外文翻译---电动汽车DC-DC电源转换器的原理、建模和控制
DCDC转换器工作原理及用途

DCDC转换器工作原理及用途
DC-DC转换器,即直流-直流转换器,是一种将直流电源转换为不同电压或电流的电子设备。
其主要工作原理是通过改变输入端电压的波形、频率、极性和振幅,然后将这些改变应用到输出端,从而实现对电源电压的转换。
DC-DC转换器的工作原理如下:
1.输入端电源进行整流,将交流电转换为直流电。
2.通过谐振电容和电感元件构成一个振荡电路,产生高频振荡信号。
3.将高频振荡信号输入到变压器变压器中,通过变换器将输入端电压进行变换,然后输出到输出端。
4.输出端通过后级电路进行输出过滤,以获得所需要的电压或电流。
DC-DC转换器的用途广泛,以下为几个主要的应用领域:
1.电子设备:用于手机、平板电脑、笔记本电脑等电子产品的电源管理,将电池或外部电源的电压转换为所需的电压供应给电子设备。
2.电力系统:用于电力系统的直流输电、直流-交流逆变、直流-直流变换等。
3.汽车电子:用于汽车电子系统中的电源管理、电动车辆的能量转换和储存等。
4.太阳能电源系统:用于太阳能光伏电池组的能量转换和储存,将太阳能电池的直流电转换为交流电或其他所需的电压和电流。
5.工业控制与自动化:用于工业控制设备的电源管理,提供稳定的工
作电压或电流。
6.通信设备:用于通信基站、无线设备、卫星通信等设备的电源管理,提供所需的电压和电流。
总结:DC-DC转换器是一种能够将直流电源转换为不同电压或电流的
电子设备,其工作原理是通过改变输入端电压的波形、频率、极性和振幅,然后将这些改变应用到输出端。
它在电子设备、电力系统、汽车电子、太
阳能电源系统、工业控制与自动化、通信设备等领域有着广泛的应用。
新能源车dcdc工作原理

新能源车dcdc工作原理全文共四篇示例,供您参考第一篇示例:随着环保意识的增强和能源资源的日益枯竭,新能源车已经成为人们重视的交通方式。
而新能源车中的DCDC(直流电-直流电转换器)是新能源车的一个重要部件,它起到了重要的作用。
本文将介绍新能源车DCDC的工作原理及其重要性。
DCDC工作原理:新能源车通常使用高压直流电池作为动力源,而车载设备(如车载灯光、音响、空调等)需要使用低压直流电,这就需要一种转换器来将高压直流电转换为低压直流电。
这就是DCDC所要完成的工作。
DCDC可以将高压直流电源转换为各种低压电源,供给车辆中各种设备的使用。
DCDC通常由功率器件、控制电路和滤波电路组成。
功率器件通常是MOSFETやIGBT,它通过开关控制来改变输入电压输出电压,同时能够实现能量的转换。
控制电路负责控制功率器件的开关,并根据负载变化来调节输出电压和电流。
滤波电路用于滤除输入和输出端的杂散信号,保证电路的稳定工作。
新能源车DCDC的重要性:1. 电能转换效率高:DCDC可以根据实际需要调整输出电压和电流,从而使得能量转换的效率更高,降低了能源消耗。
2. 电路保护作用:DCDC内部通常设计有多重保护功能,包括过流保护、过热保护、短路保护等,能够有效保护电路和设备的安全运行。
3. 适应性强:新能源车的工作环境和负载变化较大,DCDC能够根据实际情况灵活调整电压和电流输出,适应不同的使用情况。
4. 降低成本:通过DCDC的功率转换作用,减少了对电池的额外压力,降低了电池的损耗和使用寿命,从而减少了整车的成本。
DCDC在新能源车中发挥着重要的作用,它不仅能够有效降低车载设备对高压电池的影响,还能够提高能源利用效率,降低能源消耗,对于新能源车的性能和安全性都起到了非常重要的作用。
希望随着科技的不断进步和创新,DCDC技术也能够不断提升,为新能源车的发展做出更大的贡献。
第二篇示例:新能源车(New Energy Vehicle,NEV)是指采用新能源技术的汽车,主要包括纯电动汽车、插电式混合动力汽车和燃料电池汽车。
电动汽车dcdc转换器工作原理

电动汽车dcdc转换器工作原理电动汽车DC-DC转换器工作原理随着环保意识的增强和能源危机的日益严重,电动汽车作为一种清洁能源交通工具逐渐受到人们的青睐。
而电动汽车的核心部件之一就是DC-DC转换器,它的工作原理对电动汽车的性能和能效具有重要影响。
DC-DC转换器是一种电子器件,主要用于将直流电源的电压转换为适合电动汽车各个模块使用的电压。
它的主要功能是通过转换电压来满足电动汽车不同电路的电压需求。
这是因为电动汽车的各个部分(如动力电池组、驱动电机等)对电压的要求不同,而直流电源的输出电压往往不符合这些要求,因此需要通过DC-DC转换器来实现电压的变换。
DC-DC转换器的工作原理可以简单地概括为两个步骤:变压和电能转换。
首先是变压过程。
当直流电源输入到DC-DC转换器时,它会经过一个变压器,通过变压器的绕组比例来改变输入电压的大小。
变压器一般由磁性材料制成,通过磁场的变化来实现电压的变换。
通过控制输入输出绕组的匝数比例,可以实现输入电压的升高或降低。
其次是电能转换过程。
变压器通过变压实现了电压的变换,但电能的形式仍然是直流电。
为了满足电动汽车各个模块的需要,DC-DC 转换器需要将直流电转换为交流电或恒定电流。
这一过程通常通过控制开关管的开关状态来实现。
开关管是DC-DC转换器的核心元件,它的开关状态决定了电能是被传送到输出端还是被截断。
在DC-DC转换器中,开关管的开关状态由一个控制电路来控制。
控制电路通过检测输入输出电压的差异来判断开关管的开关状态。
当输入电压高于输出电压时,控制电路会关闭开关管,阻断电流的传输;当输入电压低于输出电压时,控制电路会打开开关管,允许电流的传输。
通过不断地开关和关闭,DC-DC转换器可以将直流电源的电能转换为适合电动汽车各个模块使用的电能形式。
除了变压和电能转换,DC-DC转换器还具备一些其他的功能。
例如,它可以实现对输出电压的精确调整和稳定控制,以适应电动汽车系统中不同模块的需求。
纯电动汽车dcdc工作原理

纯电动汽车dcdc工作原理纯电动汽车dcdc是指直流到直流的变换器,它是电动汽车的重要组成部分,主要用于电动汽车的电子控制系统,将高压直流电池的电压转换为低压直流电压,以供电子设备使用。
本文将详细介绍纯电动汽车dcdc的工作原理。
1. 基本结构纯电动汽车dcdc由输入端、输出端和控制电路三部分组成。
输入端接收高压直流电池的电压,输出端输出低压直流电压,控制电路通过控制开关管的导通与断开,实现输入端与输出端之间电压的变换。
2. 工作原理纯电动汽车dcdc的工作原理可以分为两个部分:能量存储和能量转换。
2.1 能量存储纯电动汽车dcdc的能量存储是指将高压直流电池的电能存储在电感和电容中。
当开关管导通时,高压直流电池的电能被电感和电容存储,此时电感中的电流增加,电容中的电压增加。
当开关管断开时,电感和电容中的电能被释放,此时电感中的电流减小,电容中的电压减小。
通过周期性的导通与断开,实现电能的存储和释放。
2.2 能量转换纯电动汽车dcdc的能量转换是指将高压直流电池的电压转换为低压直流电压。
当开关管导通时,高压直流电池的电压通过电感和开关管传递到输出端,此时输出端电压增加;当开关管断开时,输出端电压由电感和电容提供,此时输出端电压减小。
通过周期性的导通与断开,实现电压的变换。
3. 控制策略纯电动汽车dcdc的控制策略主要有PWM控制和谐振控制两种。
3.1 PWM控制PWM控制是指通过控制开关管的导通与断开时间比例,实现输出端电压的控制。
当开关管导通时间增加时,输出端电压增加;当开关管断开时间增加时,输出端电压减小。
通过调节导通与断开时间比例,实现输出端电压的精确控制。
3.2 谐振控制谐振控制是指通过控制开关管的导通与断开时刻,实现谐振电路的谐振频率与输出端电压的控制。
谐振控制具有高效性和高稳定性的优点,但控制难度较大。
4. 应用领域纯电动汽车dcdc广泛应用于电动汽车、太阳能电池板、风能发电等领域,实现高压直流电压到低压直流电压的变换。
新能源汽车dcdc转换器工作原理

