -BCDE 外接球的球心为O ,由R 2=OO 2+O B 2求出半径,代入球的表面积公式即可.【解析】如图,分别取BC ,DE 的中点O ,F ,连接PF ,O F .因为△ABC 是边长为4的等边三角形,所以PF =O F =3,所以O B =O C =O D =O E =2,则四边形BCDE 外接圆的圆心为O ,半径r =2.设四棱锥P -BCDE 外接球的球心为O ,连接OO ,过点O 作OH ⊥PF ,垂足为H .易证四边形HFO O 是矩形,则HF =OO ,OH =O F =3.设四棱锥P -BCDE 外接球的半径为R ,则R 2=OO 2+O B 2=OH 2+PH 2=O F 2+PF -OO 2,即R 2=OO 2+22=3 2+3-OO 2,解得R 2=133,故四棱锥P -BCDE 外接球的表面积是4πR 2=52π3.故答案为:52π3题型三、折叠的综合性问题3(2022·江苏扬州·高三期末)在边长为6的正三角形ABC 中M ,N 分别为边AB ,AC 上的点,且满足AM AB =ANAC=λ,把△AMN 沿着MN 翻折至A ′MN 位置,则下列说法中正确的有()A.在翻折过程中,在边A ′N 上存在点P ,满足CP ∥平面A ′BMB.若12<λ<1,则在翻折过程中的某个位置,满足平面A ′BC ⊥平面BCNMC.若λ=12且二面角A ′-MN -B 的大小为120°,则四棱锥A ′-BCNM 的外接球的表面积为61πD.在翻折过程中,四棱锥A ′-BCNM 体积的最大值为63【答案】BCD 【分析】通过直线相交来判断A 选项的正确性;通过面面垂直的判定定理判断B 选项的正确性;通过求四棱锥A -BCNM 外接球的表面积来判断C 选项的正确性;利用导数来求得四棱锥A -BCNM 体积的最大值.【详解】对于选项A,过P作PQ⎳MN⎳BC,交AM于Q,则无论点P在A′N上什么位置,都存在CP与BQ相交,折叠后为梯形BCQP,则CP不与平面A′BM平行,故选项A错误;对于选项B,设D,E分别是BC,MN的中点,若12<λ<1,则AE>DE,所以存在某一位置使得A′D⊥DE,又因为MN⊥A′E,MN⊥DE,且A′E∩DE=E,所以MN⊥平面A′DE,所以MN⊥A′D,DE∩MN=E,所以A′D⊥平面BCNM,所以A′BC⊥平面BCNM,故选项B正确;对于选项C,设D,E分别是BC,MN的中点,若λ=12且二面角A′-MN-B的大小为120°,则△AMN为正三角形,∠BMN=120°,∠C=60°,则BCNM四点共圆,圆心可设为点G,其半径设为r,DB=DC=DM=DN=3,所以点G即为点D,所以r=3,二面角A′-MN-B的平面角即为∠A′ED=120°,过点A′作A′H⊥DE,垂足为点H,EH=334,DH=934,A′H=94,DH2=24316,设外接球球心为O,由OD2+32=R294-OD2+24316=R2,解得R2=614,所以外接球的表面积为S=4πR2=61π,故选项C正确;对于选项D,设D,E分别是BC,MN的中点,设h是四棱锥A -BCNM的高.S△AMN=12×6λ×6λ×32=93λ2,S△ABC=12×6×6×32=93,所以S四边形BCNM=93(1-λ2),则V A′-BCNM=13×93(1-λ2)×h≤33(1-λ2)×A′E=33(1-λ2)×33λ=27(-λ3+λ),λ∈(0,1),可设f(λ)=27(-λ3+λ),λ∈(0,1),则f λ =27(-3λ2+1),令f λ =0,解得λ=33,则函数f(λ)在0,33上单调递增,在33,1上单调递减,所以f(λ)max=f33=63,则四棱锥A′-BCN体积的最大值为63,故选项D正确.故选:BCD1.(2021·山东滨州市·高三二模)已知正方形ABCD的边长为2,将△ACD沿AC翻折到△ACD 的位置,得到四面体D -ABC,在翻折过程中,点D 始终位于△ACD所在平面的同一侧,且BD 的最小值为2,则下列结论正确的是()A.四面体D -ABC的外接球的表面积为8πB.四面体D -ABC体积的最大值为63C.点D的运动轨迹的长度为22π3D.边AD旋转所形成的曲面的面积为22π3【答案】ACD【解析】对ABCD各选项逐一分析即可求解.【详解】解:对A:∵∠ABC=90o,∠AD C=90o,∴AC中点即为四面体D -ABC的外接球的球心,AC为球的直径,∴R=2,∴SD -ABC =4πR2=4π22=8π,故选项A正确;对B:当平面AD C⏊平面ABC时,四面体D -ABC体积的最大,此时高为2,∴V D -ABCmax=13×12×2×2×2=223,故选项B错误;对C :设方形ABCD 对角线AC 与BD 交于O ,由题意,翻折后当BD 的最小值为2时,△OD B 为边长为2的等边三角形,此时∠D OB =π3,所以点D 的运动轨迹是以O 为圆心2为半径的圆心角为2π3的圆弧,所以点D 的运动轨迹的长度为2π3×2=22π3,故选项C 正确;对D :结合C 的分析知,边AD 旋转所形成的曲面的面积为以A 为顶点,底面圆为以O 为圆心OD =2为半径的圆锥的侧面积的13,即所求曲面的面积为13πrl =13π×2×2=22π3,故选项D 正确.故选:ACD .2.【2022·广东省深圳市宝安区第一次调研10月】如图甲是由正方形ABCD ,等边△ABE 和等边△BCF 组成的一个平面图形,其中AB =6,将其沿AB ,BC ,AC 折起得三棱锥P -ABC ,如图乙.