基因表达调控

合集下载

普通遗传学第十四章 基因表达的调控

普通遗传学第十四章  基因表达的调控

第一节 原核生物的基因调控
一、转录水平的调控
→原核生物基因表达的调控主要发生在 转录水平。
→当需要某一特定基因产物时,合成这 种mRNA。当不需要这种产物时, mRNA转录受到抑制。
1、乳糖操纵元模型
大肠杆菌的乳糖降解代谢途径: Monod等发现,当大肠杆菌生长在含有乳 糖的培养基上时,乳糖代谢酶浓度急剧增 加;当培养基中没有乳糖时,乳糖代谢酶 基因不表达,乳糖代谢酶合成停止。 为此,Jacob和Monod(1961)提出了乳糖 操纵元模型,用来阐述乳糖代谢中基因表 达的调控机制
转录效率更高
→在有葡萄糖存在时,不能形成cAmp, 也就没有操纵元的正调控因子cAmp-CAP 复合物,因此基因不表达。
乳糖操纵元的正调控
2、色氨酸操纵元
大肠杆菌色氨酸操纵元是合成代谢途径中 基因调控的典型例子。
◆trp操纵元由5个结构基因trpE、trpD、trpC、
trpB和trpA组成一个多顺反子的基因簇。 5′端是启动子、操纵子、前导顺序(trpL)和 衰减子(attenuator)。
❖ 负调控:存在细胞中的阻遏物阻止转录过程的 调控。
❖ 正调控:调节蛋白和DNA以及RNA聚合酶相 互作用来帮助起始。诱导物通常与另一蛋白质结 合形成一种激活子复合物,与基因启动子DNA序 列结合,激活基因起始转录。
原核生物中基因表达以负调控为主, 真核生物中 则主要是正调控机制。
图 14-1 正调控和负调控
2、反义RNA调控
反义RNA可与目的基因的5’UTR( untranslated region )互补配对,配对的区域 通常也包括启动子的SD序列,使mRNA不能与 核糖体有效结合,从而阻止蛋白质的合成。
反义RNA基因已被导入真核细胞,控制真核生 物基因表达。例如,将乙烯形成酶基因的反义 RNA导入蕃茄,大大延长了蕃茄常温贮藏期。

生物化学 5-基因表达调控

生物化学 5-基因表达调控

个基因或一些功能相近的基因表达(生物体内基因表达)的开启、
关闭和表达强度的直接调节。
它是生物在长期进化过程中逐渐形成的精确而灵敏的生存 能力和应变能力,是生物赖以生存的根本之一。
二、基因表达的方式
(一)组成性表达(constitutive gene expression)
指不大受环境变动而变化的一类基因表达。其中某些基因表 达产物是细胞或生物体整个生命过程中都持续需要而必不可少的, 这类基因可称为管家基因(housekeeping gene),这些基因中不少
性。
• 当有葡萄糖存在时, cAMP浓度较低, cAMP与CAP 结合受阻,lac操纵子表达下降。
(4)协调调节
Lac阻遏蛋白负性调节与cAMP正性调节两种机制协调合作 • 无乳糖,无诱导物时,转录作用被I表达的阻遏蛋白所阻断。 • 有诱导物时,诱导物与阻遏蛋白结合,使其变构,从操纵基
因上解离出来。
调节基因
β -半乳糖苷酶
2、阻遏蛋白 的负性调节
没有乳糖存在时,lac操纵子处于阻
遏状态。I序列表达的lac阻遏蛋白与
O序列结合,阻碍RNA聚合酶与P序 列结合,抑制转录启动。
有乳糖存在时,lac 操纵子可被诱导。
别乳糖作为诱导剂分子结合阻遏 蛋白,使蛋白构象变化,导致阻 遏蛋白与O序列解离,发生转录
基因产物特异识别、结 合其它基因的调节序列, 调节其它基因的开启或
关闭称为反式调节
基因产物特异识别、 结合自身基因的调 节序列,调节自身 基因的开启或关闭 称为顺式调节
DNA
a
A A
反式调节
b
mRNA
蛋白质A
C
c
DNA
mRNA
顺式调节