新能源汽车dcdc转换器工作原理
新能源汽车DC-DC转换器是一种特殊的电源转换器,用于将高电压直流电能(例如高压锂电池组输出的400V DC)转换为低电压直流电能(例如12V DC)。
这种转换器的工作原理基于电磁感应和电子元件控制技术。
在工作过程中,首先将高压直流电接入DC-DC转换器的输入端,然后通过变换器电路开始进行电源转换。
变换器电路由几个功率半导体器件组成,例如MOSFET和二极管。
通过对这些器件的控制和调节,可以将输入的高电压直流电能通过电感等元件变换为特定电压和电流的低电压直流电能输出。
在DC-DC转换器中,还有一个重要的控制单元,即PWM控制单元。
这个单元起到了监控和控制功率半导体器件的作用。
PWM控制单元以不同的占空比控制器件的导通和截止,从而控制输出电流和电压的稳定性和准确性。
综合来看,新能源汽车DC-DC转换器的工作原理建立在先进的电子元件控制和电磁感应技术之上。
它能够将高压直流电能转换为低电压直流电能,并确保输出电流和电压的稳定性和准确性。
这种转换器在新能源汽车的电力系统中具有非常重要的作用。
电动汽车dcdc工作原理

电动汽车DCDC转换器:让电能转换更高效电动汽车的核心是电池组,它以直流电的形式储存能量,但现代
汽车的电子设备却需要交流电才能工作。
为了解决这一问题,DCDC转
换器被广泛应用于电动汽车中,其作用是将电池组的直流电转换为各
种电子设备需要的交流电。
下面我们来探究一下电动汽车DCDC转换器
的工作原理。
首先,DCDC转换器的输入端连接电池组,输出端连接各种电子设备。
当电动汽车开动时,电池组开始提供直流电给DCDC转换器。
转换
器内部的开关管会周期性地开关,此时输入端的直流电会被不断地切
换成高频脉冲信号。
这些高频脉冲信号被电感和电容滤波后,就可以
得到一个交流电压。
接下来就是DCDC转换器的核心部分:控制器。
控制器会根据电子
设备的需求,控制开关管的开关频率和占空比,使得输出端的交流电
压始终保持在一定范围内。
这个过程需要高精度的控制算法和高速的
开关管,才能实现高效的电能转换。
不仅如此,DCDC转换器还需要具备高效的散热和保护功能。
高频
的开关过程会产生大量的热量,如果不能及时散热,转换器就会过热,导致损坏。
此外,电动汽车的驱动电机会产生反馈电流,如果这些反
馈电流不能得到正确的处理,也会对转换器造成损坏。
总的来说,DCDC转换器是电动汽车中非常重要的一个组件,它的
性能直接关系到电动汽车的能耗和使用寿命。
未来,随着电动汽车市
场的不断扩大,DCDC转换器的技术也将会不断提升,为电动汽车的发展注入更多的动力。
电动车dcdc转换器工作原理

电动车dcdc转换器工作原理1.引言1.1 概述电动车DC-DC转换器是一种非常重要的电子设备,它在电动车电力系统中起着至关重要的作用。
作为一个中间设备,DC-DC转换器能够将电动车电池输出的直流电能转换为其它电压级别的直流电,并将其提供给不同的电子设备,比如喇叭、灯光、充电插座等等。
正是因为DC-DC转换器的存在,才使得电动车的电力系统能够更好地满足不同设备的电能需求。
DC-DC转换器的工作原理相对简单,它通过使用一种叫做电感的元件和一个开关器件来实现电压的转换。
当输入电压通过电感时,会产生一个电感电流,并储存在电感中。
然后,开关器件周期性地打开和关闭,使电感电流在电感和开关器件之间形成一个闭环。
在开关器件关闭的瞬间,电感中储存的能量会转移到输出电路中,从而使得输出电压得以转换。
而电动车DC-DC转换器则是在这一基本原理的基础上进行了一些特殊的设计和优化。
由于电动车的电力系统需要满足较高的安全要求和性能需求,因此DC-DC转换器在电动车中的应用也变得更为复杂。
电动车DC-DC转换器通常需要具备更大的输出功率、更高的精度和更高的效率。
同时,由于电动车的电池电压通常较高,因此DC-DC转换器还需要具备较高的电压转换比。
总的来说,电动车DC-DC转换器在电动车的电力系统中扮演着至关重要的角色。
它能够将电动车电池的直流电能转换为其它电压级别的直流电,从而满足不同设备的电能需求。
通过使用一种基于电感和开关器件的工作原理,电动车DC-DC转换器能够实现高效率、高精度和高可靠性的电压转换。
在未来,随着电动车的普及和技术的不断进步,电动车DC-DC 转换器的工作原理将继续得到优化和改进,以更好地满足电动车的电能需求。
1.2 文章结构文章结构部分的内容可以编写如下:文章结构部分旨在介绍本文的整体布局和章节安排。
通过清晰的文章结构,读者可以更好地理解本文内容的逻辑顺序和组织方式,从而更好地把握文章的主题和重点。
本文主要分为引言、正文和结论三个部分。
dcdc的工作原理

DCDC的工作原理直流-直流转换器(DCDC)是一种常见的电力转换器,它通过将输入直流电压转换为另一个稳定的输出直流电压来实现电力转换。
DCDC转换器的工作原理基于三个重要组件:输入电压源、功率开关和输出滤波器。
输入电压源DCDC转换器的输入电压源可以是各种形式的直流电源,如电池、太阳能电池板或交流电源整流后的直流电源。
输入电压的稳定性和幅值范围将直接影响DCDC转换器的性能。
功率开关功率开关是DCDC转换器中的关键组件,通常采用MOSFET或IGBT等电子器件。
功率开关的开关状态由控制电路控制,通过周期性地开关和关闭,控制能量从输入电源向输出负载的传输。
功率开关的开关频率通常在几十千赫兹到数百千赫兹之间。
输出滤波器输出滤波器用于平滑输出电压并减小输出波形中的纹波。
输出滤波器通常由电感和电容组成,通过在输出端口添加LC滤波电路,滤除功率开关产生的高频噪声,并提供稳定的直流输出电压。
工作原理DCDC转换器的工作原理基于控制功率开关的导通和截止,以控制输入电源向输出负载的能量传输。
工作周期内,功率开关周期性地切换,使电能以高效率从输入端通过电感储能,然后传输至输出端负载。
具体来说,DCDC转换器的工作周期通常包括以下四个阶段: 1. Step-up:当功率开关导通时,电流通过电感储能,输出端滤波电容储存能量; 2. Step-down:功率开关截止,电感释放储能,电容向输出负载供电; 3. Freewheeling:在功率开关切换过程中,确保循环电流通过电感而不会破坏电路; 4. Off:功率开关开启状态下的瞬间,将确保电路正常运作。
通过精确控制功率开关的导通和截止时间,DCDC转换器可以实现输入电压到输出电压的精确、稳定的能量转换。
在实际应用中,DCDC转换器在电子设备、电力系统及工业控制等领域得到广泛应用,扮演着关键的电力转换和稳压调节角色。
DC-DC变换器原理