(1)求证:平面PAC ⊥平面ABC ;(2)过棱AC 作平面ACM 交棱PB 于点M ,且三棱锥P -ACM 和B -ACM 的体积比为1:2,求直线AM 与平面PBC 所成角的正弦值.【答案】(1)证明见解析;(2)427.【分析】(1)取AC 的中点为O ,连接BO ,PO ,证明PO ⊥AC ,PO ⊥OB ,即证PO ⊥平面ABC ,即证得面面垂直;(2)建立如图空间直角坐标系,写出对应点的坐标和向量AM 的坐标,再计算平面PBC 法向量n,利用所求角的正弦为cos AM ,n即得结果.【解析】(1)证明:如图,取AC 的中点为O ,连接BO ,PO .∵PA =PC ,∴PO ⊥AC .∵PA =PC =6,∠APC =90°,∴PO =12AC =32,同理BO =32.又PB =6,∴PO 2+OB 2=PB 2,∴PO ⊥OB .∵AC ∩OB =O ,AC ,OB ⊂平面ABC ,11∴PO ⊥平面ABC .又PO ⊂平面PAC ,∴平面PAC ⊥平面ABC ;(2)解:如图建立空间直角坐标系,根据边长关系可知,A 32,0,0 ,C -32,0,0 ,B 0,32,0 ,P 0,0,32 ,∴CB =32,32,0 ,CP =32,0,32.∵三棱锥P -ACM 和B -ACM 的体积比为1:2,∴PM :BM =1:2,∴M 0,2,22 ,∴AM =-32,2,22 .设平面PBC 的法向量为n =x ,y ,z ,则32x +32y =032x +32z =0 ,令x =1,得n =1,-1,-1 .设直线AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =-6227⋅3 =427.∴直线AM 与平面PBC 所成角的正弦值为427.。

立体几何中的翻折问题与探索性问题-高考文科数学分类专题突破训练

立体几何中的翻折问题与探索性问题-高考文科数学分类专题突破训练

考查角度2立体几何中的翻折问题与探索性问题分类透析一翻折问题例1 如图,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,AC∩EF=O,以EF为折痕将△CEF折起,使点C运动到点P的位置,连接PA,PB,PD,得到如图所示的五棱锥P-ABFED,且PB=.(1)求证:BD⊥PA.(2)求四棱锥P-BFED的体积.分析 (1)抓住EF与BD的平行关系,结合菱形的性质,利用翻折前后的垂直关系可证EF⊥平面PAO,问题得以解决;(2)分别计算PO的长度和四边形BFED的面积,再利用公式计算体积.解析 (1)∵点E,F分别是边CD,CB的中点,∴BD∥EF.∵菱形ABCD的对角线互相垂直,∴BD⊥AC,∴EF⊥AC,∴EF⊥AO,EF⊥PO.∵AO?平面POA,PO?平面POA,AO∩PO=O,∴EF⊥平面POA,∴BD⊥平面POA,∴BD⊥PA.(2)设AO∩BD=H,连接BO,∵∠DAB=60°,∴△ABD为等边三角形,∴BD=4,BH=2,HA=2,HO=PO=.∴在Rt△BHO中,BO==.∵在△PBO中,BO2+PO2=10=PB2,∴PO⊥BO.又PO⊥EF,EF∩BO=O,EF?平面BFED,BO?平面BFED,∴PO⊥平面BFED.∵梯形BFED的面积S=(EF+BD)×HO=3,∴四棱锥P-BFED的体积V=S×PO=×3×=3.方法技巧 1.画好两个图——翻折前的平面图和翻折后的立体图;2.分析好两个关系——翻折前后哪些位置关系和度量关系发生了改变,哪些没有改变.一般地,在同一个半平面内的几何元素之间的关系是不变的,在两个半平面内的几何元素之间的关系是变化的,分别位于两个半平面内但垂直于翻折棱的直线翻折后仍然垂直于翻折棱.分类透析二空间线面关系的探索性问题例2 如图,三棱柱ABC-A1B1C1的各棱长均为2,AA1⊥平面ABC,E,F 分别为棱A1B1,BC的中点.(1)求证:直线BE∥平面A1FC1.(2)若平面A1FC1与直线AB交于点M,请指出点M的位置,说明理由,并求三棱锥B-EFM的体积.分析 (1)取A1C1的中点G,连接EG,FG,利用线线平行得到线面平行;(2)采用分析法进行求解.解析 (1)取A1C1的中点G,连接EG,FG,则EG B1C1,又BF B1C1,所以BF EG.所以四边形BFGE是平行四边形,所以BE∥FG.而BE?平面A1FC1,FG?平面A1FC1,所以直线BE∥平面A1FC1.(2)M为棱AB的中点.理由如下:因为AC∥A1C1,AC?平面A1FC1,A1C1?平面A1FC1,所以直线AC∥平面A1FC1.又平面A1FC1∩平面ABC=FM,所以AC∥FM.又F为棱BC的中点,所以M为棱AB的中点.所以S△BFM=S△ABC=××2×2×sin 60°=,所以V B-EFM=V E-BFM=××2=.方法技巧探索性问题的处理思路:先假设存在,再通过推理,进行验证.探索空间中的线面平行与垂直关系,可以利用空间线面关系的判定与性质定理进行推理探索.分类透析三条件追溯型例3 如图,已知三棱柱ABC-A1B1C1的底面ABC是等边三角形,且AA1⊥底面ABC,M为AA1的中点,点N在线段AB上,且AN=2NB,点P在线段CC1上.(1)证明:平面BMC1⊥平面BCC1B1.