普通生物学中的基因表达调控

普通生物学中的基因表达调控

普通生物学中的基因表达调控基因是生物体传递遗传信息的基本单位,而基因的表达调控则决定了生物体的发育、适应和功能。

在普通生物学中,基因的表达受到许多调控因素的影响,包括转录因子、表观遗传修饰和环境刺激等。

本文将探讨普通生物学中的基因表达调控。

一、转录因子调控基因表达转录因子是一类能够结合在DNA上的蛋白质,它们能够调控基因的转录过程。

转录因子的结合位点通常位于基因启动子区域,通过结合位点上的转录因子来激活或抑制基因的转录。

一个基因通常可以被多个转录因子调控,它们的结合和组合方式形成了基因表达的调控网络。

例如,在果蝇发育过程中,转录因子Bicoid通过结合在hare酮酸的位点上,激活一系列的下游基因的转录。

这些下游基因进一步调控胚胎的前后轴发育,形成不同的体节段。

二、表观遗传修饰影响基因表达除了转录因子,表观遗传修饰也是基因表达调控的重要一环。

表观遗传修饰包括DNA甲基化、组蛋白修饰和非编码RNA的作用等。

这些修饰可以影响染色质的结构和紧密度,从而影响基因的可及性和转录活性。

在哺乳动物中,DNA甲基化是一种常见的表观遗传修饰形式。

DNA甲基化是通过DNA甲基转移酶将甲基基团添加到DNA分子上,进而影响基因的转录活性。

DNA甲基化的模式可以在细胞分化中形成细胞记忆,决定细胞的特化命运。

三、环境刺激对基因表达的调控环境刺激是基因表达调控中一个重要的调控因素。

生物体需要通过调整基因表达来适应环境的变化。

例如,在植物的应答机制中,光照是一个重要的环境刺激。

光照可以激活特定的转录因子,进而影响植物的光合作用和生长发育。

光照调控基因表达的机制在植物学中被广泛研究,对于改良作物的耐旱性和光合效率具有重要意义。

四、基因表达调控的应用对基因表达调控的深入研究不仅可以帮助我们理解生物体的发育和适应机制,也为科学家们开发新的治疗方法和生物技术应用提供了理论基础。

在癌症治疗中,研究人员已经开始利用基因表达调控的方法来恢复被癌症细胞异常表达的基因。

第14章 原核生物基因表达调控

第14章  原核生物基因表达调控

第14章原核生物基因的表达调控重点:操纵子的结构特点和功能;乳糖操纵子的正负调控;色氨酸操纵子的衰减作用。

难点:色氨酸操纵子的衰减作用。

第一节基因调控的基本定律一、基因调控水平二、基因和调控元件三、DNA结合蛋白一、基因调控水平基因表达的调控可以发生在DNA到蛋白质的任意节点上,如基因结构、转录、mRNA 加工、RNA的稳定性、翻译和翻译后修饰。

二、基因和调控元件基因:是指能转录成RNA的DNA序列。

结构基因:编码代谢、生物合成和细胞结构的蛋白质。

调节基因:产物是RNA或蛋白质,控制结构基因的表达。

其产物通常是DNA结合蛋白。

调控元件:不能转录但是能够调控基因表达的DNA序列。

三、DNA结合蛋白调控蛋白通常含有与DNA结合的结构域,一般由60-90个氨基酸组成。

在一个结构域中,只有少数氨基酸与DNA接触。

这些氨基酸(包括天冬氨酸、谷氨酸、甘氨酸、赖氨酸和精氨酸)常与碱基形成氢键,或者与磷酸核糖骨架结合。

根据DNA结合结构域内的模体,可以将DNA结合分成几种类型(图16.2)。

第二节大肠杆菌的乳糖操纵子一、操纵子结构二、正负调控三、乳糖操纵子四、lac突变五、正控制一、操纵子结构原核和真核生物基因调控的主要差异在于功能相关的基因的组成。

细菌的功能相关的基因常常排列在一起,并且由同一启动子控制。

一群一起转录的细菌的结构基因(包括其启动子和控制转录的额外序列)称为操纵子。

二、正负调控转录水平上的调控主要有两种类型:负调控:gene ON 阻遏蛋白 OFF正调控:gene OFF 激活蛋白 ON诱导:活性阻遏蛋白 失活诱导因子+非活性激活蛋白 活性阻遏:失活阻遏蛋白 活性共阻遏蛋白+活性激活蛋白 失活三、乳糖操纵子乳糖操纵子是诱导型操纵子,当诱导物不存在时,阻遏蛋白结合到操纵序列上并阻止转录;当诱导物存在时,阻遏蛋白与诱导物结合后失去活性,转录才得以进行。