DC-DC变换器原理DC/DC Converter Principle太阳电池输出的是直流电,是不是可直接作为直流电源使用呢,对于对电压没有准确要求的微、小型用电设备是可以的,如计算器、玩具等。
太阳电池输出电压取决于光伏器件的连接方式与数量,并与负载大小与光照强度直接有关,不能直接作为正规电源使用。
通过DC-DC变换器可以把太阳电池输出的直流电转换成稳定的不同电压的直流电输出。
DC-DC变换器就是直流——直流变换器,是太阳能光伏发电系统的重要组成部分,下面就其原理作简单介绍。
DC-DC变换基本原理直流变换电路主要工作方式是脉宽调制(PWM)工作方式,基本原理是通过开关管把直流电斩成方波(脉冲波),通过调节方波的占空比(脉冲宽度与脉冲周期之比)来改变电压。
降压斩波电路直流斩波电路简单,是使用广泛的直流变换电路。
图1左上部是一个斩波基本电路,Ud是输入的直流电压,V是开关管,UR是负载R上的电压,开关管V把输入的Ud斩成方波输出到R上,图1右上部绿线为斩波后的输出波形,方波的周期为T,在V导通时输出电压等于Ud,导通时间为ton,在V关断时输出电压等于0,关断时间为toff,占空比D=ton/T,方波电压的平均值与占空比成正比。
图1下部绿线为连续输出波形,其平均电压如红线所示。
改变脉冲宽度即可改变输出电压,在时间t1 前脉冲较宽、间隔窄,平均电压(UR1)较高;在时间t1 后脉冲变窄,平均电压(UR2)降低。
固定方波周期T不变,改变占空比调节输出电压就是(PWM)法,也称为定频调宽法。
由于输出电压比输入电压低,称之为降压斩波电路或Buck变换器。
图1 DC-DC变换基本原理方波脉冲不能算直流电源,实际使用要加上滤波电路,图2是加有LC滤波的电路,L是滤波电感、C2是滤波电容、D是续流二极管。
当V导通时,L与C2蓄能,向负载R输电;当V关断时,C2向负载R输电,L通过D向负载R输电。
输出方波选用的频率较高,一般是数千赫兹至几十千赫兹,故电感体积很小,输出波纹也不大。
关于DCDC变换器的工作原理

关于DCDC变换器的工作原理在DC-DC变换器中,电感储能是实现能量传输和电压转换的关键。
电感器具有存储能量的特性,当电流通过电感时,磁场会储存能量。
根据电感贮能特性,输入电流增加时,电感的磁场能量也会增加;输出电流减少时,电感的磁场能量会被释放。
通过合理的控制和运用电感贮能,可以实现电流和电压的转换。
另一个关键组成部分是开关器件,通常使用场效应管或双极性晶体管实现。
开关器件具有低电阻和高电阻的特点,可以在高频率下进行开关操作。
在DC-DC变换器中,开关器件用于控制电流流向的路径,实现电能的转换。
当开关器件处于导通状态时,电流通过从输入到输出;当开关器件处于断开状态时,则通过电感器的自感透过二极管形成环流,使电荷从电感器到输出端。
DC-DC变换器基本分为两种类型:降压转换器也称为Buck变换器和升压转换器也称为Boost变换器。
下面将分别介绍两种类型的工作原理。
降压转换器(Buck变换器)通过使输入电压向下转换以获得较低的输出电压。
它使用一个电感器和一个开关器件(通常是MOSFET)来控制能量流动。
当开关器件导通时,电感器储存能量;当开关器件断开时,电感器释放储存的能量。
通过控制开关时间和频率,可以实现较高的电压转换效率。
升压转换器(Boost变换器)则将输入电压转换为较高的输出电压。
它也使用一个电感器和一个开关器件(通常是MOSFET),但操作方式与降压转换器相反。
当开关器件导通时,电感器储存能量;当开关器件断开时,电感器释放储存的能量,并使得电荷向输出电容器充电。
通过控制开关时间和频率,可以实现较高的电压升级效率。
此外,还有一种常用的DC-DC变换器类型是两种类型的结合,称为Buck-Boost变换器。
Buck-Boost变换器可以实现输入电压向上或向下转换,它结合了降压和升压转换器的特点。
总之,DC-DC变换器是一种非常重要的电子器件,能够实现不同电压级别之间的电能转换。
通过合理的控制和运用电感储能和开关器件的特性,DC-DC变换器可以实现高效的电能转换,为各种电子设备的工作提供所需的电压。
电动汽车dcdc 工作原理

电动汽车dcdc 工作原理电动汽车DC-DC工作原理随着环保意识的增强和能源危机的日益突出,电动汽车作为一种清洁、高效的交通工具,正逐渐受到人们的青睐。
而DC-DC(直流-直流)变换器作为电动汽车中的重要组成部分,起着关键作用。
本文将介绍电动汽车DC-DC工作原理。
DC-DC变换器是将直流电源的电压转换为不同电压等级的直流电源的电子设备。
在电动汽车中,DC-DC变换器主要起到两个作用:一是将高压电池提供的直流电压转换为低压电源,以供给车辆上的低压电子设备;二是将电池管理系统的电源电压通过DC-DC变换器转换为12V电压,以供给车辆上的12V电子设备。
我们来了解一下DC-DC变换器的基本结构。
一般来说,DC-DC变换器由输入端、输出端、控制器和开关元件组成。
输入端接收高压电池提供的直流电压,输出端则将电压转换为所需的低压电源输出。
控制器负责监测输入和输出电压,根据需求控制开关元件的工作状态,从而实现电压的变换。
DC-DC变换器的工作原理是利用开关元件的开关动作来实现电压的变换。
当输入端的电压高于输出端的电压时,控制器会使开关元件闭合,将电能存储在输出端的电感中;当输入端的电压低于输出端的电压时,控制器会使开关元件断开,使电感中存储的电能释放到输出端。
通过不断重复开关动作,DC-DC变换器能够将输入端的电压转换为所需的输出电压。
在电动汽车中,DC-DC变换器的工作过程如下:首先,高压电池提供的直流电压经过输入端输入DC-DC变换器;然后,控制器感知到输入和输出电压的差异,根据需要控制开关元件的开关状态;接着,开关元件的开关动作使电能在电感中存储和释放,从而实现电压的变换;最后,输出端将转换后的低压电源供给车辆上的低压电子设备。
总结一下,电动汽车中的DC-DC变换器起到将高压电池提供的直流电压转换为低压电源的作用。
通过控制开关元件的开关动作,DC-DC变换器能够实现输入电压到输出电压的变换。
这种电压变换使得电动汽车能够为低压电子设备和12V电子设备提供所需的电源,保证车辆正常运行。
混合动力汽车双向DC/DC变换器建模与控制