(2)当为何值时,PN∥平面BMC1?分析 (1)取BC1的中点O,BC的中点Q,连接MO,OQ得MO∥AQ.由AQ⊥平面BCC1B1得MO⊥平面BCC1B1,再利用线面垂直得到面面垂直.(2)采用分析法求解.解析 (1)设BC1的中点为O,BC的中点为Q,连接MO,OQ,AQ,则OQ CC1AM,∴四边形AQOM是平行四边形,∴AQ∥MO.∵AA1∥CC1,AA1⊥平面ABC,∴CC1⊥平面ABC.∵AQ?平面ABC,∴CC1⊥AQ.又∵AB=AC,∴AQ⊥BC.∵CC1?平面BCC1B1,BC?平面BCC1B1,BC∩CC1=C,∴AQ⊥平面BCC1B1,∴MO⊥平面BCC1B1.∵MO?平面BMC1,∴平面BMC1⊥平面BCC1B1.(2)取AE=2EM,则NE∥BM.∵NE?平面BMC1,BM?平面BMC1,∴NE∥平面BMC1.若PN∥平面BMC1,则平面NEP∥平面BMC1.∵EP?平面NEP,∴EP∥平面BMC1.∵平面BMC1∩平面AA1C1C=MC1,∴EP∥MC1.又∵EM∥PC1,∴四边形EMC1P是平行四边形,∴PC1=EM=AM=AA1=CC1,。

立体几何中折叠与展开问题

立体几何中折叠与展开问题

立体几何中折叠与展开问题(2)【知识与方式】折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中表现。

处置这种题型的关键是抓住两图的特点关系。

折叠问题是立体几何的一类典型问题是实践能力与创新能力考查的好素材。

解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了转变,哪些没有发生转变。

这些未转变的已知条件都是咱们分析问题和解决问题的依据。

而表面展开问题是折叠问题的逆向思维、逆进程,一样地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试。

【认知训练】1.△ABC 的BC 边上的高线为AD ,BD=a ,CD=b ,将△ABC 沿AD 折成大小为θ的二面角B-AD-C ,假设ba=θcos ,那么三棱锥A-BCD 的侧面三角形ABC 是( ) A 、锐角三角形 B 、钝角三角形C 、直角三角形D 、形状与a 、b 的值有关的三角形2.如图为棱长是1的正方体的表面展开图,在原正方体中,给出以下三个命题: ①点M 到AB 的距离为22 ②三棱锥C -DNE 的体积是61③AB 与EF 所成角是2π 其中正确命题的序号是3.将下面的平面图形(每一个点都是正三角形的极点或边的中点)沿虚线折成一个正四面体后,直线MN 与PQ 是异面直线的是 ……………………………………………( ) ① ② ③ ④A .①②B .②④C .①④D .①③MNP QMQN MN PQMNP Q4.正方形ABCD 中,M 为AD 的中点,N 为AB 中点,沿CM 、CN 别离将三角形CDM 和△CBN 折起,使CB 与CD 重合,设B 点与D 点重合于P ,设T 为PM 的中点,那么异面直线CT 与PN所成的角为( )A,300 B,450 C,600 D,90) AN MPC(B)(D )T 第11题图5.(06山东卷)如图,在等腰梯形ABCD 中,AB=2DC=2, ∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 别离沿ED 、 EC 向上折起,使A 、B 重合于点P ,那么P -DCE 三棱锥的 外接球的体积为 (A)2734π(B)26π (C)86π (D)246π6.在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90︒,AC =6,BC =CC 12P 是BC 1上一动点,那么CP +PA 1的最小值是___________7.用一张正方形的包装纸把一个棱长为a 的立方体完全包住,不能将正方形纸撕开,所需包装纸的最小面积为A.29a B .28a C. 27a D. 26a【能力训练】例1.点O 是边长为4的正方形ABCD 的中心,点E ,F 别离是AD ,BC 的中点.沿对角线AC 把正方形ABCD 折成直二面角D -AC -B .(Ⅰ)求EOF ∠的大小; (Ⅱ)求二面角E OF A --的大小.例2.如图,在正三棱柱ABC-A 1B 1C 1中,AB=3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面通过棱CC 1到M 点的最短线路长为29,设这条最短线路与C 1C 的交点为N 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题16立体几何中的折叠、探究问题高考定位 1.立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等;2.以空间向量为工具,探究空间几何体中线面关系或空间角存在的条件,计算量较大,一般以解答题的形式考查,难度中等偏上.1.(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的平面BCG与平面CGA夹角的大小.