四、lac突变为了鉴定乳糖操纵子各个成分的功能,Jacob和Monod做了细菌的接合实验,其中供体菌的F’因子上也带有乳糖操纵子。

基因表达的调控

基因表达的调控

基因表达的调控基因表达的调控是生物体中基因活动的一个重要过程,通过调控基因的表达水平,维持细胞的功能和稳态。

基因表达调控涉及多个层次,包括转录水平、转译水平和后转录水平等。

下面将对这些层次的基因表达调控进行详细介绍。

一、转录水平调控转录水平调控指的是通过调节基因的转录过程来控制基因表达的水平。

主要的调控方式包括转录激活和转录抑制。

转录激活因子可以与DNA结合,促进转录因子的结合,从而增强转录过程,而转录抑制因子则能够与DNA或转录因子结合,阻碍转录的进行。

此外,染色质的结构也会对基因的转录起到重要的调控作用,如DNA甲基化、组蛋白修饰等都可以改变染色质的状态,进而影响基因的表达。

二、转译水平调控转译水平调控是指调控基因的转录产物(mRNA)的转译过程。

在细胞中,mRNA需要被翻译成蛋白质才能发挥作用。

转译的调控主要包括转录后修饰和mRNA降解两个方面。

在转录后修饰中,mRNA会经历剪接、剪接调控、RNA编辑等多个步骤,来改变它的结构和功能。

而mRNA降解则通过一系列核酸酶的作用,将mRNA降解成短的片段,从而控制基因的表达。

三、后转录水平调控后转录水平调控是指基因表达的调控发生在转录和转译之后的过程。

在这个阶段,蛋白质会经历一系列的修饰和定位过程,以实现其特定的功能。

这些修饰包括糖基化、磷酸化、乙酰化等,它们可以改变蛋白质的稳定性、定位和相互作用等性质。

此外,许多蛋白质需要通过蛋白酶的作用进行裂解,形成活性的多肽或蛋白质片段。

总结起来,基因表达的调控是一个复杂而精细的过程,涉及多个层次的调控机制。

通过转录水平的调控,可以控制基因的转录过程和染色质的结构状态;通过转译水平的调控,可以调节mRNA的转译和降解过程;而后转录水平的调控,则调节了蛋白质的修饰和定位等过程。

这些调控机制相互作用,共同维持了细胞内基因表达的平衡,保证了生物体的正常功能。

基因表达的调控不仅对细胞发育和生理功能具有重要的影响,还与疾病的发生和进展密切相关。

基因的表达调控

基因的表达调控

第十三章基因表达调控一.基因表达是指基因转录及翻译的过程。

1.基因是负载特定遗传信息的DNA片段。

cDNA习惯上也称为基因,无内含子遗传学:遗传的基本单位,含有编码一种RNA(多数也指多肽)的信息单位;分子生物学:负载遗传信息的DNA片段。

结构包括:内含子、外显子和调控序列。

2.基因组是一个生物体的整套遗传信息;即一个细胞或病毒所携带的全部遗传信息或整套基因。

3.基因表达是基因转录及翻译的过程;即在一定调控机制下,基因经过转录、翻译,产生具有特异生物学功能的蛋白质分子或产生RNA的过程。

二.基因表达具有时间特异性及空间特异性。

1.按功能需要,某一特定基因的表达严格按特定的时间顺序发生,称之为基因表达的时间特异性。

2.多细胞生物从受精卵到个体,有不同的发育阶段。

在每一个阶段都会有不同的基因严格按照自己特定的时间顺序开启和关闭,表现为与分化、发育阶段一致的时间性。

多细胞生物基因表达的时间特异性又称阶段特异性。

3.在个体生长全过程,某种基因产物在个体按不同组织空间顺序出现,称之为基因表达的空间特异性。

4.基因表达伴随时间顺序所表现出的这种分布差异,实际上是由细胞在器官的分布决定的,所以空间特异性又称细胞或组织特异性。

三.基因表达的方式及调节存在很大差异。

1.基因表达调控:细胞或生物体在接受环境信号刺激时或适应环境变化的过程中在基因表达水平上做出应答的分子机制。

按对刺激的反应性,基因表达的方式分为:组成性表达、诱导或阻遏表达。

2.基本(或组成性)表达:(只受RNA聚合酶和启动子相互影响,不受其他机制调节)某些基因在一个个体的几乎所有细胞中持续表达,通常被称为管家基因(housekeeping gene)。

无论表达水平高低,管家基因较少受环境因素影响,而是在个体各个生长阶段的大多数或几乎全部组织中持续表达,或变化很小。

区别于其他基因,这类基因表达被视为组成性基因表达。

3.诱导和阻遏表达(适应性表达):(除受RNA聚合酶和启动子相互影响,还受其他机制调节)与管家基因不同,大多数基因表达受环境信号影响。

基因表达调控

基因表达调控
目录
第一节 基因表达调控的基本原理
目录
一、基因表达的基本方式
按对刺激的反应性,基因表达的方式分为:
1、组成性表达
某些基因在一个个体的几乎所有细胞中持 续表达,通常被称为 管家基因(housekeeping gene)。无论表达水平高低,管家基因较少受环 境因素影响,这类基因表达被视为组成性基因 表达。
(一)调控序列(顺式作用元件)
可影响自身基因转录活性的DNA序列。
调控序列
顺式作用元件 启动子
结构基因
RNA-pol等
反式作用因子
调节蛋白
目录
1. 启动子
真核基因启动子是RNA聚合酶结 合位点周围的一组转录控制组件,至 少包括一个转录起始点以及一些功能 组件。如TATA盒。
目录
2. 增强子(enhancer)
目录
目录
六、转录后加工水平的调控 七、翻译水平的调控
目录
小结
1. 基因表达和基因表达调控的概念 2. 基因表达调控的多级调控模式 3. 转录起始调节的要素
顺式作用元件与反式作用因子 4.操纵子概念及乳糖操纵子调控机理
目录
绝大多数调节蛋白质结合DNA前,需通 过蛋白质-蛋白质相互作用,形成二聚体 (dimer)或多聚体(polymer)。属于蛋白质蛋白 质相互作用.
目录
1. 调节蛋白分类
通用转录因子(general transcription factors) 是RNA聚合酶结合启动子所必需的一组蛋
白 因 子 , 决 定 三 种 RNA(mRNA 、 tRNA 及 rRNA)转录的类别。TFⅠ、Ⅱ、Ⅲ。
基因 激活
转录起始 转录后加工 mRNA降解
蛋白质翻译 翻译后加工修饰 蛋白质降解等