混合动力汽车双向DC/DC变换器建模与控制双向DC/DC变换器是混合动力汽车中的关键技术之一,它主要的功能是使得电动机和储能元件之间的能量双向流动,实现汽车在行驶过程中对能量的回收。
首先分析了混合动力汽车双向DC/DC变换器的作用及其基本工作原理,然后,在不同工作模式下,通过分析确立了相应的控制目标,并分别建立了不同工作模式下的数学模型,进行双向DC/DC变换器控制器的研究与设计,最后,对提出的控制方案,通过仿真进行验证。
标签:双向DC/DC变换器混合动力汽车控制0 引言本文选择混合动力汽车中常用的双向Buck/Boost变换器作为研究对象,分析了其拓扑结构和工作原理,阐述了双向Buck/Boost变换器的数学建模及控制器的设计,重点分析了其启动模式、驱动/再生制动模式、充电模式的数学建模及控制器的设计。
最后对不同模式下的双向Buck/Boost变换器控制器的设计进行仿真验证。
1 双向Buck/Boost变换器的拓扑结构和工作原理1.1 拓扑结构图1表示了双向Buck/Boost变换器的拓扑结构。
输入侧为动力电池,输出侧用来驱动电机,当工作在Boost模式时,动力电池向负载提供能量;当工作在Buck模式时,负载向动力电池提供能量,从而实现能量的双向流动。
1.2 工作原理混合动力汽车的运行模式主要可以分为四种,启动模式,驱动模式,再生制动模式和充电模式。
当混合动力汽车启动瞬间,内燃机不工作,动力电池放电来启动汽车,此时,双向Buck/Boost电路的负载是启动电阻R;当混合动力汽车处于加速爬坡或重载的情况时,工作于驱动模式,动力电池经过双向Buck/Boost电路输出能量,驱动内燃机工作;当混合动力汽车处于减速制动的情况时,属于再生制动模式,此时能量经过Buck/Boost电路被动力电池回收;当混合动力汽车的电池能量不足,需要充电时,将工作于充电模式,负载经过Buck/Boost电路向动力电池充电。
直流电机速度控制Speed Control of DC Motor中英文资料

Speed Control of DC MotorRegulator SystemsA regulator system is one which normally provides output power in its steady-state operation.For example, a motor speed regulator maintains the motor speed at a constant value despite variations in load torque. Even if the load torque is removed ,the motor must provide sufficient torque to overcome the viscous friction effect of the bearings. Other forms of regulator also provide output power; A temperature regulator must maintain the temperature of, say, an oven constant despite the heat loss in the oven. A voltage regulator must also maintain must output voltage constant despite variation in the load current. For any system to provide an output, e.g., speed, temperature, voltage, etc, an error signal must exist under steady-state conditions.Electrical BrakingIn many speed control system, e.g., rolling mills mine winders, etc., the load has to be frequently brought to a standstill and reversed. The rate at which the speed reduces following a reduced speed demand is dependent on the stored energy and the braking system used. A small speed control system (sometimes known as a velodyne) can employ mechanical braking, but this is not feasible with large speed controllers since it is difficult and costly to remove the heat generated.The various methods of electrical braking avaiable are:(1)Regenerative braking.(2)Eddy current braking.(3)Dynamic braking.(4)Reverse current braking(plugging).Regenerative braking is the best method, though not necessarily the most economic. The stored energy in the load is converted into electrical energy by the work motor(acting temporarily as a generator) and is returned to the power supply system. The supply system thus acts as a “sink” into which the unwanted energy is delivered. Providing the supply system has adequate capacity, the consequent rise in terminal voltage will be small during the short periods of regeneration. In the Ward-Leonard method of speed control of DC motors, regenerative braking is inherent, but thyristor drives have to be arranged to invert to regenerate. Inductionmotor driver can regenerate if the rotor shaft is driven faster than speed of the rotating field. The advent of low-cost variable variable-frequency supplies from thyristor inverters have brought about considerable charges in the use of induction motors in variable speed drives.Eddy current braking can be applied to any machine, simply by mounting a copper or aluminium disc on the shaft and rotating it in a magnetic field. The problem of removing the heat generated is severe in large system as the temperature of the shaft, bearing, and motor will be raised if prolonged braking is applied.In dynamic breaking, the stored energy is a resistor in the circuit. When applied to small DC machines, the armature supply is disconnected and a resistor is connected across the armature (usually by a relay, contactor, or thyristor). The field voltage is maintained, and braking is applied down to the lowest speed. Induction motors require a somewhat more complex arrangement, the stator windings being disconnected from the AC supply and reconnected to a DC supply. The electrical energy generated is then dissipated in the rotor circuit. Dynamic braking is applied to many large AC hoist system where the braking duty is both severe and prolonged.Any electrical motor can be brought to a standstill by suddenly reconnecting the supply to reverse the direction of rotation (reverse current braking). Applied under controlled conditions, this method of braking is satisfactory for all drivers. Its major disadvantage is that the electrical energy consumed by the machine when braking is equal to the stored energy in the load. This increases the running cost significantly in large drives.Equal pulse width PWM lawVVVF (Variable V oltage Variable Frequency) installs in the early time is uses PAM (Pulse Amplitude Modulation) to control, its inventor part which the technology realizes but only can output the frequency adjustable square-wave voltage not to be able to adjust the pressure. The pulse width PWM law are precisely in order to overcome, is in the PWM law which the PAM law this shortcoming development comes the simplest one kind. It is each pulse width equal pulse row took the PWM wave, through a change pulse row cycle may the frequency modulation, the change pulse width or the duty factor may adjust the pressure, uses the suitable control method then to cause the voltage and the frequency coordination change. Is opposite in the PAM law, this method merit simplified the electric circuit structure, enhanced the input end power factor, but simultaneously also has in the output voltage besidesthe fundamental wave, but also contains the big harmonic component.Stochastic PWMThat time the high efficiency transistor mainly for the bipolarity Daring ton triode, the carrier frequency generally did not surpass 5kHz, the vibration which the electrical machinery winding electromagnetism noise and the overtone created has aroused people's interest. In order to obtain the improvement, the stochastic PWM method arises at the historic moment. Its principle is the stochastic change turn-on frequency causes the electrical machinery electromagnetism noise to be limited to approximately the belt white noise (in linear frequency coordinate system, various frequencies energy distribution is even), although the noise a decibel number has not always changed, but weakens greatly take the fixed turn-on frequency as the characteristic colored noise intensity. Because of this, even if in IGBT by widespread application today, has had to limit regarding the carrier frequency is comparing the low frequency the situation, stochastic PWM still had its special value; On the other hand explained eliminates the machinery and the electromagnetism noise best method enhances the operating frequency blindly, the stochastic PWM technology was precisely provides an analysis, has solved this kind of question brand-new mentality.Spatial voltage vector control PWMSpatial voltage vector control PWM (SVPWM) also calls the magnetic flux sine PWM law .It take the three-phase profile whole production effect as the premise, take approaches the electrical machinery air gap the ideal circular rotary field path as the goal, has the actual magnetic flux with the inventor different switch pattern to approach the base director circle magnetic flux, by theirs comparison result decided the inventor the switch, forms the PWM profile. This law embarks from the electric motor angle, regards as the inventor and the electrical machinery a whole, inscribes the polygon to approach the circle the way to carry on the control, causes the electrical machinery to obtain the peak-to-peak value constant circular magnetic field (sine magnetic flux).The concrete method divides into the magnetic flux split-ring type and the magnetic flux closed loop type. The magnetic flux split-ring law synthesizes an equivalent voltage vector with a two non-vanishing vector sum null vector, if the sampling time enough is small, may synthesize the random voltage vector. When this law output ratio-voltage sine-wave modulation enhances 15% close, sum of theharmonic current effective value smallest. The magnetic flux closed loop type introduces the magnetic flux feedback, controls the magnetic flux the size and the change speed .Estimates the magnetic flux after the comparison and assigns the magnetic flux, according to the error decided has the next voltage vector, forms the PWM profile. This method has overcome the magnetic flux split-ring method insufficiency, when has solved the electrical machinery low speed, the stator resistance affects the major problem, reduced the electrical machinery pulsation and the noise. But because has not introduced the torque the adjustment, the system performance has not had the fundamental improvement.Vector Control PWMThe vector control also called the magnetic field direction detection control, its principle is asynchronous motor under three-phase coordinate system stator current Ia, Ib and Ic , through the three-phase/two phase transformation, equivalent becomes under two static coordinate systems alternating current Ia1 and Ib1, again through presses the rotor magnetic field direction detection revolving transformation, equivalent becomes under the synchronized revolving coordinate system direct current Im1 and It1 (Im1 is equal to the direct current motor exciting current; It1 is equal to the armature electric current which is proportional with the torque), then the imitation direct discharge motive control method, realizes to the motor control. Its essence is the motor equivalent is the direct current motor, separately to the speed, the magnetic field two components carries on the independent control. Through the control rotor flux linkage, then the decomposition stator current obtains the torque and the magnetic field two components, after coordinate transformation, realization orthogonal or decoupling control.But, because the rotor flux linkage accurately observes with difficulty, as well as the vector transformation complexity, causes the actual control effect often with difficulty to achieve theoretical analysis effect, this is the vector control technology in the practice insufficiency. In addition, It must directly or indirectly obtains the rotor flux linkage to be able to realize the stator current decoupling control in space position, needs to dispose the rotor position or the velocity generator in this kind of vector control system, this gives many application situations to bring inconveniently obviously.The analytical functions of the armature reaction of permanent magnet brushless DC motor with concentrated coils are proposed by using the method of image,concerning with the configuration of these machines. This approach is different from the method of equivalent distributed current sheet and more suitable for the electric machines, which have concentrated coils and deeper slots. Under different control mode, the analytical functions of the armature reaction are different.Brushless DC motor (BLDCM) with permanent excitation, in which electrical commutator is used instead of mechanical, has not only the same good characteristics of speed control as traditional DC motor, but also the good characteristics of AC Motor. Brushless DC motors have found wide application due to their high power density and ease of control. Moreover, the machines have high efficiency over wide speed range. Recently it has been quickly developed.SCM control of permanent magnet brushless DC motor speed control system applicable to electric bicycles, and other low-power work. Redundant power and can return to collapse. The system has good speed performance, high power factor, energy saving, small size, light weight, and other advantages.According to the permanent magnet brushless DC motor control of the PWM pulse width, speed sensor and passed through eighth speed digital dynamic display of speed, through hardware and software support, for the entire system design requirements.Brushless DC Motor DriveIdeal Torque ProductionAs stated earlier, a brushless DC motor generally describes a motor having a trape-zoidal back EMF. For this case, the phase currents are rectangular pulses, sometimes loosely identified as squarewave currents. While (8.3) can be used to describe torque production for this motor, it is easier to understand this configuration graphically as shown in Fig. 8-2, where the three phases have been labeled A, B, and C respectively.In the figure, the back EMF shapes, i.e ., the back EMFs divided by speed, are trape-zoids having 2/3 duty cycle. That is, for each 180!aE the back EMF shape is constan over 120!aE. The current associated with each back EMF is composed of rectangula pulses having a 2/3 duty cycle, where the nonzero portions of the pulses are aligned with the flat areas of the respective back EMF shapes and the polarity of the current matches that of the back EMF. Following (8.2), the constant torque produced is shown at the bottom of the figure. Over each 60!aE segment, positive current flows I one phase, negative current flows in another, and no current flows in the third phase. The letters below the constant torque line signify the twophases carrying current, with the overbar denoting negative current flow or flow out of a phase. Every 60!aE where the back EMF in a phase makes a transition, the current in one phase remains unchanged, while the current in another goes to zero, and the current in the thirdbecomes nonzero. Over 360!aE, there are six transitions or commutations before the sequence repeats. As a result, this motor drive is often called a .six step drive.DC Motor Speed ControlThe basis of all methods of DC motor speed control is derived from the equations:E∝ΦωU=E+IaRathe terms having their usual meanings. If the IaRa drop is small, the equations approximate toU∝Φωorω∝U/ΦThus, control of armature voltage and field flux influences the motor speed. To reduce the speed to zero, either U=0 or Φ=∞. The latter is inadmissible; hence control at low speed is by armature voltage variation. To increase the speed to a high value, either U is made very large or Φis reduced. The latter is the most practical way and is known as field weakening. Combinations of the two are used where a wide range of speed is required.直流电机速度控制调节系统调节系统是一类通常能提供稳定输出功率的系统。
新能源dcdc转换器工作原理