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,所以AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,且BE∩BC=B,BE,BC⊂平面BCGE,所以AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)解作EH⊥BC,垂足为H.因为EH⊂平面BCGE,平面BCGE⊥平面ABC,平面BCGE∩平面ABC=BC,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH = 3. 以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H -xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0). 设平面ACGD 的法向量为n =(x ,y ,z ), 则⎩⎨⎧CG →·n =0,AC →·n =0,即⎩⎪⎨⎪⎧x +3z =0,2x -y =0.所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0), 设平面BCG 与平面CGA 夹角的大小为θ, 所以cos θ=|cos 〈n ,m 〉|=|n ·m ||n ||m |=32. 因此平面BCG 与平面CGA 夹角的大小为30°.2.(2021·全国甲卷)已知直三棱柱ABC -A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1.(1)证明:BF ⊥DE ;(2)当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?(1)证明 因为E ,F 分别是AC 和CC 1的中点,且AB =BC =2,侧面AA 1B 1B 为正方形,所以CF =1,BF = 5.如图,连接AF ,由BF ⊥A 1B 1,AB ∥A 1B 1,得BF ⊥AB ,于是AF =BF 2+AB 2=3,所以AC =AF 2-CF 2=2 2.由AB 2+BC 2=AC 2,得BA ⊥BC .∵三棱柱ABC -A 1B 1C 1为直三棱柱, ∴BB 1⊥AB 且BB 1⊥BC , 则BA ,BC ,BB 1两两互相垂直,故以B 为坐标原点,以BA ,BC ,BB 1所在直线分别为x ,y ,z 轴建立空间直角坐标系B -xyz ,则B (0,0,0),E (1,1,0),F (0,2,1),BF →=(0,2,1).设B 1D =m (0≤m ≤2),则D (m ,0,2), 于是DE→=(1-m ,1,-2). 所以BF→·DE →=0,所以BF ⊥DE . (2)解 易知平面BB 1C 1C 的一个法向量为n 1=(1,0,0). 设平面DFE 的法向量为n 2=(x ,y ,z ), 则⎩⎨⎧DE→·n 2=0,EF→·n 2=0,又由(1)得DE →=(1-m ,1,-2),EF →=(-1,1,1), 所以⎩⎪⎨⎪⎧(1-m )x +y -2z =0,-x +y +z =0,令x =3,得y =m +1,z =2-m , 于是,平面DFE 的一个法向量为 n 2=(3,m +1,2-m ), 所以cos 〈n 1,n 2〉=32⎝ ⎛⎭⎪⎫m -122+272.设平面BB 1C 1C 与平面DFE 所成的二面角为θ, 则sin θ=1-cos 2〈n 1,n 2〉 =1-92⎝ ⎛⎭⎪⎫m -122+272, 故当m =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小为33, 即当B 1D =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小.热点一 折叠问题解答折叠问题的关键是分清翻折前后图形的位置和数量关系的变与不变,一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决. 考向1 折叠后的位置关系及空间角例1 (2022·重庆诊断)在直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =2CD =4,E ,F分别为AD,BC的中点,沿EF将四边形EFCD折起,使得DE⊥BF(如图2).(1)求证:平面ABFE⊥平面EFCD;(2)若直线AC与平面ABFE所成角的正切值为63,求平面CEB与平面EBF夹角的余弦值.(1)证明由题设条件,得EF∥AB∥CD,AB⊥AD,则DE⊥EF,又DE⊥BF且BF∩EF=F,BF,EF⊂平面ABFE,则DE⊥平面ABFE,又DE⊂平面EFCD,故平面ABFE⊥平面EFCD.(2)解如图过点C作CG⊥EF,交EF于点G,连接AG,因为平面ABFE⊥平面EFCD,且平面ABFE∩平面EFCD=EF,所以CG⊥平面ABFE,故直线AC与平面ABFE所成的角为∠CAG,设DE=h,则在Rt△CAG中,CG=DE=h,AG=EG2+EA2=h2+4,所以tan ∠CAG =CGAG =hh 2+4=63, 解得h =22,如图,建立空间直角坐标系E -xyz ,则E (0,0,0),B (22,4,0),C (0,2,22), 所以EC→=(0,2,22),EB →=(22,4,0), 则平面EBF 的法向量为m =(0,0,1), 设平面CEB 的法向量为n =(x ,y ,z ), 由⎩⎨⎧n ·EC →=2y +22z =0,n ·EB →=22x +4y =0,令y =-2,则n =(2,-2,1),则平面CEB 与平面EBF 夹角的余弦值为 |cos 〈m·n 〉|=|m·n ||m |·|n |=77.