基因表达与调控

基因表达与调控

基因表达与调控基因是生物体内蛋白质合成的基本单位,而基因表达与调控则是指基因在不同细胞类型和生理状态下的活性水平调节。

通过基因表达与调控,细胞能够在不同环境中正确地产生所需的蛋白质,从而维持生命的正常功能。

本文将从基因表达、基因调控以及相关机制等方面进行论述。

一、基因表达基因表达是指基因通过转录和翻译过程转化为蛋白质的过程。

基因表达分为几个步骤,包括转录和翻译。

转录是指DNA分子通过酶的作用,在细胞核内转录成RNA分子的过程。

翻译是指RNA通过核糖体和tRNA的配合作用,在细胞质中合成蛋白质的过程。

基因表达的过程中,遵循了中心法则,即DNA→RNA→蛋白质。

二、基因调控基因调控是指通过调节基因的表达水平来控制细胞功能和生物体发育的过程。

基因调控的作用机制很多,包括转录水平的调控、RNA后转录调控以及转译后调控等。

转录调控是指通过控制转录过程中的启动子、转录因子和蛋白质复合体等因素的结合,来调节基因表达。

RNA后转录调控是指通过不同的RNA分子、非编码RNA以及miRNA 等调控因子,对RNA分子进行修饰和降解的过程。

转译后调控是指通过对已合成的蛋白质进行修饰、分解和定位等方式调节基因表达。

三、基因表达与调控的相关机制1. DNA甲基化DNA甲基化是指DNA分子中的一些Cytosine碱基通过甲基化酶的作用而被甲基基团修饰的过程。

DNA甲基化可以影响基因的表达,通常甲基化的基因会出现表达静默的现象,从而达到对基因的调控效果。

2. 转录因子转录因子是指能够与DNA特定区域结合,调控基因表达的蛋白质。

转录因子可以通过结合启动子区域,影响RNA聚合酶与DNA结合的能力,从而调控基因的转录过程。

转录因子的表达量和活性水平可以受到其他调控因素的影响,从而进一步调节基因的表达。

3. miRNAmiRNA(microRNA)是一种短链非编码RNA分子,具有调节基因表达的功能。

miRNA可以与靶基因的mRNA结合,通过抑制其翻译或降解来影响基因的表达水平。

教学课件第五章基因表达的调控Regulationandcontrolofgene

教学课件第五章基因表达的调控Regulationandcontrolofgene
阿拉伯糖操纵子的基因结构图
操纵子由结构基因B、A、D以及调控元件I1、 I2、O1、O2和启动子构成。araC基因编码调 节蛋白AraC。
23
AraC 对阿拉伯糖操纵子的调节图
不存在阿拉伯糖时,AraC二聚体与O1、O2及I1 结合,二聚体间相互作用使DNA弯曲成环结构。
由于I2不被占据,B、A、D基因不发生转录,但
例:色氨酸操纵子表达的调控有两种方式: a.通过阻遏蛋白的负调控 b.通过衰减子作用
31
(2)转录衰减的调控
调节区
trpR RNA聚P合酶O
RNA聚合酶
Trp 低时
Trp 高时 Trp
140个核苷酸
结构基因
mRNA 6700个核苷酸
色氨酸操纵子
32
调节区
trpR
PO
前导序列
前导mRNA
1
2
结构基因
(constitutive gene expression)
基因较少受环境因素影响,而是在个 体各个生长阶段的大多数或几乎全部组织 中持续表达,或变化很小。如管家基因。
5
(二)诱导和阻遏表达
诱导表达(induction expression)
在特定环境信号刺激下,有些基 因的表达表现为开放或增强。
阻遏表达(repression expression)
在特定环境信号刺激下,有些基因 的表达表现为关闭或下降。
6
协调表达(coordinance expression)
在一定机制下,功能相关的一组 基因,协调一致,共同表达。
7
四、基因表达的调控的概念
机体各种细胞中含有的相同遗传 信息(相同的结构基因),根据机体的 不同发育阶段、不同的组织细胞及不 同的功能状态,选择性、程序性地表 达特定数量的特定基因的过程。