新能源dcdc转换器工作原理
新能源DC-DC转换器是一种电源转换器,能够将输入电源(如太阳能电池板,电动汽车电池等)的电压转换成需要的输出电压,以满足各种应用设备的要求。
其基本工作原理为:
1. 输入端电压:从太阳能电池板或者电动汽车电池等电源输入的电压作为输入端电压。
2. 输入端滤波:通过输入端电感和电容组成的滤波电路进行滤波处理,去除高频杂波和噪声。
3. 控制芯片:DC-DC转换器采用控制芯片进行控制,以实现输出电压的稳定和精确调节。
4. 调制电路:采用脉宽调制(PWM)技术将输入电压转换为一定占空比的脉冲电压。
5. 输出电路:通过输出电感、电容和二极管组成的输出电路,将脉冲电压平滑成稳定的输出电压,供给应用设备使用。
6. 输出端滤波:通过输出端电感和电容组成的滤波电路,进一步去除输出端的高频杂波和噪声,使输出电压更为稳定。
以上就是新能源DC-DC转换器的基本工作原理。
dcdc工作原理

dcdc工作原理DCDC工作原理。
DCDC(直流-直流)转换器是一种电子设备,用于将一个直流电压转换为另一个直流电压。
它在许多电子设备中都有广泛的应用,比如手机充电器、电脑电源适配器、电动汽车充电器等。
在本文中,我们将详细介绍DCDC转换器的工作原理。
首先,让我们来了解一下DCDC转换器的基本结构。
它通常由输入端、输出端、开关管、电感、电容和控制电路组成。
当输入电压施加在开关管上时,开关管将周期性地打开和关闭,从而使输入电压在电感和电容之间产生周期性的变化。
通过控制电路的调节,输出端可以获得所需要的电压。
接下来,我们将详细介绍DCDC转换器的工作原理。
当输入电压施加在开关管上时,开关管闭合,电感中储存的能量开始增加。
当开关管断开时,电感中储存的能量开始减小。
这种周期性的能量变化会导致输出端的电压产生周期性的变化。
通过控制开关管的开关频率和占空比,可以实现输出端电压的精确调节。
此外,DCDC转换器还可以实现升压、降压和反向变换。
当需要将输入电压升高时,可以通过控制开关管的开关频率和占空比来实现电压的升压。
同样的道理,当需要将输入电压降低时,可以通过控制开关管的开关频率和占空比来实现电压的降压。
而在反向变换中,输入端和输出端的电压方向相反。
最后,让我们来总结一下DCDC转换器的工作原理。
它通过控制开关管的开关频率和占空比,实现了输入电压到输出电压的精确转换。
同时,它还可以实现升压、降压和反向变换,具有很强的灵活性和适用性。
在实际应用中,DCDC转换器可以根据不同的需求进行设计和调节,以满足各种电子设备对电压的要求。
总的来说,DCDC转换器是一种非常重要的电子设备,它在现代电子技术中有着广泛的应用。
通过深入了解其工作原理,我们可以更好地理解其在各种电子设备中的作用,为我们的工程设计和应用提供更多的可能性。
希望本文能够帮助读者更好地理解DCDC转换器的工作原理,为相关领域的研究和应用提供一些参考和启发。
ROHM 自动汽车 DC DC 转换器模拟指南说明书