所以平面CEB 与平面EBF 夹角的余弦值为77.易错提醒 注意图形翻折前后变与不变的量以及位置关系.对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位置与数量关系. 考向2 展开后的数字特征例2 (1)(2022·青岛质检)如图所示,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +P A 1的最小值是________.(2)如图,一立在水平地面上的圆锥形物体的母线长为4 m ,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥表面爬行一周后回到点P 处.若该小虫爬行的最短路程为4 3 m ,则圆锥底面圆的半径等于________m.答案 (1)52 (2)43解析 (1)如图,以BC 1为轴,把平面BCC 1翻折到与平面A 1BC 1共面,则A 1BCC 1在同一个平面内,图中A 1C 就是所求最小值.通过计算可得∠A 1C 1B =90°,∠BC 1C =45°,所以∠A 1C 1C =135°,由余弦定理可得A 1C =5 2.(2)圆锥顶点记为O ,把圆锥侧面沿母线OP 展开成如图所示的扇形,由题意OP =4, PP ′=43,则cos ∠POP ′=42+42-(43)22×4×4=-12,又∠POP′为△POP′一内角,所以∠POP′=2π3.设底面圆的半径为r,则2πr=2π3×4,所以r=43.易错提醒几何体表面上的最短距离要注意棱柱的侧面展开图可能有多种,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.训练1 如图1,在直角梯形ABCD中,AB∥DC,∠D=90°,AB=2,DC=3,AD=3,CE=2ED.沿BE将△BCE折起,使点C到达点C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)求直线BC1与平面AC1D所成角的正弦值.(1)证明在图①中,连接AE,由已知得AE=2.图①∵CE∥AB,CE=AB=AE=2,∴四边形ABCE为菱形.连接AC交BE于点F,则CF⊥BE.在Rt △ACD 中,AC =32+(3)2=23,所以AF =CF = 3.如图②中,由翻折,可知C 1F =3,C 1F ⊥BE .图②∵AC 1=6,AF =C 1F =3, ∴AF 2+C 1F 2=AC 21,∴C 1F ⊥AF ,又BE ∩AF =F ,BE ⊂平面ABED , AF ⊂平面ABED , ∴C 1F ⊥平面ABED . 又C 1F ⊂平面BC 1E , 所以平面BC 1E ⊥平面ABED .(2)解 如图②,建立空间直角坐标系,则D (0,0,0),A (3,0,0),B (3,2,0),C 1⎝ ⎛⎭⎪⎫32,32,3,所以BC 1→=⎝ ⎛⎭⎪⎫-32,-12,3,DA →=(3,0,0),DC 1→=⎝ ⎛⎭⎪⎫32,32,3, 设平面AC 1D 的法向量为n =(x ,y ,z ), 则⎩⎨⎧DA →·n =0,DC 1→·n =0,即⎩⎨⎧3x =0,32x +32y +3z =0,令z =3,则x =0,y =-2,所以n =(0,-2,3)为平面AC 1D 的一个法向量.设直线BC 1与平面AC 1D 所成的角为θ,则sin θ=|cos 〈BC 1→,n 〉|=|BC 1→·n ||BC 1→||n |=42×7=277. 所以直线BC 1与平面AC 1D 所成角的正弦值为277. 热点二 探究问题与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或平面与平面的夹角满足特定要求时的存在性问题.解题思路:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断. 考向1 探究线面位置关系例3 (2022·济南质检)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,E ,F 分别为棱AA 1,CC 1的中点,G 为棱DD 1上的动点.(1)求证:B ,E ,D 1,F 四点共面;(2)是否存在点G ,使得平面GEF ⊥平面BEF ?若存在,求出DG 的长;若不存在,说明理由.(1)证明 如图,连接D 1E ,D 1F ,取BB 1的中点为M ,连接MC 1,ME , 因为E 为AA 1的中点,所以EM ∥A 1B 1∥C 1D 1,且EM =A 1B 1=C 1D 1,所以四边形EMC 1D 1为平行四边形, 所以D 1E ∥MC 1, 又F 为CC 1的中点,所以BM ∥C 1F ,且BM =C 1F , 所以四边形BMC 1F 为平行四边形, 所以BF ∥MC 1. 所以BF ∥D 1E ,所以B ,E ,D 1,F 四点共面.