第十七章 基因表达调控

第十七章   基因表达调控

第十七章基因表达调控第十七章基因表达调控一、目的和要求掌握基因表达调控的基本原理。

掌握原核生物转录调控的操纵子模式:掌握操纵子概念、掌握细菌的乳糖操纵子的作用机制。

了解其它的调控方式。

掌握真核生物基因表达调控的特点,了解基因表达的时空性及表达方式,掌握原核生物与真核生物基因表达调控异同点。

了解真核生物复杂的转录后调控。

了解翻译水平的调控。

二、重点和难点重点:1. 掌握基因、基因组、基因表达的概念。

熟悉基因表达的时间性和空间性。

熟悉基因表达的方式及其基本概念。

掌握基因表达调控的生物学意义。

2. 熟悉基因表达调控的多层次和复杂性。

掌握顺式作用元件和反式作用因子的概念。

了解基因转录激活调节的基本要素。

3. 掌握原核基因转录调节的三个特点。

掌握操纵子的定义、结构组成及各部分功能。

熟悉乳糖操纵子的作用机制。

熟悉阻遏蛋白的负性调节、CAP的正性调节及协调调节。

熟悉原核生物的转录终止调节的两种终止方式。

了解转录衰减机制调节。

了解翻译水平的调节方式。

4. 熟悉真核基因表达调控的特点。

掌握顺式作用元件分类。

掌握转录因子分类,了解转录因子的结构。

了解mRNA转录激活及其调节。

5. 了解hnRNA加工成熟的调节和mRNA运输、胞浆内稳定性的调节。

了解翻译起始因子(eIF)活性的调节和RNA结合蛋白对翻译起始的调节。

难点:1. 转录衰减的机制2. 真核细胞转录后及翻译水平的调控。

三、讲授内容及要点1. 基因表达调控基本概念与原理:基因表达的特点,基因表达的方式。

基因表达调控的基本原理,基因转录激活调节基本要素。

2. 原核基因表达调控:原核基因转录调控的特点,操纵子,原核生物的转录起始调控,翻译水平的调控方式。

3. 真核基因表达调控:真核基因表达调控的特点,RNA pol Ⅱ转录起始的调控,转录后调控,翻译调控。

四、英文词汇gene expression 基因表达operon 操纵子induction 诱导repression 阻遏constitutive expression 组成性表达house keeping gene 管家基因operator 操纵序列heat shock protein,HSP 热休克蛋白catabolite gene activator protein,CAP 分解代谢物基因活化蛋白enhancer 增强子lac operon 乳糖操纵子attenuation 转录衰减attenuator 衰减子silencer 沉默子DNA binding domain DNA结合域zinc finger 锌指leucine zipper 亮氨酸拉链五、思考题1. 原核生物基因表达调控的基本原理。

第7章原核生物基因表达的调控

第7章原核生物基因表达的调控
④ 当阻遏物与操纵基因结合时,lac mRNA转录起始受到抑制。
Z编码β-半乳糖苷酶:将乳糖水解成葡萄糖和半乳糖。
Y编码β-半乳糖苷透过酶:使外界的β-半乳糖苷(如乳糖)能透过大肠杆
菌细胞壁和原生质膜进入细胞内。
A编码β-半乳糖苷乙酰基转移酶:乙酰辅酶A上的乙酰基转到β-半乳糖苷
上,形成乙酰半乳糖。
gene
正调控
调控蛋白
负调控
结构基因表达
▪ 负调控:抑制基因表达的调控方式 ▪ 正调控:促进基因表达的调控方式
B、特殊代谢物的调控
诱导(induction)
阻遏(repression)
inducer
gene
repressor
gene
特殊代谢物
诱导 阻遏
结构基因表达
诱导物、可诱导基因 阻遏物、可阻遏基因
无葡萄糖、 有乳糖-----cAMP水平高 (2)cAMP与CRP结合形成有活性的
CRP- cAMP 复合物 (3)CRP-cAMP 与Plac结合 (4)增强了RNA聚合酶与启动子的结合
(5)lacZ, lacY 、 lacA高表达
105
40
105
41
乳糖、G存在与否及与操纵子正、负控因素、 基因开放与关闭情况如下:
CRP
Binding
RNA
Promoter
Operator
CRP
Pol. Repressor
cAMP
LacZ
LacY
LacA
Repressor mRNA
STOP
Right there
CRP
Polymerase
cAMP
Repressor
cAMP
CRP

真核生物基因的表达调控

真核生物基因的表达调控

细胞周期与基因表达
G1期
细胞在G1期主要合成与DNA 复制有关的蛋白质,如复制因 子等。
G2期
G2期细胞主要合成与分裂期有 关的蛋白质,如微管蛋白等。
细胞周期
真核生物细胞周期分为间期和 分裂期,不同时期基因表达DNA的复制,同 时合成组蛋白等与染色体组装 有关的蛋白质。
翻译和后翻译修饰
翻译
mRNA在细胞质中被核糖体读取并翻译成蛋白质。翻译的效率受到多种因素的 影响,包括mRNA的浓度、核糖体的数量、以及各种翻译调控因子。
后翻译修饰
新合成的蛋白质经常需要进行翻译后修饰,如磷酸化、乙酰化、糖基化等,以 增加其活性和稳定性。这些修饰通常由特定的酶催化,并受到细胞内环境和信 号通路的调节。
肾上腺素
02
03
甲状腺激素
肾上腺素可以激活糖原分解和脂 肪分解相关基因的表达,提高能 量供应。
甲状腺激素可以促进细胞代谢, 提高基础代谢率,同时还可以影 响神经系统的发育。
神经递质对基因表达的调控
多巴胺
01
多巴胺可以影响奖赏和愉悦相关基因的表达,与成瘾行为和心
理健康有关。
5-羟色胺
02
5-羟色胺可以影响情绪和行为,与抑郁症和精神分裂症等精神
染色质重塑
染色质重塑是基因表达调控的另一重要机制,通过改变染色质的结构和组成,影响转录因 子的结合和RNA聚合酶的活性。
microRNA的调节
microRNA通过与mRNA结合,调控靶基因的表达水平,参与多种生物学过程,如发育、 代谢和应激反应等。
02
转录水平的调控
转录因子
1 2 3
转录因子概述
葡萄糖
葡萄糖水平可以影响胰岛素的分 泌,进而影响与胰岛素相关的基 因表达。