User’s GuideROHM Solution Simulator3.5V to 40V Input, 1A Single 2.2MHz Buck DC/DC Converter for AutomotiveBD9P155MUF-C / Frequency ResponseThis circuit simulates the frequency response of BD9P155MUF-C. You can customize the simulation conditions by changing the parameters of components highlighted in blue.General CautionsCaution 1: The values from the simulation results are not guaranteed. Please use these results as a guide for your design. Caution 2: These model characteristics are specifically at Ta=25°C. Thus, the simulation result with temperature variancesmay significantly differ from the result with the one done at actual application board (actual measurement).Caution 3: Please refer to the datasheet for details of the technical information.Caution 4: The characteristics may change depending on the actual board design and ROHM strongly recommend todouble check those characteristics with actual board where the chips will be mounted on.1 Simulation SchematicFigure 1. Simulation Circuit2 How to simulateThe simulation settings, such as frequency range or convergence options, are configurable from the ‘Simulation Settings’ shown in Figure 2, and Table 1 shows the default setup of the simulation.In case of simulation convergence issue, you can changeadvanced options to solve.The parameters V_VIN, V_VOUT and I_IOUT are defined in the ‘Manual Options’.Figure 2. Simulation Settings and executionTable 1. Simulation settings default setupParameters Default Note Simulation Type Frequency-Domain (Do not change Simulation Type)Start Frequency 100 Hz Simulate the frequency response for the frequency range from 100Hz to 1MHz. End Frequency 1.0e6 Hz Advanced options BalancedManual Options“.param V_VIN=12 V_VOUT=5.0 I_IOUT=0.5”See “Simulation Condition” for detailsSimulation Settings Simulate VOUTIOUTVIN3 Simulation Conditions3.1 How to define V IN, V OUT and I OUTThese parameters are used to setup the simulation conditions and BD9P155MUF-C_Average model parameters, therefore these are defined in the Manual Options as the common variables.Table 2 shows the default value of V IN, V OUT and I OUT. Those values are defined and can be set in the ‘Manual Options’ text box from Simulation Settings as s hown in Figure 3.The output voltage of VBAT and the load resistance RL are automatically set according to those parameters.Table 2. Simulation ConditionsParameters Variable Name Default Value Units DescriptionsV IN V_VIN 12 VV OUT V_VOUT 5.0 VI OUT I_IOUT 0.5 ASet V_VIN, V_VOUT and I_IOUTFigure 3. Definition of V IN, V OUT and I OUT3.2 Resistive Load RLRL is the resistive load and its resistance is determined from V OUT and I OUT. The resistance value is defined as the equation below.Table 3. Resistive loadInstance Name Default Value UnitRL {V_VOUT/I_IOUT} ohm4 BD9P155MUF-C_Average modelThe simulation model in this circuit is designed for frequency response, and the functions not related to frequency response are not implemented.Table 4. BD9P155_Average model terminals used for frequency responseTerminals DescriptionPVIN, VIN Power supply inputEN Enable inputPGND Power groundOCP_SEL Over current selector inputSW Switching nodeGND GroundTable 5. BD9P155_Average model terminals NOT used for frequency responseTerminals DescriptionBST Input is ignore (no switching operation in this model)MODE Input is ignore (no switching operation in this model)SSCG Input is ignore (no switching operation in this model)RESET The function is not implementedVOUT_DIS Input is ignore (no switching operation in this model)VOUT_SNS Function not implementedVCC_EX Function not implementedVREG Function not implemented(Note 1) This model is not compatible with the influence of ambient temperature.(Note 2) This model is not compatible with the external synchronization function.(Note 3) Use the simulation results only as a design guide and the data reported herein is not a guaranteed value.4.1 BD9P155MUF-C_Average Model ParametersBD9P155MUF-C_Average model has its parameters shown in Table 6. All the parameters are pre-defined and fixed in the simulation. V_VIN is substituted to VIN_VOLTAGE as shown in Table 6.Table 6. Parameter ListParameters Values DescriptionVIN_VOLTAGE {V_VIN} VIN voltageFigure 4. Property Editor of BD9P155MUF-C_Average model5 Peripheral ComponentsTo set parameters of components, open ‘property’ by double click or right click on a component. You can input a value toa property text box if available. Please refer to the hands-on manual for more details.5.1 Bill of MaterialTable 7 shows the list of components used in the simulation schematic. Each of the capacitor and inductor has the parameters of equivalent circuit shown below. The default value of equivalent components are set to zero except for the parallel resistance of L1. You can modify the values of each component.Table 7. List of components used in the simulation circuitType Instance Name Default Value UnitsCapacitorCIN1 0.1 µF CIN2 4.7 µF CREG 1.0 µF COUT1 22 µFInductor L1 4.7 µH5.2 Capacitor Equivalent Circuits(a) Property editor (b) Equivalent circuitFigure 5. Capacitor property editor and equivalent circuit5.3 Inductor Equivalent Circuits(a) Property editor (b) Equivalent circuitFigure 6. Inductor property editor and equivalent circuitThe default value of PAR_RES is 6.6kohm.(Note 5) These parameters can take any positive value or zero in simulation but it does not guarantee the operation of the IC in any condition. Refer to the datasheet to determine adequate value of parameters.6 Open Loop Transfer Function (OLTF) MonitorOLTF1 is the insert model to measure AC open loop transfer function and is inserted to acquire the gain and phase output. To monitor the gain and phase from OLTF1, select probe items ‘dbMag’ for gain and ‘phase’ for phase plot, respectively from ‘property’ of OLTF1.Figure 7. Probe Items of OLTF17 Link to the product information and tools7.1 Product webpage link:https:///products/power-management/switching-regulators/integrated-fet/buck-converters-synchronous/bd9p155muf-c-product7.2 Related documentsThe application notes are available from ‘Documentation’ tab of the product page.7.3 Design assist tools a re available from ‘Tools’ tab of the product page.The Circuit constant calculation sheet is useful for Febiding the application circuit constants.NoticeROHM Customer Support System/contact/Thank you for your accessing to ROHM product informations.More detail product informations and catalogs are available, please contact us.N o t e sThe information contained herein is subject to change without notice.Before you use our Products, please contact our sales representative and verify the latest specifica-tions :Although ROHM is continuously working to improve product reliability and quality, semicon-ductors can break down and malfunction due to various factors.Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.Examples of application circuits, circuit constants and any other information contained herein areprovided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.The technical information specified herein is intended only to show the typical functions of andexamples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.The Products specified in this document are not designed to be radiation tolerant.For use of our Products in applications requiring a high degree of reliability (as exemplifiedbelow), please contact and consult with a ROHM representative : transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.Do not use our Products in applications requiring extremely high reliability, such as aerospaceequipment, nuclear power control systems, and submarine repeaters.ROHM shall have no responsibility for any damages or injury arising from non-compliance withthe recommended usage conditions and specifications contained herein.ROHM has used reasonable care to ensur e the accuracy of the information contained in thisdocument. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.Please use the Products in accordance with any applicable environmental laws and regulations,such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.W hen providing our Products and technologies contained in this document to other countries,you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.This document, in part or in whole, may not be reprinted or reproduced without prior consent ofROHM.1) 2)3)4)5)6)7)8)9)10)11)12)13)。
DCDC转换器工作原理及用途