(2)解 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,假设存在满足题意的点G (0,0,t ), 由已知B (1,1,0), E (1,0,1),F (0,1,1),则EF→=(-1,1,0),EB →=(0,1,-1),EG →=(-1,0,t -1), 设平面BEF 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎨⎧n 1·EF →=0,n 1·EB →=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,y 1-z 1=0,取x 1=1,则y 1=1,z 1=1, n 1=(1,1,1).设平面GEF 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎨⎧n 2·EF →=0,n 2·EG →=0,即⎩⎪⎨⎪⎧-x 2+y 2=0,-x 2+(t -1)z 2=0, 取x 2=t -1,则y 2=t -1,z 2=1,n 2=(t -1,t -1,1). 因为平面GEF ⊥平面BEF , 所以n 1·n 2=0所以t -1+t -1+1=0, 所以t =12,所以存在满足题意的点G ,使得平面GEF ⊥平面BEF ,且DG 的长为12. 考向2 与空间角有关的探究性问题例4 如图,四棱锥P -ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,BC =CD =1,AB =2.△PBC 是等边三角形,平面PBC ⊥平面ABCD ,点M 在棱PC 上.(1)当M 为棱PC 的中点时,求证:AP ⊥BM ;(2)是否存在点M,使得平面DMB与平面MBC夹角的余弦值为34若存在,求CM的长;若不存在,请说明理由.(1)证明连接AC,由底面ABCD是等腰梯形且AB=2,BC=CD=1,得∠ABC=π3,在△ABC中,由余弦定理得AC=3,∴AC2+BC2=AB2,∴∠ACB=π2,∴AC⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,AC⊂平面ABCD,∴AC⊥平面PBC,∵BM⊂平面PBC,∴AC⊥BM,又M为棱PC的中点,且△PBC是等边三角形,∴BM⊥PC,又∵PC∩AC=C,PC⊂平面APC,AC⊂平面APC,∴BM⊥平面APC,∵AP⊂平面APC,∴AP⊥BM.(2)解假设存在点M,使得平面DMB与平面MBC夹角的余弦值为3 4.过点P作PO⊥BC交BC于点O,∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,PO⊂平面PBC,∴PO⊥平面ABCD,取AB的中点E,连接OE,则OE∥CA,由(1)知OE⊥平面PBC,因此以O为原点,以OC,OE,OP所在直线分别为x,y,z轴建立如图所示的空间直角坐标系O-xyz.∴O (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,C ⎝ ⎛⎭⎪⎫12,0,0,B ⎝ ⎛⎭⎪⎫-12,0,0,D ⎝ ⎛⎭⎪⎫1,32,0, 则DB→=⎝ ⎛⎭⎪⎫-32,-32,0, CP→=⎝ ⎛⎭⎪⎫-12,0,32. 设CM→=tCP →(0<t ≤1),则M ⎝ ⎛⎭⎪⎫1-t 2,0,32t . 则DM →=⎝ ⎛⎭⎪⎫-t -12,-32,32t ,设平面DMB 的法向量为a =(x ,y ,z ), 则⎩⎪⎨⎪⎧a ·DM →=-1+t 2x -32y +32tz =0,a ·DB →=-32x -32y =0,令x =3,则y =-3,z =t -2t ,∴a =⎝ ⎛⎭⎪⎫3,-3,t -2t 为平面DMB 的一个法向量, 易知平面MBC 的一个法向量为 b =(0,1,0), 则|cos 〈a ,b 〉|=|a·b||a||b|=33+9+⎝⎛⎭⎪⎫t -2t 2=312+⎝⎛⎭⎪⎫t -2t 2=34,则⎝⎛⎭⎪⎫t -2t 2=4,即t -2t =-2, 解得t =23,故CM =|CM→|=23|CP →|=23.所以存在点M ,使得平面DMB 与平面MBC 夹角的余弦值为34,且CM 的长为23. 规律方法 解决立体几何中探索性问题的基本方法(1)通常假设问题中的数学对象存在或结论成立,再在这个前提下进行推理,如果能推出与条件吻合的数据或事实,说明假设成立,并可进一步证明,否则假设不成立.(2)探索线段上是否存在满足条件的点时,一定注意三点共线的应用.训练2 (2022·盐城模拟)如图,三棱柱ABC -A 1B 1C 1的所有棱长都为2,B 1C =6,AB ⊥B 1C .(1)求证:平面ABB 1A 1⊥平面ABC ;(2)在棱BB 1上是否存在点P ,使直线CP 与平面ACC 1A 1所成角的正弦值为45,若不存在,请说明理由,若存在,求BP 的长. (1)证明 如图,取AB 的中点D ,连接CD ,B 1D ,因为三棱柱ABC-A1B1C1的所有棱长都为2,所以AB⊥CD,CD=3,BD=1.又因为AB⊥B1C,且CD∩B1C=C,CD,B1C⊂平面B1CD,所以AB⊥平面B1CD.又因为B1D⊂平面B1CD,所以AB⊥B1D.在Rt△B1BD中,BD=1,B1B=2,所以B1D= 3.在△B1CD中,CD=3,B1D=3,B1C=6,所以CD2+B1D2=B1C2,所以CD⊥B1D,又因为AB⊥B1D,AB∩CD=D,AB,CD⊂平面ABC,所以B1D⊥平面ABC.