基因表达与调控

基因表达与调控

❖基因表达(gene expression)是指将来自基因的遗传信息合成功能性基因产物的过程。

基因表达产物通常是蛋白质,但是非蛋白质编码基因如转移RNA(tRNA)或小核RNA(snRNA)基因的表达产物是功能性RNA。

基因表达可以通过对其中的几个步骤,包括转录,RNA剪接,翻译和翻译后修饰,进行调控来实现对基因表达的调控。

基因调控赋予细胞对结构和功能的控制,基因调控是细胞分化、形态发生以及任何生物的多功能性和适应性的基础。

基因调控也可以作为进化改变的底物,因为控制基因表达的时间、位置和量可以对基因在细胞或多细胞生物中的功能(作用)产生深远的影响。

➢转录原核生物的转录是通过单一类型的RNA聚合酶进行的,需要一个称为Pribnow盒的DNA序列以及sigma因子(σ因子)以开始转录。

原核蛋白编码基因的转录产生的是可以翻译成蛋白质的信使RNA(mRNA)真核生物的转录由三种类型的RNA聚合酶进行,每种RNA聚合酶需要一种称为启动子的特殊DNA序列和一组DNA结合蛋白(转录因子)来启动该过程。

RNA聚合酶I负责核糖体RNA(rRNA)基因的转录。

RNA聚合酶II(Pol II)转录所有蛋白质编码基因以及一些非编码RNA加工:RNA(例如snRNA,snoRNA 或长非编码RNA)。

RNA聚合酶III转录5S rRNA,转移RNA(tRNA)基因和一些小的非编码RNA(例如7SK)。

当聚合酶遇到称为终止子的序列时,转录结束。

真核基因的转录会产生RNA的初级转录本(pre-mRNA),必须经过一系列加工才能成为成熟RNA(mRNA)。

RNA的加工包括5端加帽、3端多腺苷酸化和RNA剪接。

RNA加工可能是真核生物细胞核带来的进化优势。

➢RNA的成熟多数生物体中的非编码基因(ncRNA)被转录为需要进一步加工的前体。

核糖体RNA(rRNA)通常被转录为含有一个或多个rRNA的前体rRNA,前体rRNA后来在特定位点被大约150种不同的snoRNA切割和修饰。

分子生物学第七章原核生物基因表达调控

分子生物学第七章原核生物基因表达调控
31
(三)、阻遏物 lac I 基因产物及功能
Lac 操纵子阻遏物 mRNA 是由弱启动子控制下组 成型合成的,该阻遏蛋白具有4个相同的亚基,每个亚 基均含347个氨基酸残基。
lacI 基因为组成型,通过启动子的上升突变体可获 得较多的阻遏蛋白;
阻遏物 2022/10/18
β-半乳糖苷酶 透过酶 转乙酰3酶2
2022/10/18
16
调节机理:
细胞中某一氨基酸或嘧啶的浓度发生改变
氨酰 – tRNA的浓度变化
核糖体在转录产物RNA上的结合位置不 同,使得RNA形成特定的二级结构 由RNA的二级结构判断基因能否继续转录
2022/10/18
17
3、降解物对基因活性的调节P252
葡萄糖效应或降解物抑制作用:细菌培养基中在 葡萄糖存在的情况下,即使加入乳糖、半乳糖等 诱导物,与其对应的操纵子也不会启动,这种现 象称为葡萄糖效应或降解物抑制作用。
这是通过阻止乳糖操纵子表达来完成的,这种 效应称为降解物抑制(catabolite repression)。
2022/10/18
35
(五)、cAMP与代谢物激活蛋白
葡萄糖
葡萄糖-6-磷酸
甘油 某些代谢产物抑制活性
腺苷酸环化酶
ATP
cAMP
编码
cAMP-CAP
Crp基因
代谢物激活蛋白 CAP
葡萄糖对其它糖的代谢抑制,是通过对 cAMP的抑制完成的。
2022/10/18
22
一、酶的诱导 ——
lac 体系受调控的证据
两种含硫的乳糖类似物:
异丙基巯基半乳糖苷
(IPTG)
巯甲基半乳糖苷(TMG)
E. coli 在不含乳糖的培养基生 长时,β-半乳糖苷酶含量极低;