1 车载DCDC转换器产品简介1.1 JN-S系列电气全隔离 DCDC直流转换器1.1.1 JN-S系列转换器主要技术指标及客户1.1.2 JN-S系列转换器其他主要参数及功能1.1.3 JN-S系列转换器的其他技术参数1.2 传统燃油车车身电气布置1.3 传统燃油车电源系统构成1.4 纯电动汽车的电气构成1.5 高压使能的DCDC转换器的接线方式1.6 低压使能的DCDC转换器的接线方式2 车载DCDC 转换器的工作原理 2.1 DCDC转换器的拓扑结构2.2 峰值电流模式控制环路2.3 双管正激变换器工作波形 2.4 双管正激变换器的特点 2.5 UC2845芯片功能介绍2.6 开关电源的几种过载保护模式2.5.1 UC2845内部构造2.5.2 供电电压VCC和基准电压VREF 2.5.3 振荡器2.5.4 开关频率与振荡器频率关系2.5.5 电流检测端2.6.1 输出恒流式限制2.6.2 折返输出电流限制2.6.3 其他过载保护类型1.1 JN-S 系列 电气全隔离 DCDC 直流转换器JN-S 系列全隔离转换器是我公司专门为电动轿车用电系统而专门设计生产的, 输入与输出完全电气隔离, 可长时间满载运行、保护功能全. 内置电子开关, 直接钥匙开关. 内部采用硅胶灌封防水抗震, 保证跟随车辆在任何恶劣的环境中使用。
1 车载DCDC 转换器产品简介1.1.1 JN-S系列转换器主要技术指标及客户规格型号额定值工作范围输出类型额定输出电压输出最大电流限制客户控制方式JN-S-1250QD48V/500W37.5-65.0 VDC双路12.5±0.2 VDC50±2A潍坊瑞驰高压使能JN-S-1250QD72V/500W56.5-97.5 VDC双路12.5±0.2 VDC50±2A潍坊瑞驰高压使能JN-S-1245L72V/500W56.5-97.5 VDC单路13.8±0.2 VDC45±2A 淮安敏实重庆潍柴陆地方舟低压使能JN-S-1230QD60V/300W47.0-81.0 VDC双路12.5±0.2 VDC37±2A 潍坊瑞驰潍坊雷丁高压使能JN-S-1230S60V/300W47.0-81.0 VDC单路12.5±0.2 VDC37±2A潍坊雷丁高压使能1.1.2 JN-S系列转换器其他主要参数及功能基本功能1、输入、输出完2、最大电流限制3、输出短路保护4、输入接反保护5、过流保护全隔离6、过温保护:内部温度超过85℃时关闭输出,在低于80℃ 自动恢复工作;7、电子开关:内置,直接用钥匙开关控制;8、高压侧、低压侧控制(任选一);9、选配功能:输入过压、欠压保护;输出过压、欠压保护;10、自然散热、全电子导热密封胶灌注、防水、抗震(防护等级:IP66)1.1.3 JN-S系列转换器的其他技术参数(以JN-S-1250QD 72V/500W为例)主输出参数输入电压范围空载输出电压满载输出电压额定输出功率最大输出电流56.5-97.5 VDC 12.5±0.2 VDC12.1±0.2 VDC500 W50±2 A辅助输出参数空载输出电压满载输出电压额定输出功率最大输出电流12.5±0.2 VDC≥12.2 VDC180 W≥15 A1、满载效率:≥85%2、纹波系数:≤1%3、峰值功率:600W,≥6min4、噪声:<60dB5、工作温度:-30℃ - +60℃;存储温度:-40℃ - +70℃;6、抗振等级:符合SAEJ1378要求;7、耐电压性能:输入对外壳:1500VAC(2100VDC)/3s,漏电流≤5mA;输出对外壳:500VAC(700VDC)/3s,漏电流≤5mA;输入对输出:1500VAC(2100VDC)/3s,漏电流≤5mA;8、绝缘电阻:输入对输出在500V/3s时测试,阻抗≥50MΩ;9、重量:<3Kg1.2 传统燃油车车身电气布置左图为传统燃油车车身电气布置图。
simulate a dc motor drive翻译