又因为B1D⊂平面ABB1A1,所以平面ABB1A1⊥平面ABC.(2)解假设存在,以DC,DA,DB1所在直线分别为x,y,z轴建立如图所示的空间直角坐标系,则A(0,1,0),B(0,-1,0),C(3,0,0),B1(0,0,3),因此BB 1→=(0,1,3),AC →=(3,-1,0),AA 1→=BB 1→=(0,1,3), CB→=(-3,-1,0). 因为点P 在棱BB 1上, 设BP →=λBB 1→=λ(0,1,3), 其中0≤λ≤1.则CP →=CB →+BP →=CB →+λBB 1→=(-3,-1+λ,3λ). 设平面ACC 1A 1的法向量为n =(x ,y ,z ), 由⎩⎨⎧n ·AC →=0,n ·AA 1→=0,得⎩⎪⎨⎪⎧3x -y =0,y +3z =0,取x =1,则y =3,z =-1, 所以平面ACC 1A 1的一个法向量为 n =(1,3,-1).因为直线CP 与平面ACC 1A 1所成角的正弦值为45, 所以|cos 〈n ,CP →〉|=|n ·CP →||n ||CP →|=⎪⎪⎪⎪⎪⎪⎪⎪-235×3+(λ-1)2+3λ2=45, 化简得16λ2-8λ+1=0,解得λ=14, 所以|BP→|=14|BB 1→|=12,故BP 的长为12.一、基本技能练1.(2022·哈尔滨模拟)如图1,矩形ABCD 中,点E ,F 分别是线段AB ,CD 的中点,AB =4,AD =2,将矩形ABCD 沿EF 翻折.(1)若所成二面角的大小为π2(如图2),求证:直线CE ⊥平面DBF ;(2)若所成二面角的大小为π3(如图3),点M 在线段AD 上,当直线BE 与平面EMC 所成角为π4时,求平面DEM 和平面EMC 夹角的余弦值.(1)证明 由题设易知:四边形BEFC 是边长为2的正方形,BF ,EC 是其对角线, 所以BF ⊥EC ,又平面BEFC ⊥平面AEFD ,平面BEFC ∩平面AEFD =EF ,DF ⊥EF ,DF ⊂平面AEFD ,所以DF ⊥平面BEFC ,又EC ⊂平面BEFC ,则DF ⊥EC ,又DF ∩BF =F ,BF ,DF ⊂平面BDF ,则EC ⊥平面BDF .(2)解 过E 作Ez ⊥面AEFD ,而AE ,EF ⊂面AEFD ,则Ez ⊥AE ,Ez ⊥EF ,而AE ⊥EF ,可建立如图所示的空间直角坐标系,由题设知:∠BEA =∠CFD =π3,所以E (0,0,0),B (1,0,3),C (1,2,3),M (2,m ,0)且 0≤m ≤2,则EB→=(1,0,3),EC →=(1,2,3),EM →=(2,m ,0), 若n =(x ,y ,z )是平面EMC 的法向量,则⎩⎨⎧EC→·n =x +2y +3z =0,EM →·n =2x +my =0,令x =m ,则n =(m ,-2,4-m3),|cos 〈EB →,n 〉|=|EB →·n ||EB →||n |=1m 2-2m +73=12, 可得m =1,则n =(1,-2,3),又l =(0,0,1)是平面EMD 的一个法向量, 所以|cos 〈l ,n 〉|=|l ·n ||l ||n |=322=64,所以平面DEM 和平面EMC 夹角的余弦值为64.2.如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求平面P AC 与平面ACS 夹角的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面P AC ?若存在,求SC ∶SE 的值;若不存在,试说明理由.(1)证明 连接BD 交AC 于点O ,连接SO ,由题意知SO ⊥AC . 在正方形ABCD 中,AC ⊥BD .因为BD ∩SO =O ,BD ,SO ⊂平面SBD ,所以AC ⊥平面SBD ,又SD ⊂平面SBD ,所以AC ⊥SD .(2)解 由题设知,SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,如图.设底面边长为a ,则高SO =62a , 则B ⎝ ⎛⎭⎪⎫22a ,0,0,S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0, C ⎝ ⎛⎭⎪⎫0,22a ,0,又SD ⊥平面P AC ,则平面P AC 的一个法向量为DS →=⎝ ⎛⎭⎪⎫22a ,0,62a , 平面SAC 的一个法向量为OD →=⎝ ⎛⎭⎪⎫-22a ,0,0, 设平面P AC 与平面ACS 夹角的大小为θ.则cos θ=|cos 〈DS →,OD →〉|=|DS →·OD →||DS →||OD →|=12, 所以平面P AC 与平面ACS 夹角的大小为π3.(3)解 在棱SC 上存在一点E 使BE ∥平面P AC .理由如下:由(2)知DS→是平面P AC 的一个法向量, 且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a , CS →=⎝⎛⎭⎪⎫0,-22a ,62a , BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0. 设CE→=tCS →,t ∈[0,1], 则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at . 