生物化学 第39章 基因的表达与调控

生物化学 第39章 基因的表达与调控
➢ 根据操纵子对某些能调节它们的小分子的应答, 可分为: 可诱导调节 可阻遏调节
调节基因
操纵基因
结构基因
激活蛋白 阻遏蛋白
正转录调控 负转录调控
正转录调控
如果在没有调节蛋白质存在时基因是关闭的,加入这种调节 蛋白质后基因活性就被开启,这样的调控正转录调控。
调节基因
操纵基因
结构基因
激活蛋白 阻遏蛋白
正转录调控 负转录调控
负转录调控
在没有调节蛋白质存在时基因是表达的,加入这种调节蛋白 质后基因表达活性便被关闭,这样的调控负转录调控。
可诱导调节
• 指一些基因在特殊的代谢物或化合物的作用下, 由原来关闭的状态转变为工作状态,即在某些物 质的诱导下使基因活化。 例:大肠杆菌的乳糖操纵子
酶合成的诱导操纵子模型
cAMP与代谢物激活蛋白
• 代谢物激活蛋白(CAP)/环腺甘酸受体蛋白(CRP)
调控区
结构基因
DNA
P OZ YA
操纵序列
Z: β-半乳糖苷酶 Y: 透酶
启动序列
A:乙酰基转移酶
CAP结合位点 cAMP—CAP复合物
CAP的正调控
ATP
cAMP(环腺甘酸)
腺甘酸环化酶
+ + + + 转录
DNA
基因表达的规律 ——时间性和空间性
• 时间特异性(temporal specificity) 按功能需要,某一特定基因的表达严格按特定的时间顺序 发生,称之为基因表达的时间特异性。 多细胞生物基因表达的时间特异性又称阶段特异性(stage specificity)。
• 空间特异性(spatial specificity) 在个体生长全过程,某种基因产物在个体按不同组织空间 顺序出现,称之为基因表达的空间特异性。

分子生物学第八章 基因表达调控

分子生物学第八章 基因表达调控
* IPTG,异丙基-β-D硫代半乳糖苷 * TMG ,巯甲基半乳糖苷 * ONPG,O-硝基半乳糖苷
4、阻遏蛋白与操作子的相互作用
阻遏蛋白与操作子是否发生相互作用? 硝酸纤维素膜可以和蛋白质结合而不与DNA结合 阻遏蛋白四聚体结合与膜上,可以与野生型DNA片段形 成复合物。并可被IPTG抑制。 而用lacOc 突变体的DNA片段,则不能与阻遏蛋白结合
Luxury gene
顺、反因子间互作方式的基因表达调控
♫ 顺式作用元件(cis-acting element):能够影响 同一条或相连DNA序列活性的特定DNA片段。例如,启 动子 ♫ 反式作用因子(trans-acting factor):一种基 因的蛋白质产物,能够影响位于基因组另一条染色体上的 (或基因组别处的)另一个基因的表达活性。例如,RNA polymerase
经典锌指的三维结构:一个β发卡和一个α-螺旋
锌指上的α-螺旋 负责与DNA作用
b、Cys-Cys(C2/C2)锌指
Zn++与4个Cys残基 形成配位键
酵母的转录激活 因子GAL4、哺 乳类的固醇类激 素受体为典型代 表。
糖皮质激素受体
• ZYJ272 •
The DNA-binding domain of Cys2-Cys2 zinc finger proteins (Figure 1. Glucocorticoid receptor) is composed of two irregular antiparallel beta-sheets and an alpha-helix, followed by an extended loop.
♫ 操纵元中各结构基因按一定比例协调翻译 ♫ 聚有极性突变效应:
操纵元中一个近基因的无义突变能够影响远基因表, 且根据距离远近呈极性梯度效应

第十三章基因表达调控

第十三章基因表达调控

第十三章基因表达调控第十三章基因表达调控第一节基因表达调控基本概念与原理一、基因表达的概念(掌握)1、基因:负载特定遗传信息的DNA片段,包括由编码序列、非编码序列和内含子组成的DNA区域。