Simulate a DC Motor Drive模拟直流电机驱动Introduction介绍in this section, you will learn how to use the DC drive models of the Electric Drives library. First, we will specify the types of motor, converters, and controllers used in the seven DC drive models of the library, designated DC1 to DC7. These seven models are based on the DC brush motor in the Electric Drives library.As in any electric motor, the DC brush motor has two main parts, the stator (fixed) part and the rotor (movable) part. The DC brush motor also has two types of windings, the excitation or field winding and the armature winding. As its name implies, the field winding is used to produce a magnetic excitation field in the motor whereas the armature coils carry the induced motor current. Since the time constant (L/R) of the armature circuit is much smaller than that of the field winding, controlling speed by changing armature voltage is quicker than changing the field voltage. Therefore the excitation field is fed from a constant DC voltage source while the armature windings are fed by a variable DC source.The latter source is produced by a phase-controlled thyristor converter for the DC1 to DC4 models and by a transistor chopper for the DC5, DC6, and DC7 models. The thyristor converter is fed by a single-phase AC source in the cases of DC1 and DC2 and by a three-phase AC source in the cases of DC3 and DC4. Finally, the seven DC models can work in various sets of quadrants. All these possibilities are summarized in the following table.在本节中,您将学习如何使用电动驱动器库的直流驱动模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文原文Principle, Modeling and Control of DC-DCConvertors for EVZHAN G Cheng-ning , SUN Feng-chun , ZHAN G Wang (School of Vehic le and Transportation Engineering , Beijing Institute of Technology , Beijing 100081)Abstract :DC-DC convertors can convert the EV’s high-voltage DC power supply into the lowvoltage DC power supply. In order to design an excellent convertor one must be guided by theory of automatic control. The principle and the method of design, modeling and control for DC-DC convertors of EV are introduced. The method of the system-response to a unit step-function input and the frequency-response method are applied to researching the convertor’s mat- hematics model and control characteristic. Experiments show that the designed DC-DC convertor’s output voltage precision is high , the antijamming ability is strong and the adjustable performance is fast and smooth.Key words: EV ; DC-DC convertors ; automatic control ; mathematics model ; Bode drawingCLC number : U 469-72 Document code : A Generally there are two power supplies in EV. One is the DC high-voltage power supply that is used by high power devices such as traction motors and air conditioners etc. The other is the DClow-voltage power supply that is usually used in some control circuitand low-voltage electrical devices such as the inst- rument and lighting. It s rating voltage is 24 V or 12 V. The low-voltage power supply can be gained from the high-voltage power supply by aDC-DC conver-tor.In this paper, the main performance of the designed convertor is that the input voltage range is from DC 250 V to DC 450 V , the output voltage is DC 24 V , the maximum output current is DC 20 A , and the output precision is 1 %.1 Principle of the Convertor1.1 The Block Diagram of the DC-DC ConvertorThe block diagram of the DC-DC convertor is showed in Fig. 1. The battery series provide the DC high-voltage input U s. Thelow-voltage output of the con-vertor is U o. The setting value U i of the convertor is equal to or is in proportion to the demanded output voltage U o. The convertor is a closed-loop negative feedback-system with voltage feedback.1.2 Power Switch CircuitThe power switch circuit with semi-bridge mode is showed in Fig. 2. L1 and C1 constitute an input filter to avoid high-frequencyimpulses flowing bac- kwards. Capacitors C2and C3 constitute the partial-voltage circuit while resist-ances R1 and R2do so. IGBT1 and IGBT2 are semiconductor switch devices. C6 is a separation DC capacitor. T1 is a transformer that reduces the voltage. L2 and C7 constitute an output filter. RL is the load resistance. When the PWM signalsin the reverse semi-waves are inputted onto IGBT1 and IGBT2’s control poles , the corresponding DC voltage can be yielded from the convertor.Fig. 2 Principle circuit of power switch with semi-bridge mode 1.3 Control CircuitThe chip SG3525 is used in the PWM control circuit showed in Fig. 3. V cc is the power voltage applied to the chip, it is 12.0 V. A base-voltage of 5.1 V is yielded on pin16 of the chip that is partially used as parameter voltage input U i. The chip includes asawtooth-wave generator. R t and C t are the external resis-tance and capacity that determine the sawtooth-wave’s frequency.Pin2 of the chip is a positive-phase input port. Voltage input U i is putted to the port, here U i =2. 5 V. Pin1 of the chip is the negative-phase input port where the feedback voltage is inputted.Pin9 of the chip is the output end of the inside amplifier of the chip. The proper resistance and capacitor are connected between the pin1 andpin9 to realize compensation of the DC-DC convertor.C8 is the integral capacitor. The integral compensator is adopted as the system-compensation of the system. The PWM impulses are yielded from pin11 and pin14 of the chip. When the PWM control circuit operates normally, U i on the pin2 and U b on the pin1 should be balanced. When U b is not equal to U i , the PWM width can be automatically adjusted by the PWM control circuit to make U b equal to U i. By this way we can control the output voltage of the convertor.Fig. 3 The connection circuit for the PWM control chip SG3525 1.4 Drive CircuitThe drive circuit of IGBT usually adopts a pulse-transformer or an opto-coupler to isolate the power circuit from the control circuit. An individual power supply is needed if an opto-coupler is used, which increases the complexity of the system. So the isolation-circuit adopt s a pulse-transformer showed in Fig. 4. Transistors BG1 and BG2 in Fig. 4 compose a complementation power amplification circuit. T2 is the pulse-transformer that isolates the power circuit from the control circuit. R5 and C8 compose the acceleration circuit. The diode D6eliminates negative impulses. The diode D7 and transistor BG3 compose the rapid discharge circuit of the distributing capacitor at the control pole of IGBT.Fig. 4 Principle circuit for IGBT drive2Modeling and Control2.1 ModelingThe DC-DC convertor is a voltage negative feedback-system. Aiming to obtain the better dynamic and static characteristic we must model and analyse it in theory. According to Ref. [ 1 ] ,DC-DC convertors are the approximate second-order systems. In order to obtain accurate parameters , the method of the system-response to a unit step-function input is adopted in this paper.2.1.1 Measuring the Open-Loop System’s Response to a Unit Step-Function InputThe block diagram for measuring is shown in Fig. 5. The concrete method is described as follows : ①The voltage feedback signal is cut off ; ②The setting value of the chip SG3525 adopts themiddling value U i0 to make the width of an impulse be about 0.5 T ;③U i0 is superimposed with d U i that is composed by positive and negative rectangle wave impulses. The amplitude of d U i is taken to be equal to 0.2U i0. It should make d U o be easy to be observed to select the rectangle wave frequency , adopting f 1 = 400 Hz ; ④The output waveform of U o ( = U o 0 + d U o ) is shown in Fig. 6. As shown in Fig. 6 when f 1 = 400 Hz , period T = 2.5 ms (5 grills) , the time for the maximum voltage value is about 0.2 grills. d U o’s stable voltage amplitude is - grills. Peak overshoot is 1 grill. Every grill in the vertical direction represents 5 V. By this way the data of system-response to a unit step-function input can be obtained as follows :peak time t p = 0.1 ms ; peak overshoot σp = 1/ 2 = 50 %;output and input’s incremental ratio K0 = d U o/ d U i = 10/ 1 = 10.Fig.5 The measuring block diagram of the open-loop systemFig. 6 The system-response to a unit step-function inpu t2.1.2Determining the Open-Loop Transfer FunctionAccording to Ref s. [2,3 ] , we have the damping ratio ξ, undamped natural frequency ωn and transfer function of controlled object G p ( s) as follows :In order to ensure that when the output voltage U o =24 V the feedback voltage to pin1 of the SG3525 is 2.5 V to balance the input voltage U i = 2.5 V, we take the feedback and measuring factor asK b = U b/ U o = -15/ -4 = 01104.( 4 )2.2Design of the PID Regulator2.2.1The Principle Scheme and Transfer Function of the PID RegulatorTo resist the disturbance of the power supply voltage and load current to the DC-DC convertor so as to improve control precision , an integral compensator is adopted. The principle scheme of the integral compensator is shown in Fig. 7.Fig. 7 The principle scheme of the integral compensatorIt s transfer function isG c ( s) = K i/ s = 1/ ( RCs).( 5 )In Fig. 7 and Eq. (5), R = 10 kΩ, C = 0.1μF , K i = 1/ ( RC) = 1/ (10 ×103 ×011 ×10 - 6)= 1 000.2.2.2The Bode Drawing of the System Open-Loop Transfer FunctionThe system open-loop transfer function is the product of the controlled object’s , feedback and measuring circuit’s and integral compensator’s transfer functions. We haveG( s) = G c ( s) G p ( s) G b ( s) =The system Bode drawing is shown in Fig. 8 from Eq. (6). The curves ①and ④are respectively the logarithmic gain-frequency characteristic ,logarithmic phase-frequency characteristic of controlled object G p ( s). The curves ②and ⑤are respectively the logarithmic gain-frequency characteristic , logarithmicphase-frequency characteristic of the feedback and measuring circuit joint the integral compensator. The curves ③and ⑥are respectively the logarithmic gain-frequency characteristic and logarithmic phase-frequency characteristic of the compensatedopen-loop system. By Fig. 8 we know that the system is I-model system. When the input doesn’t change , there isn’t steady-state error. It s original phase-margin frequency ωc = 1 016 rad/ s , phase margin γ= 89.21°, so the adjustable performance of the system is fast and smooth.Fig. 8 The Bode drawing of the system open2loop transfer function 3 The Result and Conclusion of ExperimentWhen the load resistance R L = 1.2Ω, the experiment data of U s , I s , U o , I o , η(ηis efficiency of the convertor) are shown in Tab. 1. When the load resistance R L = 2.4Ω, the experiment data ofU s , I s , U o , I o , ηare shown in Tab.2.4 Conclusions①Because the integral compensator is adopted , the output voltage U o of the convertor has quite high precision even if the input power voltage and the load changes.②The width of the impulses is adjusted automatically in the convertor to realize constant output voltage value. With the increase of the input voltage the width of the impulses turn narrow , the convertor’s efficiency drops. In the process of designing a DC-DC convertor, we must diminish the adjustable range of the impulse width and make the impulse width wider when the convertor operates.③The reasonable value of the resistance and capacitor in the feedback circuit must be selected so that the feedback-system has enough gain margin and phase margin that can guarantee thecontrol-system to be adjusted smoothly.References:[1 ] Cai Xuansan , Gong Shaowen. High-frequency electronics (in Chinese) [ M].Beijing : Science Press , 1994. 232 - 246.[2] Zhang Wang , Wang Shiliu. Automatic control principle (in Chinese)[M]. Beijing: Beijing Institute of Technology Publishing House , 1994. 71 - 72.[3 ] D’Azzo J J. Linear control system analysis and design [M]. San Francisco: McGraw-Hill Book Company,1981. 83 - 92.电动汽车DC-DC电源转换器的原理、建模和控制张承宁, 孙逢春, 张旺(北京理工大学车辆与交通工程学院, 北京100081)摘要:为了设计出在电动汽车上把高压直流电源变换成低压直流电源的高品质DC-DC 变换器,采用自动控制理论进行指导. 介绍电动汽车DC-DC 变换器原理和设计,建模与控制方法. 应用阶跃响应法、频率法研究其数学模型和控制特性,并且进行分析和计算. 实验结果表明,用这种方法所研制的电动汽车DC-DC 变换器输出电压精度高,抗干扰能力强,调节特性快速、平稳.关键词:电动汽车; DC-DC 变换器; 自动控制; 数学模型; Bode 图中图分类号U 469172 文献标识码A通常有两种电源电动汽车。