因为BE ∥平面P AC ,所以BE→·DS →=0, 所以-12a 2+32a 2t =0,解得t =13.故侧棱SC 上存在一点E ,使得BE ∥平面P AC ,此时SC ∶SE =3∶2.3.(2022·全国名校大联考)如图1,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,E为AD边上的点,且AD=2AE=2AB=2BC=2.将△ABE沿BE向上折起,使得异面直线AB与ED所成的角为60°,F为线段AD上一点,如图2.(1)若DE⊥CF,求AFFD的值;(2)求平面ABC与平面AED所成锐二面角的余弦值.解(1)如图①中,连接CE.图①由题意可知,△ABE,△CED,△BCE均为等腰直角三角形,因为BC∥ED,所以∠ABC即为异面直线AB与ED所成的角,所以∠ABC=60°,所以AC=1.取BE的中点O,连接OC,OA,OD,则OA⊥BE,OC⊥BE,且OA=OC=22,因为OA2+OC2=AC2,所以OA⊥OC,因为BE∩OC=O,BE,OC⊂平面BCDE.所以OA⊥平面BCDE.连接EF,因为DE⊥EC,DE⊥CF,CE∩CF=C,CE,CF⊂平面ECF,所以DE⊥平面ECF,又DE⊂平面BCDE,所以平面ECF⊥平面BCDE,故OA∥平面ECF.连接OD交CE于点G,连接FG,因为平面AOD∩平面ECF=FG,所以OA ∥GF ,故AF FD =OG GD =OE CD =12.图②(2)如图②,以O 为坐标原点,OB ,OC ,OA 所在直线分别为x ,y ,z 轴,建立空间直角坐标系O -xyz .则A ⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,D ⎝ ⎛⎭⎪⎫-2,22,0. 所以AB →=⎝ ⎛⎭⎪⎫22,0,-22, BC →=⎝ ⎛⎭⎪⎫-22,22,0,AE →=⎝ ⎛⎭⎪⎫-22,0,-22,ED →=⎝ ⎛⎭⎪⎫-22,22,0. 设平面ABC 的法向量为n 1=(x 1,y 1,z 1),则⎩⎨⎧n 1·AB→=0,n 1·BC →=0,即⎩⎪⎨⎪⎧22x 1-22z 1=0,-22x 1+22y 1=0, 令x 1=2,则y 1=2,z 1=2,所以平面ABC 的一个法向量为n 1=(2,2,2),设平面AED 的法向量为n 2=(x 2,y 2,z 2),则⎩⎨⎧n 2·AE→=0,n 2·ED →=0,即⎩⎪⎨⎪⎧-22x 2-22z 2=0,-22x 2+22y 2=0, 令x 2=2,则y 2=2,z 2=-2,所以平面AED 的一个法向量为n 2=(2,2,-2),所以|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=|2×2+2×2-2×2|22+22+22·22+22+(-2)2=13,故平面ABC 与平面AED 所成锐二面角的余弦值为13.二、创新拓展练4.如图1,四边形ABCD 为梯形,AD ∥BC ,BM ⊥AD 于点M ,CN ⊥AD 于点N ,∠A =45°,AD =4BC =4,AB =2,现沿CN 将△CDN 折起,使△ADN 为正三角形,且平面ADN ⊥平面ABCN ,过BM 的平面与线段DN ,DC 分别交于点E ,F ,如图2.(1)求证:EF ⊥DA ;(2)在棱DN 上(不含端点)是否存在点E ,使得直线DB 与平面BMEF 所成角的正弦值为34,若存在,请确定E 点的位置;若不存在,说明理由.(1)证明 因为BM ⊥AD ,CN ⊥AD ,所以BM ∥CN .在四棱锥D -ABCN 中,CN ⊂平面CDN ,BM ⊄平面CDN ,所以BM ∥平面CDN .又平面BMEF ∩平面CDN =EF ,所以BM ∥EF .因为平面ADN⊥平面ABCN且交于AN,BM⊥AN,所以BM⊥平面ADN,即EF⊥平面ADN.又DA⊂平面ADN,所以EF⊥DA.(2)解存在,E为棱DN上靠近N点的四等分点.因为∠A=45°,AD=4BC=4,AB=2,所以AM=MN=BM=CN=1,DN=2,因为DA=DN,连接DM,所以DM⊥AN.又平面ADN⊥平面ABCN且交于AN,故DM⊥平面ABCN.如图,以M为坐标原点,分别以MA,MB,MD所在直线为x,y,z轴建立空间直角坐标系,则D(0,0,3),B(0,1,0),M(0,0,0),N(-1,0,0),→=(0,1,-3),BM→=(0,-1,0),ND→=(1,0,3).DB设NE→=λND→(0<λ<1),则E(λ-1,0,3λ),ME→=(λ-1,0,3λ).设平面BMEF的法向量n=(x,y,z),则⎩⎨⎧BM →·n =0,ME →·n =0,即⎩⎪⎨⎪⎧-y =0,(λ-1)x +3λz =0,不妨令x =3λ,则z =1-λ,n =(3λ,0,1-λ). 设直线DB 与平面BMEF 所成的角为α,则有sin α=|cos 〈n ,DB →〉|=|n ·DB →||n ||DB→|=|3(λ-1)|23λ2+(1-λ)2=34. 解得λ=14或λ=-12(舍去),所以NE →=14ND →, 即在棱DN 上存在点E ,使得直线DB 与平面BMEF 所成角的正弦值为34,此时E 为棱DN 上靠近N 点的四等分点.。

相关文档
最新文档