2、基因组:指来自一个遗传体系的一整套遗传信息。

在真核生物体,基因组是指一套完整的单倍体的染色体DNA和线粒体DNA的全部序列。

3、基因表达:基因所携带的遗传信息,经过转录、翻译等,产生具有特异生物学功能的蛋白质分子的过程。

但对于rRNA、tRNA编码基因,表达仅是转录成RNA的过程。

4、基因表达调控:基因表达是在一定调节机制控制下进行的,生物体随时调整不同基因的表达状态,以适应环境、维持生长和发育的需要。

人类基因组含3~4万个基因。

在某一特定时期,基因组中只有一部分基因处于表达状态。

在一定调节机制控制下,大多数基因经历基因激活、转录及翻译等过程,产生具有特定生物学功能的蛋白质分子,赋予细胞或个体一定的功能或形态表型。

但并非所有基因表达过程都产生蛋白质。

rRNA、tRNA编码基因转录合成RNA的过程也属于基因表达。

二、基因表达的特异性(了解)无论是病毒、细菌,还是多细胞生物,乃至高等哺乳类动物及人,基因表达表现为严格的规律性,即时间、空间特异性。

生物物种愈高级,基因表达规律愈复杂、愈精细,这是生物进化的需要及适应。

基因表达的时间、空间特异性由特异基因的启动子(序列)和(或)增强子与调节蛋白相互作用决定。

(一)时间特异性概念:指按功能需要,某一特定基因的表达严格按特定的时间顺序发生。

又称阶段特异性。

在多细胞生物从受精卵到组织、器官形成的各个不同发育阶段,相应基因严格按一定时间顺序开启或关闭,表现为与分化、发育阶段一致的时间性。

(二)空间特异性概念:在个体生长全过程,某种基因产物在个体按不同组织空间或顺序出现。

基因表达伴随时间或阶段顺序所表现出的这种空间分布差异,实际上是由细胞在器官的分布决定的,又称细胞特异性或组织特异性。

第十章基因表达调控

第十章基因表达调控

2.基因表达的时间性及空间性
基 因 表 达 的 时 间 特 异 性 (temporal specificity)是指特定基因的表达严格按照 特定的时间顺序发生,以适应细胞或个 体特定分化、发育阶段的需要。故又称 为阶段特异性。
基 因 表 达 的 空 间 特 异 性 ( spatial specificity)是指多细胞生物个体在某一 特定生长发育阶段,同一基因的表达在 不同的细胞或组织器官不同,从而导致 特异性的蛋白质分布于不同的细胞或组 织器官。故又称为细胞特异性或组织特 异性。
基因转录被阻遏
三、色氨酸操纵子P271-278
• 色氨酸操纵子(trp operon):阻遏型负 调控操纵子,调控一系列用于色氨酸合 成代谢的酶蛋白的转录。
色氨酸操纵子(tryptophane operon)——合成 代谢,阻遏负调控;弱化作用。
(一)色氨酸操纵子的结构
操纵子
(二)色氨酸操纵子的作用机理
aporepressor + corepressor 遏物) 启动子失活
repressor (阻 不转录
aporepressor + operator 转录发生
启动子有活性
色氨酸操纵子 - 阻遏负调控
调节区
trpR RNA聚P合酶O
RNA聚合酶
Trp 低时
结构基因
mRNA
Trp 高时 Trp
2.弱化子及其调节作用
• attenuator: A region of DNA upstream from one or more structural genes, where premature transcription termination can occur.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基因表达调控
基因表达调控是指细胞中基因的转录和翻译过程,以及基因产物的
调控和调节。

调控基因表达可以影响细胞的生理状态和功能。

本文将
介绍基因表达调控的机制和方法。

一、转录调控
转录调控是指通过调节基因的转录过程来影响基因表达。

转录调控
可以通过激活或抑制转录因子的结合来实现。

1. 转录激活
转录激活是指转录因子与启动子结合,促进转录的过程。

转录因子
可以通过结合DNA序列上的特定区域,招募RNA聚合酶,从而启动
基因的转录。

例如,转录因子可以结合到启动子区域,招募辅助蛋白质,形成转录激活复合物,促进转录的进行。

2. 转录抑制
转录抑制是指转录因子与启动子结合,阻碍转录的过程。

转录抑制
可以通过阻止转录复合物的形成或招募转录抑制因子来实现。

例如,
一些转录因子可以竞争性地结合到启动子区域,阻碍转录因子的结合,从而抑制转录。

二、转录后调控
转录后调控是指在基因转录和翻译之后对基因产物进行调控和调节。

1. RNA剪接调控
RNA剪接是指在转录后的RNA分子中去除内含子,将外显子连接
起来的过程。

通过不同的剪接方式,可以合成出不同的mRNA亚型,
从而影响基因表达。

剪接调控可以通过剪接因子的调节来实现。

例如,一些剪接因子的表达水平可以受到转录因子的调节,从而影响剪接的
结果。

2. RNA修饰调控
RNA修饰是指在转录后的RNA分子中添加各种化学修饰基团的过程。

RNA修饰可以通过调节修饰酶的活性来实现。

不同的RNA修饰
形式可以影响RNA的稳定性、转运和翻译效率。

三、表观遗传调控
表观遗传调控是指通过改变染色质结构和DNA甲基化状态来影响
基因的表达。

表观遗传调控可以通过组蛋白修饰、DNA甲基化和非编
码RNA等多种方式实现。

1. 组蛋白修饰调控
组蛋白修饰是指在染色质上修饰组蛋白蛋白质的过程。

组蛋白修饰
可以改变染色质的紧密程度,从而影响基因的可及性。

例如,乙酰化
组蛋白可以解开染色质的紧密程度,促进基因的转录。

2. DNA甲基化调控
DNA甲基化是指在DNA分子上添加甲基基团的过程。

DNA甲基
化可以影响基因的可及性,进而影响基因表达。

高甲基化状态可以抑
制基因的转录,低甲基化状态则有助于基因的转录。

3. 非编码RNA调控
非编码RNA是指在转录过程中产生的不具备蛋白质编码功能的RNA分子。

非编码RNA可以与DNA、RNA或蛋白质相互作用,从而调节基因表达的过程。

例如,某些非编码RNA可以结合到DNA、RNA或蛋白质上,形成复合物,影响基因转录、RNA的剪接或翻译。

总结:
基因表达调控是细胞中基因转录和翻译过程的调节和调控。

转录调控包括转录激活和转录抑制,可以通过转录因子的结合来实现。

转录后调控包括RNA剪接调控和RNA修饰调控,可以通过调节剪接因子或修饰酶的活性来实现。

表观遗传调控包括组蛋白修饰调控、DNA甲基化调控和非编码RNA调控,可以通过改变染色质结构和DNA甲基化状态来影响基因表达。

这些调控机制的研究将有助于我们深入了解基因表达及其在生物体发育和疾病中的重要作用。

相关文档
最新文档